From 8660c92d5d595cfb80a3c2dc2612f4a03a7171e4 Mon Sep 17 00:00:00 2001 From: Philipp Horstenkamp Date: Wed, 22 Jun 2022 02:23:08 +0200 Subject: [PATCH] Init --- .dockerignore | 154 + .gitignore | 207 ++ .idea/.gitignore | 8 + .idea/inspectionProfiles/Project_Default.xml | 23 + .../inspectionProfiles/profiles_settings.xml | 6 + .idea/misc.xml | 4 + .idea/ml-programmiereprojekt.iml | 24 + .idea/modules.xml | 8 + .idea/vcs.xml | 9 + .pre-commit-config.yaml | 82 + README.md | 4 + experiemnts/Experiments.ipynb | 823 +++++ model | 1 + poetry.lock | 2741 +++++++++++++++++ pyproject.toml | 23 + pyrate | 1 + ros-nodes | 1 + ros.dockerfile | 26 + 18 files changed, 4145 insertions(+) create mode 100644 .dockerignore create mode 100644 .gitignore create mode 100644 .idea/.gitignore create mode 100644 .idea/inspectionProfiles/Project_Default.xml create mode 100644 .idea/inspectionProfiles/profiles_settings.xml create mode 100644 .idea/misc.xml create mode 100644 .idea/ml-programmiereprojekt.iml create mode 100644 .idea/modules.xml create mode 100644 .idea/vcs.xml create mode 100644 .pre-commit-config.yaml create mode 100644 README.md create mode 100644 experiemnts/Experiments.ipynb create mode 160000 model create mode 100644 poetry.lock create mode 100644 pyproject.toml create mode 160000 pyrate create mode 160000 ros-nodes create mode 100644 ros.dockerfile diff --git a/.dockerignore b/.dockerignore new file mode 100644 index 0000000..11bc09c --- /dev/null +++ b/.dockerignore @@ -0,0 +1,154 @@ +### TortoiseGit template +# Project-level settings +/.tgitconfig + +### Example user template template +### Example user template + +# IntelliJ project files +.idea +*.iml +out +gen +### Python template +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ +cover/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +.pybuilder/ +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +# For a library or package, you might want to ignore these files since the code is +# intended to run in multiple environments; otherwise, check them in: +# .python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# pytype static type analyzer +.pytype/ + +# Cython debug symbols +cython_debug/ + +.git/ +/.idea diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..90b7769 --- /dev/null +++ b/.gitignore @@ -0,0 +1,207 @@ +### ROS template +devel/ +logs/ +build/ +bin/ +lib/ +msg_gen/ +srv_gen/ +msg/*Action.msg +msg/*ActionFeedback.msg +msg/*ActionGoal.msg +msg/*ActionResult.msg +msg/*Feedback.msg +msg/*Goal.msg +msg/*Result.msg +msg/_*.py +build_isolated/ +devel_isolated/ + +# Generated by dynamic reconfigure +*.cfgc +/cfg/cpp/ +/cfg/*.py + +# Ignore generated docs +*.dox +*.wikidoc + +# eclipse stuff +.project +.cproject + +# qcreator stuff +CMakeLists.txt.user + +srv/_*.py +*.pcd +*.pyc +qtcreator-* +*.user + +/planning/cfg +/planning/docs +/planning/src + +*~ + +# Emacs +.#* + +# Catkin custom files +CATKIN_IGNORE + +### JupyterNotebooks template +# gitignore template for Jupyter Notebooks +# website: http://jupyter.org/ + +.ipynb_checkpoints +*/.ipynb_checkpoints/* + +# IPython +profile_default/ +ipython_config.py + +# Remove previous ipynb_checkpoints +# git rm -r .ipynb_checkpoints/ + +### Python template +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ +cover/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +.pybuilder/ +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +# For a library or package, you might want to ignore these files since the code is +# intended to run in multiple environments; otherwise, check them in: +# .python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# pytype static type analyzer +.pytype/ + +# Cython debug symbols +cython_debug/ + diff --git a/.idea/.gitignore b/.idea/.gitignore new file mode 100644 index 0000000..ecca007 --- /dev/null +++ b/.idea/.gitignore @@ -0,0 +1,8 @@ +# Default ignored files +/shelf/ +/workspace.xml +# Editor-based HTTP Client requests +/httpRequests/ +# Datasource local storage ignored files +/dataSources/ +/dataSources.local.xml \ No newline at end of file diff --git a/.idea/inspectionProfiles/Project_Default.xml b/.idea/inspectionProfiles/Project_Default.xml new file mode 100644 index 0000000..9e24dfd --- /dev/null +++ b/.idea/inspectionProfiles/Project_Default.xml @@ -0,0 +1,23 @@ + + + + \ No newline at end of file diff --git a/.idea/inspectionProfiles/profiles_settings.xml b/.idea/inspectionProfiles/profiles_settings.xml new file mode 100644 index 0000000..105ce2d --- /dev/null +++ b/.idea/inspectionProfiles/profiles_settings.xml @@ -0,0 +1,6 @@ + + + + \ No newline at end of file diff --git a/.idea/misc.xml b/.idea/misc.xml new file mode 100644 index 0000000..d82714d --- /dev/null +++ b/.idea/misc.xml @@ -0,0 +1,4 @@ + + + + \ No newline at end of file diff --git a/.idea/ml-programmiereprojekt.iml b/.idea/ml-programmiereprojekt.iml new file mode 100644 index 0000000..ff52348 --- /dev/null +++ b/.idea/ml-programmiereprojekt.iml @@ -0,0 +1,24 @@ + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/.idea/modules.xml b/.idea/modules.xml new file mode 100644 index 0000000..a85f059 --- /dev/null +++ b/.idea/modules.xml @@ -0,0 +1,8 @@ + + + + + + + + \ No newline at end of file diff --git a/.idea/vcs.xml b/.idea/vcs.xml new file mode 100644 index 0000000..eb47959 --- /dev/null +++ b/.idea/vcs.xml @@ -0,0 +1,9 @@ + + + + + + + + + \ No newline at end of file diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 0000000..0e9cf49 --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,82 @@ +default_language_version: + python: python3.10 + +repos: +- repo: https://github.com/pre-commit/pre-commit-hooks + rev: v4.1.0 + hooks: + - id: end-of-file-fixer + exclude: (.txt$|.ipynb$) + - id: trailing-whitespace + exclude: (.txt$|README.md$) + - id: check-yaml + - id: check-json + - id: check-toml + - id: check-xml + # - id: check-added-large-files + args: [--enforce-all] + - id: name-tests-test + - id: detect-private-key + - id: check-case-conflict + - id: check-symlinks + - id: check-docstring-first + +- repo: https://github.com/psf/black + rev: 22.1.0 + hooks: + - id: black + args: [--config=pyproject.toml] + - id: black-jupyter + args: [--config=pyproject.toml] + +- repo: https://github.com/seandstewart/pre-commit-poetry-export + rev: f0501a85959a71c26b964d9542a78d1033af083e + hooks: [] + # - id: export-requirements + # - id: export-requirements-dev + +- repo: https://github.com/macisamuele/language-formatters-pre-commit-hooks + rev: v2.2.0 + hooks: + - id: pretty-format-ini + args: [--autofix] + - id: pretty-format-toml + args: [--autofix] + - id: pretty-format-yaml + args: [--autofix] + +- repo: https://github.com/jendrikseipp/vulture + rev: v2.3 # or any later Vulture version + hooks: + - id: vulture + +- repo: https://github.com/domdfcoding/flake2lint + rev: v0.4.1 + hooks: + - id: flake2lint + +- repo: https://github.com/PyCQA/flake8 + rev: 4.0.1 + hooks: + - id: flake8 + args: [--config=.flake8] + +- repo: https://github.com/pre-commit/mirrors-mypy + rev: v0.931 + hooks: + - id: mypy + +- repo: https://github.com/frnmst/md-toc + rev: 8.1.1 + hooks: + - id: md-toc + +- repo: https://gitlab.com/smop/pre-commit-hooks + rev: v1.0.0 + hooks: + - id: check-poetry + +- repo: https://github.com/Lucas-C/pre-commit-hooks-java + rev: 1.3.10 + hooks: + - id: validate-html diff --git a/README.md b/README.md new file mode 100644 index 0000000..ec8e37b --- /dev/null +++ b/README.md @@ -0,0 +1,4 @@ + + + +[WIKI](https://gitlab.sailingteam.hg.tu-darmstadt.de/team/wiki/-/wikis/Software/Installation#docker) \ No newline at end of file diff --git a/experiemnts/Experiments.ipynb b/experiemnts/Experiments.ipynb new file mode 100644 index 0000000..7ce9824 --- /dev/null +++ b/experiemnts/Experiments.ipynb @@ -0,0 +1,823 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# A suggestion of curse changes for a robot sailboat\n", + "\n", + "## Motivation\n", + "\n", + "The goal of this project is to suggest good points to change the curse of a sailboat while going from point $A$ to point $B$.\n", + "\n", + "This project is done as part of the curse \"Maschienen Learning\" at the University of Applied Sciences South Westphalia. The code labeling the was writen by the team of the [Sailing Team Darmstadt e.V.](https://www.st-darmstadt.de/). A society of stundens whose goal it is to build the [\"roBOOTer\"](https://www.st-darmstadt.de/ueber-uns/boote/prototyp-ii/) a fully autonomous sailboat able to cross the atlantic ocean. A technical challenge that was mastered the first time only a few years ago by [a Norwegian team](http://sailbuoy.no/). I myself am part of the Sailing Team Darmstadt e.V. for nearly 10 years.\n", + "\n", + "One of the challenges to solve is a highly efficient way to find a path over the Ocean. The boot is only 2 meters long and powered by solar energy. That makes power a relatively spares commodity.\n", + "\n", + "## Situation as is\n", + "At the moment the pathfinding algorithm generates a set of more or less random routes to the goal. Each route than gets optimized by a gradient decent moving the curse change points over the ocean to find a path with the lowest cost that can be found by following the highest gradient. This is relatively inefficient since only local minima can be found for each of the randomly generated route. The route with the lowest cost for the so optimized route will be chosen as the final route.\n", + "The idea of this project is to ascertain if it is possible to generate a better initial route through a neural network to give the system a kind of good instinct for the initial routes to reduce optimization steps and the number fo routes that need to be calculated to find a good route. Even tough the initial calculation effort could be high the parallel calculation of 40 routes and lots of optimization steps make it possible that some calculation time and therefore energy can be saved this way.\n", + "The idea of this project is to ascertain if it is possible to generate a better initial route through a neural network to give the system a kind of good instinct for the initial routes to reduce optimization steps and the number fo routes that need to be calculated to find a good route. Even tough the initial calculation effort could be high the parallel calculation of 40 routes and lots of optimization steps make it possible that some calculation time and energy can be saved this way.\n", + "\n", + "## The Project\n", + "\n", + "The goal of this project is to calculate a good first route. That allows for some simplifications of this problem.\n", + "\n", + "Some solutions and assumptions can be made.\n", + "1. The route proposed by this network will not be the final route. This make a somewhat accurate solution good enough.\n", + "2. Since the neural network should not learn how to interpret a specific map but the concept of a map the map can be rotated.\n", + "This allows the wind to come always from north.\n", + "3. Since curse speed is only somewhat proportional to the wind speed a final course may change depending on wind speed not only direction.\n", + "These changes are however somewhat small compared to other influences and can hopefully be ignored since later processing of a proposed route should strait these details out.\n", + "4. When the wind comes always from the same direction (After map orientation by wind) map and route can be mirrored allowing to use all data twice for each route.\n", + "5. Scale does only matter when the curvature of the earth has a significant influence. Allowing for different scaling of the problem for additional training data.\n", + "\n", + "Since there is a solution for this project that only needs some optimisation we can used labeled data to train the network.\n", + "\n", + "### The generell structure\n", + "\n", + "Since" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%% md\n" + } + } + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true, + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "outputs": [ + { + "data": { + "text/plain": "
" + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": "
" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, + { + "cell_type": "code", + "execution_count": 3, + "outputs": [], + "source": [ + "size_inner = 50\n", + "size_route = 100" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, + { + "cell_type": "code", + "execution_count": 4, + "outputs": [], + "source": [ + "# https://stackoverflow.com/questions/16444719/python-numpy-complex-numbers-is-there-a-function-for-polar-to-rectangular-co\n", + "def polar_to_cartesian(radii: np.ndarray, angles: np.ndarray):\n", + " return radii * np.exp(2j * angles * np.pi)\n", + "\n", + "def cartesian_to_polar(x: np.ndarray):\n", + " return abs(x), np.angle(x)" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, + { + "cell_type": "code", + "execution_count": 5, + "outputs": [], + "source": [ + "def random_poligon(radius: float=2, sigma: float=1.5):\n", + " array = polar_to_cartesian(np.random.lognormal(radius, sigma), np.random.rand(3))\n", + " offset = np.random.randint(low=-size_route, high=size_route, size=(2, ))\n", + " return np.real(array) + offset[0], np.imag(array) + offset[1]" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, + { + "cell_type": "code", + "execution_count": 6, + "outputs": [ + { + "data": { + "text/plain": "(array([55.26596973, 54.13445613, 51.47826712]),\n array([-53.40114172, -62.26708846, -56.88544642]))" + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "random_poligon()" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, + { + "cell_type": "code", + "execution_count": 7, + "outputs": [ + { + "data": { + "text/plain": "" + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "random_poligon" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, + { + "cell_type": "code", + "execution_count": 8, + "outputs": [], + "source": [ + "def generate_obstacles(number_of_obstacles: int) -> np.ndarray:\n", + " pass" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, + { + "cell_type": "code", + "execution_count": 9, + "outputs": [], + "source": [ + "def generate_map(seed=None):\n", + " if seed is not None:\n", + " np.random.seed(seed=seed)\n", + " plt.figure(figsize=(8, 8))\n", + " plt.axis([-size_route, size_route, -size_route, size_route])\n", + " number_of_polygons = 10\n", + " for _ in range(number_of_polygons):\n", + " plt.fill(*random_poligon(1.6, 0.9))\n", + " plt.show()" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, + { + "cell_type": "code", + "execution_count": 10, + "outputs": [ + { + "data": { + "text/plain": "[]" + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiR0lEQVR4nO3deZCc9X3n8fd3dKILEDoAoWHEjcE2mAFjMOaw4xMbJ3GI7QrBiWNtHMcbUjg+SHYTbzlbTuJ1lq2kNqsNbEyty0d2GoG50UiykA0SqDWSkHp0X90z6p6jR3NPX9/9o1tiEBppNJrup4/Pq4qi9XT3PN+nVPrq0ef3e34/c3dERKTy1AVdgIiITIwauIhIhVIDFxGpUGrgIiIVSg1cRKRCTS3lyRYsWOANDQ2lPKWISMXbtGlTp7svPPF4SRt4Q0MDb7zxRilPKSJS8czs4MmOK0IREalQauAiIhVKDVxEpEKpgYuIVCg1cBGRCqUGLiJSodTARUQq1GkbuJnNNLONZrbFzLab2XcLx5eZ2QYz22NmPzOz6cUvV0REjhnPHfgIcI+7vxe4Afi4md0K/B3wj+5+BZAEvly0KkVEAjKczvLctnb+97p9QZfyDqd9EtPzOz70F345rfCfA/cAXywc/xHwN8D/nPwSRURKy90JH0rSFI7xzJY2eoczNF56Pl/50GVBl/Y243qU3symAJuAK4B/BvYCPe6eKXwkCiwZ47vLgeUA9fX1Z1uviEjRHO4eJBSOEdoc5WDX4NveSw6mAqpqbONq4O6eBW4ws/OAJ4FrxnsCd18BrABobGzU/m0iUlZ6h9M8v62dpnCMjfu7x/xccjBdwqrG54wWs3L3HjNbA3wAOM/Mphbuwi8BYsUoUERksmWyOV7Z00koHOOl7UcYyeRO+52ewRS5nFNXZyWocHxO28DNbCGQLjTvc4DfID+AuQb4HPBT4EHgqWIWKiJytna09RIKR1nZ0kZn/8gZfTfn0Dec4dxZ04pU3Zkbzx34RcCPCjl4HfBzd3/GzHYAPzWz7wGbgceKWKeIyIQk+oZ5uqWNpnCMSHvvWf2s5GCqshq4u28FbjzJ8X3ALcUoSkTkbAyns7y0I04oHGXdrg5ykzT61j2YooHZk/PDJkFJN3QQESmWXM5542CSUDjKs1vb6RvJnP5LZ6inzGaiqIGLSEU70DlAaHOMJzdHOdw9VNRzJQfKayaKGriIVJyjg2me2dZGKBxj08Fkyc5bbnPB1cBFpCKksznW7eqgKRxl1Y4Eqezpp/5NNjVwEZFxcne2t/XSFI7ydEsbXQPBNtBye5hHDVxEyk68d5gnN8cIhaPsivef/gslokFMEZGTGExleGl7nKZwlF/t6Zy0qX+TSYOYIiIFuZzz2v4uQuEYz29rZyCVDbqkU1IGLiI1b29Hf/6R9s1txHqKO/VvMqmBi0hNSg6keGZr/pH2lsM9QZczIcnBNO6OWXksaKUGLiJFk8rkWLMzQSgcZXVrgnS2DIPtM5DK5BhKZ5k1vTxaZ3lUISJVw93ZGj1KKBzl6S1tZTf17mwlB9Nq4CJSXdp6ho5P/dvbMRB0OUWTHEix5Lxzgi4DUAMXkbMwMJLh+TePEApHeXVfF17ZCcm4lNNAphq4iJyRbM55dW8XoXCU5988wlC6vKf+TbZyioTUwEVkXHbH+2gKx1i5OcaR3uGgywlMOT2NqQYuImPq6h/hF1vyU/+2xY4GXU5Z6A54PZbR1MBF5G1GMllWRxI0hWOs3ZkgU47PtAeoRxGKiJQTdyd8qIdQOMozW9s5OlQ+TarcVNQgppktBZ4AFgMOrHD3R83sBuBfgJlABvgTd99YxFpFZJId7h48PvXvQNdg0OVUhEobxMwAD7t72MzmApvM7GXg74HvuvvzZvbJwq/vKl6pIjIZ+obTPL/tCE3hKBv2dwddTsVJVlIG7u7tQHvhdZ+ZRYAl5O/G5xU+di7QVqwiReTsZLI51u/pJBSO8eL2I4xkSr+bTbWoqAhlNDNrAG4ENgAPAS+a2Q+AOuC2Mb6zHFgOUF9ffxalisiZaj3SS6gw9S/RNxJ0OVWhIgcxzWwO0AQ85O69ZvY94M/dvcnM7gceAz5y4vfcfQWwAqCxsVHD2SJF1tE3wlMtMULhGDvae4Mup+r0j2RIZXJMn1oXdCnja+BmNo188/6xu4cKhx8E/qzw+t+Bf5388kRkPIbTWV7eEScUjrJudydZTf0rqp7BFIvmzQy6jHHNQjHyd9cRd//hqLfagDuBtcA9wO5iFCgiJ+fuvHEweXzqX99wJuiSakZyMF0ZDRy4HXgA2GZmLYVjjwBfAR41s6nAMIWcW0SK62DXAKFwjCc3xzjUral/QSiXgczxzEJZD4y1/cRNk1uOiJzM0aE0z21rp2lTlDcOJoMup+aVy3ooehJTpEylszle2d1BUzjGyzvipDT1r2x0l8nu9GrgImXE3dnelp/69/SWGJ395XGnJ29XMRGKiBRfvHeYp1piNG2KsTPeF3Q5chqKUERq3FAqy0s7jtAUjrF+dwea+Vc5ymU9FDVwkRLK5ZyNB7pp2pTfzaZ/RFP/KlG5rIeiBi5SAvs6+gur/sWI9QwFXY6cJWXgIlWuZzDFL7a2EwpH2XyoJ+hyZBKVy3ooauAikyiVybF2Z4JQOMbq1gSprKb+VSPdgYtUCXdnW+xoYepfW1ntmSjF0TOUJptzptSN9YxjaaiBi0xQ+9Gh47n2nkR/0OVICblD71Ca82dPD7QONXCRMzAwkuHF7UcIhWP8am8nrql/NSs5mFIDFyl32Zzz2r4umsJRXnjzCIOpbNAlSRkoh7ngauAiY9iT6KOpsJtN+9HhoMuRMlMOc8HVwEVG6R5I8YstbTSFo2yNHg26HClj5TATRQ1cat5IJsua1gRN4RhrWhNk9Ey7jEM5zAVXA5ea5O60HO6hKRzlF1vaOToU/B9GqSy6AxcpsWhykJWFqX/7OgeCLkcqmBq4SAn0j2R4blv+kfbX9nUHXY5UiWQZbOqgBi5VKZtzfrWnk1A4ygvbjzCc1iPtMrkq4g7czJYCTwCLAQdWuPujhfe+DnwNyALPuvs3i1iryGntPNJHKBzlyc0xEn0jQZcjVaxSBjEzwMPuHjazucAmM3uZfEO/D3ivu4+Y2aJiFioyls7+EZ5qaSMUjrK9rTfocqRGVMQduLu3A+2F131mFgGWAF8Bvu/uI4X3EsUsVGS04XSW5kiCUDjK2l0dZDX1T0osOZjC3TELbkGrM8rAzawBuBHYAPwDcIeZ/S0wDHzD3V8/yXeWA8sB6uvrz7ZeqWHuzqaDSZrCMZ7Z2kbfsHazkeCks85AKsucGcENJY77zGY2B2gCHnL3XjObCswHbgVuBn5uZpe5v315H3dfAawAaGxs1G2SnLFDXYP5Vf82RznYNRh0OSLHJQdS5d/AzWwa+eb9Y3cPFQ5HgVChYW80sxywAOgoSqVSU3qH0zy3tZ1QOMbGA5r6J+WpZzDN0vnBnX88s1AMeAyIuPsPR721ErgbWGNmVwHTgc5iFCm1IZPN8cruTprCUV7eEWcko6l/Ut66Ax7IHM8d+O3AA8A2M2spHHsEeBx43MzeBFLAgyfGJyLjsaOtl1A4ysqWNjr7NfVPKkdPuTdwd18PjDXM+nuTW47UikTvME+15Ff9az3SF3Q5IhMS9JKyehJTSmY4neWlHXGaNkV5ZXcHmvknlS7oTR3UwKWocjnn9QPdhMIxntvWTt+Ipv5J9Qj6YR41cCmK/Z0DPBmOEtocI5ocCrockaLQHbhUjaODaX6xNf9Ie/hQT9DliBRd2Q9iipxKOpvjlzs7CG2OsmpHglRWU/+kdihCkYrj7rwZ6y3sZtNGVxls7ioShKDXBFcDl3E7cnSYlS0xQuEou+L9QZcjEjjdgUtZG0xleHH7EULhGOv3dKJHtUTeMpjKMpLJMmPqlEDOrwYu75DLOa/t66IpHOP5N9sZTGWDLkmkbPUMplk8Tw1cArYn0c+Tm6M8GY7RdnQ46HJEKkL3QIrF82YGcm418BqXHEjxi61tNIVjbDncE3Q5IhUnyBxcDbwGpTI51uxM0LQpypqdCdJZBdsiExXk3phq4DXC3dkSPUooHOXpLW1lsSGrSDXQHbgUTaxniJWbYzSFo+zrGAi6HJGqE+SKhGrgVah/JMMLbx6haVOU1/Z3aeqfSBEFuR6KGniVyOacX+/tJBSO8cKbRxhKa+qfSCkoQpEJ2xXvoykcZeXmGPFe7WYjUmoaxJQz0tU/wtNb2giFY2yLHQ26HJGa1q0MXE5nOJ1ldWuCUDjK2p0dZLSdjUhZCHJJ2fHsSr8UeAJYDDiwwt0fHfX+w8APgIXurl3pJ5G7Ez6UpCkc45ktbfQOazcbkXJT7oOYGeBhdw+b2Vxgk5m97O47Cs39o8CholZZYw53D/Lk5vyqfwe6BoMuR0ROoXc4TSabY+qUupKfezy70rcD7YXXfWYWAZYAO4B/BL4JPFXMImtB73Ca57e10xSOsXF/d9DliMg4ucPRoTQXzJlR8nOfUQZuZg3AjcAGM7sPiLn7FjM71XeWA8sB6uvrJ15pFcpkc6zfk5/69+L2I4xktJuNSCVKDpZ5AzezOUAT8BD5WOUR8vHJKbn7CmAFQGNjo0begEh7L6FwlJUtbXT0aeqfSKULaiBzXA3czKaRb94/dveQmb0bWAYcu/u+BAib2S3ufqRo1VawRN8wT7fkV/2LtPcGXY6ITKKgBjLHMwvFgMeAiLv/EMDdtwGLRn3mANCoWShvN5zO8vKOOE3hKK/s7iSrqX8iVSmo9VDGcwd+O/AAsM3MWgrHHnH354pWVQVzd14/kCQUjvLs1nb6RjT1T6TaBfU4/XhmoawHxh6lzH+mYbIKqlQHuwZoCsd4cnOUw91DQZcjIiVUthGKjO3oUJpnt7YTCkd542Ay6HJEJCBlPYgpb0lnc6zb1UEoHOPlSJyUpv6J1LyyjVAkn2tvb+ulKRzl6ZY2ugJcvEZEyk9yQBFK2Yn3DrNyc4xQOMbOeF/Q5YhImdIdeJkYTGV4aXt+6t+v9nSimX8icjoaxAxQLuds2N9NKBzluW3tDKS0m42IjF/PYAp351TLihRDTTfwvR39PBmO8eTmGLEeTf0TkYnJ5Jy+kQzzZk4r6XlrroEnB1I8szX/SHvL4Z6gyxGRKtEzkFYDL4ZUJsfanQlC4RjNrXHSWQXbIjK5koMp6i+YVdJzVm0Dd3e2Ro8SCkd5ektboLtmiEj1C2ImStU18LaeIVa25Kf+7Un0B12OiNQINfAJGhjJ8MKbRwhtjvLrvV24EhIRKbEgHuap2AaezTmv7u0iFI7y/JtHGEpr6p+IBCeI9VAqroHvjvfRFI6xcnOMI73DQZcjIgIE8zBPxTTw1w90871ndrAlejToUkRE3qFbd+Bju7lhPv/rgUZWtyZojsRZv6dTmwCLSNlQhHIaF547ky++v54vvr+eoVSWX+/tZFUkwerWOPFebQ4sIsHRIOYZOGf6FD587WI+fO1i3K9ne1svqyJxmiMJtsUUs4hIaekOfILMjOuXnMv1S87loY9cRbx3+G1Ry3BaUYuIFFdZZuBmthR4AlgMOLDC3R81s38APg2kgL3AH7h7TxFrHbfF82byhVvq+cIt9QynR0UtkYRmrohIUQyncwyns8ycNqVk5xzPHXgGeNjdw2Y2F9hkZi8DLwPfcfeMmf0d8B3gW0WsdUJmTpvCPdcs5p5rFuOfze+s0xxJ0NwaZ6tmtIjIJEoOprjo3HNKdr7x7ErfDrQXXveZWQRY4u4vjfrYa8DnilPi5BkdtfzZR64k3jvMmtYEqyIJ1u/pUNQiImclOZAurwY+mpk1ADcCG0546w+Bn43xneXAcoD6+vozr7CIFs+byedvqefzo6KW5kiCZkUtIjIBpV4PZdwN3MzmAE3AQ+7eO+r4X5KPWX58su+5+wpgBUBjY2PZrlIyOmr5XiFqOTYQqoeHRGQ8yrKBm9k08s37x+4eGnX8S8C9wIfdq2cJqdFRy3/88JUkjs1qaU2wfnen1l0RkZMq9eP045mFYsBjQMTdfzjq+MeBbwJ3uvtg8UoM3qITopZX93axKhJndWuC9qOKWkQkr2eg/O7AbwceALaZWUvh2CPA/wBmAC8XNvJ8zd3/uBhFlpOZ06Zw9zWLuPuaRbg7O9qPzWpJsEVbtInUtFLPBR/PLJT1wMm2Wn5u8supLGbGdRefy3UXF6KWvlGzWhS1iNScnnKLUGT8Fs2dye/eXM/v3lyIWvZ10RyJszqSoE1Ri0jVK8tBTDlzM6dN4e6rF3H31Yvw+5xIex/NkTirFLWIVK2yG8SUs2dmvOviebzr4nl8vRC1rG3tYFUkziuKWkSqRrIMBzFlki2aO5P7b17K/TcvZTid5bV9XYUHiOKKWkQqmCKUGjNz2hTuunoRd129iP9y33VE2vtY3RpnVSTBlmiPNmgWqSB9wxky2RxTp9SV5Hxq4GVkdNTyp/dcSUffCGt25u/MX9ndyWBKUYtIuesZSrNgzoySnEsNvIwtnDuD+xuXcn/jW1FL/vH+BLGeoaDLE5GTSA6k1MDl7UZHLd/9jNN6pI/VrQlWReK0HFbUIlIuSjkTRQ28ApkZ1140j2svmsfX7r7ieNSyOpJg3e4ORS0iASrlQKYaeBUYHbWMZLK8tq+b1ZH8QKiiFpHSKuXemGrgVWbG1CncedVC7rxqIX/zGWdnvO/4FMXNilpEiq67hLvTq4FXMTPjmgvncc2F+ails3+ENYVB0Fd2dzCgqEVk0ukOXIpiwZwZ/E7jUn6nELVs2Nedf7xfUYvIpFEGLkU3Y+oUPnTVQj5UiFp2xftZFYkrahE5S5qFIiVlZlx94VyuvnAuX7v7Crr6R1izs4PmSJx1uxS1iJwJRSgSqAvmzOBzN13C5266hJFMlo37u2mO5OecR5OKWkROpbuEC1qpgcspzZg6hTuuXMgdVy7krz/9LnYnjkUtCcKHkopaRE5Qyk0d1MBl3MyMqxbP5arFc/mTu/JRy9qdHTS3xlm3q5P+kUzQJYoErmcojbtT2GqyqNTAZcIumDOD377pEn77pktIZXJs2F9YFrc1zuFuRS1Sm7I5p3c4w7nnTCv6ucazK/1S4AlgMeDACnd/1MzmAz8DGoADwP3unixeqVLOpk+te0fUcuwBovChJDlFLVJDkgOp8mjgQAZ42N3DZjYX2GRmLwNfAprd/ftm9m3g28C3ileqVIrRUctX77qc7oEUa1oTrG5N8MtdHYpapOolB1M0MLvo5xnPrvTtQHvhdZ+ZRYAlwH3AXYWP/QhYixq4nMT82dPfFrVs3N9Nc2t+IPRQ92DQ5YlMulINZJ5RBm5mDcCNwAZgcaG5AxwhH7Gc7DvLgeUA9fX1Ey5UqsP0qXV88MoFfPDKBfzne9/FnkQ/qyIJVrfG2XRQUYtUh1I9jTnuBm5mc4Am4CF37x09wurubmYn/aPn7iuAFQCNjY364ynHmRlXLp7LlaOilrU782u1rNvVQZ+iFqlQpZoLPq4GbmbTyDfvH7t7qHA4bmYXuXu7mV0EJIpVpNSG+bOn81vvu4Tfel8+ann9QPfxOeeKWqSSlE2EYvlb7ceAiLv/cNRbTwMPAt8v/P+polQoNWn61Dpuv2IBt1+Rj1r2duSjluaIohYpf+UUodwOPABsM7OWwrFHyDfun5vZl4GDwP1FqVBqnplxxaK5XLFoLn985+UkB1Ks3ZVgVSTBup2KWqT8lM0duLuvB8Z6pOjDk1uOyOmdP3s6v3njJfzmjZeQzuZ4fX93/u68Nc7BLkUtEryyysBFytW0KXXcdsUCbrtiAf/p3mvZ2zFAcyE3f+Ngt6IWCUQ5RSgiFSEftczhikVz+A+FqOWXuzpYFYnzy10d9A0rapHSKJsIRaRSnT97Op+9cQmfvXHJ8ailuTU/EHpAUYsUUXIwVZIFrdTApSaMjlr+6lP5qGV1a347uTcOKGqRyTWSyTGUzjJrenFbrBq41JzRUcvyD11Oz2CqsCxugrU7E4paZFIkB9Nq4CLFdt6sE6KWA92sjiRobk2wv3Mg6PKkQiUHUiw575yinkMNXGSUaVPquO3yBdx2+QL+qvAA0VuzWpJklbXIOJViIFMNXOQULl84h8sXvhW15Ge1KGqR0+suwVRCNXCRcTpv1nTuu2EJ992Qj1reOJDM350rapGTKMXu9GrgIhMwbUodH7j8Aj5w+QX81b3vYl9HfgeiVZG4ohYBIDmgCEWkIly2cA6XLZzDVz50GUcH06zdlV8Wd+3OBL2KWmpSKZ7GVAMXmWTnzpp2PGrJZHO8cTB5fCB0n6KWmqEGLlLhpk6p49bLLuDWyy7gLz+Vj1pWt+ajltcPKGqpZknNQhGpLseilj+6Ix+1/HJ3B82ROGt3dnB0qDTrZ0hpaBBTpIqdO2san3nvxXzmvRcfj1qO3Z3v61DUUukUoYjUiNFRyyOfvJb9nW8ti/v6gW4yiloqjmahiNSoZQtm80d3XJaPWobSrNuVj1rWKGqpGP0jGVKZHNOn1hXtHGrgImXu3HOm8en3XsynC1HLplFRy15FLWWtZyjForkzi/bz1cBFKsjUKXW8/7ILeP9lF/CdT17Lgc4BVkXirG5NsHG/opZy0zOYDraBm9njwL1Awt2vLxy7AfgXYCaQAf7E3TcWrUoROakGRS1lrdh7Y47nDvzfgH8Cnhh17O+B77r782b2ycKv75r06kRk3E6MWsKHemiOxBW1BKjYUwnHsyv9OjNrOPEwMK/w+lygbZLrEpGzMHVKHbcsm88ty+Yfj1qaWxOsbo2zYZ+illIp9sM8E83AHwJeNLMfAHXAbWN90MyWA8sB6uvrJ3g6ETkbDQtm8+UPLuPLH1xG7/CxqCXBmp2Jkm3AW4uKPRd8og38q8Cfu3uTmd0PPAZ85GQfdPcVwAqAxsZG/bUvErB5M6dx73su5t73XEw254QPJVlVmHO+J9EfdHlVJVkGGfjJPAj8WeH1vwP/OjnliEgpTakzbm6Yz80N8/nOJ67lYNcAzZEEzYpaJkW5RihtwJ3AWuAeYPdkFSQiwbn0gtn84QeX8YeFqOWVXZ2FWS2JkizOVG0CH8Q0s5+Qn2GywMyiwF8DXwEeNbOpwDCFjFtEqse8mdP41Hsu4lPvueh41NIcSdAcibNbUcu4BH4H7u5fGOOtmya5FhEpU6Ojlm9/4hoOdQ3S3JrPzTfs7yKdVdRyMuU6iCkiNaz+gln8we3L+IPbl9E3nOaV3Z2sisRZ06qoZbRyHcQUEQFg7sxpfPLdF/HJd+ejls2HkjS35qOWXfHajlqODqXJ5Zy6OivKz1cDF5FJM6XOaGyYT2PDfL718beiltWtCV7bV3tRS86hdzjNebOmF+Xnq4GLSNGMFbWs3dlR9HVCykVyUA1cRCrciVFLy+EkqyIJVkcS7Iz3BV1e0XQPpFi2YHZRfrYauIiU3JQ646ZL53PTpfmo5XD3YH4HoiqMWoo5F1wNXEQCt3T+LL50+zK+dPsy+kcyvLKrg1WFtVoqPWop5qwcNXARKStzZkzlE+++iE8cj1p6ju8PWolRi+7ARaQm5aOW87np0vP5ZiFqObad3IZ93aSyuaBLPK1i/gtCDVxEKsbS+bN48LYGHrytgf6RDOt3F6KW1gRdZRq1KEIRETnBnBlT+fj1F/Hx6/NRy5boW1FL65HyiVoUoYiInMKUOuN99efzvvrz+YuPXUM0eSxqSfDa3q5Ao5ZiroeiBi4iVeeS82fx+x9o4Pc/cCxqeWtZ3M7+0kYtyQFFKCIiE5KPWi7k49dfSC7ntER7WB3JD4SWImrRHbiIyCSoGxW1fONjVx+PWpojCV4tUtTSM5jG3TGb/AWt1MBFpGaNjloGRjK8sruT1YXFtyYrakllcwymssyeMfntVg1cRASYfULUsiXac3wgNNLee1Y/u3sgpQYuIlIKdXXGjfXnc2P9+Tz80auJ9QyxurBWy6/3dpHKnFnU0jOYZun8ya9TDVxE5DSWnHcOD3yggQcKUcv6PflZLatbO+jsHznt94s1kDmeTY0fB+4FEu5+/ajjXwe+BmSBZ939m0WpUESkjMyeMZWPXXchH7suH7VsjR2lORI/ZdQSWAMH/g34J+CJYwfM7G7gPuC97j5iZouKUp2ISBmrqzNuWHoeNyw9j4c/ejVtPUPHt5MbHbUUa2/M8exKv87MGk44/FXg++4+UvhMogi1iYhUlIvPO4cHbr2UB269lMHUsQeIEkwpsz0xrwLuMLO/BYaBb7j76yf7oJktB5YD1NfXT/B0IiKVZdb0qXz0ugv56HUXFu0cdRP83lRgPnAr8BfAz22MWeruvsLdG929ceHChRM8nYiInGiiDTwKhDxvI5ADFkxeWSIicjoTbeArgbsBzOwqYDrQOUk1iYjIOIxnGuFPgLuABWYWBf4aeBx43MzeBFLAg+5ePbuQiohUgPHMQvnCGG/93iTXIiIiZ2CiEYqIiARMDVxEpEKpgYuIVCg1cBGRCmWlnDxiZh3AwSKfZgG1PaVR11+711/L1w7Vff2Xuvs7noQsaQMvBTN7w90bg64jKLr+2r3+Wr52qM3rV4QiIlKh1MBFRCpUNTbwFUEXEDBdf+2q5WuHGrz+qsvARURqRTXegYuI1AQ1cBGRClU1DdzMfmZmLYX/DphZywnv15tZv5l9I6ASi2qs6zez3zCzTWa2rfD/ewIuddKd6vfezL5jZnvMbKeZfSzAMovKzL5uZq1mtt3M/r5wbJqZ/ajwex8xs+8EXWcxnOzaC8ffY2avFo5vM7OZQdZZDBPdUq3suPvvHnttZv8NOHrCR34IPF/SokroFNffCXza3dvM7HrgRWBJACUWzVjXbmbvAj4PXAdcDKwys6vcPRtIoUVyik3GfweY4e7vNrNZwA4z+4m7Hwiq1sk21rWb2VTg/wIPuPsWM7sASAdYalFUTQM/prC12/3APaOOfRbYDwwEVFbJnHj97r551NvbgXPMbMaxDamryUl+7+8Dflq41v1mtge4BXg1oBKLZaxNxh2YXWhm55Bfu783mBKLZqxr/yiw1d23FI53BVRfUVVNhDLKHUDc3XcDmNkc4FvAdwOtqnTedv0n+G0gXI3Nu+DEa18CHB71fpQq+9dHwbFNxjeY2S/N7ObC8f9H/qalHTgE/MDdu4MqskjGuvarADezF80sbGbfDLDGoqmoO3AzWwWcbIvnv3T3pwqvvwD8ZNR7fwP8o7v3j7HvcsWY4PUf++51wN+RvzOpOGdz7dXgVNfP2zcZv5n8JuOXkf/XRpZ8fHQ+8IqZrXL3faWpenJM8NqnAh8sHBsEms1sk7s3l6bq0qioBu7uHznV+4V/Kv4WcNOow+8HPlcY3DgPyJnZsLv/U9EKLZIJXj9mdgnwJPD77r63eBUWzwSvPQYsHfXrSwrHKs6prt/Mvkphk3Fgo5kd22T8i8AL7p4GEmb2K6ARqKgGPsFrjwLr3L2z8LnngPcBVdXAqy1C+QjQ6u7RYwfc/Q53b3D3BuC/A/+1Epv3OL3j+s3sPOBZ4Nvu/qugCiuBd1w78DTweTObYWbLgCuBjYFUV1wrOfkm44cojAeY2Wzyd6mtwZRYNCs5+bW/CLzbzGYV/nK/E9gRVJHFUm0N/PNU6T+hx+lk1/+nwBXAfx411W7RO79a8d5x7e6+Hfg5+T+4LwBfq7YZKAWPA5cVNhn/KW9tMv7PwBwz2w68Dvwfd98aYJ3FcNJrd/ck+ZlnrwMt5Md+ng2uzOLQo/QiIhWq2u7ARURqhhq4iEiFUgMXEalQauAiIhVKDVxEpEKpgYuIVCg1cBGRCvX/AY8P0ptndJFOAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.fill(*random_poligon())" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, + { + "cell_type": "code", + "execution_count": 11, + "outputs": [], + "source": [ + "r = np.random.binomial(100, 0,5)" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, + { + "cell_type": "code", + "execution_count": 12, + "outputs": [ + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeuElEQVR4nO3dfXBd9X3n8c/HerBk40csjPEDfsCQOmnWgEIgBNpgkhjyYEhTCjtLyMOsw06YbbrbaSHMNGm6TJM0JLPddpJ1trS0k4SkS9yQxmkClIamGwdsQol5SgzYwUbYDg9+ki1Z0nf/uMdwLSTZejj33PO779fMHd97zpXu986R9PY99+jIESEAAJCWSUUPAAAAJh6BBwAgQQQeAIAEEXgAABJE4AEASBCBBwAgQRMSeNu32d5te0vVstm277b9i+zfWdly2/5z21ttP2L7nImYAQAAvGqiXsH/jaTVg5bdKOneiFgu6d7stiRdJml5dlkr6UsTNAMAAMhMSOAj4n5JLw5avEbS7dn12yVdUbX8b6Nio6SZtudNxBwAAKAiz/fg50ZEV3b9eUlzs+vzJT1bdb8d2TIAADBBmmvxIBERtkd1Tlzba1XZha+pU6ee+7rXvS6X2QAAqEebN2/+VUR0jPXj8wz8LtvzIqIr2wW/O1u+U9LCqvstyJYdIyLWSVonSZ2dnbFp06YcRwUAoL7Y3j6ej89zF/1dkq7Lrl8n6dtVyz+QHU1/vqS9VbvyAQDABJiQV/C2vy7pNyXNsb1D0iclfUbSN21/RNJ2SVdld98g6XJJWyV1S/rQRMwAAABeNSGBj4hrhlm1aoj7hqSPTcTjAqnq6zuo5uapRY8BoMQ4kx1Qh1566cfq6f1V0WMAKDECD9Sh2bMv0hNP3KwjR14uehQAJUXggTrU1DRZc095lx7+9w+rr+9g0eMAKCECD9SpuXPfLUXo8OEdRY8CoIQIPFCn7Ek644yb1Np6ctGjACihmpzJDsDYzJp1niq/eAIAo8MreKDO2S56BAAlROABAEgQgQcAIEEEHgCABBF4AAASROABAEgQgQcAIEEEHgCABBF4AAASROABAEgQgQcAIEEEHgCABBF4AAASROABAEgQgQcAIEEEHsmI/oGiRwCAukHgkYyX1m9V/96eoscAgLpA4JGEI3u61b15l/b+YHvRowBAXSDwSML+f9khhdT90C71Pneg6HEAoHAEHqXX99Jhdf90d+VGSHs3PKOIKHYoACgYgUfp7b9/hzTwatB7tr6sw0++VOBEAFA8Ao9S69/Xq4MPPv+a5Xs3PK3o51U8gMZF4FFq+3+0Q+p7bcj7dh8aMvwA0CgIPEqr/+ARHdzYNez6ffds18DhvhpOBAD1g8CjtA78v+cUvcOf3GbgcJ96n91fw4kAoH40Fz0AMBYDh/t04N+eG3Z924qTNfNdS9R8cnsNpwKA+kHgUUoHNnYphtj93jynXTPes1TtZ80uYCoAqB8EHqUz0NuvA/+685hlbpmkaasWadpb58vNvPMEAAQepXPwwec1cPDIK7fb3zhHMy5fquaZkwucCgDqC4FHqUTfgA7cv0OS1Dx3ima+d5nals0sdigAqEMEHqVy8KFdGjjcrxnvXqqTLpgnN7E7HgCGQuBRGjEQGth/RKf+fqeaprUWPQ4A1DUCj9LwJGv6qkVFjwEApcD+TQAAEkTgAQBIEIEHACBBBB4AgAQReAAAEkTgAQBIEIEHACBBuf4evO2zJH2jatFSSX8kaaak/yxpT7b8ExGxIc9ZAABoJLkGPiKelLRSkmw3Sdopab2kD0n6YkR8Ps/HBwCgUdVyF/0qSU9FxPYaPiYAAA2ploG/WtLXq27fYPsR27fZnjX4zrbX2t5ke9OePXsGrwYAACOoSeBtt0p6r6S/zxZ9SdIyVXbfd0m6dfDHRMS6iOiMiM6Ojo5ajAkAQDJq9Qr+MkkPRcQuSYqIXRHRHxEDkr4i6bwazQEAQEOoVeCvUdXuedvzqtZdKWlLjeYAAKAh5P7nYm1PlfR2SR+tWvw52yslhaRtg9YBAIBxyj3wEXFQ0smDll2b9+MCANDIOJMdAAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8gOQc6e0pegSgcAQeQFL2/Wq3Hv7+d4seAygcgQeQjJ7ubq3/zB9r8pQpRY8CFI7AA0hCf1+fvvPFP9Wvnt2uU05fWvQ4QOEIPIDSiwj9821f1s7HH9V7fu9GnXrGmUWPBBSuuegBAGC8Nn3nW9q6aaOu+uSfat7ys4oeB6gLBB5Aqf1844/02P3/rP/4P27VjFPmFj0OUDcIPIDS6vrFk3rsX+/T7/zxZ9U29aSixwHqCoEHUEp7dz+vpx96QO/5vZvU1MyPMmAwvisAlE5P90G9sPNZveWq/yTbRY8D1CUCD6B0IkJLz35T0WMAdY1fkwNQOrzfDhwfgQcAIEEEHgCABBF4AAASROABAEgQgQcAIEEEHgCABBF4AAASROABAEgQgQcAIEG5n6rW9jZJ+yX1S+qLiE7bsyV9Q9JiSdskXRURL+U9CwAAjaJWr+DfFhErI6Izu32jpHsjYrmke7PbAABgghS1i36NpNuz67dLuqKgOQAASFItAh+SfmB7s+212bK5EdGVXX9e0twazAEAQMOoxZ+LfWtE7LR9iqS7bT9RvTIiwnYM/qDsPwNrJWnRokU1GBMAgHTk/go+InZm/+6WtF7SeZJ22Z4nSdm/u4f4uHUR0RkRnR0dHXmPCQBAUnINvO2ptqcdvS7pHZK2SLpL0nXZ3a6T9O085wAAoNHkvYt+rqT1to8+1tci4p9sPyjpm7Y/Imm7pKtyngMAgIaSa+Aj4mlJ/2GI5S9IWpXnYwMA0Mg4kx0AAAki8AAAJIjAAwCQIAIPAECCCDwAAAki8AAAJIjAAwCQIAIPAECCCDwAAAki8AAAJIjAAwCQIAIPAECCCDwAAAki8AAAJIjAAwCQIAIPAECCmoseoO4MDEhHDkpHDkutU6TWqUVPBADAqDVe4Hu7pZ9/T9r2b5Xb7TOltplS+6zKZcrJ0vR50rTTpObWIicFAGDMGi/wfYelX1sjveG3ip4EAIDcNF7gp8wuegIAAHLHQXYAACSIwAMAkCACDwBAggg8AAAJIvAAACSo8Y6iB4AS23voiHr7BtTWMkltLU1qaeJ1GoZG4AGgRK7/u8368dMvvHK7eZLV1tKUXSrRb6+6fvTSXrVucra+/ZV1lduTX7l+7Pqjt1ubJsl2gc8eo0HgAaAknn2x+5i4S1LfQOhAT58O9PTl/vi2jvlPweSWSWprblJ766v/IZjc0qRpk5u1rOMkLZ97kpbPnabTZrTxH4MCEHgAKIn/u3lHoY8fIXX39uvQkX5Nnt6mOVMna8Hsdi2cNUULZrVr4ewpWjh7ik6d3qamSQS9aAQeAEpgYCBqGvg5J7VqwaxKsBfMqkR8YRbz02a2q7WZ9/7rHYEHgBLY+PQL2vnyoQn7fNPbmiuvuI959V0J+PxZ7ZrSSh7Kji0IACUw2lfv7S1NWji7vfIqPAv4gqqYz2hvyWlS1AsCDwB1bv/hI9qwpeuYZS1N1vyZr4Z74aD3wk+e2sqBbQ2OwANAnXv2xUP6L79xxjG70udOa9MkDmTDCAg8ANS5FadN14rTphc9BkqGwyABAEgQgQcAIEEEHgCABBF4AAASROABAEgQgQcAIEEEHgCABBF4AAASROABAEgQgQcAIEG5Bd72Qtv32X7M9qO2fzdb/inbO20/nF0uz2sGAAAaVZ7nou+T9N8j4iHb0yRttn13tu6LEfH5HB8bAICGllvgI6JLUld2fb/txyXNz+vxAADAq2ryHrztxZLOlvSTbNENth+xfZvtWbWYAQCARpJ74G2fJOlOSR+PiH2SviRpmaSVqrzCv3WYj1tre5PtTXv27Ml7TAAAkpJr4G23qBL3r0bEtyQpInZFRH9EDEj6iqTzhvrYiFgXEZ0R0dnR0ZHnmAAAJCfPo+gt6a8kPR4RX6haPq/qbldK2pLXDAAANKo8j6K/UNK1kn5m++Fs2SckXWN7paSQtE3SR3OcAUAOjvT26+DLPere26MDL/fo4Mu9Ori3Rz0Hjujia85Sy+SmokcEGl6eR9H/SJKHWLUhr8cEMHFe7DqonU++pIMv91Que3t04OVede/tUU9335Afc/Y7FhF3oE7k+QoeQIntemav7r/j5yd8/7apLTp39ek5TgRgNDhVLYAhzTxlyqju3/muxZo8pSWnaQCMFoEHMKQZowj8jI52veFizmMF1BMCD2BI7dNa1Np2Yu+nX3DlMjU18+MEqCd8RwIYku0TehV/6tIZWno256oA6g2BBzCsmae0H/c+F77/DFVOewGgnhB4AMOaMXfkV/DLzjlFpy6dUaNpAIwGgQcwrJGOpJ/UZF1w5dIaTgNgNAg8gGHNGGEX/a//xgLN6Bjdr9IBqB0CD2BYw72Cb21vVufli2s7DIBRIfAAhtU2tUVtU1978prOyxar7SROagPUMwIPYESDd9NPm92mX38bJ7UB6h2BBzCiwbvpz79yqZpb+IMyQL0j8ABGVP0K/pTTp2n5uXMLnAbAiSLwAEZU/Qr+Lb91hjyJk9oAZUDgAYxoZnaym8VvnKP5Z84qeBoAJ4rAAxjRjFPaNWmS9Zb3LSt6FACjQOABjKi1rVmd71qsWadOLXoUAKNA4AEc17mrTy96BACjROABHNekJn5UAGXDdy0AAAki8AAAJIjAAwCQIAIPAECCCDwAAAki8AAAJIjAA2gI0ddX9AhATRF4AA2hd9u2okcAaorAA2gIhx9/ougRgJoi8AAaQs+TTygGBooeA6gZAg+gIfTv3au+rq6ixwBqhsADaAiTpkxRU0dH0WMANUPgATSEaW9/uya1thY9BlAzBB5AQ2g/55yiRwBqisADaAiexI87NBa+4gEASBCBBwAgQQQeAIAEEXgAABJE4AEASBCBBwAgQQQeAIAEEXgAABJE4AEASBCBBwAgQQQeAIAEFRZ426ttP2l7q+0bi5oDAIAUFRJ4202S/lLSZZJWSLrG9ooiZgEAIEVFvYI/T9LWiHg6Inol3SFpTUGzAACQnKICP1/Ss1W3d2TLXmF7re1Ntjft2bOnpsMBAFB2dXuQXUSsi4jOiOjs6OgoehwAAEqlqMDvlLSw6vaCbBkAAJgARQX+QUnLbS+x3Srpakl3FTQLAADJaS7iQSOiz/YNkr4vqUnSbRHxaBGzAACQokICL0kRsUHShqIeHwCAlNXtQXYAAGDsCDwAAAki8AAAJIjAAwCQIAIPAECCCDwAAAki8AAAJIjAAwCQIAIPAECCCDwAAAki8AAAJIjAAwCQIAIPAECCCDwAAAki8AAAJIjAAwCQIAIPAECCCDwAAAki8AAAJIjAAwCQIAIPAECCCDwAAAki8AAAJIjAAwCQIAIPAECCCDwAAAki8AAAJIjAAwCQIAIPAECCCDwAAAki8AAAJIjAAwCQIAIPAECCCDwAAAki8AAAJIjAAwCQIAIPAECCCDxQUn0DUfQIAOoYgQdKJiLUOzCg5kkuehQAday56AEAnLi+gVBfhNqa+L85gJEReKAkegcG1B9SO3EHcAIIPFAC3f0DkqQpxB3ACeKnBVDnIioH0xF3AKPBK3igztnWlCYOqAMwOrwkAAAgQbkE3vaf2X7C9iO219uemS1fbPuQ7Yezy5fzeHwAABpdXq/g75b0hoh4o6SfS7qpat1TEbEyu1yf0+MDANDQcgl8RPwgIvqymxslLcjjcQAAwNBq8R78hyV9r+r2Ets/tf1D2xfV4PEBAGg4Yz6K3vY9kk4dYtXNEfHt7D43S+qT9NVsXZekRRHxgu1zJf2D7ddHxL4hPv9aSWsladGiRWMdEwCAhjTmwEfEpSOtt/1BSe+WtCqyX+SNiB5JPdn1zbafknSmpE1DfP51ktZJUmdnJ39VAwCAUcjrKPrVkv5A0nsjortqeYftpuz6UknLJT2dxwwAADSyvE508xeSJku627YkbcyOmL9Y0qdtH5E0IOn6iHgxpxkAAGhYuQQ+Is4YZvmdku7M4zEBAMCrOJMdAAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJyi3wtj9le6fth7PL5VXrbrK91faTtt+Z1wwAADSq5pw//xcj4vPVC2yvkHS1pNdLOk3SPbbPjIj+nGcBAKBhFLGLfo2kOyKiJyKekbRV0nkFzAEAQLLyDvwNth+xfZvtWdmy+ZKerbrPjmwZAACYIOMKvO17bG8Z4rJG0pckLZO0UlKXpFtH+bnX2t5ke9OePXvGMyYAAA1nXO/BR8SlJ3I/21+R9I/ZzZ2SFlatXpAtG/y510laJ0mdnZ0xnjkBAGg0eR5FP6/q5pWStmTX75J0te3JtpdIWi7pgbzmAACgEeV5FP3nbK+UFJK2SfqoJEXEo7a/KekxSX2SPsYR9AAATKzcAh8R146w7hZJt+T12AAANDrOZAcAQIIIPAAACSLwAAAkiMADAJAgAg8AQIIIPAAACSLwAAAkiMADAJAgAg8AQIIIPAAACSLwAAAkiMADAJAgAg8AQIIIPAAACSLwAAAkiMADAJAgAg8AQIIIPAAACSLwAAAkiMADAJAgAg8AQIIIPAAACSLwAAAkiMADAJAgAg8AQIIIPAAACSLwAAAkiMADAJAgAg8AQIIIPAAACSLwAAAkiMADAJAgAg8AQIIIPAAACSLwAAAkiMADAJAgAg8AQIIIPAAACSLwAAAkiMADAJAgAg8AQIIIPAAACSLwAAAkiMADAJAgAg8AQIIIPAAACWrO45Pa/oaks7KbMyW9HBErbS+W9LikJ7N1GyPi+jxmAACgkeUS+Ij4naPXbd8qaW/V6qciYmUejwsAACpyCfxRti3pKkmX5Pk4AADgWHm/B3+RpF0R8YuqZUts/9T2D21fNNwH2l5re5PtTXv27Ml5TAAA0jLmV/C275F06hCrbo6Ib2fXr5H09ap1XZIWRcQLts+V9A+2Xx8R+wZ/kohYJ2mdJHV2dsZY5wQAoBGNOfARcelI6203S3qfpHOrPqZHUk92fbPtpySdKWnTWOcAAACvlecu+kslPRERO44usN1huym7vlTScklP5zgDAAANKc+D7K7WsbvnJeliSZ+2fUTSgKTrI+LFHGcAAKAh5Rb4iPjgEMvulHRnXo8JAAAqOJMdAAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSIwAMAkCACDwBAggg8AAAJIvAAACSouegBAACoF93d3erq6tJzzz2n5557TpdddpmmT59e9FhjQuABAA3p0KFDx8S8q6tLL7300jH3ufDCCwk8AABlct999+mBBx4Y8T4HDhyo0TQTj/fgAQANadWqVZo1a9aI9yHwAACUzOTJk7VmzZoR70PgAQAoocWLF+vNb37zsOv3799fw2kmFoEHADS0kXbV8woeAICSam1t1RVXXDHkOgIPAECJnX766Tr//PNfs5zAAwBQcpdccolmz559zLIDBw4oIgqaaHwIPAAAGnpXfX9/vw4dOlTMQONE4AEAyCxatEgXXHDBMcvKupuewAMAUOWSSy7RySef/MptAg8AQAJaWlp0xRVXyLYkAg8AQDIWLlz4yq56Ag8AQELe9ra3ac6cOaU9mx2BBwBgCEd31Xd3dxc9ypjw52IBABjGggUL1NPTU/QYY8IreAAARrBs2bKiRxgTAg8AQIIIPIAkRIS+89R3dMvGW3Sk/0jR4wCF4z14AKW3fd92/cnGP9FPun4iSeqLPn3ygk8WPBVQLAIPoLR6+3v111v+WuseWafegV696dQ36QMrPqCLF1xc9GhA4cYVeNu/LelTkn5N0nkRsalq3U2SPiKpX9J/jYjvZ8tXS/qfkpok/Z+I+Mx4ZgDQmDbv2qxP//jT+uW+X2r1ktW6dsW1WnHyiqLHAurGeF/Bb5H0Pkn/u3qh7RWSrpb0ekmnSbrH9pnZ6r+U9HZJOyQ9aPuuiHhsnHMAaBB7e/bqC5u/oHt/ea/ev/z9uuZ112ju1LlFjwXUnXEFPiIel/TK+XqrrJF0R0T0SHrG9lZJ52XrtkbE09nH3ZHdl8ADGFFE6LvPfFd3PHGHLl9yuf7wTX+oKS1Tih4LqFt5vQc/X9LGqts7smWS9Oyg5W/OaQYAifjlvl9qwzMbtHzWct2++nY1TWoqeiSg7h038LbvkXTqEKtujohvT/xIrzzuWklrs5s9trfk9Vh1YI6kXxU9RI54fuWW8vNL+blJPL+yO2s8H3zcwEfEpWP4vDslLay6vSBbphGWD37cdZLWSZLtTRHROYY5SoHnV248v/JK+blJPL+ys73p+PcaXl4nurlL0tW2J9teImm5pAckPShpue0ltltVORDvrpxmAACgYY331+SulPS/JHVI+q7thyPinRHxqO1vqnLwXJ+kj0VEf/YxN0j6viq/JndbRDw6rmcAAABeY7xH0a+XtH6YdbdIumWI5RskbRjlQ60b/XSlwvMrN55feaX83CSeX9mN6/k5IiZqEAAAUCf4YzMAACSo7gJv+7dtP2p7wHbnoHU32d5q+0nb76xavjpbttX2jbWfemxsf8P2w9llm+2Hs+WLbR+qWvflgkcdE9ufsr2z6nlcXrVuyG1ZFrb/zPYTth+xvd72zGx5EttOKu/31XBsL7R9n+3Hsp8xv5stH/brtGyynyM/y57HpmzZbNt32/5F9u+souccLdtnVW2fh23vs/3xsm8727fZ3l39a+DDbS9X/Hn2/fiI7XOO+wARUVcXVc5rf5akf5HUWbV8haR/lzRZ0hJJT6lyoF5Tdn2ppNbsPiuKfh5jeN63Svqj7PpiSVuKnmkCntOnJP3+EMuH3JZFzzvK5/YOSc3Z9c9K+mxi2y6J76tBz2mepHOy69Mk/Tz7Whzy67SMF0nbJM0ZtOxzkm7Mrt949Gu1rJfsa/N5SaeXfdtJuljSOdU/M4bbXpIul/Q9SZZ0vqSfHO/z190r+Ih4PCKeHGLVK6e/jYhnJB09/e15yk5/GxG9ko6e/rY0XDnX71WSvl70LDUy3LYsjYj4QUT0ZTc3qnJOh5SU/vtqsIjoioiHsuv7JT2uV8+wmbI1km7Prt8u6YriRpkQqyQ9FRHbix5kvCLifkkvDlo83PZaI+lvo2KjpJm25430+esu8COYr9ee5nb+CMvL5CJJuyLiF1XLltj+qe0f2r6oqMEmwA3Z7qTbqnYNprDNqn1Ylf9ZH5XCtkttGx3D9mJJZ0v6SbZoqK/TMgpJP7C92ZWzgUrS3Ijoyq4/L6nsf5nnah37YiiVbXfUcNtr1N+ThQTe9j22twxxKfUrhKGc4HO9Rsd+wXZJWhQRZ0v6b5K+Znt6Lec+Ucd5fl+StEzSSlWe061FzjpaJ7LtbN+syrkevpotKs22a1S2T5J0p6SPR8Q+lfzrdJC3RsQ5ki6T9DHbF1evjMq+3tL+6pQrJ0h7r6S/zxaltO1eY7zbK68/NjOiKOj0t0U43nO13azKn9w9t+pjeiT1ZNc3235K0pmSxnXawjyc6La0/RVJ/5jdHGlb1o0T2HYflPRuSauyb8RSbbvjKMU2Gi3bLarE/asR8S1JiohdVeurv05LJyJ2Zv/utr1elbdadtmeFxFd2S7d3YUOOT6XSXro6DZLadtVGW57jfp7sky76FM9/e2lkp6IiB1HF9jusN2UXV+qynN9uqD5xmzQ+0NXSjp6pOhw27I0bK+W9AeS3hsR3VXLk9h2Kv/31Wtkx7r8laTHI+ILVcuH+zotFdtTbU87el2VA0G3qLLdrsvudp2k3P5IWA0cs7czlW03yHDb6y5JH8iOpj9f0t6qXflDKuQV/EjceKe/Hfx+klQ5svLTto9IGpB0fUQMPhCjDD5ne6Uqu5i2SfqoJI20LUvkL1T5LYC7K93Qxoi4Xolsu4joK/n31VAulHStpJ85+5VUSZ+QdM1QX6clNFfS+uzrsVnS1yLin2w/KOmbtj8iabsqB/SWTvaflrfr2O0z5M+YsrD9dUm/KWmO7R2SPinpMxp6e21Q5Uj6rZK6JX3ouJ8/27MIAAASUqZd9AAA4AQReAAAEkTgAQBIEIEHACBBBB4AgAQReAAAEkTgAQBIEIEHACBB/x9rWZlgnHtYDAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAhMklEQVR4nO3dfZRddX3v8fd3zjxkZvJMJg+SQAiGh6CQxOGhYARuQEiuV9S1roW2itY20sKt2vb2ot7V623rva2V9i5biyu2tNgqisVcWS1tBWrVq8UaMIRAQkliAsQQQgJkIA8wye/+MTtwMplJMjPnzJnzO+/XWmfN3r/99N1rn5nP7N/eZ59IKSFJkvLSVOsCJElS5RnwkiRlyICXJClDBrwkSRky4CVJypABL0lShioS8BFxW0Q8GxHrytqmRsS9EfFE8XNK0R4R8bmI2BgRayNicSVqkCRJr6vUGfxfAVf3a7sZuD+lNB+4vxgHWAbML14rgFsrVIMkSSpUJOBTSt8Fdvdrvga4vRi+HXhXWfuXUp8HgMkRMasSdUiSpD7VvAY/I6W0vRh+BphRDJ8MPFU239NFmyRJqpDm0dhISilFxJCeiRsRK+jrwqezs/MtZ511VlVqkyRpLHrwwQefSyl1DXf5agb8joiYlVLaXnTBP1u0bwPmlM03u2g7QkppJbASoLu7O61evbqKpUqSNLZExNaRLF/NLvq7geuL4euBb5a1v7+4m/4i4MWyrnxJkmrm1YOv1rqEiqnUx+TuAP4VODMino6IDwG/D1wZEU8AVxTjAPcAm4GNwBeBX61EDZIkjdTX//3rrw3ve3QXvS8eqGE1I1ORLvqU0nWDTFo6wLwJuLES25UkqVJ279/N7Y/eznVnXceBJ15g1988BgHjzpxK54WzGHfGFKIpal3mCRuVm+wkSRrrHtv1GDctuolDPa+y+87HIQEJ9q/fzf71uylNbqPz/Jl0nj+T0sTWWpd7XAa8JEnARbMuokSJ525bx6GXjr4Wf/CFA+y5dyt77n+ScWdPZfyFs2ibP5mIsXlWb8BLkgQ0NzWz55+f5MDGF44946HE/kd3sf/RXZSmjus7q++eQWnC2Dqr98tmJEkCDmx5kT33De2TaQd372fPP23hmT/8EXvXPHv8BUaRZ/CSpIZ3aO+r7L7jcTg0tOVa5kygc/F0Os7roqmjpTrFDZMBL0lqeLv/9gkOnuBH4kqT2+hYNJ2OxdNp6eqocmXDZ8BLkhpaz/e3sf+xXcecJ1pLtL95Gh2Lp9M2b9KYvbGunAEvSWpYr2x7iRfv+cnAEwPa3jiZjsUzaD/nJJpaS6Nb3AgZ8JKkhnToQC+7v7IeDh75XWjN0zvoWDydzkXTKU1qq1F1I2fAS5Ia0gurNtK7az8ATZ0tdJzXRcfi6bTOnlDjyirDgJckNZyXVz/D3nXP0f6mk+hYPINxZ04lSmP/uvpQGPCSpIaSXj0ETcEbPnHhmPtoWyUZ8JKkhhItTXQunlHrMqrOJ9lJkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJ0gnbtPOlWpegE2TAS5JOWGvJ2KgXHilJ0gl7w+T2WpegE2TAS5JOWKkpal2CTpABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUPN1Vx5RJwJfK2saR7w28Bk4JeBnUX7J1JK91SzFkmSGklVAz6l9DiwECAiSsA2YBXwQeCPU0qfreb2JUlqVKPZRb8U2JRS2jqK25QkqSGNZsBfC9xRNn5TRKyNiNsiYkr/mSNiRUSsjojVO3fu7D9ZkiQdw6gEfES0Au8Evl403QqcTl/3/Xbglv7LpJRWppS6U0rdXV1do1GmJEnZGK0z+GXAQymlHQAppR0ppYMppUPAF4ELRqkOSZIawmgF/HWUdc9HxKyyae8G1o1SHZIkNYSq3kUPEBGdwJXAh8uaPxMRC4EEbOk3TZIkjVDVAz6l9DJwUr+291V7u5IkNTKfZCdJUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZai52huIiC1AD3AQ6E0pdUfEVOBrwFxgC/DelNLz1a5FkqRGMVpn8JenlBamlLqL8ZuB+1NK84H7i3FJklQhteqivwa4vRi+HXhXjeqQJClLoxHwCfhWRDwYESuKthkppe3F8DPAjFGoQ5KkhlH1a/DAW1NK2yJiOnBvRGwon5hSShGR+i9U/DOwAuCUU04ZhTIlScpH1c/gU0rbip/PAquAC4AdETELoPj57ADLrUwpdaeUuru6uqpdpiRJWalqwEdEZ0RMODwMvB1YB9wNXF/Mdj3wzWrWIUlSo6l2F/0MYFVEHN7WV1JK/xgRPwLujIgPAVuB91a5DkmSGkpVAz6ltBk4b4D2XcDSam5bkqRG5pPsJEnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0nSEKSU2Nezh95XXql1KcdkwEuSNAQRQfuEibz0/G62b3y81uUMyoCXJGkYJs+YyUmzT2H997/Ds1s217qcoxjwkiQNU+u4ds6+5FL2v9TDD1fdyd49L9a6pNdU++tiJUnK3ilvOo8Z8+bzr3fdwcRp01n49uU0lUo1rckzeEmSKqCto4PL3vchJs+YyTd+/1M8ue7hmtZjwEuSVEHzFp/POz7y31j37Xu5+4/+Fy8+u6MmdRjwkiRV2Ljx41n+X36Tsy+5jK/9z5v5/p1/w6sH9o9qDQa8JElVMv/Ci/mF//1/2P30U/zlx36FDT/47qhtO1JKo7ax4eru7k6rV6+udRmSJA3bhu9/h/tv+wLT5pzK5R9YwfS58445f0Q8mFLqHu72PIOXJGkUnHXJpXzglj+jtaODv/n4R7nvzz/Pvpd6qrY9A16SpFHSOXkK7/6t3+aqGz7C1rVreHV/9a7L+zl4SZJG2TmXLuXsJZfR1FS9z8p7Bi9JUg1UM9zBgJckKUsGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUoaoFfETMiYhvR8RjEfFoRHykaP9URGyLiDXFa3m1apAkqVE1V3HdvcBvpJQeiogJwIMRcW8x7Y9TSp+t4rYlSWpoVQv4lNJ2YHsx3BMR64GTq7U9SZL0ulG5Bh8Rc4FFwA+LppsiYm1E3BYRU0ajBkmSGknVAz4ixgN3AR9NKe0BbgVOBxbSd4Z/yyDLrYiI1RGxeufOndUuU5KkrFQ14COihb5w/3JK6RsAKaUdKaWDKaVDwBeBCwZaNqW0MqXUnVLq7urqqmaZkqRBpEOp1iVomKp5F30AfwGsTyn9UVn7rLLZ3g2sq1YNkqSReWrD7lqXoGGq5l30lwDvAx6JiDVF2yeA6yJiIZCALcCHq1iDJGkEnt3Sw7jOFqafOrHWpWiIqnkX/f8DYoBJ91Rrm5Kkypq3sIsfrNrIf/zVc+nrmFW98El2kqRBTX1DJ93L57LlkV21LkVDVM0ueklSBmaeNok9z+0jHUpEk2fx9cKAlyQd18Rp7bUuQUNkF70kSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkpSB/evXkw4erHUZGkMMeEkaRXc9s5sNL++r+Hq3/NzP0/vcroqvV/XLgJekUXLfrj382oYnue7hzTy9/5WKrjtKJZo6Oyu6TtU3A75SUoLnnoC9u2tdiaQxaMPL+/jldVs4mGD7gVe59uFN7Hqlt2Lrj+ZmmjraK7Y+1T8DfiT274HH7oa//w343meh1AodU2tdlaQxaH7HOD4+bybtTQHAxr0H+Pm1m3m5tzLXzZsmTiSa/JOu1zXXuoC6khLsWAdP3Asb74OfroHzroW3fgwmz6l1dZLGsFIEK+ZM58qTJvGxDU/ywIsvs6ZnLx9at4UvnXsarSMM59LEiRWqVLkw4I9n3wuw+dt9gb7xfujZDqU2eMv18J4vwqSTa12hpDpyWkcb31j0Rm7b9hyf3rSdf3m+h4+sf5LPLziVpohhr9eAV38GfH8pwTNrXz9Lf+rfIBVdaM3j4MJfgUs+AhNn1bZOSXWrKYJfmt3FlSdN5GMbnmLVsy8wtaWZ35t/MjHMkG+aZMDrSAY8wL7nYdM/wxP3wab74aUdR05vbofzPwQX/xpMmFGbGiVl59T2Nv524el86ae7+N1NP6WrtZmPzp05rHWVJhjwOlJjBvyhQ7B9TV+X+8Z74ekfQTp09HwtHXD+L/UF+/iuUS9TUv6aIvjAydP4D1Mn8JuPP8W0n+7iF95w0pDXU/IMXv00VsBv/QE8eHvfWfrLOwefr3U8XPDL8DM3Qee00atPUsM6pb2Nr513Onc8s5vv7e5hydQJQ1q+yWvw6qexAn73Zlj71cGnt06ACz8MP3OjH3eTNOoigp+bdRLPvdLLq4cSLU0nfj3eLnr111gBf+ZyiNLrN80d1jYJLroBLrzBYJdUc9Nah/6n2S569ddYAd8xFea+FX7ynb7xcZPgohv7ztrbJ9e0NEkaCbvo1V9jBTzA2f+p72NwP3MjXLCiL+Qlqc6VJvq3TEdqvIA/92f7nj7XNrQbWCRpLLOLXv01XsCP85dAUn58kp3685sJJCkDTRPsldSRDHhJykCUSrUuQWOMAS9JUoYMeEmSMlSzgI+IqyPi8YjYGBE316oOSZJyVJOAj4gS8HlgGbAAuC4iFtSiFkmSclSrM/gLgI0ppc0ppVeArwLX1KgWSZKyU6uAPxl4qmz86aLtNRGxIiJWR8TqnTuP8c1vkiTpKGP2JruU0sqUUndKqbury+9ilyRpKGoV8NuAOWXjs4s2SZJUAbUK+B8B8yPitIhoBa4F7q5RLZIkZacmz6JPKfVGxE3APwEl4LaU0qO1qEWSpBzV7MtmUkr3APfUavuSJOVszN5kJ0mShs+AlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShqoS8BHxhxGxISLWRsSqiJhctM+NiH0RsaZ4faEa25ckqdFV6wz+XuBNKaVzgX8HPl42bVNKaWHxuqFK25ckqaFVJeBTSt9KKfUWow8As6uxHUmSNLDRuAb/i8A/lI2fFhE/jojvRMSSUdi+JEkNp3m4C0bEfcDMASZ9MqX0zWKeTwK9wJeLaduBU1JKuyLiLcD/jYhzUkp7Blj/CmAFwCmnnDLcMiVJakjDDviU0hXHmh4RHwDeASxNKaVimQPAgWL4wYjYBJwBrB5g/SuBlQDd3d1puHVKktSIqnUX/dXAbwHvTCntLWvviohSMTwPmA9srkYNkiQ1smGfwR/HnwJtwL0RAfBAccf824DfiYhXgUPADSml3VWqQZKkhlWVgE8pvXGQ9ruAu6qxTUmS9DqfZCdJUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZahqAR8Rn4qIbRGxpngtL5v28YjYGBGPR8RV1apBkqRG1Vzl9f9xSumz5Q0RsQC4FjgHeANwX0SckVI6WOVaJElqGLXoor8G+GpK6UBK6SfARuCCGtQhSVK2qh3wN0XE2oi4LSKmFG0nA0+VzfN00SZJkipkRAEfEfdFxLoBXtcAtwKnAwuB7cAtQ1z3iohYHRGrd+7cOZIyJUlqOCO6Bp9SuuJE5ouILwJ/V4xuA+aUTZ5dtPVf90pgJUB3d3caSZ2SJDWaat5FP6ts9N3AumL4buDaiGiLiNOA+cC/VasOSZKGqre3h5Tq+9yymnfRfyYiFgIJ2AJ8GCCl9GhE3Ak8BvQCN3oHvSSpVnp7e9jTs46ePY/0/ex5hDlzPsic2e+vdWkjUrWATym97xjTPg18ulrbliRpIL29PfT0PHpEoO/bt+WIeU6f91/rPtyh+p+DlySpJnp7X6Kn5zF6etaxp+cRenrWsXfv5mMuM/fUX2Hu3BtGqcLqMuAlSXWvt/dlXnppfV+Q7+kL9L4wP/Hr6LNnX8+8eb9RvSJHmQEvSaorBw/up6dnXdmZ+aO8/PJGhhLm/b1h1ns5Y/5/JyIqV2iNGfCSpLry/PP/ysNrf6li65sx/R2cddbvEZHX96/ltTeSpOx1dJxWsXVNm7aUBQs+S0SpYuscKwx4SVJdGTduNhEtI17P1CmX8KZz/oSmppGvaywy4CVJdaWpqZmOjrkjWsekSW/h3HO/QKnUVpmixiADXpJUd0bSTT9hwjksPO8vKJU6KljR2GPAS5LqTkfHvGEt19k5n4Xn/RXNzRMqXNHYY8BLkupO5zACvr39VBYt/BKtrVOrUNHYY8BLkurOUM/g29pmsWjhX9PWNr1KFY09Brwkqe4MJeBbW6exeNFf095+chUrGnsMeElS3WlpmURLy/G72pubJ7No4Zcq+tn5emHAS5LqUmfH6cecXiqNZ9HCv2T8+DNHqaKxxYCXJNWlY52VNzWN47zz/pyJE88dxYrGFgNeklSXOjoHvg4f0cq5b/4CUyafP8oVjS0GvCSpLg3URR9R4s1v+hwnnbSkBhWNLQa8JKkuHd1FHyw4+7N0dV1Zk3rGGr8uVpJUF3784x+TUmLSpElMmjSJiRNnEtFCSq8CcNZZn2bmzHfWuMqxw4CXJNWFtrY27rzzziPaus/vpL39BV7qWc7ahyeydcsPXvsHYNKkSYwfP56IqFHFtWXAS5LqwoIFC5g3bx6bN29+re3llyewY8epPPXkScAPj1qmVCoxceLEI0K//6u1tXUU92L0GPCSpLqxbNkybr31Vg4dOgTA1i3nsXfv5EHnP3jwIM8//zzPP//8oPO0t7cfEfjLly+vdNk14U12kqS60dXVxQUXXPDa+N69U4CRdcHv27ePZ555hscff5yHH354hBWOHQa8JKmuXHbZZXR2dlZl3R0d+XxHvAEvSaor48aNY+nSpVVZtwEvSVINLVq0iJNPrvy3wxnwkiTVUESwbNmyiq+3Wl3/tWDAS5Lq0uzZs1m4cGFF1+kZvCRJY8AVV1xBW1tbxdZnwEuSNAaMHz+eSy+9tGLrM+AlSRojLrzwQqZNm1aRdRnwkiSNEaVSqWI33BnwkiSNIaeffjpnnXXWiNfjXfSSJI0xV111Fc3NI/uKFc/gJUkaY6ZMmcLFF1887OWbmpoYN25cBSuqLQNekpSNJUuWMGnSpGEt297entV3xxvwkqRstLS08Pa3v31Yy+bUPQ8GvCQpM+eccw5z584d8nIGvCRJY9yyZctoahpaxOV0Bz0Y8JKkDM2YMYPu7u4hLeMZvCRJdeDyyy8fUmgb8JIk1YH29naWLl16wvMb8JIk1YlFixYxa9asE5rXgJckqU40NTWxfPnyE5rXgJckqY7MmTOHc88997jzeRe9JEl15sorr6S1tfWY83gGfwIi4msRsaZ4bYmINUX73IjYVzbtC9XYviRJ5SZMmMCll156zHlyC/iRfe3OIFJKP3t4OCJuAV4sm7wppbSwGtuVJGkwF110EQ899BC7du06alpLSwstLS01qKp6qtpFH31P7X8vcEc1tyNJ0vGUSiWuvvrqAafldvYO1b8GvwTYkVJ6oqzttIj4cUR8JyKWDLZgRKyIiNURsXrnzp1VLlOS1Ajmz5/PGWeccVS7AV8mIu6LiHUDvK4pm+06jjx73w6cklJaBPw68JWImDjQ+lNKK1NK3Sml7q6uruGWKUnSEa6++mpKpdIRbbndQQ8juAafUrriWNMjohl4D/CWsmUOAAeK4QcjYhNwBrB6uHVIkjQUU6dO5eKLL+Z73/vea22ewQ/NFcCGlNLThxsioisiSsXwPGA+sLmKNUiSdJQlS5YwceLrHcgG/NBcy9E3170NWFt8bO5vgRtSSrurWIMkSUdpbW3lyiuvfG08x4CvysfkAFJKHxig7S7grmptU5KkE/XmN7+Z1atXs3Xr1iwD3ifZSZIa1rJly4gIA16SpJzMnDmT7u5u76KXJCk3l19+Ob29vbUuo+IMeElSQ8uxex7sopckKUsGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQyMK+Ij4zxHxaEQciojuftM+HhEbI+LxiLiqrP3qom1jRNw8ku1LkqSBjfQMfh3wHuC75Y0RsQC4FjgHuBr4s4goRUQJ+DywDFgAXFfMK0mSKqh5JAunlNYDRET/SdcAX00pHQB+EhEbgQuKaRtTSpuL5b5azPvYSOqQJElHqtY1+JOBp8rGny7aBmuXJEkVdNwz+Ii4D5g5wKRPppS+WfmSXtvuCmBFMXogItZVa1tjwDTguVoXUUXuX33Lef9y3jdw/+rdmSNZ+LgBn1K6Yhjr3QbMKRufXbRxjPb+210JrASIiNUppe6B5suB+1ff3L/6lfO+gftX7yJi9UiWr1YX/d3AtRHRFhGnAfOBfwN+BMyPiNMiopW+G/HurlINkiQ1rBHdZBcR7wb+BOgC/j4i1qSUrkopPRoRd9J381wvcGNK6WCxzE3APwEl4LaU0qMj2gNJknSUkd5FvwpYNci0TwOfHqD9HuCeIW5q5dCrqyvuX31z/+pXzvsG7l+9G9H+RUqpUoVIkqQxwkfVSpKUoTEX8I30+NuI+FpErCleWyJiTdE+NyL2lU37Qo1LHZaI+FREbCvbj+Vl0wY8lvUiIv4wIjZExNqIWBURk4v2LI4d1O/v1WAiYk5EfDsiHiv+xnykaB/0fVpvir8jjxT7sbpomxoR90bEE8XPKbWuc6gi4syy47MmIvZExEfr/dhFxG0R8Wz5x8AHO17R53PF7+PaiFh83A2klMbUCzibvs/+/QvQXda+AHgYaANOAzbRd6NeqRieB7QW8yyo9X4MY79vAX67GJ4LrKt1TRXYp08BvzlA+4DHstb1DnHf3g40F8N/APxBZscui9+rfvs0C1hcDE8A/r14Lw74Pq3HF7AFmNav7TPAzcXwzYffq/X6Kt6bzwCn1vuxA94GLC7/mzHY8QKWA/8ABHAR8MPjrX/MncGnlNanlB4fYNJrj79NKf0EOPz42wsoHn+bUnoFOPz427oRfc/6fS9wR61rGSWDHcu6kVL6Vkqptxh9gL5nOuSk7n+v+kspbU8pPVQM9wDraYwnaV4D3F4M3w68q3alVMRSYFNKaWutCxmplNJ3gd39mgc7XtcAX0p9HgAmR8SsY61/zAX8MeT8+NslwI6U0hNlbadFxI8j4jsRsaRWhVXATUV30m1lXYM5HLNyv0jff9aH5XDscjtGR4iIucAi4IdF00Dv03qUgG9FxIPR9zRQgBkppe3F8DPAjNqUVjHXcuTJUC7H7rDBjteQfydrEvARcV9ErBvgVddnCAM5wX29jiPfsNuBU1JKi4BfB74SERNHs+4TdZz9uxU4HVhI3z7dUstah+pEjl1EfJK+Zz18uWiqm2PXqCJiPHAX8NGU0h7q/H3az1tTSovp+8bOGyPibeUTU19fb91+dCr6HpD2TuDrRVNOx+4oIz1eI/oc/HClGj3+thaOt68R0UzfV+6+pWyZA8CBYvjBiNgEnAGM6LGF1XCixzIivgj8XTF6rGM5ZpzAsfsA8A5gafGLWFfH7jjq4hgNVUS00BfuX04pfQMgpbSjbHr5+7TupJS2FT+fjYhV9F1q2RERs1JK24su3WdrWuTILAMeOnzMcjp2ZQY7XkP+naynLvpcH397BbAhpfT04YaI6IqIUjE8j7593Vyj+oat3/WhdwOH7xQd7FjWjYi4Gvgt4J0ppb1l7VkcO+r/9+ooxb0ufwGsTyn9UVn7YO/TuhIRnREx4fAwfTeCrqPvuF1fzHY9ULUvCRsFR/R25nLs+hnseN0NvL+4m/4i4MWyrvwB1eQM/lii8R5/2/96EvTdWfk7EfEqcAi4IaXU/0aMevCZiFhIXxfTFuDDAMc6lnXkT+n7FMC9fbnBAymlG8jk2KWUeuv892oglwDvAx6J4iOpwCeA6wZ6n9ahGcCq4v3YDHwlpfSPEfEj4M6I+BCwlb4beutO8U/LlRx5fAb8G1MvIuIO4DJgWkQ8DfwP4PcZ+HjdQ9+d9BuBvcAHj7v+omdRkiRlpJ666CVJ0gky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQ/8fRIfneQdqZzMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiuUlEQVR4nO3deZRcdZ338c+316Q7ayedkHTSZDEECGIgTQgPiyI7qAFGY+IGiiYycA76PDPKyHNGHmdghBEQFXGC8ogeZZmDAXRwUHxccEHSCTEEEjAhO9nI1p2tt/o+f/QNVpruTrq7bt26v36/zqnTt353+X1vblV9cpe6Ze4uAAAQlqKkCwAAALlHwAMAECACHgCAABHwAAAEiIAHACBABDwAAAHKScCb2YNmtt3MVmS1VZnZL83sr9Hf4VG7mdk3zGy1mS03s9NzUQMAAPibXO3Bf1/SpR3abpb0K3efIulX0XNJukzSlOgxX9L9OaoBAABEchLw7v47Sbs6NM+W9FA0/JCkK7Paf+Dtnpc0zMzG5KIOAADQLs5z8KPdfUs0vFXS6Gi4RtLGrOk2RW0AACBHSvLRibu7mfXonrhmNl/th/BVWVk548QTT4ylNgAACtGSJUvedPfq3s4fZ8BvM7Mx7r4lOgS/PWrfLGl81nTjorYjuPtCSQslqa6uzuvr62MsFQCAwmJm6/syf5yH6J+SdE00fI2kJ7PaPxFdTT9L0t6sQ/kAACAHcrIHb2YPS3qPpJFmtknSlyV9VdJjZnadpPWS5kSTPy3pckmrJR2Q9Mlc1AAAAP4mJwHv7vO6GHVBJ9O6pBty0S8AAOgcd7IDACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAJBK7p50CQWNgAcApM7irYvV2NKYdBkFjYAHAKTKijdX6InVT2hI2ZCkSyloBDwAIDXW7l2r65+9XpdMuCTpUgoeAQ8ASAV3142/ulFlxWU6e+zZSZdT8Ah4AEAqbGzcqA2NGzR78mwVFxUnXU7BI+ABAKmwbMcySdJVU65KtpCUIOABAKnw4vYXdeZxZ2r84PFJl5IKsQa8mU01s2VZjwYz+5yZ3Wpmm7PaL4+zDgBA+i3bvoy99x4oiXPh7v6qpOmSZGbFkjZLWiTpk5Lucfevxdk/ACAMDc0NevPgm7rw+AuTLiU18nmI/gJJa9x9fR77BAAEYPmO5bps4mUqLy5PupTUyGfAz5X0cNbzG81suZk9aGbDO05sZvPNrN7M6nfs2JG/KgEABWfZ9mW6esrVSZeRKnkJeDMrk/QBSf8ZNd0vabLaD99vkXRXx3ncfaG717l7XXV1dT7KBAAUqOZMs06sOjHpMlIlX3vwl0la6u7bJMndt7l7m7tnJD0gaWae6gAApExrplVThk1JuozUyVfAz1PW4XkzG5M17ipJK/JUBwAgZTY0btC7x7876TJSJ9ar6CXJzColXSRpQVbznWY2XZJLWtdhHAAAb6keWK3BZYOTLiN1Yg94d98vaUSHto/H3S8AIAyEe+9wJzsAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAlcXdgZuskNUpqk9Tq7nVmViXpUUkTJK2TNMfdd8ddCwAA/UW+9uDPd/fp7l4XPb9Z0q/cfYqkX0XPAQBAjiR1iH62pIei4YckXZlQHQAABCkfAe+SfmFmS8xsftQ22t23RMNbJY3OQx0AAPQbsZ+Dl3SOu282s1GSfmlmq7JHurubmXecKfrPwHxJqq2tzUOZAACEI/Y9eHffHP3dLmmRpJmStpnZGEmK/m7vZL6F7l7n7nXV1dVxlwkAQFBiDXgzqzSzwYeHJV0saYWkpyRdE012jaQn46wDAID+Ju5D9KMlLTKzw3392N3/28wWS3rMzK6TtF7SnJjrAACgX4k14N39dUnv6qR9p6QL4uwbAID+jDvZAQAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABii3gzWy8mf3azF4xs5fN7Kao/VYz22xmy6LH5XHVAABAf1US47JbJf0vd19qZoMlLTGzX0bj7nH3r8XYNwAA/VpsAe/uWyRtiYYbzWylpJq4+gMAAH+Tl3PwZjZB0mmS/hw13Whmy83sQTMbno8aAADoT2IPeDMbJOlxSZ9z9wZJ90uaLGm62vfw7+pivvlmVm9m9Tt27Ii7TAAAghJrwJtZqdrD/Ufu/hNJcvdt7t7m7hlJD0ia2dm87r7Q3evcva66ujrOMgEACE6cV9GbpO9JWunud2e1j8ma7CpJK+KqAQCA/irOq+jPlvRxSS+Z2bKo7UuS5pnZdEkuaZ2kBTHWAABAvxTnVfS/l2SdjHo6rj4BAEA77mQHAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeQI+sP9ik+r37ky4DwFGUJF0AgHTY1tSiz6/aoN/satTxA8v0hzNPUpFZ0mUB6AJ78ACOyejyUg0tKVZG0tqDzfrpjj1JlwSgGwQ8gGN294m1OnXwQEnSfeu3J1wNgO4Q8ACO2cDiIn3/lImqLivR8n0H9btdjUmXBKALBDyAHhk7oEwPnjJRZWb61oZtSZcDoAsEPIAeO2Nopb56wjj9bvc+LW88kHQ5ADpBwAPolY+MHaHrakbqm5yLBwoSAQ+g1/7PO2rU0NqmtQeaki4FQAcEPIBeKyky3T/teP0XX5kDCg4BD6BPqkpLdEX1MO1va0u6FABZuJMdgD6bWFGedAkAOmAPHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiAD1TDzoP606I1amvNJF0KACAB3Is+QFtf36un71+ug40t2r6+QZcteKfKBrKpAaA/YQ8+MK+9sFVP3P2iDja2SJI2rdqtRXcv1f69/F43APQnBHxgjps0VKeeP07lFX/bY39z4z49fscS7d66P8HKAAD5ZO6edA1HVVdX5/X19UmXkSotzW366+Jteuk3m/Tmxn2SpPLKEl3x9+/SmMlDE64OAHA0ZrbE3et6O39ie/BmdqmZvWpmq83s5qTqCFVpWbFOPnus5nzpDF39jzM0pW6UWg626cmvv6jXl+1IujwAQMwSufLKzIol3SfpIkmbJC02s6fc/ZUk6gmZmWnM5KEaM3mo9u9t0svPvaHnHn1NBxqadcp5NUmXBwCISVJ78DMlrXb31929WdIjkmYnVEu/UTm0XDPfN1Ef+5ezVF5Rog0v71QaTtEAAHouqe9O1UjamPV8k6Qzsycws/mS5ktSbW1t/irrB4pLijSlbrQkEfAAEKiCvYre3Re6e52711VXVyddTrDMLOkSAAAxSCrgN0san/V8XNQGAAByIKmAXyxpiplNNLMySXMlPZVQLQAABCeRc/Du3mpmN0p6RlKxpAfd/eUkagEAIESJ3aDc3Z+W9HRS/QMAELKCvcgOAAD0HgEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwByri3jemHtLjW3ZpIupd8i4AEAOVdcZKqqLNOV9/1Btz+9Umt27Eu6pH4nloA3s383s1VmttzMFpnZsKh9gpkdNLNl0eM7cfQPAEjeO0YN0rc/erp+9pc3dMFdv9Wc//iTFr24SYda2pIurV8wd8/9Qs0ulvT/3L3VzO6QJHf/oplNkPQzdz+lJ8urq6vz+vr6nNcJAIjfxl0HNO+B57Vp90FJ0pABJbr69HGaO3O8TjxuSMLVFS4zW+Ludb2dP5Y9eHf/hbu3Rk+flzQujn4AAIVvfFWFHltwliaMqJAkNRxq1ff/uE6Xfv05XXnfH/To4g3a39R6lKWgp/JxDv5Tkn6e9Xyimb1oZr81s3Pz0D8AIGFjhw3UowvO0uTqyiPal23coy8+/pJm3vas/uknL2n5pj2K48hyf9TrQ/Rm9qyk4zoZdYu7PxlNc4ukOklXu7ubWbmkQe6+08xmSHpC0jR3b+hk+fMlzZek2traGevXr+9VnQCAwrGjsUkf++6f9eq2xi6nOXnMEM2bOV6zT6vRkAGleayusPT1EH0s5+AlycyulbRA0gXufqCLaX4j6R/cvdsT7JyDB4Bw7NrfrI999896Zcvb9u2OMKC0SFe8c6zmzRyvGccPl5nlqcLCUJDn4M3sUklfkPSB7HA3s2ozK46GJ0maIun1OGoAABSmqsoy/fgzZ+rUcUO7ne5QS0aPL92kD37nT7ront/pu8+9rl37m/NUZfrFdRX9aknlknZGTc+7+2fN7O8kfUVSi6SMpC+7+0+Ptjz24AEgPA2HWnTtgy9o6YY9xzxPWXGRLp42WvNm1uqsSSNUVBTuXn3BHqLPJQIeAMK0r6lVn/r+Yr2wdleP5z1+RIXm1I3Xh2aM06ghA2KoLlkEPAAg1Q40t+rTD9Xrj2t2Hn3iThQXmS44cZTmzazVeSdUqziQvXoCHgCQeoda2rTgh0v029d29Gk5Y4cO0IfqxmvOGeNVM2xgjqpLBgEPAAhCU2ubbvjRUj27cnufl2UmvfuEas09o1YXnDRKpcXp++kVAh4AEIzm1oxueuRF/XzF1pwts3pwuT44Y5zmnjFex4+oPPoMBYKABwAEpbUto88/9hf99C9v5HzZ/2PyCM2dWatLpo1WeUlxzpefS30N+JJcFgMAQF+VFBfp6x+ertJi00+Wbs7psv+4Zqf+uGanhleU6urTx2nezPF6x6jBOe2jULAHDwAoSJmM60uLXtIjizfG2k/d8cM1d2atrnjnGA0sK5y9eg7RAwCClcm4vvzUy/rh8/H/HsngASW6cnqN5s4cr2lju7/LXj4U5K1qAQDIhaIi01dmT9N150yMva/GQ6364fPrdcU3fq+rv/0HZTKFvwPcHQIeAFDQzEz/+4qTdP17Juetz6Ub9mjNjn156y8OBDwAoOCZmb5wyVTddMGUvPW5eN3uvPUVBwIeAJAKZqbPX3SC/vGSqXnpr35dz++PX0gIeABAqtxw/jt0y+Unxd5P/Xr24AEAyKvPnDdJt77/5Fj72LDrgLY1HIq1jzgR8ACAVLr27Im6/ap3xtpHfYrPwxPwAIDU+siZtbrzg6fKYvqF2Pr16T0PT8ADAFJtTt143TNnuuL4GXj24AEASNCVp9Xom/NOV0mOU/7lN/ZqX1NrTpeZLwQ8ACAIV5w6Rt/+6OkqLc5dyGdcWrZhT86Wl08EPAAgGBdPO04LP16nspLcxVtaz8MT8ACAoJx/4ih975o6DSjNTcSl9Tw8AQ8ACM65U6r1f6+dqYoc/Pzr0g271dqWyUFV+UXAAwCCdNbkEfrBp2ZqUHlJn5ZzoLlNq7Y25qiq/CHgAQDBqptQpR9eN1ODB/Qt5Ben8L70BDwAIGin1Q7Xw5+ZpWEVpb1eRhrPwxPwAIDgnVIzVA9/ZpZGVJb1av769bvk7jmuKl4EPACgXzhpzBA9Mn+WqgeX93jebQ1N2rT7YAxVxYeABwD0G1NGD9aj82fpuCEDejxv2s7DE/AAgH5lUvUgPbbgLNUMG9ij+dL2+/AEPACg36kdUaFHF8xSbVXFMc9Tzx48AACFb9zwCj224CxNGll5TNO/tm2f9hxojrmq3CHgAQD91nFDB+iRBbM0ZdSgY5p+SYoO0xPwAIB+bdTgAXpk/iydeNzgo06bpvPwBDwAoN8bMahcD39mlk6pGdLtdGk6D0/AAwAgaXhlmX706VmaPn5Yl9P8ZdNeNbW25a+oPiDgAQCIDB1Yqh9eN1NnTBje6fjm1oxWbN6b56p6h4AHACDL4AGl+v4nZ+qsSSM6Hb84JfelJ+ABAOigsrxED157hs6dMvJt49JyHp6ABwCgEwPLivXAJ+r03hNHHdG+ZP1uZTKF/8MzBDwAAF0YUFqs73xshi4+efRbbbsPtOj1N/clWNWxIeABAOhGWUmR7vvo6bri1DFvtaXhPDwBDwDAUZQWF+neD0/XVafVSJLqUxDwJUkXAABAGpQUF+lrH3qXSopML6TgQjv24AEAOEbFRaY7/u5UnfOOkdrecCjpcrrFHjwAAD1QVGT61ytP0f7mwr6jXWx78GZ2q5ltNrNl0ePyrHH/ZGarzexVM7skrhoAAIiDmWlQeWHvI8dd3T3u/rXsBjM7WdJcSdMkjZX0rJmd4O6F/V8hAABSJIlz8LMlPeLuTe6+VtJqSTMTqAMAgGDFHfA3mtlyM3vQzA7fub9G0sasaTZFbQAAIEf6FPBm9qyZrejkMVvS/ZImS5ouaYuku3q47PlmVm9m9Tt27OhLmQAA9Dt9Ogfv7hcey3Rm9oCkn0VPN0sanzV6XNTWcdkLJS2UpLq6usK/6S8AAAUkzqvox2Q9vUrSimj4KUlzzazczCZKmiLphbjqAACgP4rzKvo7zWy6JJe0TtICSXL3l83sMUmvSGqVdANX0AMAkFuxBby7f7ybcbdJui2uvgEA6O+4VS0AAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAdQeFqbkq4ASL2SpAsAgLfZ8Lz08y9KzfukgcOlihHRo0qacK508geSrhAoeOzBAyg8k94tffpZacpF0taXpNd/La38qVRZLU29LOnqgFRgDx5AYSofJL3vHunk2dLi70rv/Wep+oSkqwJSg4AHUNgmvaf9AaBHOEQPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACPgeatz5pvbv2Z10GQAAdCuWgDezR81sWfRYZ2bLovYJZnYwa9x34ug/Tvt375KZJV0GAADdKoljoe7+4cPDZnaXpL1Zo9e4+/Q4+s2HkrIyDRw8JOkyAADoViwBf5i17+rOkfTeOPvJp0EjRsqKOLMBAChscSfVuZK2uftfs9ommtmLZvZbMzu3qxnNbL6Z1ZtZ/Y4dO2Iu89iVV1QmXQIAAEfV6z14M3tW0nGdjLrF3Z+MhudJejhr3BZJte6+08xmSHrCzKa5e0PHhbj7QkkLJamurs57W2eucf4dAJAGvQ54d7+wu/FmViLpakkzsuZpktQUDS8xszWSTpBU39s6AADA28V5iP5CSavcfdPhBjOrNrPiaHiSpCmSXo+xBgAA+qU4L7KbqyMPz0vSeZK+YmYtkjKSPuvuu2KsAQCAfim2gHf3aztpe1zS43H1CQAA2vF9LwAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABKjfBrxnMkmXAABAbPptwLft2qWWrVuTLgMAgFj024AvGTlSTa+9pkOvvpp0KQAA5Fy/DXhJGnTeeWp85hc6sPTFpEsBACCn+nXAS9LI6z+rnQsXat9zzyVdCgAAOdPvA95KSzXm327XtttuV8PTTyddDgAAOVGSdAGFoGT4cNXc+3Wt/8hH1dbQoOFz5yZdEoAU8jaXt7apqJyPViSPV2FkwNSpGnP77dp8001q27NHIxYskJklXRaAAtW2v0UtW/apZcuB6O9+eXObqq9/l1SedHUAAX+EIZdcrKa/v147vn6v2nbv0agvfkFW1O/PYgD9mmdcrTsOqGXL/vbH1v1q3rJfyrhKR1WoZHSFymqHqPKM41Q6plJFA/hYRWHgldjByBtv1KFVr2rXQw+pbe9ejfnXf5GV8M8E9AeZAy1qPhzkUZhn9reopGqASkZXqHR0pQZMrVLJ6AoVV5YmXS7QLZKrAysq0tg779C6uXO194kn1NbYqJq771JROcfcgFB4xtW68+DfgnzLfrU1NquovDgK8gpVzhhNkCPVzN2TruGo6urqvL6+Pq99Nq9fr7UfmqNMQ4MqzjxT4+77looHDcprDQD6LnOo9W1BLknFw8tVOrpCpaMqCXIUJDNb4u51vZ6fgO/avt//QRvnz5cyGQ06/3yNu+9bnJMHCpS7q23noegQ+z5lGlvkbRlZeXEU5BUqGV1JkCM1+hrwHKLvxqBzztbYO76qospBGnTeuYQ7UCAyTa1vnSNva2iWMi53qWRY+155+dk1BDn6PQL+KIa+//1JlwD0W+6utl2H3jq07hmX2lxWVqSS6goNPGWkigeVJV0mUJAIeAAFIdPc1n7VekMU5BmXZ1zFQ8tVNmEIQQ70EAEPIO9adx9qP7Te5m+FuZUUqWTUQBXXDkm6PCAIBDyA2HhLm9qii92Uccnbv6JWPKRM5ccT5ECcCHgAOeEtbW+dI2/fK5dUbCqpGpB0aUC/RMAD6BP39jC30mLx6w1A4SDgAfSJmUnFSVcBoCO+2A0AQIAIeAAAAkTAAwAQIAIeveLueuONN9TU1JR0KQCATvQp4M3sQ2b2spllzKyuw7h/MrPVZvaqmV2S1X5p1LbazG7uS//Ir0wmow0bNuiZZ57Rvffeq4ULF+rNN99MuiwAQCf6ehX9CklXS/qP7EYzO1nSXEnTJI2V9KyZnRCNvk/SRZI2SVpsZk+5+yt9rAMxaWtr04YNG/TKK69o1apVamxsPGL8nj17VFNTk1B1AICu9Cng3X2lFH1N5kizJT3i7k2S1prZakkzo3Gr3f31aL5HomkJ+ALS2tqqtWvXauXKlVq1apUOHTqkoUOHatSoUZo6daqqqqpUVVWl4cOHq6qqKulyAQCdiOt78DWSns96vilqk6SNHdrPjKkG9IC7a+/evdq6dau2b9+ugQMHatq0aTrnnHM0dOhQFRfzRWcASJOjBryZPSvpuE5G3eLuT+a+pLf6nS9pfvS0ycxWxNVXARgpKeST2axfuoW8fiGvm8T6pd3Uvsx81IB39wt7sdzNksZnPR8Xtamb9o79LpS0UJLMrN7d6zqbLgSsX7qxfukV8rpJrF/amVl9X+aP62tyT0maa2blZjZR0hRJL0haLGmKmU00szK1X4j3VEw1AADQb/XpHLyZXSXpm5KqJf2XmS1z90vc/WUze0ztF8+1SrrB3duieW6U9Iza7179oLu/3Kc1AAAAb9PXq+gXSVrUxbjbJN3WSfvTkp7uYVcLe15dqrB+6cb6pVfI6yaxfmnXp/Uzd89VIQAAoEBwq1oAAAJUcAHfn25/a2aPmtmy6LHOzJZF7RPM7GDWuO8kXGqvmNmtZrY5az0uzxrX6bZMCzP7dzNbZWbLzWyRmQ2L2oPYdlJ631ddMbPxZvZrM3sl+oy5KWrv8nWaNtHnyEvRetRHbVVm9ksz+2v0d3jSdfaUmU3N2j7LzKzBzD6X9m1nZg+a2fbsr4F3tb2s3Tei9+NyMzv9qB24e0E9JJ2k9u/+/UZSXVb7yZL+Iqlc0kRJa9R+oV5xNDxJUlk0zclJr0cv1vsuSf8cDU+QtCLpmnKwTrdK+odO2jvdlknX28N1u1hSSTR8h6Q7Att2QbyvOqzTGEmnR8ODJb0WvRY7fZ2m8SFpnaSRHdrulHRzNHzz4ddqWh/Ra3OrpOPTvu0knSfp9OzPjK62l6TLJf1ckkmaJenPR1t+we3Bu/tKd3+1k1Fv3f7W3ddKOnz725mKbn/r7s2SDt/+NjWs/V6/cyQ9nHQtedLVtkwNd/+Fu7dGT59X+z0dQpL691VH7r7F3ZdGw42SVupvd9gM2WxJD0XDD0m6MrlScuICSWvcfX3ShfSVu/9O0q4OzV1tr9mSfuDtnpc0zMzGdLf8ggv4btTo7be5remmPU3OlbTN3f+a1TbRzF40s9+a2blJFZYDN0aHkx7MOjQYwjbL9im1/8/6sBC2XWjb6AhmNkHSaZL+HDV19jpNI5f0CzNbYu13A5Wk0e6+JRreKml0MqXlzFwduTMUyrY7rKvt1eP3ZCIBb2bPmtmKTh6p3kPozDGu6zwd+YLdIqnW3U+T9D8l/djMhuSz7mN1lPW7X9JkSdPVvk53JVlrTx3LtjOzW9R+r4cfRU2p2Xb9lZkNkvS4pM+5e4NS/jrt4Bx3P13SZZJuMLPzskd6+7He1H51ytpvkPYBSf8ZNYW07d6mr9srrh+b6ZYndPvbJBxtXc2sRO0/uTsja54mSU3R8BIzWyPpBEl9um1hHI51W5rZA5J+Fj3tblsWjGPYdtdKep+kC6I3Yqq23VGkYhv1lJmVqj3cf+TuP5Ekd9+WNT77dZo67r45+rvdzBap/VTLNjMb4+5bokO62xMtsm8uk7T08DYLadtl6Wp79fg9maZD9KHe/vZCSavcfdPhBjOrNrPiaHiS2tf19YTq67UO54euknT4StGutmVqmNmlkr4g6QPufiCrPYhtp/S/r94mutble5JWuvvdWe1dvU5TxcwqzWzw4WG1Xwi6Qu3b7ZposmskxfYjYXlwxNHOULZdB11tr6ckfSK6mn6WpL1Zh/I7lcgefHes/93+tuP5JKn9ysqvmFmLpIykz7p7xwsx0uBOM5uu9kNM6yQtkKTutmWKfEvt3wL4ZXtu6Hl3/6wC2Xbu3pry91Vnzpb0cUkvWfSVVElfkjSvs9dpCo2WtCh6PZZI+rG7/7eZLZb0mJldJ2m92i/oTZ3oPy0X6cjt0+lnTFqY2cOS3iNppJltkvRlSV9V59vrabVfSb9a0gFJnzzq8qMjiwAAICBpOkQPAACOEQEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAH6/29qs13Y4G5dAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkw0lEQVR4nO3de3RV9Z338c83V0JCCAnhKhBEDAItiCkVby1esdNKbauFZx5vtYPO1D61tav1Nuo49VkzVnvRzmOLU9fYaaXVsV5qtRZtrVVrNVxELKCAUECEcFFA5JLk+/yRjT2EBEKSfXb277xfa2Vln9/e+5zPXvskn5x99tkxdxcAAAhLXtIBAABA96PgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAHVLwZvZPWa20cwWZ4xVmtlcM3sj+t4vGjczu8PMlpvZIjOb1B0ZAADA33TXK/j/kjSt1djVkp5299GSno5uS9LZkkZHX7Mk3dVNGQAAQKRbCt7dn5W0pdXwdEn3RtP3Svp0xvhPvMWLkirMbHB35AAAAC3ifA9+oLuvj6bfljQwmh4qaU3GcmujMQAA0E0KsvEg7u5mdljXxDWzWWo5hK/S0tLjxowZE0s29Gyb39ujt955v0PLVpYWaWhFScyJACA75s2bt8ndqzu7fpwFv8HMBrv7+ugQ/MZofJ2kYRnLHRGN7cfdZ0uaLUl1dXVeX18fY1T0ZL9fulFfnrNAO3Y3HnS5kf1L9fuvfzw7oQAgZma2uivrx3mI/lFJF0XTF0l6JGP8wuhs+uMlvZtxKB84wNQxA3T/ZVM0uG+vgy735qb3tK6Dr/YBIHTd9TG5OZL+JKnWzNaa2aWS/k3SGWb2hqTTo9uS9LiklZKWS7pb0j91RwaEbeyQcj38pRM1fmj5QZd7/o1NWUoEAD2bpeHfxXKIHvvs3NOo/zNngZ5asrHN+edMGKI7Zh6b5VQA0P3MbJ6713V2fa5kh1TpXVSg2RfU6ZITa9qc/8KKTUrDH60AEDcKHqmTl2e68VPj9C/njFN+nu03b9OOPVqyfntCyQCg56DgkVoXnVCj/7ywTqVF+fuNP7+c9+EBgIJHqk0dM0APXH6CBpX/7Qz75yh4ILWamnZq8+Znk44RBAoeqTd2SLkeueJEjRvScob9S29u0Z7G5oRTAThczc2NenXxl/Xq4i9r1663ko6TehQ8gjCwvJceuHyKThszQO/vbdK81VuTjgTgMC1ddr02b35GTU07tGTptUnHST0KHsHoXVSguy+s08Un1OiFFRymB9Jkxcrvav36Bz64vWXLH7XurV8kmCj9KHgEJS/PdNM54/Sxozt9+WYAWbZu3RytWvWDA8bfeOP/cqi+Cyh4BKmupjLpCAA6oGHT01r2+o0HjBcUVKi0dLQ2b/ljAqnCkJX/JgcAQGs7dizT6tU/UnX1WepdUqPevUd+8FVYWJF0vNSj4AEAiSgrq1XdcfcnHSNYHKIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAhQQZx3bma1kn6RMXSkpBskVUj6B0kN0fi17v54nFkAAMglsRa8uy+TNFGSzCxf0jpJD0m6RNJ33f22OB8fAIBclc1D9KdJWuHuq7P4mAAA5KRsFvwMSXMybl9hZovM7B4z69d6YTObZWb1Zlbf0NDQejYAADiIrBS8mRVJOkfSA9HQXZJGqeXw/XpJt7dex91nu3udu9dVV1dnIyYAAMHI1iv4syXNd/cNkuTuG9y9yd2bJd0taXKWcgAAkBOyVfAzlXF43swGZ8w7V9LiLOUAACAnxHoWvSSZWamkMyRdljF8q5lNlOSSVrWaBwAAuij2gnf39yRVtRq7IO7HBQAgl3ElOwAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBA6S34PTulxt1JpwAAoEdKb8E37ZF+OUtqbko6CQAAPU56C75XX2npr6Unvim5J50GAIAeJb0FbyaVVksv3y09++2k0wAA0KOkt+AlqbSq5fuCn0qbVySbBQCAHqQg6QBdcvyXpOpaacixLa/oAQCApLQX/MSZSScAAKBHSvchegAA0CYKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAEKCCuB/AzFZJ2i6pSVKju9eZWaWkX0iqkbRK0vnuvjXuLAAA5IpsvYKf6u4T3b0uun21pKfdfbSkp6PbAACgmyR1iH66pHuj6XslfTqhHAAABCkbBe+Sfmtm88xsVjQ20N3XR9NvSxqYhRwAAOSM2N+Dl3SSu68zswGS5prZ0syZ7u5m5q1Xiv4YmCVJw4cPz0JMAADCEfsreHdfF33fKOkhSZMlbTCzwZIUfd/Yxnqz3b3O3euqq6vjjgkAQFBiLXgzKzWzPvumJZ0pabGkRyVdFC12kaRH4swBAECuifsQ/UBJD5nZvse6z91/Y2YvS7rfzC6VtFrS+THnAAAgp8Ra8O6+UtKENsY3SzotzscGACCXcSU7AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwANBB3tysbQ0bk44BdEhB0gEAIC0sL0+rFs3Xwid/raM+MkWjJ09R9YiRSccC2pSKgl+za49W7tytI3sXJx0FQI778GnTtPOdd/T8/T/Vn/7nPlUMHKyjJk/RUR+ZoiFHj5GZJR0RkCSZuyed4ZAKa8d69Q/v02cG9tOVNQN1VO9eSUcCkON+918/0oInfrXfWGlFP42q+6hGTz5Bw8Z9WPkFqXgNhR7KzOa5e12n109LwVf98D5Jkkn69IAKXVkzSLWlFD2AZLi7Hr/zNi19/g9tzi8uLdWRx35EoyefoJqJk1RYzO8rHJ6cK/h9TNKnBlToqyMG6piykmSCAchpTY2NevjWm7XqlfkHXa6gqFgjPnysJp39KQ0fPyFL6ZB2XS341J5F75Ie3fiOpr68TJcuflOv7Xg/6UgAckx+QYHO+dq1GnxU7UGXa9yzW5vXrFblkCOylAxIccFn+nXDuzrt5WW6+NWVWrR9Z9JxAOSQwl69dO7VN6py6LB2l+lTVa3z/vkWlVVWZTEZcl0QBb/PbzZt05n1r+uCRSu1YBtFDyA7SvqU67PX3qw+VdUHzOvdt0Kfu/5bKq8ekEAy5LKgCn6fuZu36ex5r+t/vbJC8959L+k4AHJAef9qffa6m9WrT/kHY73K+ui867+lyiFDE0yGXBVkwe/zuy3b9Xfz39DnF67QS+/sSDoOgMBVDR2mz1x9owqLe6mopLc+e+3N6j+8JulYyFGpPYu+M06qKNNVIwdpSkVZN6QCgLatemW+Cot7aeiYsUlHQYp19Sz6nLkKw8CiAg0rKdLmPY3a09ysorygD14ASFDNhElJRwDCLfg8SR/pW6pTK8t1WlUfjSsr4RKSAICcEVTB9y8s0KlVfXRqZbk+XtlHFYVBbR4AAB2WigbMU9uvvE3SpPLeOq2qXKdVletDZSXK41U6AADpKPhhJUXadw58ZWG+pla2FPrH+vVRVVEqNgEAgKxKRTtWFOTru+NqNLS4UBPKeyufV+kAABxUKgpeavnHMgAAoGP4rBgAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABCi2gjezYWb2ezP7i5m9ZmZficZvMrN1ZrYw+vpEXBkAAMhVcV7oplHSVe4+38z6SJpnZnOjed9199tifGwAAHJabAXv7uslrY+mt5vZEklD43o8AADwN1l5D97MaiQdK+nP0dAVZrbIzO4xs37ZyAAAQC6JveDNrEzSg5KudPdtku6SNErSRLW8wr+9nfVmmVm9mdU3NDTEHRMAgKDEWvBmVqiWcv+Zu/9Sktx9g7s3uXuzpLslTW5rXXef7e517l5XXV0dZ0wAAIIT51n0JunHkpa4+3cyxgdnLHaupMVxZQAAIFfFeRb9iZIukPSqmS2Mxq6VNNPMJkpySaskXRZjBgAAclKcZ9E/J8namPV4XI8JAABacCU7AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAFKrODNbJqZLTOz5WZ2dVI5AAAIUSIFb2b5kv5D0tmSxkqaaWZjk8gCAECIknoFP1nScndf6e57JP1c0vSEsgAAEJykCn6opDUZt9dGYx8ws1lmVm9m9Q0NDVkNBwBA2vXYk+zcfba717l7XXV1ddJxAABIlaQKfp2kYRm3j4jGAABAN0iq4F+WNNrMRppZkaQZkh5NKAsAAMEpSOJB3b3RzK6Q9KSkfEn3uPtrSWQBACBEiRS8JLn745IeT+rxAQAIWY89yQ4AAHQeBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHj3Oe/Vvq3HrrqRjAECqUfDocZp3NWnDd+Zp2+/XyBubk44DAKlEwaPHKa4pl+9t1rYnV2nD9+dr1/J3ko4EAKlDwaPHKRxSJivKlyQ1NryvTf/5qjbPWaqm7XsSTgYA6UHBo8exPFPR8D77jb3/SoPevq1e259fJ2/2hJIBQHpQ8OiRikaUHzDmu5u0be5q7VqyJYFEAJAuBUkHANpSXFOu7ZkDeVLp5MEqP3248suKkooFAKlBwaNHKhpeLuWZ1OwqPrqfKv5upAoHliYdCwBSg4JHj5RXnK/eE6vVe0K1etVWJh0HAFInloI3s29L+pSkPZJWSLrE3d8xsxpJSyQtixZ90d0vjyMD0q/y/NqkIwBAasV1kt1cSePd/cOSXpd0Tca8Fe4+Mfqi3AEAiEEsBe/uv3X3xujmi5KOiONxAABA27LxMbkvSHoi4/ZIM1tgZn8ws5Oz8PgAAOScTr8Hb2ZPSRrUxqzr3P2RaJnrJDVK+lk0b72k4e6+2cyOk/SwmY1z921t3P8sSbMkafjw4Z2NCQBATup0wbv76Qebb2YXS/qkpNPc3aN1dkvaHU3PM7MVko6WVN/G/c+WNFuS6urquHQZAACHIZZD9GY2TdI3JJ3j7jszxqvNLD+aPlLSaEkr48gAAEAui+tz8D+QVCxprplJf/s43CmSbjazvZKaJV3u7lx3FACAbhZLwbv7Ue2MPyjpwTgeEwAA/A3/bAYAgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AKbCoYZG27NqSdAykCAUPAD1YszfrroV36d3d76qyV2XScZAiFDwA9FCb39+sy+ZepuKCYp18xMlJx0HKUPAA0APN3zBf5//qfA3oPUBfGP+FpOMghSh4AOhB3F33LL5Hlz55qQaVDdKNU25MOhJSqiDpAACAFu/uflfXP3e9nln7jAb2HqjvT/2+ivKLko6FlKLgAaAHeG3Ta7rqD1dp3Y51Kiko0R2n3qH+Jf2TjoUUo+ABIGFzls7Rt1/+tvY275XJ9K8n/qvGVo1NOhZSjoIHgITs3LtTN71wk55Y9cQHY5dNuExn1ZyVYCqEgoIHgAS8vvV1XfXMVVq1bdUHY2eMOEP/NOGfkguFoFDwAJBlDy9/WLe8eIt2Ne36YGxM5RjdctItMrMEkyEkFDwAZMmuxl265c+36OHlD+83XtWrSneeeqdKCkqSCYYgUfAAkAWrt63W1575ml7f+vp+40V5Rfre1O9pUOmghJIhVBQ8AMTsyVVP6sYXbtR7e987YN4NU27QxAETsx8KwaPgASAme5v26rb623Tf0vvanH/R2Is0/ajpWU4VhlWLNmnI0RUq6kWNtYdL1QJADN7a8ZYu+s1F7Zb7yUNP1tfqvpblVOGoGNhbv7jlZb3yuzVqamxOOk6PFFvBm9lNZrbOzBZGX5/ImHeNmS03s2Vmxgc+AQTl2bXP6vzHzterm15tc/6RfY/UrafcqjzjNVZnVQzsrcmfHKnn7n9DP7vhRS3903p5sycdq0eJ+9jGd939tswBMxsraYakcZKGSHrKzI5296aYswBArJqam3Tngjt1z+J75Gq7bPoW99UPTv2ByorKspwuPLUfHaS1S7do6Z/e1tP3LtGCuX/VR885UkdOrE46Wo+QxJ+P0yX93N13u/ubkpZLmpxADgDoNg07G3Tpby/Vjxf/uN1yL7AC3f6x2zWsfFiW04XrlBm16jeotyRpy1vv6Ykfvqr/+fd6rV22NeFkyYu74K8ws0Vmdo+Z9YvGhkpak7HM2mgMAFLpz+v/rPN+dZ7mbZh30OW+Ofmb+ujgj2YpVW4oLM7XWf8wXvmFf6uzDW9u0yPfXaBHv79AG1dvSzBdsrpU8Gb2lJktbuNruqS7JI2SNFHSekm3H+Z9zzKzejOrb2ho6EpMAIiFu+tHr/xIs+bO0uZdmw+67OdrP68ZY2ZkKVluqRpappPOG33A+JolW/XAv9XrN7Nf1da3D/yIYui69B68u5/ekeXM7G5Jj0U310nKPD51RDTW+r5nS5otSXV1dZw5AaBH2bprq6557ho9v+75Qy47edBkXT356iykyl3jTxmqtUu3asX8jfvPcGnF/AatXLhJY6YM0uRPjlRZv17JhMyyOM+iH5xx81xJi6PpRyXNMLNiMxspabSkl+LKAQDdbeHGhTrvV+d1qNyH9Rmm73z8OyrI4/PacZt6wRiV92+7vL3ZteT59frpDS/quf95Q7t27M1yuuyL8z34W83sVTNbJGmqpK9Kkru/Jul+SX+R9BtJX+IMegBp8ZPXfqJLnrxEG3ZuOOSyZYVluvPUO9W3uG8WkqG4pEBnfnG88vLb/4c9TXub9cpTa/Tf17+gl3/9pvbsasxiwuwy955/9Luurs7r6+uTjgEgh23fs103PH+DnvrrUx1aPs/ydOepd+qUI06JORlaWzD3r3rhweUdWrakT6GOm1aj8R8bqvyCnnVdAjOb5+51nV2/Z20NAPRASzYv0ecf+3yHy12Srpx0JeWekImnD9OID1V1aNn3t+/Vcw+0XCxnyQthXSyHggeAg3jg9Qd0wRMXaM32NYdeOHLOqHN0yfhLYkyFgzEznX7RWJVWFHd4ne1bdul3P1miOf/6klYuCOOTWxQ8ALRh596duuaP1+jmP92s3U27O7zehOoJunHKjTEmQ0f0KivUmZeOleW1/358W7auf09P/CiMi+VQ8ADQyt7mvfr7x/9ej6187NALZxhUOkjfm/o9FeUXxZQMh2PI6H76yN/VdGrdEC6WQ8EDQCuFeYWqKunYe7j7lBSU6I6pd6h/Sf+YUqEz6s6u0dDaik6vn+aL5VDwANCGmbUzO7ysyfStE7+lY6qOiTEROsPyTGd8YZxK+hR2/k6ii+XMufkl/e6/l2jH1l3dFzBGFDwAtOHjwz6uQaWDOrTs5RMu15k1Z8acCJ1V2rdYp188Vjq8t+MPkLaL5VDwANCG/Lx8nXf0eYdc7owRZ+gfJ/xjFhKhK4aPq9KxZwzvlvtKy8VyKHgAaMdnR39WhXntH9o9pvIY3XLSLTLr4ktDZMXx04/UwJHl3XZ/e3Y16aVfvamf/vOf9MrTa9TU2Nxt990dKHgAaEdVSZXOGHFG2/N6VemOU+9QSUFJllOhs/Ly83TmF8epuHf3/l+A1hfLae4hF8uh4AHgIGaOOfBku6K8In1v6vc6/B49eo7yqhJNvWBMLPe972I5Lz/2Ziz3f7goeAA4iIkDJuqYyv3Pjr9hyg2aOGBiMoHQZaOOHaAPfWxoLPc9adoITf7UyFju+3BR8ABwCDPGzPhg+uJxF2v6UdMTTIPucOLnRqv/sLJuu7+8AtOpFx6jKZ8e1WPOyaDgAeAQPjHyEyovKtfJQ0/WV4/7atJx0A3yC/N01hfHq7A4v8v3VVxaoOlfmahjThjcDcm6DwUPAIfQq6CXrjzuSt16yq3KM35thqJiYG99bObRXb6Pz32jTkNG9+umVN2ne08lBIBAdeQz8Uif2uMHa+3SrVr64tuHve7Qoys07bIPqVdpF66SFyP+FAUA5LRTZtaq36Deh7XOmBMG61Nfmdhjy12i4AEAOa6wOF9n/cN45Rd2oBJNmnLuKJ124THKz+/ZFdqz0wEAkAVVQ8t00nmjD7pMQVGeps0ar0lnjchSqq6h4AEAkDT+lKEaNam6zXm9+xbp3KsmadSxA7KcqvMoeAAAIlMvOEbl/XvtN1Z1RJk+9806DRjRfdexzwYKHgCASHFJgc68dLzy8lsuVlPzoSp95uuT1Key1yHW7Hn4mBwAABkGjizX8Z8epfe27taJnztKltczrkx3uCh4AABa6a7/HZ8kDtEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACFBBHHdqZr+QVBvdrJD0jrtPNLMaSUskLYvmvejul8eRAQCAXBZLwbv75/dNm9ntkt7NmL3C3SfG8bgAAKBFLAW/j5mZpPMlnRrn4wAAgP3F/R78yZI2uPsbGWMjzWyBmf3BzE5ub0Uzm2Vm9WZW39DQEHNMAADC0ulX8Gb2lKRBbcy6zt0fiaZnSpqTMW+9pOHuvtnMjpP0sJmNc/dtre/E3WdLmi1JdXV13tmcAADkok4XvLuffrD5ZlYg6TOSjstYZ7ek3dH0PDNbIeloSfWdzQEAAA4U5yH60yUtdfe1+wbMrNrM8qPpIyWNlrQyxgwAAOSkOE+ym6H9D89L0imSbjazvZKaJV3u7ltizAAAQE6KreDd/eI2xh6U9GBcjwkAAFpwJTsAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouCRk7Zs2ZJ0BACIFQWPnLR48eKkIwBArCh45KTFixfL3ZOOAQCxoeCRcxobG7Vx40Zt3rw56SgAEBsKHjln+/btkqTVq1cnnAQA4kPBI+ds27ZNkrRmzZqEkwBAfCh45Jx9r+ArKysTTgIA8aHgkXP2vYKvra1NOAkAxIeCR87Zvn27+vbtqwEDBiQdBQBiQ8Ej52zbtk21tbUys6SjAEBsKHjknO3bt3N4HkDwKHjknN27d2vEiBFJxwCAWFHwyCnurgEDBqigoCDpKEjQ+4tf40qGCB4Fj5yyc+dOjRo1KukYSNh7zz+v9dddL29sTDoKEBsKHjllx44dGj16dNIxkLCiEcP17i9/qbVXfFnN77+fdBwgFhQ8ckp5eblKS0uTjoGEFUXnYOx45hn99ZIvqHHr1oQTAd2PgkdOKSkpSToCeoDCYcM/mH5/4UKt/vv/rb1vvZVgIqD7UfAAck5+Wanyq/tLknrX1anywgtl/PGHwHAqMYCcNOi661QyYYIKBw9OOgoQCwoeQE4qnzYt6QhArDhEDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQoC4VvJmdZ2avmVmzmdW1mneNmS03s2VmdlbG+LRobLmZXd2VxwcAAG3r6iv4xZI+I+nZzEEzGytphqRxkqZJ+n9mlm9m+ZL+Q9LZksZKmhktCwAAulGX/pucuy+RJDNrPWu6pJ+7+25Jb5rZckmTo3nL3X1ltN7Po2X/0pUcAABgf3G9Bz9U0pqM22ujsfbGAQBANzrkK3gze0rSoDZmXefuj3R/pA8ed5akWdHN3Wa2OK7H6gH6S9qUdIgYsX3pFvL2hbxtEtuXdrVdWfmQBe/up3fiftdJGpZx+4hoTAcZb/24syXNliQzq3f3uraWCwHbl25sX3qFvG0S25d2ZlbflfXjOkT/qKQZZlZsZiMljZb0kqSXJY02s5FmVqSWE/EejSkDAAA5q0sn2ZnZuZLulFQt6ddmttDdz3L318zsfrWcPNco6Uvu3hStc4WkJyXlS7rH3V/r0hYAAIADdPUs+ockPdTOvFsk3dLG+OOSHj/Mh5p9+OlShe1LN7YvvULeNontS7subZ+5e3cFAQAAPQSXqgUAIEA9ruBz6fK3ZvYLM1sYfa0ys4XReI2ZvZ8x74cJR+0UM7vJzNZlbMcnMua1uS/Twsy+bWZLzWyRmT1kZhXReBD7Tkrvz1V7zGyYmf3ezP4S/Y75SjTe7vM0baLfI69G21EfjVWa2VwzeyP63i/pnIfLzGoz9s9CM9tmZlemfd+Z2T1mtjHzY+Dt7S9rcUf087jIzCYd8gHcvUd9STpGLZ/9e0ZSXcb4WEmvSCqWNFLSCrWcqJcfTR8pqShaZmzS29GJ7b5d0g3RdI2kxUln6oZtuknS19sYb3NfJp33MLftTEkF0fS/S/r3wPZdED9XrbZpsKRJ0XQfSa9Hz8U2n6dp/JK0SlL/VmO3Sro6mr5633M1rV/Rc/NtSSPSvu8knSJpUubvjPb2l6RPSHpCkkk6XtKfD3X/Pe4VvLsvcfdlbcz64PK37v6mpH2Xv52s6PK37r5H0r7L36aGtVzr93xJc5LOkiXt7cvUcPffuntjdPNFtVzTISSp/7lqzd3Xu/v8aHq7pCXKjStpTpd0bzR9r6RPJxelW5wmaYW7r046SFe5+7OStrQabm9/TZf0E2/xoqQKMxt8sPvvcQV/ECFf/vZkSRvc/Y2MsZFmtsDM/mBmJycVrBtcER1Ouifj0GAI+yzTF9Tyl/U+Iey70PbRfsysRtKxkv4cDbX1PE0jl/RbM5tnLVcDlaSB7r4+mn5b0sBkonWbGdr/xVAo+26f9vbXYf9MJlLwZvaUmS1u4yvVrxDa0sFtnan9n7DrJQ1392MlfU3SfWZWns3cHXWI7btL0ihJE9WyTbcnmfVwdWTfmdl1arnWw8+iodTsu1xlZmWSHpR0pbtvU8qfp62c5O6T1PIfO79kZqdkzvSWY72p/eiUtVwg7RxJD0RDIe27A3R1f3Xpc/Cd5Qld/jYJh9pWMytQy7/cPS5jnd2SdkfT88xshaSjJXXpsoVx6Oi+NLO7JT0W3TzYvuwxOrDvLpb0SUmnRT+Iqdp3h5CKfXS4zKxQLeX+M3f/pSS5+4aM+ZnP09Rx93XR941m9pBa3mrZYGaD3X19dEh3Y6Ihu+ZsSfP37bOQ9l2G9vbXYf9MpukQfaiXvz1d0lJ3X7tvwMyqzSw/mj5SLdu6MqF8ndbq/aFzJe07U7S9fZkaZjZN0jcknePuOzPGg9h3Sv/P1QGic11+LGmJu38nY7y952mqmFmpmfXZN62WE0EXq2W/XRQtdpGk2P5JWBbsd7QzlH3XSnv761FJF0Zn0x8v6d2MQ/ltSuQV/MFY7l3+tvX7SVLLmZU3m9leSc2SLnf31idipMGtZjZRLYeYVkm6TJIOti9T5Adq+RTA3Jbe0IvufrkC2Xfu3pjyn6u2nCjpAkmvWvSRVEnXSprZ1vM0hQZKeih6PhZIus/df2NmL0u638wulbRaLSf0pk70R8sZ2n//tPk7Ji3MbI6kj0vqb2ZrJd0o6d/U9v56XC1n0i+XtFPSJYe8/+jIIgAACEiaDtEDAIAOouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIED/H+UBYbILEG14AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkbklEQVR4nO3de3RddZ338c839zZpm17SNKT3K7RQ0jYUFHuTOxUKZMkUHxXFZyrzgEsfL7O8PKPoGkZHRZ7lI6NTFS0+DogLGZgBRdBRl+sRMZRCS0uhLZe29BKKbdIrSc73+SM7cBqStknOPvuc33m/1jor+/z2Pnt/99on+WTv8zu/be4uAAAQlqKkCwAAAJlHwAMAECACHgCAABHwAAAEiIAHACBABDwAAAHKSMCb2Z1mttfMNqS1jTKzR83shejnyKjdzOzbZrbFzJ4xs/mZqAEAALwlU2fwP5Z0aY+2z0r6jbvPkPSb6LkkXSZpRvRYJem7GaoBAABEMhLw7v4HSa/3aF4haU00vUbSVWntd3mXxyVVm1ldJuoAAABd4vwMvtbdd0XTuyXVRtP1kranLbcjagMAABlSko2NuLubWb/GxDWzVeq6hK/KysoFp59+eiy1AQCQi5588snX3L1moK+PM+D3mFmdu++KLsHvjdp3SpqQttz4qO047r5a0mpJamxs9Obm5hhLBQAgt5jZy4N5fZyX6B+UdH00fb2kB9LaPxj1pj9P0oG0S/kAACADMnIGb2Z3S1oqaYyZ7ZD0JUlfk3SvmX1E0suSro0Wf1jS5ZK2SDos6cOZqAEAALwlIwHv7tf1MeuCXpZ1STdlYrsAAKB3jGQHAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABADra3il3T7oMZFBJ0gUAAJLl7rr2X/+kV/cfVcOEas2bWK15E6o1d0K1qsqJiXzFkQOAAvfYpr16ZseBaHqPHtu0R5JkJs0YW6WGCdVqmDBS8yZWa2btMBUXWZLl4hQR8ABQwFIp17cefb7Xee7S83sO6vk9B3Vv8w7VVw/RXR9ZqGk1VVmuEgNBwANAAXvk2d3atKv1pMudPm6Y1tywULXDK7JQFTKBgAeAAtWZct3+WO9n7+nOmzpKqz/YqOEVpVmoCplCwANAgXpo/S49v+fgCZdZPrdO37r2bJWXFGepKmQKAQ8ABaijM6X/fZKz9w+fP1n/sHy2iuhUl5cIeAAoQA+se1XbWg71Of9zl52uVYunyoxwz1cEPAAUmPbOlL792xd6nVdSZPrGe+fq6nnjs1wVMo2AB4AC84u1O/TyvsNvax9aVqzvvX+BFs+sSaAqZBoBDwAF5I2OlL79my1vax9TVaYffWihzho/IoGqEAcCHgAKyL3N27Vz/5Hj2iaPHqo1NyzUpNGVCVWFOBDwAFAgjrZ36ju/Pf7s/ezxI/TDD52jMVXlCVWFuBDwAFAg7nniFe1uPfrm8yUza/Qv/22+KrmhTJA4qgBQAI680ak7frf1zedN88fra01nqbSYu4aHioAHgALwfx9/WS1txyRJNy2bpk9fPIvvuAeOgAeAwB061qHv/X6rzKRbrpij6985OemSkAUEPAAEbs2fXlLbsQ7d8b75uvysuqTLQZYQ8AAQsLaj7brnie36yQ0Lde7U0UmXgywi4AEgYL/csFvf/2CjZo0blnQpyDICHsdpbzms9lcPquL0USriqzNA3rv8rDpV8btckDjqkCQdenKP2n63XaVjh2pk0wzCHQgE4V64OPJQ2x926MCvX1b1e6aq8txxfHUGAAJAwBcwd1frY6/oyPoW1d7coNJxjEMNAKEg4AuUp1wHHtomb09p7M3zVFRWnHRJAIAMIuALkKdcBx5+UWWThmvoXO77DAAhIuALjHekdPD/vaqqd56mklEVSZcDAIgJAV9AvD2lN7a3qur802TcYAIAgkbAF5jyqdVJlwAAyAJO4wqIlXK4AaBQxHoGb2azJP0srWmqpC9Kqpb0t5JaovbPu/vDcdYCAEAhiTXg3X2zpAZJMrNiSTsl3S/pw5Jud/dvxrl9AAAKVTav2V4gaau7v5zFbQIAUJCyGfArJd2d9vxmM3vGzO40s5E9FzazVWbWbGbNLS0tPWcDAIATyErAm1mZpCsl/Txq+q6kaeq6fL9L0m09X+Puq9290d0ba2oYjAUAgP7I1hn8ZZLWuvseSXL3Pe7e6e4pSd+XtDBLdQAAUBCyFfDXKe3yvJnVpc27WtKGLNUBAEBBiH2gGzOrlHSRpI+mNX/dzBokuaSXeswDAACDFHvAu/shSaN7tH0g7u0CAFDIGNoMAIAAEfAAAASIgAcAIEAEPIDEuXvSJQDBIeABJG7v3r36wQ9+oK1btyZdChAM7gcPIHEHDhzQjh079JOf/EQTJ07UsmXLNGXKlKTLAvIaZ/AAEnfgwIE3p1955RWtWbNGP/7xj/Xyy9ybChgoAh5A4tIDvttLL72kH/3oR7rrrru0ffv2BKoC8huX6AEkrreA77Zt2zZt27ZN06dP17Jly1RfX5/FyoD8RcADSNyJAr7bli1btGXLFs2aNUtLly5VXV3dSV8DFDICHkDiTiXgu23evFmbN2/WGWecoaVLl6q2tjbGyoD8RcADSFQqlVJbW1u/X7dp0yZt2rRJc+bM0dKlS1VTUxNDdUD+IuABJKqtrU2pVGrAr3/22We1ceNGnXnmmVq6dKlGjx598hcBBYCAB5Co/lye74u7a/369dqwYYPmzp2rJUuWaNSoURmoDshfBDyARGUi4Lu5u55++mmtX79eDQ0NWrx4saqrqzO2fiCfEPAAEpXJgO+WSqW0du1aPf3005o3b54WLVqkESNGZHw7QC4j4AEkKo6A79bZ2anm5mY99dRTWrBggRYtWqRhw4bFtj0glxDwABIVZ8B36+zs1BNPPKG1a9eqsbFRixYtUmVlZezbBZLEULUAEpWNgO/W0dGh9evXc3taFAQCHkCishnwknTVVVepqqoqq9sEkkDAA0jMsWPHdPTo0axt77zzztOMGTOytj0gSQQ8gMRk8+x93LhxuvDCC7O2PSBpBDyAxGQr4EtLS9XU1KSSEvoVo3AQ8AASk62Av+SSSxirHgWHgAeQmGwE/Omnn67GxsbYtwPkGgIeQGLiDvhhw4bpyiuvjHUbQK4i4AEkJs6ANzNdc801Gjp0aGzbAHIZAQ8gMXEG/Pnnn68pU6bEtn4g1xHwABKRSqXU1tYWy7rr6+u1bNmyWNYN5AsCHkAiDh48qM7Ozoyvt6ysTE1NTSouLs74uoF8QsADSERra2ss67388ss1atSoWNYN5BMCHkAi4vj8/ayzzlJDQ0PG1wvkIwIeQCIyHfDV1dVavnx5RtcJ5DPGbQSQiEwGvJmpqalJFRUVA15Hyl1tHZ3a39GpAx2dau3o1P72runux/72jq72tGWuqxutmyaOzdi+AJlCwANIRCYDfsmSJZowYYLeSKXeCuS0cN7f0anW9k7t7+jodX53WA/kLvFTh5RlbD+ATCLgASTiZAH/RnGJ9lWN0LGS0rRHmY6VlOqN7uelpfIhlXqgdLj2//4ZHUmlslT9WxqGM5AOchMBDyARJwv4Ik/pt7Pmq21I5clX9kZ7hqrqn9qyEtWVcwaP3EQnOwBZ197ersOHD59wmZJUSudvXZ+ligbm7GGcvSN3EfAAsu5UP3+fvG+3Ju3bHXM1A8fleeQyAh5A1vWng935W55RcSrzI95lQgNn8MhhBDyArOtPwA8/elgNr7wQYzUDxyV65DICHkDW9fcrcvO2P69hRw7FVM3ATKwo0+gy+ikjdxHwALKuvwFfkkrpXVueiamageHzd+Q6Ah5A1g1kkJszjrbp3SNyJ1T5/B25joAHkHUDCfgVK1boq2dMUkWRxVBR/xHwyHWxB7yZvWRm681snZk1R22jzOxRM3sh+jky7joA5AZ37/etYs855xzNmjVLk4aU62MTa2Oq7NSZpLnDhiRdBnBC2TqDX+buDe7eGD3/rKTfuPsMSb+JngMoAIcOHVJHR8cpLz927FhdfPHFbz6/aeJYTapIdvS46UPLVVVSnGgNwMkkdYl+haQ10fQaSVclVAeALOvP5fmSkhI1NTWptLT0zbaK4iL944z6OEo7ZXSwQz7IRsC7pF+b2ZNmtipqq3X3XdH0bknJX3MDkBX9CfiLLrpItbVv//Nw0ZgRunTM8EyW1S98/o58kI0vcb7L3Xea2VhJj5rZc+kz3d3N7G13aYz+GVglSRMnTsxCmQCy4VQDfubMmTr33HP7nP+V6fX63ettOpoayE1eB2ceAY88EPsZvLvvjH7ulXS/pIWS9phZnSRFP/f28rrV7t7o7o01NTVxlwkgS04l4KuqqrRixYoTLjNxSLk+Pin7F/9KTJpdRQc75L5YA97MKs1sWPe0pIslbZD0oKTro8Wul/RAnHUAyB2nEvBXX321KitPfpvYv5swVlOGZLfD3ezKIaoo5hvGyH1xv0trJf3RzJ6W9ISkh9z9V5K+JukiM3tB0oXRcwAF4GQB/453vEPTpk07pXVVFBfp1hnjM1HWKaODHfJFrJ/Bu/s2SWf30r5P0gVxbhtAbjpRwNfV1emCC/r3p+Hdo4fr8jEj9PBr/R88ZyC4wQzyBdeZAGRNR0eHDh3q/aYxpaWlampqUklJ/887vjyjXkOyNMIdZ/DIFwQ8gKw50dn7ZZddpjFjxgxovRMqyrLS4W5IkWnW0IrYtwNkAgEPIGv6CvjZs2dr/vz5g1r3302Mv8PdmVVDVZIjY+EDJ0PAA8ia3gJ+xIgRuuKKKwa97vKi+DvcNQzn63HIHwQ8gKzpGfBmpmuuuUZDhmQmON89eriW14zIyLp6wwh2yCcEPICs6RnwixYt0qRJkzK6jS9Pj6/DHR3skE8IeABZkx7w48eP15IlSzK+jfEVZfqfk8dlfL3DS4o0ZUh5xtcLxIWAB5A13QFfXl6upqYmFRfHc8vVj06o0bQMh/HcqqEqMjrYIX8Q8ACyprW1VZK0fPlyjRw5MrbtlBcV6daZmb2lLJfnkW8IeABZcfjwYbW3t2vu3LmaO3du7NtbOmq43pPBDnd0sEO+IeABZMWBAwc0cuRILV++PGvb7Opwl5k/c5zBI98Q8ACyoq2tTU1NTSovz15HtfqKMn1y8uBHuBtTWqL68tIMVARkDwEPICumTJmi8eOze+c3qavD3fShg/unomH4UBkd7JBnCHgAWVFamswZcFlRkf5pkCPc8fk78hEBDyB4i0cN05Vjqwf8ej5/Rz4i4AEUhFumnaahxQP7k3f2MMagR/4h4AEUhNMqyvTJAdxStr68VDVldLBD/iHgARSMVRNqNKOfHe64PI98RcADKBgD6XBHBzvkKwIeQEFZNGqYVvSjw908zuCRpwh4AAXnlumn3uFuLmfwyFMEPICCU1depk+fwi1lpw8t1/CSeO54B8SNgAdQkP52fI1mDq044TJnc/aOPEbAAyhIpUWmfzrJLWXpYId8RsADKFjvGjlMV5+gwx1fkUM+I+ABFLQvTa9XZS8d7opNmlPFCHbIXwQ8gII2rrxUn+mlw93plRUDHtoWyAW8ewEUvI+Mr9GsyuM73PH5O/IdAQ+g4JUWmb7aY4Q7Pn9HviPgAUDSO0dWqal25JvPOYNHviPgASDyxWmnqaq4SOVFptMr6WCH/EbAA0CktrxUn5kyTnOqhqi0yJIuBxiUkqQLAIBcckN9Db3nEQTexQCQprTI9P660UmXAQwaAQ8APZhxeR75j4AHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABii3gzWyCmf2XmW00s2fN7ONR+y1mttPM1kWPy+OqAQCAQhXn3eQ6JH3K3dea2TBJT5rZo9G82939mzFuGwCAghZbwLv7Lkm7ouk2M9skqT6u7QEAgLdk5TN4M5ssaZ6kP0dNN5vZM2Z2p5mNzEYNAAAUktgD3syqJN0n6RPu3irpu5KmSWpQ1xn+bX28bpWZNZtZc0tLS9xlAgAQlFgD3sxK1RXuP3X3X0iSu+9x9053T0n6vqSFvb3W3Ve7e6O7N9bU1MRZJgAAwYmzF71J+qGkTe7+rbT2urTFrpa0Ia4aAAAoVHH2oj9f0gckrTezdVHb5yVdZ2YNklzSS5I+GmMNAAAUpDh70f9RkvUy6+G4tgkAALowkh0AAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEkovPgwaRLAIJGwANIxNGNG/XXe+5JugwgWAQ8gEQMXbBALd+5Q6/96+qkSwGCRMADSIQVF2vYhReo5fbbtfeb30y6HCA4BDyAxAy/9DJJ0r4f/FC7/uGL8lQq4YqAcBDwABIzdOE5GnfLl1RyWp32//zn2vmpT8nb25MuCwgCAQ8gMVZUpJErV2r6r36lcV/+so4+/Yy2/4+blDpyJOnSgLxHwANInJWVaeTfXKtpj/xKwy6+SLtvuUWdbW1JlwXkNQIeQM6w0lKNfO97VXfrrWrfvj3pcoC8RsADyDlWUqKK2bOTLgPIawQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeANIcPdSu5x7fpV9+b7327zmcdDnAgJUkXQAAJK3t9aPatq5FLz7dol0vHFAq5ZKkGefUqrp2aMLVAQNDwAMoSK37jmjz47u1bV2LXtt+sNdl9u08qOkLxma5MiAzuEQPoCBVDi9XcWmRWl872ucy+3b2HvxAPiDgARSk4tIizb94kt7/lfN05uJ6WZG9bZl9rx5KoDIgMwh4AAVtyLAyLXnfLK38Xws1cc6o4+a1vnZE7cc6E6oMGJzEAt7MLjWzzWa2xcw+m1QdACBJo06r1BUfa9AVHztbo06r7Gp06XXO4pGnEulkZ2bFku6QdJGkHZL+YmYPuvvGJOoBgG4T54zW+DNGaeMfX9UT/7FN+149qNopw5MuC+i3pHrRL5S0xd23SZKZ3SNphSQCHkDiiopMZy6u18xzavVXvguPPJXUJfp6Sek3e94Rtb3JzFaZWbOZNbe0tGS1OACQpLIhJaqdzNk78lPOdrJz99Xu3ujujTU1NUmXAwBAXkkq4HdKmpD2fHzUBgAAMiCpgP+LpBlmNsXMyiStlPRgQrUAABCcRDrZuXuHmd0s6RFJxZLudPdnk6gFAIAQJTYWvbs/LOnhpLYPAEDIcraTHQAAGDgCHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AHkhNbW9Uql3ki6DCAYBDyAnFBZOUNbtn5d7e37ky4FCAIBDyAnFBdXqP6092nrtm8lXQoQBAIeQM6orJyqMWPerVSqI+lSgLxHwAPIKWNGL5UZf5qAweK3CEDOIeCBweO3CACAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABCiWgDezb5jZc2b2jJndb2bVUftkMztiZuuix/fi2D4AAIUurjP4RyWd6e5zJT0v6XNp87a6e0P0uDGm7QMAUNBiCXh3/7W7d9/v8XFJ4+PYDgAA6F02PoO/QdIv055PMbOnzOz3ZrYoC9sHAKDglAz0hWb2mKRxvcz6grs/EC3zBUkdkn4azdslaaK77zOzBZL+3czmuHtrL+tfJWmVJE2cOHGgZQIAUJAGHPDufuGJ5pvZhyS9R9IF7u7Ra45JOhZNP2lmWyXNlNTcy/pXS1otSY2NjT7QOgEAKERx9aK/VNLfS7rS3Q+ntdeYWXE0PVXSDEnb4qgBAIBCNuAz+JP4jqRySY+amSQ9HvWYXyzpK2bWLikl6UZ3fz2mGgAAKFixBLy7T++j/T5J98WxTQAA8BZGsgMAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAhRbwJvZLWa208zWRY/L0+Z9zsy2mNlmM7skrhoAAChUJTGv/3Z3/2Z6g5nNlrRS0hxJp0l6zMxmuntnzLUAsfFUSkcOtqmsYohKysqSLgcAYg/43qyQdI+7H5P0opltkbRQ0p8SqAXICCsq0tDhI7Rvx3YdaNmtoqJiTZhzlopLSpMuDUCBijvgbzazD0pqlvQpd/+rpHpJj6ctsyNqA/Le6PETNHr8BB3Yu0fN/3G/jhxs05SGBZow+ywVFRcnXR6AAjKoz+DN7DEz29DLY4Wk70qaJqlB0i5Jt/Vz3avMrNnMmltaWgZTJpB1I8bW6tyrr9U7mlaq5eUXdfcXP6Nta/+SdFkACoi5e/wbMZss6T/d/Uwz+5wkuftXo3mPSLrF3fu8RN/Y2OjNzc2x1wnEJdXZKfcUl+wBnDIze9LdGwf6+jh70delPb1a0oZo+kFJK82s3MymSJoh6Ym46gByQVFxMeEOIKvi/Az+62bWIMklvSTpo5Lk7s+a2b2SNkrqkHQTPegBAMis2ALe3T9wgnm3Sro1rm0DAFDoGMkOAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEAGKyjB6TXtyVdxXEIeAAABmPjA9Id50pFpUlXcpw47wcPAEC4Wl+VHvq0tPkhqfZMqXpC0hUdh4AHAKC/nn9Euu+/S8dau57PvDTZenrBJXoAAPrrxT+8Fe6SNOuy5GrpAwEPAEB/dRx7a7pyrFS/ILla+kDAAwDQXx1H3pqeeYlkllwtfSDgAQDor/Qz+By8PC8R8AAA9F97dAZfUiFNXZZsLX0g4AEA6K/uM/gpi6WyocnW0gcCHgCA/uo42vUzB78e142ABwCgv7oDPkc/f5cY6AZAIN7ofEM72nbocMdhDS8b3vUoH64i4zwGMWg/KtWdLQ0/LelK+kTAAwhCWXGZplZPTboMFIqOo9KZTUlXcUL8awsAQH91HJVm5e7n7xIBDwBA/w0ZKdU1JF3FCRHwAAD019QlOTl6XToCHgCA/srRwW3SEfAAAPTXpPOTruCkCHgAAPqrtCLpCk6KgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABCgkjhWamY/kzQrelotab+7N5jZZEmbJG2O5j3u7jfGUQMAAIUsloB397/pnjaz2yQdSJu91d0b4tguAADoEkvAdzMzk3StpHfHuR0AAHC8uD+DXyRpj7u/kNY2xcyeMrPfm9mivl5oZqvMrNnMmltaWmIuEwCAsAz4DN7MHpM0rpdZX3D3B6Lp6yTdnTZvl6SJ7r7PzBZI+nczm+PurT1X4u6rJa2WpMbGRh9onQAAFKIBB7y7X3ii+WZWIukaSQvSXnNM0rFo+kkz2ypppqTmgdYBAADeLs5L9BdKes7dd3Q3mFmNmRVH01MlzZC0LcYaAAAoSHF2slup4y/PS9JiSV8xs3ZJKUk3uvvrMdYAAEBBii3g3f1DvbTdJ+m+uLYJAAC6MJIdAAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABCgQQW8mb3XzJ41s5SZNfaY9zkz22Jmm83skrT2S6O2LWb22cFsHwAA9G6wZ/AbJF0j6Q/pjWY2W9JKSXMkXSrpX8ys2MyKJd0h6TJJsyVdFy0LAAAyqGQwL3b3TZJkZj1nrZB0j7sfk/SimW2RtDCat8Xdt0WvuydaduNg6gAAAMeL6zP4eknb057viNr6agcAABl00jN4M3tM0rheZn3B3R/IfElvbneVpFXR02NmtiGubeWAMZJeS7qIGLF/+S3k/Qt53yT2L9/NGsyLTxrw7n7hANa7U9KEtOfjozadoL3ndldLWi1JZtbs7o29LRcC9i+/sX/5K+R9k9i/fGdmzYN5fVyX6B+UtNLMys1siqQZkp6Q9BdJM8xsipmVqasj3oMx1QAAQMEaVCc7M7ta0v+RVCPpITNb5+6XuPuzZnavujrPdUi6yd07o9fcLOkRScWS7nT3Zwe1BwAA4G0G24v+fkn39zHvVkm39tL+sKSH+7mp1f2vLq+wf/mN/ctfIe+bxP7lu0Htn7l7pgoBAAA5gqFqAQAIUM4FfCENf2tmPzOzddHjJTNbF7VPNrMjafO+l3CpA2Jmt5jZzrT9uDxtXq/HMl+Y2TfM7Dkze8bM7jez6qg9iGMn5e/vVV/MbIKZ/ZeZbYz+xnw8au/zfZpvor8j66P9aI7aRpnZo2b2QvRzZNJ19peZzUo7PuvMrNXMPpHvx87M7jSzvelfA+/reFmXb0e/j8+Y2fyTbsDdc+oh6Qx1fffvd5Ia09pnS3paUrmkKZK2qqujXnE0PVVSWbTM7KT3YwD7fZukL0bTkyVtSLqmDOzTLZI+3Ut7r8cy6Xr7uW8XSyqJpv9Z0j8HduyC+L3qsU91kuZH08MkPR+9F3t9n+bjQ9JLksb0aPu6pM9G05/tfq/m6yN6b+6WNCnfj52kxZLmp//N6Ot4Sbpc0i8lmaTzJP35ZOvPuTN4d9/k7pt7mfXm8Lfu/qKk7uFvFyoa/tbd35DUPfxt3rCusX6vlXR30rVkSV/HMm+4+6/dvSN6+ri6xnQISd7/XvXk7rvcfW003SZpkwpjJM0VktZE02skXZVcKRlxgaSt7v5y0oUMlrv/QdLrPZr7Ol4rJN3lXR6XVG1mdSdaf84F/AmEPPztIkl73P2FtLYpZvaUmf3ezBYlVVgG3BxdTroz7dJgCMcs3Q3q+s+6WwjHLrRjdBwzmyxpnqQ/R029vU/zkUv6tZk9aV2jgUpSrbvviqZ3S6pNprSMWanjT4ZCOXbd+jpe/f6dTCTgzewxM9vQyyOvzxB6c4r7ep2Of8PukjTR3edJ+qSkfzOz4dms+1SdZP++K2mapAZ17dNtSdbaX6dy7MzsC+oa6+GnUVPeHLtCZWZVku6T9Al3b1Wev097eJe7z1fXHTtvMrPF6TO961pv3n51yroGSLtS0s+jppCO3dsM9ngN6nvwA+UJDX+bhJPtq5mVqOuWuwvSXnNM0rFo+kkz2ypppqRBDVsYh1M9lmb2fUn/GT090bHMGadw7D4k6T2SLoh+EfPq2J1EXhyj/jKzUnWF+0/d/ReS5O570uanv0/zjrvvjH7uNbP71fVRyx4zq3P3XdEl3b2JFjk4l0la233MQjp2afo6Xv3+ncynS/ShDn97oaTn3H1Hd4OZ1ZhZcTQ9VV37ui2h+gasx+dDV0vq7ina17HMG2Z2qaS/l3Slux9Oaw/i2Cn/f6/eJurr8kNJm9z9W2ntfb1P84qZVZrZsO5pdXUE3aCu43Z9tNj1kmK7SVgWHHe1M5Rj10Nfx+tBSR+MetOfJ+lA2qX8XiVyBn8iVnjD3/b8PEnq6ln5FTNrl5SSdKO79+yIkQ++bmYN6rrE9JKkj0rSiY5lHvmOur4F8GhXbuhxd79RgRw7d+/I89+r3pwv6QOS1lv0lVRJn5d0XW/v0zxUK+n+6P1YIunf3P1XZvYXSfea2UckvayuDr15J/qn5SIdf3x6/RuTL8zsbklLJY0xsx2SviTpa+r9eD2srp70WyQdlvThk64/urIIAAACkk+X6AEAwCki4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQP8f0YQ5vKjBmIMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAk7klEQVR4nO3deZAc5Znn8d/Tp9StlloNjSQkdCAJCcQhoC17bcTNcAxGYAxG2Oa0Ze+a3fV6JxzYRIwJb3jC4zEzY7CNLWbw4FmDMAbMYbC5lsMHhhY6EIduCXQg9SG6dfb57B+dEqVWd6uPysqqt76fiAplvplZ+WRklX79ZmZlmrsLAACEpSDpAgAAQPoR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIDSEvBmdq+ZbTezFSltVWb2rJmtjv4dHbWbmd1pZmvMbLmZnZaOGgAAwEfS1YP/D0kXdWu7VdLz7j5d0vPRuCRdLGl69Fog6e401QAAACJpCXh3f1lSY7fmeZLui4bvk3R5SvsvvcurkirNbFw66gAAAF3iPAc/xt23RsMfSBoTDY+X9H7KfJuiNgAAkCZFmViJu7uZDeieuGa2QF2H8FVeXn76zJkzY6kNAIBstHjx4np3rx7s8nEG/DYzG+fuW6ND8Nuj9s2SjkmZb0LUdhB3XyhpoSTV1NR4bW1tjKUCAJBdzGzjUJaP8xD945Kuj4avl/RYSvt10dX0n5DUlHIoHwAApEFaevBm9oCksyUdaWabJH1H0vcl/drMbpa0UdLV0exPSbpE0hpJeyTdmI4aAADAR9IS8O4+v5dJ5/Uwr0v6WjrWCwAAesad7AAACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiA74eOjs6kSwAAYEAI+MPYsLxenR0Duo0+AACJI+D7sKe5VUdNHqniksKkSwEAYEAy8jS5XDWsvEgFhfwNBADIPaRXHwh3AECuIsEAAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJUFOebm9kMSQ+mNB0r6e8lVUr6sqS6qP3b7v5UnLUAAJBPYg14d18pabYkmVmhpM2SHpV0o6R/cfcfxrl+AADyVSYP0Z8naa27b8zgOgEAyEuZDPhrJD2QMn6LmS03s3vNbHT3mc1sgZnVmlltXV1d98kAAKAPGQl4MyuRdJmkh6KmuyVNVdfh+62S7ui+jLsvdPcad6+prq7ORJkAAAQjUz34iyW94e7bJMndt7l7h7t3SrpH0pwM1QEAQF7IVMDPV8rheTMblzLtCkkrMlQHAAB5Idar6CXJzMolXSDpKynNPzCz2ZJc0oZu0wAAwBDFHvDuvlvSEd3avhj3egEAyGfcyQ4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeQNbr7GxPugQg5xDwALKeWYHWrb9L9Q0vJl0KkDMIeABZz6xAE4+5QatX/4Ner/2sGhpeSrokIOsR8AByQlFRhU45+efas2etli67SbW1n1VDw8tJlwVkLQIeQM4oK5uiE2fdKbNCNTUv0dJlN0ZB/0rSpQFZh4AHkFOOOGKupk299cB4V9DfoNrFV6mh8Y8JVgZkFwIeQM6ZOPEmjRv32YPampre0NKl16t28dUEPSACHkCOmjnj/2jUqNMOaW9qWhwF/efU2PinBCoDsgMBDyAnFRSU6KST7lZp6TiZFauoqFLDhk3QiPIZGjXqdBUVlWvzlkXauvURuXcmXS4C4u5Jl9AvRUkXAACDVVpypD71yZdlRl8FmdPQ0KAjjjhCZpZ0KX3iWwEgpxHuyLSysjItW7Ys6TIOi28GAAADUFZWpqamJq1fvz7pUvpEwAMAMEBz5szRk08+qQ8//DDpUnpFwAMAMEDDhw/X7NmztWjRIrW2tiZdTo8IeAAABmHOnDlqbm7WE088kZVX1hPwAAAMQmlpqebOnas333xTf/nLX5Iu5xAEPILSuadN3pl9f0kDCFNNTY0qKir07LPPau3atUmXcxACHkGx4UXa+fImdezKznNiAMJSXFysuXPnyt310EMPqbGxMemSDiDgERQzU3nNGNXf97Za3mtOuhwAeeC0007TqFGjtG/fPi1atEgtLS1JlySJgEeACkeUaNRFk1V/z5va9eqWpMsBELiioiKdddZZkqTt27frsccey4qL7gh4BGnY1EpVnDVBH/52rRp/vVLe1pF0SQACdsopp6iqqkqS9Pbbb+uVV15JuCICHgGrOHeiSqeO0p43tmv7T5epvXFf0iUBCFRhYaHOPvvsA+MvvPCCVq1alVxBIuARMCswVV0zUwUjitW2dbe23bVEe1dmzwUwAMJy4oknqrq6+sD4ww8/rPr6+sTqIeARtMKKElV9boZkku9tV8N/vKXm5zZmxfkxAGEpKCjQOeecc2C8paVFixYt0r59yRw9JOARvGHTR6vi7GO6Rlxqfu49Ndz3tjr3tidbGIDgHH/88Ro7duyB8fr6+sRugkPAIy+MvGCSSiaPPDC+791GbfvxErVu2ZVgVQBCY2Y699xzD2pL6jA9AY+8YAWmqvkzVVBWdKCto2Gf6u5ept1LtidYGYDQTJ8+XRMmTDgwntTNbwh45I2iUaUafXXX+fj9vK1TOx5cqR2PrZF3dCZXHIBgdO/FNzY2JnLdDwGPvDJ8ZpVGzB1/SPvuv2xV3c+Xq6M5O+5ABSC3TZkyRZMnT5bUdbHdnj17Ml4DAT8QXHkdhFEXTlbJxIpD2lvf26ltdy5Ry7qmBKoCEBIzO+iK+iQO0xPwA+Ecwg2BFRaoav5M2bCiQ6Z17mpT3b+9qZ2vbEqgMgAhmTRpkqZNmyaJgM9+BHwwikYPU9VV03ue2Olq+t16Ndz/jjpbucUtgMHb34sn4LMdAR+U4bOO1IhPHt3r9L3L67X9x0vVVpf5c2cAwjB+/HjNnDmTgM96nIMPzqhLpqh4/Ihep7dv36PtP16qvSuSu90kgNx2zjnnaMeOHRlfLwHfX+0tUsGh52yR26yoQEdcO1NWWtjrPN7SoYZfvaOmp9fLO/kjD8DAjBkzRuPGjcv4egn4/upokwoJ+BAVHTFco6/s5Xz8fi7tfGmT6u9doY7dbZkpDEAw5syZo5aWzP4Ml4Dvr6JhSVeAGJWdXK3yj4897Hwtaz7U9juXqPX9nRmoCkAoqqurVVJSktF1xh7wZrbBzN40s6VmVhu1VZnZs2a2Ovp3dNx1DBm99+BVXjpVxWPLDztfR1OLtv98mXa9tjUDVQEIhZkdfqY0ylQP/hx3n+3uNdH4rZKed/fpkp6PxoFEWXGBqj4/U1bS+/n4A9pdHz6yRo2/WSVv49cVALJPUofo50m6Lxq+T9LlCdUBHKS4ukyVV0zr9/x7ardp+8+WqX1HMs97BoDeZCLgXdIzZrbYzBZEbWPcff/xzQ8kjclAHUC/lJ96lMpO7/9Hsm3zLm2/a4n2rcr8z2AAoDeZCPgz3P00SRdL+pqZnZk60bsesXPIb4/MbIGZ1ZpZbV1dXQbKBD5SOW+qio4q6/f8nXvaVf+LFWp+4b1EnhoFAN3FHvDuvjn6d7ukRyXNkbTNzMZJUvTvIQ/kdveF7l7j7jXV1dVxlwkcpKCkUEd8fqaseABfEZean9mohl++rc597fEVBwD9EGvAm1m5mVXsH5b0N5JWSHpc0vXRbNdLeizOOoDBKB5TrsrLpg54uX3vNHbd4vaD3TFUBQD9E3cPfoykP5rZMkmvSfqdu/9e0vclXWBmqyWdH40DWaf8Y2NVNnvgR5Da6/dq+0+Xas+yQw5OAUBGxPrjbndfJ+mUHtobJJ0X57qBdKm8YrpaN+1Se/3eAS3nrZ1qfGClWt/bqVGXHCsrzOxvYAHkN+5kBxxGQWmhqq6dKRUN7uuy609bVHfPcnXsbE1zZQDQOwIe6IeSo0eo8tIpg16+dUOztt25RC0bmtJYFQD0joAH+mnEJ47W8JOOHPTynTtbVXfPm9r5p81prAoAekbAAwMw+srpKqwawoOHOlx7V9TzRDoAsSPggQEoGFakI66dKQ3igjkrLVTlFdNUveBkFZYXx1AdAHyER6QBA1QyoUKjLp6ipifX9XuZYcdXafTl01Q4qjTGygDgIwQ8MAgVZ4xXy7om7Xu7oc/5CkYUq/KyqSo7mbsxAsgsDtEDg1T12ekqrOy9R152+hiN/cbphDuARBDwwCAVlBWrav5MqeDg8/GFVcN05JdOVNVVx6mgjHPtAJLBIXpgCEonjdSoCyep6ekNUoE04lPjNfKCSSooKUy6NAB5joAHhmjEmRPU0dyqslOPUsmEiqTLAQBJBDwwZGamyk8P/KlzABAnzsEDABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAI+N27mtLugQACB4Bj4x7qHaTOjs96TIAIGgEPDJuy4d79fSKD5IuAwCCRsAj40YOL9aPnl9FLx4AYkTAI+MqhhVp1bZdemrF1qRLAYBgEfDIuJHDiiVJP3putTroxQNALAh4ZFzFsK6nFK/evku/e5NePADEgYBHxo0cXnxg+M7n6cUDQBwIeGTc/kP0krRm+y49uXxLgtUAQJgIeGTc/kP0+9GLB4D0I+CRcamH6CVpbd1uevEAkGYEPDJuRGnRIW0/ohcPAGlFwCPjCgtMFd1Cfl3dbj2xjF48AKQLAY9EdD8PL3EuHgDSiYBHIrqfh5ekdfW79fiyzQlUAwDhIeCRiJ568JJ01/Nr1N7RmeFqACA8BDwSkfpb+FRdvXjOxQPAUBHwSERvPXip61w8vXgAGBoCHono6Rz8fhsa9uixpfTiAWAoCHgkoq8evCTd9QK9eAAYCgIeiejtHPx+Gxr26Lf04gFg0Ah4JKKvQ/T70YsHgMEj4JGIwx2il6SNDXv06BJ+Fw8Ag0HAIxGVw0v6Nd9dL6xRG714ABgwAh6JOGP6kXrlm+foH644SZecNFajejlk/14jvXgAGAxzj+fe32Z2jKRfShojySUtdPcfmdntkr4sqS6a9dvu/lRf71VTU+O1tbWx1Ins0NHpemtLk15ZXa8/rq7X4o071Br13I+pGq4X/vfZKi7k71EA+cPMFrt7zaCXjzHgx0ka5+5vmFmFpMWSLpd0taRd7v7D/r4XAZ9/9rS267X1jfrTmnq9srpeN50xRVfXHJN0WQCQdp2dHVr8u8c0/WP/RZVjxx1oH2rAH/5Kp0Fy962StkbDO83sHUnj41ofwlJWUqSzZxyls2ccJUna19aRcEUAEI/muq4D2iVlZWl934wc8zSzyZJOlfTXqOkWM1tuZvea2ehM1IDcNqy4MOkSACAWlWPG6mOf/ozKRo5K6/vGHvBmNkLSw5K+7u7Nku6WNFXSbHX18O/oZbkFZlZrZrV1dXU9zQIAAHoRa8CbWbG6wv1X7v6IJLn7NnfvcPdOSfdImtPTsu6+0N1r3L2muro6zjIBAAhObAFvZibp3yW94+7/nNI+LmW2KyStiKsGAADyVWwX2Un6lKQvSnrTzJZGbd+WNN/MZqvrp3MbJH0lxhoAAMhLcV5F/0dJ1sOkPn/zDgAAho47hwAAECACHgCAABHwCNYeHlIDII8R8AjWoq0NeqlxZ9JlAEAiCHgE68yqCn1++Vr9cnN90qUAQMYR8AjWtLJhmlo2TN9ctUnfWb1ZnTE9WAkAshEBj6BdWt11b+efb6rTjSvWa3cHD60BkB8IeATt0urKA8N/qG/W5W+s0daW1uQKAoAMIeARtONHDNe0stID42/u2quLa1dr+c49CVYFAPEj4BG8v03pxUvSB61tunzJGv2+rimZggAgAwh4BG//efhUezo6ddOK9frpe9sTqAgA4kfAI3gnVZRp0rCSQ9o7JX137Rb93bvvq72TK+wBhIWAR17ofpg+1f/d2qBrl69VU1t75goCgJgR8MgLlx516GH6VC/v2KVL31itjXtbMlQRAMSLgEdeOG1kucaXFvc5z+o9LbpiyRq9R8gDCEBsz4MHss2l1ZX6+aa6A+OFJs0oG6bZI8s0u6JMs0eW6fjy4SousASrBID0IOCRN64YM1r1be2aXVGmUyqG68SKMpUVchALQJgIeOSN2SPL9JMTJiVdBgBkBN0XAAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABCixgDezi8xspZmtMbNbk6oDAIAQJRLwZlYo6SeSLpZ0gqT5ZnZCErUAABCipHrwcyStcfd17t4qaZGkeQnVAgBAcJIK+PGS3k8Z3xS1HWBmC8ys1sxq6+rqMlocAAC5LmsvsnP3he5e4+411dXVSZcDAEBOSSrgN0s6JmV8QtQGAADSIKmAf13SdDObYmYlkq6R9HhCtQAAEJyiJFbq7u1mdoukP0gqlHSvu7+VRC0AAIQokYCXJHd/StJTSa0fAICQZe1FdgAAYPAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABCiWgDezfzKzd81suZk9amaVUftkM9trZkuj18/iWD8AAPkurh78s5JOdPeTJa2S9K2UaWvdfXb0+mpM6wcAIK/FEvDu/oy7t0ejr0qaEMd6AABAzzJxDv4mSU+njE8xsyVm9pKZzc3A+gEAyDtFg13QzJ6TNLaHSbe5+2PRPLdJapf0q2jaVkkT3b3BzE6X9Fszm+XuzT28/wJJCyRp4sSJgy0TAIC8NOiAd/fz+5puZjdIulTSee7u0TItklqi4cVmtlbScZJqe3j/hZIWSlJNTY0Ptk4AAPJRXFfRXyTpm5Iuc/c9Ke3VZlYYDR8rabqkdXHUAABAPht0D/4wfiypVNKzZiZJr0ZXzJ8p6btm1iapU9JX3b0xphoAAMhbsQS8u0/rpf1hSQ/HsU4AAPAR7mQHAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAAQotoA3s9vNbLOZLY1el6RM+5aZrTGzlWZ2YVw1AACQr4pifv9/cfcfpjaY2QmSrpE0S9LRkp4zs+PcvSPmWgAAyBtJHKKfJ2mRu7e4+3pJayTNSaAOAACCFXfA32Jmy83sXjMbHbWNl/R+yjybojYAAJAmQwp4M3vOzFb08Jon6W5JUyXNlrRV0h0DfO8FZlZrZrV1dXVDKRMAgLwzpHPw7n5+f+Yzs3skPRmNbpZ0TMrkCVFb9/deKGmhJNXU1PhQ6gQAIN/EeRX9uJTRKyStiIYfl3SNmZWa2RRJ0yW9FlcdAADkozivov+Bmc2W5JI2SPqKJLn7W2b2a0lvS2qX9DWuoAcAIL1iC3h3/2If074n6XtxrRsAgHzHnewAAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh7IQu07diRdAoAcR8ADWebDhx/R3jfeSLoMADmOgAeyyO7XXtPW229X8dFHJ10KgBxHwANZonXjRm3+7/9Damsj4AEMGQEPZIGO5ma9/1//mzqamlRQXq6CkSOTLglAjiPggYR5W5s2f/1/qXXdOklS8dHjZGYJVwUg1xHwQMK2/+u/avef/3xgvIjD8wDSgIAHktbpB41y/h1AOhDwyEmd3qm2zraky0iLEXPPOGicgAeQDgQ8ckpLR4t+s+o3mvfbeXr9g9eTLicthtfUyIYPPzBOwANIh6KkCwD6o6mlSQ+ufFD3v3O/GvY1SJJWNq7UJ4/+ZMKVDV1BSYnKP/5x7XrxRUlS8TgCHsDQEfDIapt3bdZ/vv2femT1I9rbvvegaSt3rEyoqvQrn3vGRwE/noAHMHQEPLLSOw3v6Bdv/ULPbHhGHd7R4zwrG8MJ+BFz52qbJBUXq6i6OulyAASAgEfWcHf9ecuf9Yu3fqG/bv3rYedf37ReLR0tKi0szUB18SqZOFHFkyZKnS4r4NIYAENHwCNr3PbH2/TEuif6PX+Hd2jNh2s064hZMVaVOSPmnqmW1auTLgNAIOgqIGucO/HcAS+zqnFVDJUkY8TcM1Q8blzSZQAIBAGPrHHuxHN17KhjB7TMu43vxlRN5pV97GMqmTIl6TIABIKAR9YosAJ96aQvDWiZkK6kLygr06hL/zbpMgAEgoBHVrl4ysUaP2J8v+df1bhK7n74GXNE8fj+bzsA9IWAR1YpKijSTSfe1O/5d7bt1JbdW2KsCAByEwGPrDNv2jxVD+//b8FDOg8PAOlCwCPrlBaW6vpZ1/d7/pCupAeAdCHgkZWuOu4qVZZW9mvekC60A4B0IeCRlcqKy/T54z/fr3k5RA8AhyLgkbXmz5yv8uLyw863eddm7WzdmYGKACB3EPDIWqNKR+maGdf0a95VOzgPDwCpYgl4M3vQzJZGrw1mtjRqn2xme1Om/SyO9SMcXzjhC/16mExIT5YDgHSI5WEz7v65/cNmdoekppTJa919dhzrRXiOHH6krpx+pe5/9/4+5+NCOwA4WKyH6M3MJF0t6YE414Ow3XjijSqyvv8WpQcPAAeL+xz8XEnb3D31GZhTzGyJmb1kZnN7W9DMFphZrZnV1tXVxVwmstnY8rH69NRP9znP6h2r1d7ZnqGKACD7DTrgzew5M1vRw2teymzzdXDvfaukie5+qqRvSLrfzEb29P7uvtDda9y9prq6/3c1Q5huPulmFVjvH9fWzlZtbN6YwYoAILsN+hy8u5/f13QzK5L0GUmnpyzTIqklGl5sZmslHSepdrB1ID9MGjlJF066UE9veLrXed5tfFdTK6dmsCoAyF5xHqI/X9K77r5pf4OZVZtZYTR8rKTpktbFWAMCcvNJN/c5nQvtAOAjcQb8NTr04rozJS2Pfjb3G0lfdffGGGtAQGZUzdDZE87udToX2gHAR2L5mZwkufsNPbQ9LOnhuNaJ8H3p5C/pxU0v9jiNgAeAj3AnO+SUU6pP0cfHfrzHaQ37GlS/tz7DFQFAdiLgkXO+fPKXe51GLx4AuhDwyDlzxs7RydUn9ziNC+0AoAsBj5xjZvryST334nl0LAB0IeCRk86acJaOG33cIe2rGnmqHABIBDxyVG+9+PXN67WvfV8CFQFAdiHgkbMumHSBJo2cdFBbp3dq7YdrE6oIALIHAY+cVVhQqJtPPPTudpyHBwACHjnu0mMv1djysQe1cSU9ABDwyHHFhcW6YdYNB7XxW3gAIOARgCunX6mqYVUHxlfuWKlO70ywIgBIHgGPnDesaJiuO+G6A+O723Zr867NCVYEAMkj4BGEz834nCpKKg6M83t4APmOgEcQRpSM0LUzrz0w/u4OrqQHkN8IeATjC8d/QcOLhkviQjsAIOARjMphlbrquKskEfAAQMAjKNfPul7FBcXasnuLmlubky4HABJDwCMoR5UdpcunXS6JC+0A5DcCHsG56cSbVGiF3NEOQF4j4BGcCRUTdMmUSzgPDyCvEfAI0s0n3axVOzhEDyB/EfAI0tTKqZo0cpLaOtuSLgUAEkHAI1jXzbpOG5s2Jl0GACSiKOkCgLjMOmKWGvc1Jl0GACSCHjyClvqUOQDIJwQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACNKSAN7OrzOwtM+s0s5pu075lZmvMbKWZXZjSflHUtsbMbh3K+gEAQM+G2oNfIekzkl5ObTSzEyRdI2mWpIsk/dTMCs2sUNJPJF0s6QRJ86N5AQBAGhUNZWF3f0eSzKz7pHmSFrl7i6T1ZrZG0pxo2hp3Xxcttyia9+2h1AEAAA4W1zn48ZLeTxnfFLX11g4AANLosD14M3tO0tgeJt3m7o+lv6QD610gaUE02mJmK+JaVxY4UlJ90kXEiO3LbSFvX8jbJrF9uW7GUBY+bMC7+/mDeN/Nko5JGZ8QtamP9u7rXShpoSSZWa271/Q0XwjYvtzG9uWukLdNYvtynZnVDmX5uA7RPy7pGjMrNbMpkqZLek3S65Kmm9kUMytR14V4j8dUAwAAeWtIF9mZ2RWS7pJULel3ZrbU3S9097fM7NfquniuXdLX3L0jWuYWSX+QVCjpXnd/a0hbAAAADjHUq+gflfRoL9O+J+l7PbQ/JempAa5q4cCryylsX25j+3JXyNsmsX25bkjbZ+6erkIAAECW4Fa1AAAEKOsCPp9uf2tmD5rZ0ui1wcyWRu2TzWxvyrSfJVzqoJjZ7Wa2OWU7LkmZ1uO+zBVm9k9m9q6ZLTezR82sMmoPYt9Jufu96o2ZHWNm/8/M3o7+j/mfUXuvn9NcE/0/8ma0HbVRW5WZPWtmq6N/Rydd50CZ2YyU/bPUzJrN7Ou5vu/M7F4z2576M/De9pd1uTP6Pi43s9MOuwJ3z6qXpOPV9du/FyXVpLSfIGmZpFJJUyStVdeFeoXR8LGSSqJ5Tkh6Owax3XdI+vtoeLKkFUnXlIZtul3S3/XQ3uO+TLreAW7b30gqiob/UdI/BrbvgvheddumcZJOi4YrJK2KPos9fk5z8SVpg6Qju7X9QNKt0fCt+z+rufqKPpsfSJqU6/tO0pmSTkv9P6O3/SXpEklPSzJJn5D018O9f9b14N39HXdf2cOkA7e/dff1kvbf/naOotvfunurpP23v80Z1nWv36slPZB0LRnS277MGe7+jLu3R6OvquueDiHJ+e9Vd+6+1d3fiIZ3SnpH+XEnzXmS7ouG75N0eXKlpMV5kta6+8akCxkqd39ZUmO35t721zxJv/Qur0qqNLNxfb1/1gV8H0K+/e1cSdvcfXVK2xQzW2JmL5nZ3KQKS4NbosNJ96YcGgxhn6W6SV1/We8Xwr4LbR8dxMwmSzpV0l+jpp4+p7nIJT1jZout626gkjTG3bdGwx9IGpNMaWlzjQ7uDIWy7/brbX8N+DuZSMCb2XNmtqKHV073EHrSz22dr4M/sFslTXT3UyV9Q9L9ZjYyk3X312G2725JUyXNVtc23ZFkrQPVn31nZrep614Pv4qacmbf5SszGyHpYUlfd/dm5fjntJsz3P00dT2x82tmdmbqRO861puzP52yrhukXSbpoagppH13iKHuryH9Dn6wPKHb3ybhcNtqZkXqeuTu6SnLtEhqiYYXm9laScdJGtJtC+PQ331pZvdIejIa7WtfZo1+7LsbJF0q6bzoi5hT++4wcmIfDZSZFasr3H/l7o9IkrtvS5me+jnNOe6+Ofp3u5k9qq5TLdvMbJy7b40O6W5PtMihuVjSG/v3WUj7LkVv+2vA38lcOkQf6u1vz5f0rrtv2t9gZtVmVhgNH6uubV2XUH2D1u380BWS9l8p2tu+zBlmdpGkb0q6zN33pLQHse+U+9+rQ0TXuvy7pHfc/Z9T2nv7nOYUMys3s4r9w+q6EHSFuvbb9dFs10uK7SFhGXDQ0c5Q9l03ve2vxyVdF11N/wlJTSmH8nuUSA++L5Z/t7/tfj5J6rqy8rtm1iapU9JX3b37hRi54AdmNltdh5g2SPqKJPW1L3PIj9X1K4Bnu3JDr7r7VxXIvnP39hz/XvXkU5K+KOlNi36SKunbkub39DnNQWMkPRp9Hosk3e/uvzez1yX92sxulrRRXRf05pzoj5YLdPD+6fH/mFxhZg9IOlvSkWa2SdJ3JH1fPe+vp9R1Jf0aSXsk3XjY94+OLAIAgIDk0iF6AADQTwQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAATo/wMT8PGHiltghgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAnM0lEQVR4nO3de5QdZZnv8d/T93TS6STkStJNEnIzMBqSHmDGAbkECegR0dEDjoo3Ih5YgoMC6lkzLs9CBUWU0cETDhxxVFBhopwxBBKuinJJCIRc6dzToZN07pdO35/zx66EndCddKe7du397u9nrb269ltVu55atbt/Xe+uXa+5uwAAQFgKki4AAAD0PQIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIUJ8EvJk9YGbbzWxZWtsQM1tgZrXRz8FRu5nZPWa2xsyWmtn0vqgBAAC8ra/O4H8uadYxbbdJesrdJ0p6KnouSZdJmhg9Zku6t49qAAAAkT4JeHd/XtKuY5qvkPRgNP2gpA+ntf/CU16UNMjMRvVFHQAAICXOz+BHuHt9NL1V0ohoerSkzWnL1UVtAACgjxRlYiPu7mbWo3vimtlspbrw1b9//xlTpkyJpTYAALLR4sWLd7j7sJNdP86A32Zmo9y9PuqC3x61b5FUlbbcmKjtKO4+R9IcSaqpqfFFixbFWCoAANnFzDb2Zv04u+gfk3RNNH2NpD+ktX86upr+XEl707ryAQBAH+iTM3gze0jSBZKGmlmdpH+V9D1JvzWzz0vaKOnj0eLzJF0uaY2kRkmf7YsaAADA2/ok4N396i5mXdzJsi7p+r7YLgAA6Bx3sgMAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLggTzn7kmXACAGBDyQx1raOpIuAUBMCHggT3V0uNo7XGaWdCkAYkDAA3lqf3Ob+pUUJl0GgJgQ8EAeam5rFyfuQNgIeCAP7T7YqoFlxUmXASBGBDyQZ/Y1tapfMV3zQOgIeCDP7DzQospyzt6B0BHwQB7Ztq9JQ/qXJF0GgAwg4IE8svNAiyr7cfYO5AMCHsgTa7bvV/Up5UmXASBDCHggD3R0uPY1tWlAaVHSpQDIEAIeyANLNu/RGacOTLoMABlEwAOBa2ptV3uHq7SIr8YB+YSABwL30vpdmnHa4KTLAJBhBDwQsN0HW1ReUqjCAu5LC+QbAh4I2IvrdqqGs3cgLxHwQKA27DioUYP6MRwskKcIeCBQizfu1rSqQUmXASAhBDwQoCWbduvM0ZVJlwEgQbEGvJlNNrPX0h77zOwmM/uWmW1Ja788zjqAfOLuWv7WPk0eWZF0KQASFOttrdx9taRpkmRmhZK2SJor6bOS7nb3H8S5fSAfPbVyu943aVjSZQBIWCa76C+WtNbdN2Zwm0BeaWnrUN3uRlUN4Z7zQL7LZMBfJemhtOc3mNlSM3vAzN7xPR4zm21mi8xsUUNDQ+aqBHLY75ds0Qffc2rSZQDIAhkJeDMrkfQhSb+Lmu6VdLpS3ff1ku46dh13n+PuNe5eM2wY3Y3Aiew91KrGljYNHVCadCkAskCmzuAvk/Squ2+TJHff5u7t7t4h6T5JZ2eoDiBYD7+8SR+dMSbpMgBkiUwF/NVK6543s1Fp866UtCxDdQBB2ryrUf1Li1RRVpx0KQCyROyDQ5tZf0mXSPpiWvOdZjZNkkvacMw8AD300MubdOPMiUmXASCLxB7w7n5Q0inHtH0q7u0C+WJp3R6dPmwAw8ECOAp3sgNymLvrkcV1+vBZo5MuBUCWIeCBHLZw5XadN3EYw8ECeAcCHshRre0dWrBiq2a+a3jSpQDIQgQ8kKMefmWzPjp9DMPBAugUAQ/koP1NrVq6eY/OGX/KiRcGkJcIeCAH3ff8On32veOSLgNAFiPggRxTv/eQGg40a+qpA5MuBUAWI+CBHHPPU2v0pfdNSLoMAFmOgAdyyIq39qm0qEDVpzAcLIDjI+CBHOHu+tHCN3X9hZy9AzgxAh7IEc+92aDJIys0rILhYAGcGAEP5ID2DtfPnlura88fn3QpAHIEAQ/kgEcWb9bMd43QQIaDBdBNBDyQ5Rpb2vTQy5v1yXNPS7oUADmEgAey3H3Pr9cnzqlWWTHDwQLoPgIeyGLb9zfp6VXb9BGGgwXQQwQ8kMXuXlCrL10wQUWF/KoC6Bn+agBZqnbbftVu269LzxiRdCkAchABD2Sp7z6+Sje/fzLDwQI4KQQ8kIX+smaH2jpcf3c6w8ECODkEPJBlOjpc3318lW65dHLSpQDIYQQ8kGX+8PoWjR3aX2eOrky6FAA5jIAHskhTa7vuXlCrmy+ZlHQpAHIcAQ9kkQdeWK/zJw3V2KH9ky4FQI4j4IEssfNAs37+wgZ9+aKJSZcCIAAEPJAl7nmqVh+rGaPhA8uSLgVAAAh4IAusazigP75Rr9nnn550KQACQcADWeCO+at07XnjVdmP4WAB9A0CHkjYKxt2aWndXl3z92OTLgVAQAh4IEHurtv/uFI3XjyR4WAB9CkCHkjQH9+o176mVv3jjDFJl4Ic0dHcrqa1e3RwyXZ5uyddDrJYUdIFAPmqua1dd8xfpW9c9i6Gg0WXOpra1NHYpo6DrepobJW3u4qGlKmkqkJWyEBE6BoBDyTkP/66UUPKSzTrzJFJl4IsVlBWpIKyImkIX59Ez3DaACRgb2Or/u3pNbp11hSGgwUQCwIeSMBPnqnVu8dU6u8nDE26FACBIuCBDNu0s1EP/nWjbrl0StKlAAgYAQ9k2J1PrNIlU0fob8YwHCyA+BDwQAYt2bRb85dtZThYALEj4IEMcXd9Z95KfaymSuOHDUi6HACBI+CBDHlyxTYtrdurm2YyHCyA+BHwQAa0tnfoe4+v0mffO04jGA4WQAYQ8EAGPPTyJu080KwvvY/hYAFkBgEPxGxfU6t+tLBWX7pggirLGQ4WQGYQ8EDMfvbsWhUXmj7DcLAAMoiAB2L01p5Duv/P63XjxZPUr4ThYAFkTuyDzZjZBkn7JbVLanP3GjMbIuk3ksZK2iDp4+6+O+5agEz7wZOrdeqgfvpYDcPBAsisTJ3BX+ju09y9Jnp+m6Sn3H2ipKei50BQlm3Zq7lLtujm909SMcPBAsiwpP7qXCHpwWj6QUkfTqgOIBaHb2pz5qmVuvzMUUmXAyAPZSLgXdKTZrbYzGZHbSPcvT6a3ippRAbqADLm2dUN+svanbpl1mQVFDAcLIDMi/0zeEn/4O5bzGy4pAVmtip9pru7mfmxK0X/DMyWpOrq6gyUCfSNtvYOfWfeSr13wik6b+KwpMsBkKdiP4N39y3Rz+2S5ko6W9I2MxslSdHP7Z2sN8fda9y9Ztgw/kgid/xucZ1qtx9gOFgAiYo14M2sv5lVHJ6W9H5JyyQ9JumaaLFrJP0hzjqATDnY3Ka7nnxTl505Uu+pGpR0OQDyWNxd9CMkzTWzw9v6tbvPN7NXJP3WzD4vaaOkj8dcB5ARc55fp92NLfrqpZOTLgVAnos14N19naT3dNK+U9LFcW4byLRt+5o05/l1+tiMMTqd4WABJIwv5wJ95O4Fb6rDXTcyHCyALEDAA31g9db9+u2izfrM34/VqMp+SZcDAAQ80Be++/hK9S8t0pcuYDhYANmBgAd66c+1O/Ts6gZd977TNai8JOlyAEASAQ/0SnuH6/Z5KzWsolSffe/YpMsBgCMIeKAX5i7ZopX1+/TliyeqvCQTN4YEgO4h4IGTdKilXXc9uVqnnVKuq/62KulyAOAoBDxwkh54Yb3q9zbp5vdPZjhYAFmHv0rASdhxoFn3PrtWZ5w6UB/8G4aDBZB9CHjgJPx4Ya0ONLfplllTGA4WQFYi4IEeWrP9gH798iadO36Izp84NOlyAKBTBDzQQ3fMX6X2Dtcts6YoGkgJALIOAQ/0wEvrdmrBim269IwRml49OOlyAKBLBDzQTR0dru/MW6kCk77GcLAAshwBD3TT/1v6ll6v26t/nDFGE4ZXJF0OABwXAQ90Q1Nru+6cv1olRQW6ceakpMsBgBMi4IFu+MVfN2jLnkP69LmnafQghoMFkP0IeOAEdh9s0U+eXqOK0iJdf+GEpMsBgG4h4IET+Len12hfU5tmnz9eg/szHCyA3EDAA8excedB/ceLGzR0QKk+9w/jki4HALqNgAeO4875q9Xa7vryxRPUv5ThYAHkDgIe6MLijbv1xzfqVT2kXFf9bXXS5QBAjxDwQCfcUze1kaSb3z9JJUX8qgDILfzVAjoxf9lWLd64W1NGVui/vfvUpMsBgB4j4IFjtLR16I75qyRJtzIcLIAcRcADx/jVSxu1YWejzh43RBdMHpZ0OQBwUgh4IM3eQ62656laSdKtsyYzHCyAnEXAA2n+/dk12t3YqpnvGqEZpw1JuhwAOGkEPBCp292o//vCBplJt8xiOFgAuY2AByI/eGK1Wto69JGzxmjSCIaDBZDbCHhA0ht1e/X7195SSWGBvnLJxKTLAYBeI+CR99xdt89bIUn65Lmnaczg8oQrAoDeI+CR955etV0vrtulAaVFuv7C05MuBwD6BAGPvNbW3nHklrTXnjdepwwoTbgiAOgbBDzy2sOvbNbahoM6pX+JPn8ew8ECCAcBj7x1oLlNP1r4piTphosmaADDwQIICAGPvPW/n1urHQdaNGZwP33iHIaDBRAWAh55aeveJt33p3WSpH++ZJJKiwoTrggA+hYBj7x015Or1dTaockjKnTFtNFJlwMAfY6AR95ZWb9Pj7xaJyl1S9pChoMFECACHnnnO/NWyl2qOW2wLpoyPOlyACAWBDzyynNvNuhPtTskSbdeNoXhYAEEi4BH3mjvcH03uqnNxVOG62/HMhwsgHAR8Mgbj75ap1Vb98tM+hrDwQIIHAGPvNDY0qa7nlwtSbpy2mhNGTkw4YoAIF6xBbyZVZnZM2a2wsyWm9mNUfu3zGyLmb0WPS6PqwbgsPv/tF7b9jWruND0lUsmJV0OAMQuzntztkm62d1fNbMKSYvNbEE07253/0GM2waO2L6/Sfc+t1aS9E/nnKaqIQwHCyB8sQW8u9dLqo+m95vZSkncUQQZ96OFtWpsaVd5SaFuuGhC0uUAQEZk5DN4Mxsr6SxJL0VNN5jZUjN7wMwGZ6IG5Kfabfv1m1c2S5K+cN54DWU4WAB5IvaAN7MBkh6VdJO775N0r6TTJU1T6gz/ri7Wm21mi8xsUUNDQ9xlIlDfe3yV2jtcQ/qX6FqGgwWQR2INeDMrVircf+Xu/ylJ7r7N3dvdvUPSfZLO7mxdd5/j7jXuXjNs2LA4y0Sg/rJ2h55atV2SdP2FE1RRVpxwRQCQOXFeRW+S7pe00t1/mNY+Km2xKyUti6sG5K+ODtd3opvajB7UT//EcLAA8kycV9G/V9KnJL1hZq9Fbd+QdLWZTZPkkjZI+mKMNSBPPfb6W1q2ZZ8k6SuXTFJZMcPBAsgvcV5F/2dJnd3oe15c2wQkqam1Xd9/InVTm4nDB+jKs/jyBoD8w53sEJyf/2WDtuw5JEn62qUMBwsgPxHwCMqugy366dNrJEnTqwfpkqkjEq4IAJJBwCMo9zxVq/3NbZKkW2cxHCyA/EXAIxjrdxzUL1/cKEm6cPIwnTP+lIQrAoDkEPAIxp3zV6mtwyVJX7t0SsLVAECyCHgEYdGGXXp82VZJ0hXTTtXUUxkOFkB+I+CR89xdt0c3tSkqMN18yeSEKwKA5BHwyHnz3tiqJZv2SJI+cU61qk9hOFgAIOCR05rb2nXH/FWSpH7FDAcLAIcR8Mhpv3xxkzbtapQkfeG8cRpeUZZwRQCQHQh45Kx9Ta2656laSdLg8mJde/74hCsCgOxBwCNnDSgp0tVnp0aJu/7CCRrIcLAAcESco8kBsSooMN122RS9a1SFLj1jZNLlAEBW4QweOe+KaaMZDhZAVmhu3pZ0CUcQ8AAA9IHNdf+h9vbGpMs4goAHAKCX9u17Q5s3PaDy8nFJl3IEAQ8AQC+0te3XsmVfVmXl9KRLOQoBDwBAL6xYeasONW3S4MF/l3QpRyHgAQA4SZs3/1wNDU9IEgEPAEAI9u57XbVr7pAklZVVqV+/0QlXdDQCHgCAHmpt3atly74s9xZJ0pAsO3uXCHgAAHpsxcpb1NRUd+T54MHnJlhN5wh4AAB6YNOm+7Vjx8Kj2rLt83eJgAcAoNv27l2iNWu/f1RbefnpKi0dnlBFXSPgAQDohtbWPdHn7q1HtWdj97xEwAMAcELuruUrvqqm5rfeMS8bu+clAh4AgBPatGmOdu58ppM5piGcwQMAkHv27Fmktet+2Om8AQMmq7h4cIYr6h4CHgCALrS07NKy5TfKva3T+dnaPS8R8AAAdMrdtWLFzWpu3trlMoMHZWf3vETAAwDQqY0bf6adu57vcr5ZoQYPPieDFfUMAQ8AwDF2735Z69bffdxlKgacoaKiigxV1HMEPAAAaVpadmj58pvk3n7c5bL1+++HEfAAAETcO7R8+c1qbtl2wmWz+QI7iYAHAOCIDRt+ql27/3zC5cyKNWhQTQYqOnkEPAAAknbt/qvWrb+nW8sOHPhuFRaWx1xR7xDwAIC819zcoOXLvyKpo1vLZ3v3vETAAwDynHuHlq/4ilpaGrq9zhACHgCA7LZ+/T3avfuv3V6+oKBUlZVnxVhR3yDgASAfdbRLjbuSriJxu3a9oPUbftqjdSorp6ugoDSmivoOAQ8A+aL5gLTiMen3/0P6wUTpjUeSrihRzc3btawHn7sflgufv0tSUdIFAJ1xd5lZ0mUAuW/vFunNx6XV86X1z0ntLW/P639KcnUlzL1dy5bfpNbWnT1eN9tvcHMYAY+s07ZjhwoGDpSVlCRdCpB73KX611KBvnqetHVp18uW52/Ar1v3I+3Z81KP1yss7K+BFe+JoaK+R8Aja3S0tKhp+XKVTZmiAsId6L7WJmn986lAf/MJaf9b3VuvfGi8dWWx6uovqLr6C5Is6i20d0ynnuuY5yazwqTK7hECHlmhubZWLVu2qOKCC5IuBcgNB7anwvzN+dLap6XWxp6/Rv/8Dfji4sqkS4gdAY9Eubv2zv29ik89lXAHjsddaliVOktf/bhUt0iS9+41+w3pk9KQnRILeDObJenHkgol/R93/15StSAZrdu2aef992vIJz+pkurqpMsBsk97q7Txhbc/T9+zse9eu7RSKuKjsJAlEvCW+gDjp5IukVQn6RUze8zdVyRRDzJv3/z5OvjCXzTitltV0L9/0uUA2ePQbql2YSrQ1zwlNe+NZzt5fAV9vkjqDP5sSWvcfZ0kmdnDkq6QRMAHrv3AQTX88IcqGj5co/7Xt5MuB8gOO9emPktf/bi08S/SCcYh7xN5fAV9vkgq4EdL2pz2vE7SOekLmNlsSbMlqZru22B0HDyoEd/4uqyIyz+QxzrapbpXos/T50s7Vme+hjy+gj5fZO1fWXefI2mOJNXU1PTyShJki+IRw5MuAUiOeyrUn/++9NaSZGuhiz54SQX8FklVac/HRG0AEC4zacoHUo/GXdLWN1I3oqlfmvq5403Je3bb1JNGF33wkgr4VyRNNLNxSgX7VZI+kVAtAJB55UOk8e9LPQ5raZS2r5DqX387+Lctl9qbY9g+XfShSyTg3b3NzG6Q9IRSX5N7wN2XJ1ELAGSNknJpTE3qcVh7W+rMPv1Mv35p76+uz+Ob3OSLxD6Dd/d5kuYltX0AyAmFRdKIqanHe65KtbmnvhOfHvhbl0r767v/unTRBy9rL7IDAHTBTBo8NvWY+qG32w80SFtfPzr4d63t/DXoog8eAQ8AoRgwTJowM/U4rHm/tHVZ2pn+69L2VVxFnwcIeAAIWWmFdNrfpR6HtbVIBbkxIhpOHgEPAPmGe9DnhYKkCwAAAH2PgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABCiWgDez75vZKjNbamZzzWxQ1D7WzA6Z2WvR42dxbB8AgHwX1xn8Aklnuvu7Jb0p6etp89a6+7TocV1M2wcAIK/FEvDu/qS7t0VPX5Q0Jo7tAACAzmXiM/jPSXo87fk4M1tiZs+Z2XkZ2D4AAHmn6GRXNLOFkkZ2Muub7v6HaJlvSmqT9KtoXr2kanffaWYzJP3ezM5w932dvP5sSbMlqbq6+mTLBAAgL510wLv7zOPNN7PPSPqgpIvd3aN1miU1R9OLzWytpEmSFnXy+nMkzZGkmpoaP9k6AQDIR3FdRT9L0i2SPuTujWntw8ysMJoeL2mipHVx1AAAQD476TP4E/iJpFJJC8xMkl6Mrpg/X9K3zaxVUoek69x9V0w1AACQt2IJeHef0EX7o5IejWObAADgbdzJDgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAErbG1MekSElGUdAEAAMSltaNV1z55rSTpc2d+ThdVXyQzS7iqzCDgAQDBKi4o1i8u+4WWbF+iZzY/o7lr5mrmaTP1gfEfUHFBcdLlxYqABwAErbCgUDUja1QzskaStGb3Gs1fP1/VA6s1efBklRWVJVxhPAh4AEBemTB4giYMniBJam1vTbia+HCRHQAgbxUXhttNT8ADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABii3gzexbZrbFzF6LHpenzfu6ma0xs9VmdmlcNQAAkK/i/h783e7+g/QGM5sq6SpJZ0g6VdJCM5vk7u0x1wIAQN5Ioov+CkkPu3uzu6+XtEbS2QnUAQBAsOIO+BvMbKmZPWBmg6O20ZI2py1TF7UBAIA+0quAN7OFZrask8cVku6VdLqkaZLqJd3Vw9eebWaLzGxRQ0NDb8oEACDv9OozeHef2Z3lzOw+Sf8VPd0iqSpt9pio7djXniNpjiTV1NR4b+oEACDfxHkV/ai0p1dKWhZNPybpKjMrNbNxkiZKejmuOgAAyEdxXkV/p5lNk+SSNkj6oiS5+3Iz+62kFZLaJF3PFfQAAPSt2ALe3T91nHm3S7o9rm0DAJDvuJMdAAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgIqSLiBJHe0dWvpMnQ7tb1FxaZFK+hWmfpYVqrisUCVlRW//LC1USVmhCgr5nwgAkP3yNuD37TykBfev0NZ1e3u0XlFxgYrLClVcFv0jUFqokn5FKiktVGn/Yg0aXq5BI8s1eES5KoaUyQospj0AAKBreRnwa1/drmd+uUrNjW3dXqdsQLH6V5aq/6BS9R9UkjZdqgGDSlVeWaLyihICHQCQFfIq4Nta2vXn39Vq+Z/eOtJWVFKQFtKpn4eDu39lSfSzVIXFdM0DAHJH3gS8u6tu1W6NPL1Sp08ffiTES8oKZcZZNwAgLHkT8Gamse8emnQZAABkBP3OAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh45ISGlla1dHQkXQYA5AwCHjnhlOIizd22J+kyACBnEPDICQVm2trcqlUHDyVdCgDkBAIeOePDIwbpq6s2q9096VIAIOsR8MgZp/UrVWlBgR6o25F0KQCQ9Qh45JSrRg3Rd9bVa9Oh5qRLAYCsRsAjp3xg2CAVmnTL6jo5XfUA0CUCHjmlvLBAHx4+WM/u3q/fbduddDkAkLUIeOScq0YNkST9S+0WNbS0JlwNAGQnAh45Z8bAck0oL9WetnZ9s3ZL0uUAQFbKm/HgEQ4z04+nVKu+uVWDigvV1uEqKrCkywKArELAIyfNqOyfdAkAkNXoogcAIEAEPAAAASLgAQAIEAEPAECAYrnIzsx+I2ly9HSQpD3uPs3MxkpaKWl1NO9Fd78ujhoAAMhnsQS8u//3w9NmdpekvWmz17r7tDi2CwAAUmL9mpyZmaSPS7oozu0AAICjxf09+PMkbXP32rS2cWa2RNI+Sf/T3f/U2YpmNlvSbEmqrq6Ouczc1t7erl27dmn//v0qKytTeXm5+vXrp9LS0qRLAwAk5KQD3swWShrZyaxvuvsfoumrJT2UNq9eUrW77zSzGZJ+b2ZnuPu+Y1/E3edImiNJNTU1DBsmqampSQ0NDdqxY4d27NihtrY29evXTxUVFRo9erTGjh2rggKumwQA9CLg3X3m8eabWZGkj0iakbZOs6TmaHqxma2VNEnSopOtIzTurr179x4J8cOPnTt3asCAAaqqqlJ1dbXOOeccDRw4MOlyAQBZKs4u+pmSVrl73eEGMxsmaZe7t5vZeEkTJa2LsYas5u5avnz5O4K8tbVVJSUlqqqqUlVVlaZOnarRo0fT5Q4A6LY4A/4qHd09L0nnS/q2mbVK6pB0nbvvirGGrLZz50498sgjkqTKykpVVVVp+vTpqqqq0ogRI+huBwCctNgC3t0/00nbo5IejWubueijH/2oqqurVVlZmXQpAICAMJpcgoYOHaqhQ4cmXQYAIED0AQMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwOcQd5e7J10GACAHFCVdALrPzJIuAQCQIziDBwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAHqVcCb2cfMbLmZdZhZzTHzvm5ma8xstZldmtY+K2pbY2a39Wb7AACgc709g18m6SOSnk9vNLOpkq6SdIakWZL+3cwKzaxQ0k8lXSZpqqSro2UBAEAfKurNyu6+UpLM7NhZV0h62N2bJa03szWSzo7mrXH3ddF6D0fLruhNHQAA4GhxfQY/WtLmtOd1UVtX7QAAoA+d8AzezBZKGtnJrG+6+x/6vqQj250taXb0tNnMlsW1rSwwVNKOpIuIEfuX20Lev5D3TWL/ct3k3qx8woB395kn8bpbJFWlPR8Ttek47cdud46kOZJkZovcvaaz5ULA/uU29i93hbxvEvuX68xsUW/Wj6uL/jFJV5lZqZmNkzRR0suSXpE00czGmVmJUhfiPRZTDQAA5K1eXWRnZldK+jdJwyT90cxec/dL3X25mf1WqYvn2iRd7+7t0To3SHpCUqGkB9x9ea/2AAAAvENvr6KfK2luF/Nul3R7J+3zJM3r4abm9Ly6nML+5Tb2L3eFvG8S+5frerV/5u59VQgAAMgS3KoWAIAAZV3A59Ptb83sN2b2WvTYYGavRe1jzexQ2ryfJVzqSTGzb5nZlrT9uDxtXqfHMleY2ffNbJWZLTWzuWY2KGoP4thJuft71RUzqzKzZ8xsRfQ35saovcv3aa6J/o68Ee3HoqhtiJktMLPa6OfgpOvsKTObnHZ8XjOzfWZ2U64fOzN7wMy2p38NvKvjZSn3RL+PS81s+gk34O5Z9ZD0LqW++/espJq09qmSXpdUKmmcpLVKXahXGE2Pl1QSLTM16f04if2+S9K/RNNjJS1LuqY+2KdvSfpqJ+2dHsuk6+3hvr1fUlE0fYekOwI7dkH8Xh2zT6MkTY+mKyS9Gb0XO32f5uJD0gZJQ49pu1PSbdH0bYffq7n6iN6bWyWdluvHTtL5kqan/83o6nhJulzS45JM0rmSXjrR62fdGby7r3T31Z3MOnL7W3dfL+nw7W/PVnT7W3dvkXT49rc5w1L3+v24pIeSriVDujqWOcPdn3T3tujpi0rd0yEkOf97dSx3r3f3V6Pp/ZJWKj/upHmFpAej6QclfTi5UvrExZLWuvvGpAvpLXd/XtKuY5q7Ol5XSPqFp7woaZCZjTre62ddwB9HyLe/PU/SNnevTWsbZ2ZLzOw5MzsvqcL6wA1Rd9IDaV2DIRyzdJ9T6j/rw0I4dqEdo6OY2VhJZ0l6KWrq7H2ai1zSk2a22FJ3A5WkEe5eH01vlTQimdL6zFU6+mQolGN3WFfHq8e/k4kEvJktNLNlnTxy+gyhM93c16t19Bu2XlK1u58l6Z8l/drMBmay7u46wf7dK+l0SdOU2qe7kqy1p7pz7Mzsm0rd6+FXUVPOHLt8ZWYDJD0q6SZ336ccf58e4x/cfbpSI3Zeb2bnp8/0VF9vzn51ylI3SPuQpN9FTSEdu3fo7fHq1ffgT5YndPvbJJxoX82sSKkhd2ekrdMsqTmaXmxmayVNktSr2xbGobvH0szuk/Rf0dPjHcus0Y1j9xlJH5R0cfSLmFPH7gRy4hj1lJkVKxXuv3L3/5Qkd9+WNj/9fZpz3H1L9HO7mc1V6qOWbWY2yt3roy7d7YkW2TuXSXr18DEL6dil6ep49fh3Mpe66EO9/e1MSavcve5wg5kNM7PCaHq8Uvu6LqH6Ttoxnw9dKenwlaJdHcucYWazJN0i6UPu3pjWHsSxU+7/Xr1DdK3L/ZJWuvsP09q7ep/mFDPrb2YVh6eVuhB0mVLH7ZposWskxTZIWAYc1dsZyrE7RlfH6zFJn46upj9X0t60rvxOJXIGfzyWf7e/PfbzJCl1ZeW3zaxVUoek69z92AsxcsGdZjZNqS6mDZK+KEnHO5Y55CdKfQtgQSo39KK7X6dAjp27t+X471Vn3ivpU5LesOgrqZK+Ienqzt6nOWiEpLnR+7FI0q/dfb6ZvSLpt2b2eUkblbqgN+dE/7RcoqOPT6d/Y3KFmT0k6QJJQ82sTtK/SvqeOj9e85S6kn6NpEZJnz3h60c9iwAAICC51EUPAAC6iYAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAD9fwsGtx+0N+KMAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAptElEQVR4nO3deXxV9Z3/8ffnZiGBsBMwLGFTZHEUMUI7dalKW3WqlFYZpKMiSrRT5zedzuhYO+10nJ9d1XbaOo5o/ZVuLh3H1oVW0VqdLlZxQxCQHYEQAiEBskGS7++P3NBLyJ577rnne1/PxyOP3Ps92+dwEt4533PO95pzTgAAwC+xsAsAAADJR8ADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeSkrAm9lDZrbXzNYktA0zs5VmtjH+fWi83czsu2a2ycxWm9msZNQAAAD+LFln8D+UdHGbttskveCcO0XSC/H3knSJpFPiX6WS7ktSDQAAIC4pAe+ce1lSZZvmeZKWx18vl/SJhPYfuRavSBpiZkXJqAMAALQI8hr8KOdcWfz1Hkmj4q/HSHo/Yb6d8TYAAJAk2anYiHPOmVmPxsQ1s1K1dOFrwIABZ02dOjWQ2gAASEevv/76PudcYW+XDzLgy82syDlXFu+C3xtv3yVpXMJ8Y+Ntx3HOLZO0TJJKSkrcqlWrAiwVAID0Ymbb+7J8kF30T0q6Nv76Wkm/TGi/Jn43/QckVSd05QMAgCRIyhm8mT0s6cOSRpjZTkn/Kunrkh4zs+slbZe0ID77CkmXStokqVbSdcmoAQAA/FlSAt45d1UHky5qZ14n6bPJ2C4AAGgfI9kBAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8FB2kCs3s1MlPZrQNEnSlyUNkbRUUkW8/Xbn3IogawEAIJMEGvDOuQ2SZkqSmWVJ2iXpCUnXSfq2c+6uILcPAECmSmUX/UWSNjvntqdwmwAAZKRUBvxCSQ8nvL/ZzFab2UNmNrTtzGZWamarzGxVRUVF28kAAKATKQl4M8uVdLmkn8eb7pM0WS3d92WS7m67jHNumXOuxDlXUlhYmIoyAQDwRqrO4C+R9IZzrlySnHPlzrkm51yzpAckzU5RHQAAZIRUBfxVSuieN7OihGnzJa1JUR0AAGSEQO+ilyQzGyDpI5JuTGj+ppnNlOQkbWszDQAA9FHgAe+cq5E0vE3b1UFvFwCATMZIdgAAeIiABwDAQ4F30QPwy6ZNm1RVVaUBAwaof//+x77y8/MVi3HOAKQLAh5Aj4wfP16rV6/W6tWrj2s3M+Xn5x8L/LZ/ALT3PicnJ6S9APxHwAPokZycHM2fP19FRUV67rnn5JyTJDnnVFtbq9ra2h6tq7t/EAwaNEj9+vULarcA7xDwAHrMzPTBD35QI0eO1M9//nPV19f3aj1Hjx5VdXW1qquru5z3jDPO0Pz583u1HSATccEMQK9NnjxZpaWlGjlyZODb2rx587HeAgBdI+AB9MmwYcN0/fXXa9q0aYFu5/DhwyovLw90G4BPCHgAfdavXz9deeWVuuCCCwLdzqZNmwJdP+ATAh5AUsRiMZ1//vlauHChcnNzA9nG5s2bA1kv4CMCHogI55xqXtsj19gcdimdmjp1qpYuXaphw4Ylfd3bt29XQ0ND0tcL+IiAByKgsbJe+x54Rwce36jDf9gddjldKiws1NKlS3XyyScndb3Nzc3atm1bUtcJ+IqAB9Lc4T+Vqfw7b6hhS8ujZAd/s0NNNUdDrqpr+fn5WrRokc4555ykrpdueqB7CHggTTUdOqKKh9ao6olNckeajrW7+iYdXLk9xMq6LxaLae7cubriiiuUnZ2cYTe40Q7oHgIeSFOx/GxZlrU7rebVMh0tr0lxRb132mmn6frrr9fgwYP7vK7KykodOHAgCVUBfiPggTRl2TEN/5vp6j+z8MSJzVLVM1tTX1QfFBUVqbS0VBMmTOjzujiLB7pGwANpzLJMQ//6VA2Yc9IJ0xreO6C6DZUhVNV7AwYM0NVXX63Zs2f3aT1chwe6RsADac7MNHT+KRp4/tgTplU/s0WuKVrDt2ZlZenSSy/V5ZdfrqysrF6tY8uWLWpqaup6RiCDEfBARAy+ZKIGfWz8cW2Ne+tU82pZSBX1zaxZs7R48WIVFBT0eNkjR47o/fffD6AqwB8EPBAhgy4o1pDLJ0sJ994dXLldzXWN4RXVB+PGjVNpaanGjBnT42Xppgc6R8ADEVPwl6M19Iopx357m2sbdfCFHeEW1QeDBg3S4sWLNXPmzB4tx412QOcIeCCCBpw1SsMXTZPij9Ed/uNuNe6rC7mq3svJydG8efN0ySWXyKz9RwPbKisrU01NdB4VBFKNgAciKv+0ERpx7QxZTkxqcqpaEa3H5toyM82ZM0fXXHON8vPzu7UM3fRAxwh4IMLypgzViOtPk+Vlqf7d/arfXBV2SX02ceJElZaW6qSTTnw0sC0CHugYAQ9EXL8Jg1W49HTFBmSr+uktcs3RemyuPUOHDtWSJUs0Y8aMTufbtGmTmpvT+9P1gLAQ8IAHcscUqPDGM9Rcc1S1r5eHXU5S5Obm6oorrtDcuXM7nKempkbl5X7sL5BsBDzgiZyR/VV40xmqWVWu5gY/BoExM51zzjlatGiR+vXr1+48dNMD7SPgAY9kD8vT8E9PVf26/WGXklRTpkzR0qVLNWLEiBOm8bgc0D4CHvBM1qB+yps+POwykm7EiBG64YYbNGXKlOPad+zYoYaGhpCqAtIXAQ94KJbbuzHe011eXp4WLlyo884771hbc3Oztm3bFl5RQJoi4AFESiwW04UXXqgFCxYoJydHEtfhgfZkh10AAPTG9OnTNXz4cD388MNchwfawRk8gMgaNWqUSktLNWTIEFVWVoZdDpBWCHgAkda/f399+tOfPtZdD6AFAQ8g8rKysjRw4MCwywDSCgEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8FPinyZnZNkmHJDVJanTOlZjZMEmPSpogaZukBc65A0HXAgBApkjVGfwFzrmZzrmS+PvbJL3gnDtF0gvx9wAAIEnC6qKfJ2l5/PVySZ8IqQ4AALyUioB3kp4zs9fNrDTeNso5VxZ/vUfSqBTUkVJNjc1hlwAAyGCBX4OXdI5zbpeZjZS00szWJ050zjkzc20Xiv8xUCpJxcXFKSgzeZxz2v1elcZNHxZ2KQCADBX4Gbxzblf8+15JT0iaLanczIokKf59bzvLLXPOlTjnSgoLC4MuM6kO7KlV5Z6asMsAAGSwQAPezAaY2cDW15I+KmmNpCclXRuf7VpJvwyyjlTbvbFK9YePhl0GACCDBd1FP0rSE2bWuq2fOed+bWavSXrMzK6XtF3SgoDrSKmyTVUac+rQsMsAAGSwQAPeObdF0hnttO+XdFGQ2w6Lc045edma9pdFYZcCAMhgjGSXZEcbmnT2X01QvNcCAIBQpOIu+oySm5et3Dz+WQEA4eIMHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ84Kvm5rArABAiAh7w1dbfhl0BgBAR8ICvVj8WdgUAQkTAAz5qOCxtWEE3PZDBCHjARwd3SfXVUvmasCsBEBICHvBR9c6W79t/H24dAEJDwAM+IuCBjEfAAz46uKvl+/Y/SM6FWwuAUBDwgI+q4wFfu1+qWB9uLQBCQcADPjq488+vt/0uvDoAhIaAB3xUnRDwXIcHMhIBD/iotYtearkODyDjEPCAb2orpca6P78/XC7t2xRePQBCQcADvql+/8S27VyHBzINAQ/4JrF7vtU2rsMDmYaAB3xzsJ2A50Y7IOMQ8IBvEu+gb3Vwl3RgW8pLARAeAh7wTXsBL9FND2QYAh7wTXtd9BLd9ECGIeAB37R3k53EiHZAhiHgAZ80N0uHdrc/rWp7x933ALxDwAM+ObxHam7seDqj2gEZg4AHfNJR93wruumBjEHAAz452EUXPDfaARmDgAd80tU19v2bpEPlqakFQKgIeMAnXXXRS4xLD2QIAh7wSVdd9BI32gEZgoAHfNKdM3hGtAMyAgEP+KQ7z7lXrJdq9gdfC4BQEfCALxqPSDUV3ZjRcTc9kAEIeMAXB3dJct2bl4AHvEfAA77oyTC0BDzgvcAC3szGmdmLZvauma01s7+Pt3/FzHaZ2Vvxr0uDqgHIKB19ilx7ytdKdVWBlQIgfNkBrrtR0j86594ws4GSXjezlfFp33bO3RXgtoHM060zeJNGzZAmfbjzMesBRF5gAe+cK5NUFn99yMzWSRoT1PaAjNfRGfzAImnSBdLkC1qCvWBkSssCEI4gz+CPMbMJks6U9CdJH5J0s5ldI2mVWs7yD6SiDsBrrWfwOQOkCR+Kh/qF0sip4dYFIBTmXDfvuu3tBswKJL0k6U7n3P+Y2ShJ+9Ryu++/Sypyzi1pZ7lSSaWSVFxcfNb27dsDrROIvNeXS8MnS2NnS9m5YVcDoI/M7HXnXEmvlw8y4M0sR9LTkp51zt3TzvQJkp52zp3W2XpKSkrcqlWrgikSAIA01NeAD/IuepP0A0nrEsPdzIoSZpsvaU1QNQAAkKmCvAb/IUlXS3rHzN6Kt90u6Sozm6mWLvptkm4MsAYAADJSkHfR/06StTNpRVDbBAAALRjJDgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeyg67AKAnGpsbtaV6i9ZXrteuQ7s0p2iOZo6cqZjxtyoAJCLgkbbqGuv03oH3tH7/eq2rXKf1leu18cBGxSymRdMWaclpSzS43+CwywSAtETAIy1UN1S3hHhCmG87uE3NrvnYPNmxbF1xyhUqPb1Uhf0LQ6wWANIfAY+Ucs6pvLZc6/a3hHhrmJfVlHW4TMxiumzSZfrMzM9oTMGYFFYLANFFwCOlKusrtbpitTYc2KD3DrynjQc2dhruHxn/Ed0882ZNGjIphVUCQPQR8Eip4fnD9dEJH9VHJ3z0WNuhI4e08cDGY6H/3oH3NCh3kG4+82bNGD4jxGoBILoIeIRuYO5AzRo1S7NGzQq7FADwBs8WAQDgIQIeAAAPEfAAAHgotIA3s4vNbIOZbTKz28KqAwAAH4US8GaWJeleSZdImi7pKjObHkYtAAD4KKwz+NmSNjnntjjnjkh6RNK8kGoBAMA7YQX8GEnvJ7zfGW87xsxKzWyVma2qqKhIaXEAAERd2t5k55xb5pwrcc6VFBYy7jgAAD0RVsDvkjQu4f3YeBsAAEiCsAL+NUmnmNlEM8uVtFDSkyHVAgCAd0IZqtY512hmN0t6VlKWpIecc2vDqAUAAB+FNha9c26FpBVhbR8AAJ+l7U12AACg9wh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgodDGokfyOOd0+PC7qqh4XvUNuzVt6tdlZmGXBQAIEQEfUc3Njaqqfk0VFSu1r2Kl6ht2S5JOm/Fdwh0AQMBHSVNTrfZX/m9LqO97UY2NVcdNz88fr5EjLw6nOABAWiHg09yRI/u1b99vVLFvpSorf6fm5oYO5x1fXCqzrBRWBwBIVwR8mmpoqNCaNX+nqurXJTV3OX9u7kgVFc0PvjAAQCQQ8GmqpuY9VVW/1u35i4uXKBbrF2BFAIAo4TG5NFVbt73b82ZnD9KY0QsDrAYAEDUEfJqqr3u/2/OOHfM3ys4eGGA1AICoIeDTVG3djm7NF4vlady4xcEWAwCIHAI+TdV1M+BHj75SubnDA64GABA1BHwacs51K+DNslQ87oYUVAQAiBoCPg0dPVqppqbDXc43atRlys8fm4KKAABRQ8Cnobpu3mA3vvjGgCsBAEQVAZ+GutM9P2LEXBUUTElBNQCAKCLg01BdN56BnzCes3cAQMcI+DTU1Rn8kCGzNXjwrBRVAwCIIgI+DXV1DX7C+JtSVAkAIKoI+DTU2Rl8QcE0DRt2XgqrAQBEEQGfZpqa6tVwpLzD6ePH3ygzS2FFAIAoIuDTTGdn7/n5xRpZeEkKqwEARBUBn2Y6C/ji4qWKxfiEXwBA1wj4NFNX3/4Ndrm5hSo66VMprgYAEFUEfJrp6Bn44nHXKSurX4qrAQBEFQGfZtrros/OHqgxYxaFUA0AIKoI+DTTXsCPHfM3ys4eGEI1AICoIuDTiHNNqqvbeVxbLNZPY8ctDqcgAEBkEfBppKGhXM4dPa6tqOhK9csdEVJFAICoIuDTSG2bG+zMsjS++IaQqgEARBkBn0baXn8fNfLjys8fF1I1AIAoI+DTSNuAH89HwgIAeomATyOJAT9i+IUqKDg1xGoAAFFGwKeRxIDn7B0A0BcEfBppDfghg8/WkCElIVcDAIgyAj5NHD1apcbGg5I4ewcA9F0gAW9m3zKz9Wa22syeMLMh8fYJZlZnZm/Fv/4riO1HUevZe0HBVA0f/uFwiwEARF5QZ/ArJZ3mnDtd0nuSvpAwbbNzbmb866aAth85rQE/vvhGmVnI1QAAoi6QgHfOPeeca4y/fUXS2CC245O6uh3KzyvWyJGXhl0KAMADqbgGv0TSrxLeTzSzN83sJTM7NwXbj4Tauh0qHr9UsVh22KUgxWqbmvXu4bqwywDgmV4HvJk9b2Zr2vmalzDPFyU1SvppvKlMUrFz7kxJn5f0MzMb1MH6S81slZmtqqio6G2ZkdHUVKuikz4VdhkIQf+smAZkxfSfO/aqsdmFXQ4AT/T6dNE5N7ez6Wa2WNLHJV3knHPxZRokNcRfv25mmyVNkbSqnfUvk7RMkkpKSrz/X69wxFxlZfULuwyEZHx+P10wbKAWr9mqb04Zq9F5uWGXBCDigrqL/mJJt0q63DlXm9BeaGZZ8deTJJ0iaUsQNUSJc04jRlwYdhkI2bSCfH1u/Chd/uZGvbj/YNjlAIi4oK7Bf1/SQEkr2zwOd56k1Wb2lqT/lnSTc64yoBoiw8yUnV0QdhlIAyWDB+iuU8fpujVb9fUtZWpy3ndeAQhIIHd0OedO7qD9cUmPB7FNwBcfHjZI3502Xjet3abXqmt03/TxGtkvJ+yyAEQMI9kBaejykUP0rVPH6fdVhzV31Qb9/sChsEsCEDEEfIAaM+DufwTn06OH60uTR2vvkUYteHuzvrNtjxxd9gC6iYAPQOO+fdpx4406/NJLYZeCiPts8UjdXDxSTU76+tY9WrR6iyqPNna9IICMR8An2aEXX9SWeZ9QzUsvKzao3Uf8gR75l8mjdfXo4ZKkFysPae5rG/RadU3IVQFIdwR8kjTX16vsK1/Rzs/8rZr275ckZQ0aHHJV8MU3pozVvJFDJEm7G45q/psbdd+OveEWBSCtEfBJULd2rbZ+8lOqeuTR49qzBnMGj+SImen708brwmEDJUmNTvq3zbv15sHaLpYEkKkI+D5wzc3a98AD2rbwKh3ZcuJ4PVl00SOJcmKmB0+bqNmDBxxr21bXEGJFANIZAd9LR8vKtGPxdaq4+x7p6NF254kNposeydU/K6Yf/8VEzSjIkyRtqSXgAbSPgO+Fg7/6lbbM+4RqX32145myshQbMKDj6UAvDc7J1iNnTNbE/Fxt5QweQAcI+B5oOlyj3f98m3b9w+fVfLDzscKzBg6UmaWoMmSawtwcPTbzZNU3N4ddCoA0xYePd1PtG29q96236ujOnd2aP8YNdgjYuLxc3XnK2LDLAJCmCPguuMZG7fvP+7Tv/vulpqZuL8cjckiFUYxRD6ADBHwnjuzYoV233KL6t1f3eFnuoAcAhImA70DV44+r/M6vqrm2d88Z8ww8ACBMBHwbTVVVKvvyv+rQc8/1aT0MUwsACBMBn6Dmj3/U7tu+oMby8j6vi2vwAIAwEfCS3JEj2nvPt1W5fLmUpI/jpIseABCmjA/4hk2btOufblHD+vVJXS9d9ACAMGV0wFf++Cfae9ddcg3JHw2MLnoAQJgyMuAb9+3T7ttvV83L/xvYNuiiBwCEKeMC/tBvXlTZv/yLmiorA91OFh80AwAIUcYEfHNdncq/8Y0TPrM9KAx0AwAIU0YEfN3atdr9T7foyNatKdsmHxULAAiT1wHvmpu1/8EfqOJ73+vwM9sDwUfFAgBC5m3AHy0r0+5b/1m1r72W8m3zUbEAgLB5GfDVzzyjPf92R5ef2R4UPioWABA2rwK+6fBh7bnjDh188qlQ6+AZeABA2LwJ+No33tDuW27V0V27wi6FO+gBAKGLfMC7xkZV3Huv9i97QGpqCrscSQxyAwAIX6QD/sj27dp1662qf3t12KUch3HoAQBhi2zAV/33f6v8q19Tc21t2KWcgGvwAICwRS7gm6qqVPalL+vQypVhl9IhuugBAGGLVMDX/OEP2n3bF9S4d2/YpXSKLnoAQNiiEfDOqfzr31Dl8uWSc2FX0yW66AEAYYtEwDds3qLKH/4w7DK6jS56AEDYYmEX0B2uvj7sEnqE5+ABAGGLRMBHTYwuegBAyAj4ANBFDwAIGwGfbLGYYgUFYVcBAMhwBHyS8VGxAIB0EI2Aj1BexgZz/R0AEL5IBHy/yZM14Pzzwi6jW7iDHgCQDiIR8JaXp+L779f4H/9I+WecEXY5nSLgAQDpIBIB36r/2WdrwqOPaMz3vqvcSZPCLqddMe6gB4Aecc6psak57DK8E6mAbzXoIx/RpKee1En/foeyR40Ku5zjMEwtAPTMn7ZW6gNf+43+79PvasOeQ2GX443AAt7MvmJmu8zsrfjXpQnTvmBmm8xsg5l9rFfrz8rS0Cuv1ORnf63Cf/x82nzAC130ANAzT729W/sON+jB323Vx77zsi773u+0/A/bVFV7JOzSIi3osei/7Zy7K7HBzKZLWihphqTRkp43synOuabebCCWl6cRS5dq6IIF2rdsmQ785KdyDQ19r7yXGOQGALqvsalZv16z57i2d3ZV651d1bpzxTrNnTZSV541TudNKVRWLEKPVKWBMLro50l6xDnX4JzbKmmTpNl9XWnW4MEadcstmvzsrzX4U5+UsrL6XGhvpEtPAgBEwe8379f+mvbP1I80NmvFO3t03Q9f0we/9oK+tmKdNu2lC7+7gg74m81stZk9ZGZD421jJL2fMM/OeFtS5Jx0kkbfeacm/fIXKrjoomStttu4Bg8A3ffU27u7Nd/eQw26/+UtmnvPy5p37+/141e2q7ruaMDVRVufAt7MnjezNe18zZN0n6TJkmZKKpN0dw/XXWpmq8xsVUVFRY9r63fyyRp37/c1/mc/U/5ZZ/V4+d6iix4AuudIY7OeXbun6xnbePv9Kn3pF2t04V2/1Z7qaH3aaCr16Rq8c25ud+YzswckPR1/u0vSuITJY+Ntbde9TNIySSopKXG9rbH/rDM14ac/0aEXX1TFPd9Ww8aNvV1Vt9BFDwDd89sNe3WovrFXyw4bkKv/d93ZOmlwXpKr8keQd9EXJbydL2lN/PWTkhaaWT8zmyjpFEmvBlVHq4EXXKCJv/yFir76VWWPLup6gV7KYqhaAOiWp1aX9Wq5osF5euzGD+j0sUOSW5BngryL/ptmNlOSk7RN0o2S5Jxba2aPSXpXUqOkz/b2DvqeslhMQz45X4M+/lc68JOfav/996upujqp2+AxOQDoWt2RJr2wrrzHy00cMUA/vn62xg7tH0BVfgks4J1zV3cy7U5Jdwa17a7EcnM1fMl1GnLlFdr/4A9U+aMfydXVJWHFMcUGDuz7egDAc8+vK1ftkZ6d200rGqQfLZmtwoH9AqrKL5EcyS5ZsgYO1Mh/+JwmP/trDVmwQMru2987MT4qFgC6pbt3z7cqGT9Uj5R+gHDvgYwO+FY5I0eq6I5/06SnntTAj/VqYD1JXH8HgO44VH9Uv32v+09HnT+lUD++fo4G5+cEWJV/CPgE/SZO1Nj/+I4mPPao+s+Z0+Pluf4OAF17dm25jjR278Nl/ur0Ij14bYnyc8MZvCzKCPh25J9+usYv/6HGPbBM/aZO7fZyBDwAdK273fNXzR6n7y08UzlZRFVv8K/WiYJzz9XEJ/5Ho7/1TeWMHdvl/HxULAB07kDNEf1+074u57vx/En62idPV4zx53uNgO+CmWnwZZdp8opnNOr225U1bFiH8zJMLQB0bsWaMjU2dz522T9fPFVfuGRaiiryFwHfTZabq2HXXK3Jzz2nEX/7t4r1P/EZTLroAaBznXXPx0z66vy/0Gc+PDmFFfmLgO+hrIIBKvw/f6fJK5/T0EWLpJw/39XJOPQA0LG9B+v16tbKdqflZJn+Y+GZWjSnOMVV+YuA76Xs4cN10pe/pMnPPK1Bl14qmTEOPQB04unVZWqvdz4vJ6Zl15TosjNGp74ojwU5VG1GyC0u1ph77taw65fIYvy9BAAdeWr1id3zA/Oy9dDis3X2hI7vb0LvEPBJkj9jRtglAEDaer+yVm/uqDqubURBrpYvma0Zo7lBOQgEPAAgcE+3+eS4MUPy9ZMb5mjiiAEhVeQ/Ah4AELjEu+cnFw7QT26Yo6LB+SFW5D8CHgAQqM0Vh/Vu2UFJ0l+MGazlS2Zr2IDckKvyHwEPAAhU69n7nInD9IPFZ6ugH9GTCvwrAwAC9fTqMl00daTu/fQs5eXwoTGpQsADAALz7u6DOm30IN115RnK5kNjUoqABwAEJi8npm//9UyZ8aExqUbAAwACM6mwIOwSMhb9JYisQ5X79PyD96q5uSnsUgAg7RDwiKyCocM1cHihfrv8wbBLAYC0Q8AjssxMc+Yv0JQPnqMNf/xd2OUAQFrhGjwib+zUGao/fFhH6+uVk5cXdjkAkBYIeHghr4AbeQAgEV30AAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADyUHcRKzexRSafG3w6RVOWcm2lmEyStk7QhPu0V59xNQdQAAEAmCyTgnXN/3frazO6WVJ0webNzbmYQ2wUAAC0CCfhWZmaSFki6MMjtAACA4wV9Df5cSeXOuY0JbRPN7E0ze8nMzu1oQTMrNbNVZraqoqIi4DIBAPBLr8/gzex5SSe1M+mLzrlfxl9fJenhhGllkoqdc/vN7CxJvzCzGc65g21X4pxbJmmZJJWUlLje1gkAQCbqdcA75+Z2Nt3MsiV9UtJZCcs0SGqIv37dzDZLmiJpVW/rAAAAJwqyi36upPXOuZ2tDWZWaGZZ8deTJJ0iaUuANQAAkJGCvMluoY7vnpek8yTdYWZHJTVLusk5VxlgDQAAZKTAAt45t7idtsclPR7UNgEAQAtGsgMAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPNSngDezK81srZk1m1lJm2lfMLNNZrbBzD6W0H5xvG2Tmd3Wl+0DAID29fUMfo2kT0p6ObHRzKZLWihphqSLJf2nmWWZWZakeyVdImm6pKvi8wIAgCTK7svCzrl1kmRmbSfNk/SIc65B0lYz2yRpdnzaJufclvhyj8TnfbcvdQAAgOMFdQ1+jKT3E97vjLd11A4AAJKoyzN4M3te0kntTPqic+6XyS/p2HZLJZXG3zaY2ZqgtpUGRkjaF3YRAWL/os3n/fN53yT2L+pO7cvCXQa8c25uL9a7S9K4hPdj423qpL3tdpdJWiZJZrbKOVfS3nw+YP+ijf2LLp/3TWL/os7MVvVl+aC66J+UtNDM+pnZREmnSHpV0muSTjGziWaWq5Yb8Z4MqAYAADJWn26yM7P5kr4nqVDSM2b2lnPuY865tWb2mFpunmuU9FnnXFN8mZslPSspS9JDzrm1fdoDAABwgr7eRf+EpCc6mHanpDvbaV8haUUPN7Ws59VFCvsXbexfdPm8bxL7F3V92j9zziWrEAAAkCYYqhYAAA+lXcBn0vC3Zvaomb0V/9pmZm/F2yeYWV3CtP8KudReMbOvmNmuhP24NGFau8cyKszsW2a23sxWm9kTZjYk3u7FsZOi+3vVETMbZ2Yvmtm78f9j/j7e3uHPadTE/x95J74fq+Jtw8xspZltjH8fGnadPWVmpyYcn7fM7KCZfS7qx87MHjKzvYmPgXd0vKzFd+O/j6vNbFaXG3DOpdWXpGlqefbvt5JKEtqnS3pbUj9JEyVtVsuNelnx15Mk5cbnmR72fvRiv++W9OX46wmS1oRdUxL26SuS/qmd9naPZdj19nDfPiopO/76G5K+4dmx8+L3qs0+FUmaFX89UNJ78Z/Fdn9Oo/glaZukEW3avinptvjr21p/VqP6Ff/Z3CNpfNSPnaTzJM1K/D+jo+Ml6VJJv5Jkkj4g6U9drT/tzuCdc+uccxvamXRs+Fvn3FZJrcPfzlZ8+Fvn3BFJrcPfRoa1jPW7QNLDYdeSIh0dy8hwzj3nnGuMv31FLWM6+CTyv1dtOefKnHNvxF8fkrROmTGS5jxJy+Ovl0v6RHilJMVFkjY757aHXUhfOedellTZprmj4zVP0o9ci1ckDTGzos7Wn3YB3wmfh789V1K5c25jQttEM3vTzF4ys3PDKiwJbo53Jz2U0DXowzFLtEQtf1m38uHY+XaMjmNmEySdKelP8ab2fk6jyEl6zsxet5bRQCVplHOuLP56j6RR4ZSWNAt1/MmQL8euVUfHq8e/k6EEvJk9b2Zr2vmK9BlCe7q5r1fp+B/YMknFzrkzJX1e0s/MbFAq6+6uLvbvPkmTJc1Uyz7dHWatPdWdY2dmX1TLWA8/jTdF5thlKjMrkPS4pM855w4q4j+nbZzjnJullk/s/KyZnZc40bX09Ub20SlrGSDtckk/jzf5dOxO0Nfj1afn4HvLhTT8bRi62lczy1bLR+6elbBMg6SG+OvXzWyzpCmS+jRsYRC6eyzN7AFJT8ffdnYs00Y3jt1iSR+XdFH8FzFSx64LkThGPWVmOWoJ95865/5Hkpxz5QnTE39OI8c5tyv+fa+ZPaGWSy3lZlbknCuLd+nuDbXIvrlE0hutx8ynY5ego+PV49/JKHXR+zr87VxJ651zO1sbzKzQzLLiryepZV+3hFRfr7W5PjRfUuudoh0dy8gws4sl3SrpcudcbUK7F8dO0f+9OkH8XpcfSFrnnLsnob2jn9NIMbMBZjaw9bVabgRdo5bjdm18tmslBfYhYSlwXG+nL8eujY6O15OSronfTf8BSdUJXfntCuUMvjOWecPftr2eJLXcWXmHmR2V1CzpJudc2xsxouCbZjZTLV1M2yTdKEmdHcsI+b5angJY2ZIbesU5d5M8OXbOucaI/16150OSrpb0jsUfSZV0u6Sr2vs5jaBRkp6I/zxmS/qZc+7XZvaapMfM7HpJ29VyQ2/kxP9o+YiOPz7t/h8TFWb2sKQPSxphZjsl/aukr6v947VCLXfSb5JUK+m6Ltcf71kEAAAeiVIXPQAA6CYCHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA89P8B4AI4eugoeIgAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAn20lEQVR4nO3deXQc5Znv8d+j1ma3vFu2ZeMN8MJqE4SBS2DCkoTthjATCMyEkA1DgFxImJP13kxO5s5MJkAyZ5JMEhPIwAScZRgCCUtYZgjLHUJsvMrGsQ0Y28hIlhfJlrU/949um7aQZC1dXeq3v59z+rjqreqqp1wt/fRWV79t7i4AABCWorgLAAAA2UfAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAAcpKwJvZPWZWZ2ZrM9rGm9lTZrYx/e+4dLuZ2T+b2SYzW21m78lGDQAA4B3Z6sH/q6QLu7V9WdIz7j5H0jPpeUm6SNKc9GOxpB9mqQYAAJCWlYB39+ck7erWfJmke9PT90r6cEb7fZ7ykqSxZlaVjToAAEBKlO/BT3b32vT0DkmT09PTJG3NWG9bug0AAGRJcS524u5uZgMaE9fMFit1CV/JZPLU+fPnR1IbAADD0fLly3e6e+Vgnx9lwL9tZlXuXpu+BF+Xbt8uaXrGekel2w7j7kskLZGk6upqX7ZsWYSlAgAwvJjZlqE8P8pL9I9IujY9fa2khzPaP56+m/4MSXszLuUDAIAsyEoP3syWSnqfpIlmtk3S30j6lqRfmtmnJW2RdGV69cckXSxpk6RmSZ/MRg0AAOAdWQl4d7+6l0Xn97CuS7opG/sFAAA9YyQ7AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABKo67AAxM25Yt2vfss+psbFLXvn2y0hJV3nKLrJhTCQB4Bz34PFM6c6Yqzj1X3tmhxieeUMNdP1H9P38v7rIAAMMMAZ+HSmfM0KRbb9Wx//mMpt+1RG1vvql9zz8fd1kAgGGE67p5zBIJVZx9tirOPltdra1xlwMAGEbowQeiqKws7hIAAMMIAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAEKBIv2zGzOZJ+kVG09GSvi5prKTrJNWn27/q7o9FWQsAAIUk0oB39w2SFkqSmSUkbZf0kKRPSvquu98R5f4BAChUubxEf76kze6+JYf7BACgIOUy4K+StDRj/mYzW21m95jZuO4rm9liM1tmZsvq6+u7LwYAAH3IScCbWamkD0n6Vbrph5KOUeryfa2kO7s/x92XuHu1u1dXVlbmokwAAIKRqx78RZJecfe3Jcnd33b3TnfvknSXpEU5qgMAgIKQq4C/WhmX582sKmPZ5ZLW5qgOAAAKQqR30UuSmSUlvV/S9RnN3zazhZJc0hvdlgEAgCGKPODdfb+kCd3arol6vwAAFDJGsgMAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAB5o72uOe4SgLxBwAPIGy2v7tKB9Q1xlwHkBQIeQN4Yecok7Vr6qprX7Iy7FGDYI+AB5I3EqFKVHzdBu5auV/PKurjLAYY1Ah5AXqk4s0rqknb9YoP2L9sRdznAsEXAA8grZbPGqKQqKbm0+8GN2vdSbdwlAcMSAQ8g7yTPqEpNuLTn15vU9ML2eAsChiECHkDeGXnKJFl54tD83t++psZnt8ZYETD8EPAA8k5RaULJUycf1tb4xBva+9SWmCoChh8CHkBeSp5RJdnhbU3PvKm9j78eT0HAMEPAA8hLJZUjVXbM2He1N/1+m/b8ZnPuCwKGGQIeQN6qOLOqx/Z9L76l3Q9tlLvnuCJg+CDgAeSt8uMmKDGmrMdl+/+wQ7t/9Sd5FyGPwkTAA8hbVmRKnjGl1+XNr9Rp1y82yDsJeRQeAh5AXkueNkVKWK/LD6yqV8MD6+UdXTmsCogfAQ8gryUqSjXipIl9rtNS06CGnxHyKCwEPIC8V3Hm1COu0/LqLu28t0ZdbZ05qAiIHwEPIO+VzRydGp/+CFo37tHOn65VVyshj/AR8ACCkOzlI3Pdtb3eqJ13r1FXS0fEFQHxIuABBGHkwkmy8uJ+rdv2ZpPq71qjrub2iKsC4kPAAwhCanz6Sf1ev337PtUvWaPOfW0RVgXEh4AHEIzkmVPfNT59X9p37Ff9ktXqbCTkER4CHkAwSiaOUNmxYwf0nI66A6r/8Sp17GmNpiggJgQ8gKBUnHHkj8x119HQkgr5XS0RVATEg4AHEJTy48YrMbbn8en70rm7VfU/XqX2nQciqArIvcgD3szeMLM1ZrbSzJal28ab2VNmtjH977io6wBQGKzIlDy9fx+Z665zb1sq5N/en+WqgNzLVQ/+XHdf6O7V6fkvS3rG3edIeiY9DwBZkTxtcp/j0/elq6ld9UvWqO2tfVmuCsituC7RXybp3vT0vZI+HFMdAAKUqCjVyCOMT9+Xrv3tqr9rjdq2NWWxKiC3chHwLulJM1tuZovTbZPdvTY9vUPS5BzUAaCAJPsxPn1f/ECH6u9ao9YtjVmqCMitXAT8e939PZIuknSTmZ2TudDdXak/Ag5jZovNbJmZLauvr89BmQBCUjZztEqmHnl8+r54a6d23r1WLZv3ZKcoIIciD3h3357+t07SQ5IWSXrbzKokKf1vXQ/PW+Lu1e5eXVlZGXWZAALUn2+ZOxJv61TDv9ao5U+7s1ARkDuRBryZJc1s1MFpSR+QtFbSI5KuTa92raSHo6wDQGEaubCy3+PT98Xbu7TzvhodWN+QhaqA3Ii6Bz9Z0gtmtkrSy5IedfcnJH1L0vvNbKOkC9LzAJBVVpJQsjpLt/h0uBp+tl7Na3ZmZ3tAxIb+p20f3P01SQt6aG+QdH6U+wYASao4o0r7Xtzew50+g9Dp2rV0vdQ5TyMX9v+LbYA4MJIdgKAVTxyhsjlZHEurS9r1iw3av2xH9rYJRICABxC8ijMGN7Jdr1za/eBG7Xup9sjrAjEh4AEEr3z+4Man75NLe369SU0vbM/udoEsIeABBM+KTMls9+LT9v72NTU+uzWSbQNDQcADKAjJ06ZIxYMbn/5IGp94Q3uf2hLJtoHBIuABFIREskQjT4pu0KymZ97U3sdfj2z7wEAR8AAKRvLMaC7TH9T0+23a85vNke4D6C8CHkDBKJsxWiXTKiLdx74X39LuhzYq9TUbQHwIeAAFZdyHj9WIkyZKxdH9+tv/hx3a/as/ybsIecQn0pHsAGC4KZ0+ShP+6jh1tXTowOqd2r+iTm1v7M3OSHcZml+pk3e6xl85T5aI5uY+oC8EPICCVFRerOSiKUoumqKOPS1qXlGv5hV16qhrzto+DqyqV0NHlyZcPV8W4RUDoCcEPICCVzy2XKPPna7R505X2/Z9al5Rp+ZVdepqah/ytltqGtTws/Wa8LHjCHnkFAEPABlKp1WodFqFxlw8W62b9qh5RZ0O1OyUt3UNepstr+7SzntrNOGa41VUmshitUDvCHgA6IEVmcrnjlP53HHqajtWB2oa1LyiTq2bdkuDyPrWjXu086drNfETJ6qojJBH9Ah4ADiCotKEkqdMUvKUSepsalPzyno1r6xT+/Z9A9pO2+uN2nn3Gk381IkqKufXL6LFKwwABiAxqlSjzp6mUWdPU/vb+1M3562sU+ee1n49v+3NJtXftUaVnz5RRSNLIq4WhYw7PgBgkEomJzXmwlma8qXTVLn4JCVPmyLrR8+8ffs+1S9Zo859bTmoEoWKgAeAITIzlR09VuP+Yo6m/u/TNf6v5qv8+AlSH59/b9+xX/VLVquzkZBHNLhEDwBZZMVFGnlSpUaeVKnO/e06sKZeza/Uqe3Npnet21F3QPU/XqWJ152s4mx/Xz0KHgEPABFJJEtUccZUVZwxVR0NB1Kfr19Zr46dBw6t09HQovofr1LldSereHx5jNUiNFyiB4AcKJ4wQqMvmKkpf12tyhsXKHlmlYqSqT5W5+5W1f94ldozgh8YKnrwAJBjZTNGq2zGaI299Bi1/GmXmlfUqWX9rlRP/jMnqWRyMu4SEQACHgBiYgnTiOMmaMRxE1JffrN2pxqfeVOjz5uhkimEPIaGgAeAYaCovFjJ6ilKVk9RV2tn3OUgALwHDwDDDEPZIhsIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABCiygDez6Wb2X2a2zsxqzOyWdPs3zGy7ma1MPy6OqgYAAApVcYTb7pB0m7u/YmajJC03s6fSy77r7ndEuG8AAApaZAHv7rWSatPTTWa2XtK0qPYHAADekZP34M1slqRTJP0h3XSzma02s3vMbFwuagAAoJBEHvBmViHpQUm3unujpB9KOkbSQqV6+Hf28rzFZrbMzJbV19dHXSYAAEGJNODNrESpcL/f3f9Dktz9bXfvdPcuSXdJWtTTc919ibtXu3t1ZWVllGUCABCcKO+iN0l3S1rv7t/JaK/KWO1ySWujqgEAgEIV5V30Z0m6RtIaM1uZbvuqpKvNbKEkl/SGpOsjrAEAgIIU5V30L0iyHhY9FtU+AQBACiPZAQAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh5Aj7q6OuIuAcAQEPAAelSz7gty74y7jEM27t4YdwlAXiHgAbxLW1uD6uoe1cZN/xB3KZKkzq5O3fDUDbrt2du0r21f3OUAeYGAB/AupaUTVFV1hbZu/aneqv33uMvRvvZ9Glc+Tk9ueVJX/vZK1TTUxF0SMOwR8AB6NH/e/9X48Wdrw4b/o717V8Ray5iyMVp66VLduOBG1e6v1TWPXaP7198fa03AcEfAA+hRUVGxTjrxB0qOnKPVaz6rltYdsdZTUlSizy78rH5+yc91zNhj9K2Xv6XP/9fn1dTWFGtdwHBFwAPoVXFxUgsW/ERFRaVas/qz6uxsjbskzRs/Tw9c8oBuXHCjnt32rK74zRVau3Nt3GUBww4BD6BPZWWTtGDB3Wo+sEWvvvrVuMuRdHhvflTpKH388Y/r39b9W9xlAcMKAQ/giCqSc3TyST9SXf1j2vLmXXGXc8i88fO09JKluu7k6/Sd5d/RLf95i/a27o27LGBYIOAB9Mu4cYt0/HG3a/PmO9TQ8Fzc5RxSXFSszy5I9eZr99fqyt9cqdX1q+MuC4gdAQ+g3yZPvlTHHH2b1tbcoubm1+Mu5zAH35u/fM7l+syTn9G9NffGXRIQKwIewIDMnLlYU6ZcplWrr1dHx/C6g724qFg3LLhBP7v4Z3r0tUf1uWc+xyV7FCwCHsCAzZ3zdSVHHq21NbfKvSvuct5l7ri5euCSB3TixBP1l4/+pVbWrYy7JCDnCHgAA2ZWpBNO+Ce1t+/V5s13xF1Oj4qLinX9guv13XO/q9v/eLvuWXuP3D3usoCcIeABDEoiUa4FJy9RXf3vtGPHI3GX06u54+bq3ovuVXtnuz7/7Oe1p2VP3CUBOUHAAxi00tLxWrjgHm3efLsaG9fEXU6vDvbmb1x4o77+/76uFXXxDr0L5AIBD2BIRo6cqRNP+r5q1n1BrW074y6nT3PHzdV33vcdrahboftq7uOSPYJGwAMYsjGjF+jYY76ktWs/p66utrjL6VNxUbE+deKndObUM/W9Fd/TrpZdcZcERIKAB5AVlZUXaPKkS7Rhw9/EXUq/zBk3RzcuvFHPb3uegXEQJAIeQNYcddTHVFIyVlu33Rd3Kf1SXFSsy469TBWlFXpx+4vqGoYf+QMGi4AHkFXHHPNFNTau1q7d/x13Kf129JijdXrV6VrfsJ6vn0UwCHgAWWVmOm7+32v7tvt14MDWuMvpt+KiYp0w8QR1eZea25vjLgcYMgIeQNYVFZVq/vy/1+bNd6ijY3/c5QzImLIxGlkyMu4ygCEj4AFEoqRktI499kva/NrtfBwNiAEBDyAy5eVTNbXqo9q69Z64SwEKDgEPIFKjRh2nior5qt/5TNylAAWFgAcQufHjz1JXV5v27dsQdylAwSDgAeTE5EkXqalpndrbd8ddClAQCHgAOVNVdbkaGp5TV1dH3KUAwYst4M3sQjPbYGabzOzLcdUBILcmTbpEu3Y9H3cZQPBiCXgzS0j6gaSLJB0v6WozOz6OWgDkVlFRscaOXaTGprVxlxK8rs4u7dzWpObG4f0FQIhGcUz7XSRpk7u/Jklm9nNJl0laF1M9AHKouDipEeVHqaWlVuXlVXGXE4x9u1v09uuNqccbjarb0qiOti6VJYt1zlVzNad6ssws7jKRI3Fdop8mKXMMy23ptkPMbLGZLTOzZfX19TktDkD0SkrGKpEYoc5OhoXNhoa39mnzK/V6s6ZBtZv3aue2fepoS315Tuv+Dj119zo9/qM12r+3NeZKkStx9eCPyN2XSFoiSdXV1QyDBQSopGSsOjub5d4lM+75HYoJUys0YWrFoXl3V/PeNu2q3X/osbt2vx664xWddulszV1Ebz50cQX8dknTM+aPSrcBKDCJBOO+R8HMlBxbpuTYMk0/bvyhdndXc2ObOtq6VFKWiLFCRC2uP5n/KGmOmc02s1JJV0l6JKZaAKBgmJmSY8oI9wIQSw/e3TvM7GZJv5OUkHSPu9fEUQsAACGK7T14d39M0mNx7R8AgJBxVwsAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAEKDiKDZqZrdL+p+S2iRtlvRJd99jZrMkrZe0Ib3qS+5+QxQ1AMPRxv0tev1Aq8YUJzS6OKEx6UeyOBF3aQACE0nAS3pK0lfcvcPM/lHSVyR9Kb1ss7svjGi/wLC2sqlZn1v/5rvaS8w0qrioW/AXHzY/uiShsZnzGX8glCe4GAfgcJEEvLs/mTH7kqSPRLEfIN/MGlHWY3u7u3a1d2pXe+egtltWZJpZXqanT5ur0iLCHkBu3oP/lKTHM+Znm9kKM/u9mZ2dg/0Dw8asEaWRbLe1y/XhyWMJdwCHDLoHb2ZPS5rSw6KvufvD6XW+JqlD0v3pZbWSZrh7g5mdKunXZnaCuzf2sP3FkhZL0owZMwZbJjCsVJaWKJko0v7Orqxud0xxQp85qjKr2wSQ3wYd8O5+QV/LzewTki6VdL67e/o5rZJa09PLzWyzpLmSlvWw/SWSlkhSdXW1D7ZOYLiZNaJUNftasrrNzxw1UaO5UQ9Ahkiu55nZhZK+KOlD7t6c0V5pZon09NGS5kh6LYoagOGqt/fhB2tUokiL6b0D6Caqu+i/L6lM0lNmJr3zcbhzJH3TzNoldUm6wd13RVQDMCxlO+A/fVSlxpRE9aMMIF9FdRf9sb20PyjpwSj2CeSLbN5ol0wU6frp9N4BvBu33AI5Nqs8ez34T06bqHH03gH0gIAHcmxmlnrwIxNFumH6pKxsC0B4CHggx6aVl6o0dW/KkHx86gRNLKX3DqBnBDyQYwkzTS8fWi9+RJHpphn03gH0joAHYjDUy/QfmzpBlaUlWaoGQIgIeCAGQ/moXHmR6eYZk7NYDYAQEfBADIbyUbmrqyZochm9dwB9I+CBGAy2B19qps/x3juAfiDggRgMNuCvqhqvqUO8QQ9AYSDggRjMKC/VQD8oV2Km/zWT994B9A8BD8SgPFGkqgG+j37llHE6it47gH4i4IGYDOQyfbGJ3juAASHggZgM5E76v5g8XjOz/C10AMJGwAMx6W8PPmHSrfTeAQwQAQ/EpL+j2V0+aZxmj6T3DmBgCHggJv3pwRdJunUWvXcAA0fAAzGZ3Y+A/9CksTp2ZHkOqgEQGgIeiMno4oTGlyR6XW6SPj9rSu4KAhAUAh6I0czy3nvxl1SO0bwkvXcAg0PAAzHq7aNyJukL9N4BDAEBD8SotxvtLpw4RsdXjMhxNQBCQsADMeot4L/AnfMAhoiAB2LU0yX6D0wYrZNGjYyhGgAhIeCBGPXUg+e9dwDZQMADMZpcVqKRiXd+DM8bP0oLR9N7BzB0BDwQs5kZXwF7G713AFlCwAMxO3iZ/s/GjdKpY5IxVwMgFAQ8ELODXzpzG3fOA8giAh6I2awRZTprbIUWja2IuxQAASHggZjNHlHG594BZF1x3AUAhe70MUmVJ/hbG0B28VsFiBnhDiAK/GYBACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAhRZwJvZN8xsu5mtTD8uzlj2FTPbZGYbzOyDUdUAAIjP7t271d7eHncZBSvq74P/rrvfkdlgZsdLukrSCZKmSnrazOa6e2fEtQAAcujFF19UZWWlTj/99LhLKUhxXKK/TNLP3b3V3V+XtEnSohjqAABE5MCBA1q1apVeeOEFdXR0xF1OQYo64G82s9Vmdo+ZjUu3TZO0NWOdbek2AEAgli9frvb2djU1NWnFihVxl1OQhhTwZva0ma3t4XGZpB9KOkbSQkm1ku4c4LYXm9kyM1tWX18/lDIBADnU2dmpl19++dD8888/Ty8+BkN6D97dL+jPemZ2l6Tfpme3S5qesfiodFv3bS+RtESSqqurfSh1AgBy56233lJjY+Oh+cbGRq1cuVLV1dUxVlV4oryLvipj9nJJa9PTj0i6yszKzGy2pDmSXu7+fABAfpo+fbpOPvnkw9qef/55dXZyL3UuRfke/LfNbI2ZrZZ0rqTPS5K710j6paR1kp6QdBN30ANAWC699FJNmjTp0PzevXu1cuXK+AoqQJEFvLtf4+4nufvJ7v4hd6/NWPZ37n6Mu89z98ejqgEAEI/S0lJ99KMfVVlZ2aE2evG5xUh2AIBITJgwQZdffvmh+T179mjVqlUxVlRYCHgAQGTmz5+v9773vYfm6cXnDgEPAIjUeeedp9mzZ0tKDV+7evXqmCsqDAQ8ACBSRUVF+shHPqLRo0dLSvXiu7q6Yq4qfAQ8ACByyWRSV1xxhRKJhHbt2qU1a9bEXVLwCHgAQE5Mnz5dH/xg6gtEn3vuOXrxESPgAQA5s2jRIp188slqaGjQ2rVrj/wEDBoBDwDIqYOD4NCLjxYBDwDIqYOD4DQ1NammpibucoJFwAMAcu7gIDj04qNDwAMAYjF//nzNmzdP69ati7uUIBHwAIDYnHfeedq6davc+VbwbCPgAQCxKSoq0jnnnKPt27fHXUpwiuMuAABQ2JLJpEpKSuIuIzj04AEAsSstLY27hOAQ8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQoOIoNmpmv5A0Lz07VtIed19oZrMkrZe0Ib3sJXe/IYoaAAAoZJEEvLt/9OC0md0paW/G4s3uvjCK/QIAgJRIAv4gMzNJV0o6L8r9AACAw0X9HvzZkt52940ZbbPNbIWZ/d7Mzu7tiWa22MyWmdmy+vr6iMsEACAsg+7Bm9nTkqb0sOhr7v5wevpqSUszltVKmuHuDWZ2qqRfm9kJ7t7YfSPuvkTSEkmqrq72wdYJAEAhGnTAu/sFfS03s2JJfy7p1IzntEpqTU8vN7PNkuZKWjbYOgAAwLtFeYn+Akmvuvu2gw1mVmlmifT00ZLmSHotwhoAAChIUd5kd5UOvzwvSedI+qaZtUvqknSDu++KsAYAAApSZAHv7p/ooe1BSQ9GtU8AAJAS6cfkAACISmNLu95saNaEilKNT5aqrDgRd0nDCgEPAMhLo8tLdOK0MXGXMWwxFn2Ult8r/e5r0s6NR14XAIAsIuCj1FQr/ff3pe9XSz+9WFr9S6mjNe6qAAAFgICPUvuBd6a3vCj9x3XSnfOkJ74i1W/o/XkAAAwRAR+lnnrrB3ZLL/2L9INF0t0flFYuldpbcl8bACBoBHyUOg70vXzrS9Kvb0j16h/7ovT2utzUBQAIHgEfpf6+396yR3r5x9IPz5R+8n5pxf2HX94HAGCACPgoDSakt70sPXyjdMc86dHbpB1rs18XACB4BHyUhnLHfOte6Y8/kX50lnTXedIr90ltzdmrDQAQNAI+Skd6D76/dm9JXQ1IlGRnewCA4DGSXZSG+pn3kpHSGTdK771VKhuVlZIAAIWBgI/SYG+Us4R0yl9J7/uqNLoquzUBAAoCAR+ljkF8vn3uRdIF35Amzc96OQCAwkHAR2kgAT/tVOn9fyvNOiu6egAABYOAj1J/Rqgbf7R0/telEy6Pvh4AQMEg4KPUVw9+5ETpz74kVX+Su+MBAFlHwEepp4AvGSmdeZN01i3cGQ8AiAwBH6XMj8lZQjrlY9K5X5VGTYmvJgBAQSDgo9LeIslT0/MuTt0ZXzkvzooAAAWEgI9KR4s0rVr6wN9KM/9H3NUAAAoMAR+V8jHSdc/EXQUAoEAxFn1UzOKuAABQwAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwPdDZ0e72g40x10GAAD9RsD3w3//+1K9WbMm7jIAAOg3Av4Iajdt0MsP/7tqN74adykAAPQbAd+H9rZWPf6D78q7ulS7cUPc5QAA0G8EfB9eWHqfdr+1TZK0Y/NGeVdXzBUBANA/Qwp4M7vCzGrMrMvMqrst+4qZbTKzDWb2wYz2C9Ntm8zsy0PZfy6Ypf6L2lsOaOfWLTFXAwBA/wy1B79W0p9Lei6z0cyOl3SVpBMkXSjpX8wsYWYJST+QdJGk4yVdnV53WDr32ut09d/erokzZkkSl+kBAHmjeChPdvf1kmRm3RddJunn7t4q6XUz2yRpUXrZJnd/Lf28n6fXXTeUOqJUNWeePvYP/6Q/PvKg6t54Le5yAADolyEFfB+mSXopY35buk2StnZrPz2iGrImUVysM/78o2rZvy/uUgAA6JcjBryZPS1pSg+LvubuD2e/pEP7XSxpcXq21czWRrWvYWCipJ1xFxEhji+/hXx8IR+bxPHlu3lDefIRA97dLxjEdrdLmp4xf1S6TX20d9/vEklLJMnMlrl7dU/rhYDjy28cX/4K+dgkji/fmdmyoTw/qo/JPSLpKjMrM7PZkuZIelnSHyXNMbPZZlaq1I14j0RUAwAABWtI78Gb2eWSviepUtKjZrbS3T/o7jVm9kulbp7rkHSTu3emn3OzpN9JSki6x91rhnQEAADgXYZ6F/1Dkh7qZdnfSfq7Htofk/TYAHe1ZODV5RWOL79xfPkr5GOTOL58N6TjM3fPViEAAGCYYKhaAAACNOwCvhCGvz3IzH5hZivTjzfMbGW6fZaZHchY9qOYSx0UM/uGmW3POI6LM5b1eC7zhZndbmavmtlqM3vIzMam24M4d1L+/lz1xsymm9l/mdm69O+YW9Ltvb5O803698ia9HEsS7eNN7OnzGxj+t9xcdc5UGY2L+P8rDSzRjO7Nd/PnZndY2Z1mR8D7+18Wco/p38eV5vZe464A3cfVg9Jxyn12b9nJVVntB8vaZWkMkmzJW1W6ka9RHr6aEml6XWOj/s4BnHcd0r6enp6lqS1cdeUhWP6hqS/7qG9x3MZd70DPLYPSCpOT/+jpH8M7NwF8XPV7ZiqJL0nPT1K0p/Sr8UeX6f5+JD0hqSJ3dq+LenL6ekvH3yt5usj/drcIWlmvp87SedIek/m74zezpekiyU9LskknSHpD0fa/rDrwbv7enfvadD3Q8Pfuvvrkg4Of7tI6eFv3b1N0sHhb/OGpcb6vVLS0rhryZHezmXecPcn3b0jPfuSUmM6hCTvf666c/dad38lPd0kab3eGWEzZJdJujc9fa+kD8dXSlacL2mzu+f9t3+5+3OSdnVr7u18XSbpPk95SdJYM6vqa/vDLuD7ME3vHuZ2Wh/t+eRsSW+7+8aMttlmtsLMfm9mZ8dVWBbcnL6cdE/GpcEQzlmmTyn1l/VBIZy70M7RYcxslqRTJP0h3dTT6zQfuaQnzWy5pUYDlaTJ7l6bnt4haXI8pWXNVTq8MxTKuTuot/M14J/JWALezJ42s7U9PPK6h9CTfh7r1Tr8BVsraYa7nyLpC5IeMLPRuay7v45wfD+UdIykhUod051x1jpQ/Tl3ZvY1pcZ6uD/dlDfnrlCZWYWkByXd6u6NyvPXaTfvdff3KPWNnTeZ2TmZCz11rTdvPzplqQHSPiTpV+mmkM7duwz1fEX1ZTN98piGv43DkY7VzIqV+srdUzOe0yqpNT293Mw2S5oraUjDFkahv+fSzO6S9Nv0bF/nctjox7n7hKRLJZ2f/kHMq3N3BHlxjgbKzEqUCvf73f0/JMnd385Ynvk6zTvuvj39b52ZPaTUWy1vm1mVu9emL+nWxVrk0Fwk6ZWD5yykc5eht/M14J/JfLpEH+rwtxdIetXdtx1sMLNKM0ukp49W6ljz7rtqu70/dLmkg3eK9nYu84aZXSjpi5I+5O7NGe1BnDvl/8/Vu6Tvdblb0np3/05Ge2+v07xiZkkzG3VwWqkbQdcqdd6uTa92raTIviQsBw672hnKueumt/P1iKSPp++mP0PS3oxL+T2KpQffFyu84W+7v58kpe6s/KaZtUvqknSDu3e/ESMffNvMFip1iekNSddLUl/nMo98X6lPATyVyg295O43KJBz5+4def5z1ZOzJF0jaY2lP5Iq6auSru7pdZqHJkt6KP16LJb0gLs/YWZ/lPRLM/u0pC1K3dCbd9J/tLxfh5+fHn/H5AszWyrpfZImmtk2SX8j6Vvq+Xw9ptSd9JskNUv65BG3n76yCAAAApJPl+gBAEA/EfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAEKD/D4XnpG3c2VeUAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgz0lEQVR4nO3dfZAddZ3v8c9nZvJMIIFMQiAEEgjhQTSEEbg8k0QFV0G29rLgFuLD3oiKhd7r7kWp3fVaS+36wFooRg1KLZYKssuychE1oFy4izcsE4QkEB4SIDhx8kAimTzOZGa+94/p4MkweZo5ffqc33m/qk5Nn1+f7v529Tnzmf717/Q4IgQAANLSUHQBAACg/Ah4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQWUJeNt32F5ve3lJ2+G2H7L9UvZzfNZu29+wvdL2Utuzy1EDAAD4o3Kdwf+zpEv6td0o6VcRMUPSr7LnknSppBnZY76kb5epBgAAkClLwEfEY5I29Wu+XNKd2fSdkj5Q0v6D6LNY0jjbk8tRBwAA6JPnNfhJEdGeTa+VNCmbPlrS70pe15a1AQCAMmmqxEYiImwf1D1xbc9XXxe+xowZc8ZJJ52US20Aas+2bdu0efPmosvYw6hRo3TYYYepoYGxy6nrlbR6R6emjRqR63aWLFnyekQ0D3b5PAN+ne3JEdGedcGvz9rXSDqm5HVTsrY9RMRCSQslqaWlJVpbW3MsFUCt6Orq0q233qpt27YVXcpbjBw5UvPmzdPs2bMJ+oTd8spadXT36H/NyLfz2fbqoSyf5zvwfknXZtPXSvppSfuHstH0Z0vaXNKVDwD7tHjx4qoMd0nauXOnHnjgAd1xxx1au3Zt0eUgB2s7d+m219br3PGHFF3KfpXra3J3Sfp/kmbabrP9MUn/KOldtl+SNC97LkkPSnpZ0kpJt0v6ZDlqAJC+7du36/HHHy+6jP1qa2vTd7/7XS1atEhdXV1Fl4My+oeX29XZ26uzx1V/wJeliz4irt7LrLkDvDYkfaoc2wVQXx5//HF1dnYWXcYBiQj95je/0bPPPqtLL71UjCOqfSu27tA9azfp7WNH6dCmxqLL2S8uEgGoCR0dHXriiSeKLuOgbd68WXfffbfuvvvuqhsYiIMzblhfqJ87bmzBlRyYioyiB4Cheuyxx9Td3V10GYP2/PPPa9WqVbr44ot11llnqbGx+s8AsafJI4brvPGH1MT1d4kzeAA1YNOmTXrqqaeKLmPIdu3apUWLFun2229XW1tb0eVgEP78yMN11mFjii7jgBDwAKreI488ot7e3qLLKJu1a9fqe9/7nh544AHt2LGj6HJwEK6YNF6H1MD1d4mAB1Dl1q5dq2XLlhVdRi5aW1v1rW99S8uWLVPf+GNUu0a76BIOGAEPoKr9+te/LrqEXG3dulX33nuvfvjDH2rjxo1Fl4OEEPAAqtZrr72mF198segyKmLVqlVasGCBHn300ZoeTIjqwSh6AFUpIvTwww8XXUbZNTQ0qKmpaa+P1atXq7OzUxdeeKFGjMj3XudIGwEPoCqtXLlSr732WtnX29jYuM+AHczjYNbJPepRKQQ8gKq0bt06zZo1q+xB7BoaJAUMBQEPoCqdd955ezyPnl5FZ48aRg8rqCKgttBXBKAmuLFBvTu61bNtV9GlADWBgAdQM5qOGKWu1R2K7nRuegPkhYAHUFNGzhyvrYvbiy4DqHoEPICa4sYGjZw5XlseX1N0KUBVI+AB1JxhzaPVMKJR25e9XnQpQNUi4AHUpDEtR2rnio3qattSdClAVSLgAdSsce+brjfuX6Wejs6iSwGqDgEPoGY1jB6mwy45Tq//4Dn1dvUUXQ5QVQh4ADVtxPRxGjljvP5wzwv8y1WgBAEPoOYdOu9YdW/uUsei1UWXAlQNAh5AzXOjdcRVM7X1N7/XrvXbiy4HqAoEPIAkNB0xSkd88CQ1NY8quhSgKvDPZgAkY+TMw4suAaganMEDAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASFBTniu3PVPST0qapkv6W0njJP03SRuy9i9ExIN51gIAQD3JNeAj4gVJsyTJdqOkNZLuk/QRSV+PiK/luX0AAOpVJbvo50paFRGrK7hNAADqUiUD/ipJd5U8v972Utt32B7f/8W259tutd26YcOG/rMBAMA+VCTgbQ+XdJmkf8mavi3pePV137dLuqX/MhGxMCJaIqKlubm5EmUCAJCMSp3BXyrpqYhYJ0kRsS4ieiKiV9Ltks6sUB0AANSFSgX81Srpnrc9uWTeFZKWV6gOAADqQq6j6CXJ9hhJ75L08ZLmr9ieJSkkvdpvHgAAGKLcAz4itkk6ol/bNXlvFwCAesad7AAASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABDXlvQHbr0raIqlHUndEtNg+XNJPJB0n6VVJV0bEH/KuBQCAelGpM/iLI2JWRLRkz2+U9KuImCHpV9lzAABQJkV10V8u6c5s+k5JHyioDgAAklSJgA9Ji2wvsT0/a5sUEe3Z9FpJkypQBwAAdSP3a/CSzouINbYnSnrI9vOlMyMibEf/hbI/BuZL0tSpUytQJgAA6cj9DD4i1mQ/10u6T9KZktbZnixJ2c/1Ayy3MCJaIqKlubk57zIBAEhKrgFve4ztsbunJb1b0nJJ90u6NnvZtZJ+mmcdAADUm7y76CdJus/27m39OCJ+YftJSffY/pik1ZKuzLkOAADqSq4BHxEvS3rHAO0bJc3Nc9sAANQz7mQHAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAQN3p6e3Rzu6dRZeRq6aiCwAAoNIa3KAFzyzQ/Svv19GHHK2jDjlKRx1y1B7TR405SiObRhZd6qAR8ACAumNbn539WTWoQd9f/n0tfX3pgK87YuQRNfsHAAEPAKhLtnXD7BvU4Abdvuz2AV+zcedGbdy5sSb/ACDgAQB1y7Y+ffqn1eAGfXfpdw96+Wr+A4CABwDUNdu6/vTr1ehGLXhmQVnXfaB/AMyZOkcfO+1jZd02o+gBAJD0iVmf0CdnfbKi29wd/kvWLSn7ugl4AAAyn3jHJ/Tp0z9d8e129XaVfZ0EPAAAJea/fb5umH1DRbe5q2dX2ddJwAMA0M9fnvaX+uwZn63Y9rp6OIMHAKAiPvq2j+pzLZ+ryLboogcAoIKuPfVa/VXLX+W+Hc7gAQCosA+d+iHdeOaNuW5jVy/X4AEAqLi/OPkv9PkzP5/b+hlkBwBAQT548gd101k35bJursEDAFCgq066Sn9z9t+Ufb1cgwcAoGBXzrxSf/df/q6s6+QMHgCAKvBnJ/6ZvnTOl2S5LOvr7u1Wb/SWZV27EfAAAAzCFTOu0JfOLV/Il3skPQEPAMAgfeCED+jvz/v7soR8ua/D5xbwto+x/Yjt52w/a/uGrP2LttfYfjp7vDevGgAAyNtlx1+mm8+7WQ0eWqSWO+Dz/H/w3ZL+R0Q8ZXuspCW2H8rmfT0ivpbjtgEAqJj3H/9+NbhBX/iPLwz6Wnq5u+hzC/iIaJfUnk1vsb1C0tF5bQ8Aqllvbygi1NjIldFU/cn0P1GjG3Xj/71RPdFz0MvXTBd9KdvHSTpd0hNZ0/W2l9q+w/b4StQAAEVavex1/ey2Z/TG+u1Fl4IcXTLtEn35gi+r0Y0HvWzNBbztQyTdK+kzEdEh6duSjpc0S31n+LfsZbn5tlttt27YsCHvMgEgV9Pe0ax5HzlVT/1ytVYuWV90OcjRe457j7564VfV5IPrJC/3d+FzDXjbw9QX7j+KiH+TpIhYFxE9EdEr6XZJZw60bEQsjIiWiGhpbm7Os0wAqIjRhw7XnGtOli09+bNX1LOrvN97RvV417Hv0tcu/NpBhXzNnMHbtqTvS1oREf9U0j655GVXSFqeVw0AUI2Onz1Rp104RcsfW6PNG3YUXQ5yMvfYubrlolvU1HBgIV9L34M/V9I1kub0+0rcV2wvs71U0sWSPptjDQBQlUYeMkzvmHuMtm3u1NpXNhddDnIyZ+ocff2irx9QyNfM1+Qi4j+kAb/5/2Be2wSAWnPUCePUuaNbr7dt1fgjR6uxiVH2qbnomIt068W36jOPfGafZ+k100UPADgwI0Y1acKUQ9Td1aPojaLLQQ4umHKBbr34Vg1vGL7X19RSFz0A4CCMGD1MbijPfc1Rfc6fcr6+Mecbew35mhpFDwAA/ujco8/VN+d+UyMaR7xl3q4ezuABAKhZ5xx1jm6be5tGNo7co51r8AAA1LizJ5/9lpCnix4AgAScNfksLZi3QKOaRkniDB4AgGS888h3asHcvpDnDB4AgIS0HNmi78z7joY1DCvrevP8f/AAAOAAzJ40W6dNOK2s6+QMHgCAKjCssbxn8AQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeQLIiehQRRZcBFIKAB5Asu1G9vTuKLgMoBAEPIGm9vV1FlwAUgoAHkDQCHvWKgAeQNAIe9YqAB5A0u0E9PTuLLgOoOAIeQNJGjJisHTtWF10GUHGFBbztS2y/YHul7RuLqgNA2myrt7ez6DKAiisk4G03SvqWpEslnSLpatunFFELgPRxHR71qKgz+DMlrYyIlyOiS9Ldki4vqBYAieMMHvWoqIA/WtLvSp63ZW1vsj3fdqvt1g0bNlS0OABpaWoaq66ujUWXAVRU1Q6yi4iFEdESES3Nzc1Fl4OD1PH6Bu3Y0sFtQlEVxoyZqS1bni26DKCimgra7hpJx5Q8n5K1oca1r3xBPV27NGn6CRo2cmTR5QCSpMbGEeru7ii6DKCiigr4JyXNsD1NfcF+laQPFlQLyuCVp5eoY8N6TZ/9To09YkLR5QBvwUA71JtCAj4ium1fL+mXkhol3RER9J/VoI1tr2npw7/QyeddpGmzzii6HGCvemOXIkK2iy4FqIiizuAVEQ9KerCo7WPodnXu1I6ODl384flFlwLs18gRk7Vjx6saPXpa0aUAFVG1g+xQ/YaNGKkpp7yt6DKAAzJ27Cna3PFM0WUAFUPAA6gLw4dPUOfO3xddBlAxBDyAusFAO9QTAh5AXSHkUS8IeAB1Y/To6dqydUXRZQAVQcADqBtjx56ijs1PF10GUBEEPIC6MXr0NG3d9kLRZQAVQcADqBt2o3p7dhZdBlARBDyAunLoYacroqfoMoDcFXYnOwAowjFTrim6BKAiOIMHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAA6h5z/2+Q//7md9r845dRZcCVA3+XSyAmtfd26tP3/VbNTVYZxw7XnNOmqi5J0/UCRPHFl0aUBgCHkDNO3HSWB09bpTWvLFDT7yySU+8skn/8PPnNfXw0Zpz0kRdfNJEnT39cI1oaiy6VKBiHBFF17BfLS0t0draWnQZAKrcG9u7tKJ9i1a0d+j5tR1a0b5FL67bos7uXo0e3qhzT5igOSdN1JyTJmrSoSOLLhfYJ9tLIqJl0MsT8ABS1tMbennDVj3X3vFm+L+wdosmjB2uOTP7zu7fMWWcGhpcdKnAHoYa8HTRA0haY4M1Y9JYzZg0VpfP+mP7pm1dWtHeoSWr/6CfL1+riWNH6Ngjxujs6Ydr7MhhhdULlAsBD6AuHT5muM49YYLOPWHCm227enq1euN2bevs0cSxIzirR00j4AEgM6yxQSdMPKToMoCy4HvwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEpRLwNv+qu3nbS+1fZ/tcVn7cbZ32H46e3wnj+0DAFDv8jqDf0jS2yLi7ZJelPT5knmrImJW9rgup+0DAFDXcgn4iFgUEd3Z08WSpuSxHQAAMLBKXIP/qKSflzyfZvu3th+1fX4Ftg8AQN1pGuyCth+WdOQAs26KiJ9mr7lJUrekH2Xz2iVNjYiNts+Q9O+2T42IjgHWP1/SfEmaOnXqYMsEAKAuDTrgI2Levubb/rCk90maGxGRLdMpqTObXmJ7laQTJbUOsP6FkhZKUktLSwy2TgAA6lFeo+gvkfTXki6LiO0l7c22G7Pp6ZJmSHo5jxoAAKhngz6D34/bJI2Q9JBtSVqcjZi/QNKXbO+S1CvpuojYlFMNAADUrVwCPiJO2Ev7vZLuzWObAADgj7iTHQAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQoNwC3vYXba+x/XT2eG/JvM/bXmn7BdvvyasGAADqVVPO6/96RHyttMH2KZKuknSqpKMkPWz7xIjoybkWAADqRhFd9JdLujsiOiPiFUkrJZ1ZQB0AACQr74C/3vZS23fYHp+1HS3pdyWvacvaAABAmQwp4G0/bHv5AI/LJX1b0vGSZklql3TLQa57vu1W260bNmwYSpkAANSdIV2Dj4h5B/I627dLeiB7ukbSMSWzp2Rt/de9UNJCSWppaYmh1AkAQL3JcxT95JKnV0hank3fL+kq2yNsT5M0Q9J/5lUHAAD1KM9R9F+xPUtSSHpV0sclKSKetX2PpOckdUv6FCPoAQAor9wCPiKu2ce8myXdnNe2AQCod9zJDgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCmvJYqe2fSJqZPR0n6Y2ImGX7OEkrJL2QzVscEdflUQMAAPUsl4CPiD/fPW37FkmbS2aviohZeWwXAAD0ySXgd7NtSVdKmpPndgAAwJ7yvgZ/vqR1EfFSSds027+1/ajt8/e2oO35tlttt27YsCHnMgEASMugz+BtPyzpyAFm3RQRP82mr5Z0V8m8dklTI2Kj7TMk/bvtUyOio/9KImKhpIWS1NLSEoOtEwCAejTogI+Iefuab7tJ0p9KOqNkmU5Jndn0EturJJ0oqXWwdQAAgLfKs4t+nqTnI6Jtd4PtZtuN2fR0STMkvZxjDQCAWvD6yqIrSE6eAX+V9uyel6QLJC21/bSkf5V0XURsyrEGAEAtWP6vRVeQnNxG0UfEhwdou1fSvXltEwBQo15aJJ39CWnkYUVXkgzuZAcAKNaunVL7UukPq4uuJCkEPACgWGuXSr27pDcI+HIi4AEAxWp7su/nH14ttIzUEPAAgGK9GfCcwZcTAQ8AKFZbdisUuujLioAHABSno13a/Lu+ac7gy4qABwAUZ03JjUzfeE0K7kxeLgQ8AKA4u6+/S1L3Dmnr+uJqSQwBDwAoTlu/f0XCdfiyIeABAMXo6ZbWPLVnG9fhy4aAB1BVtj/55P5fhDSsf7avW77UG68WUkqKCHgAVaNn61b9/n/eqGCgVX1oG+CPOW52UzYEPICqsX3xYo1997tlu+hSUAn9r79LdNGXEQEPoGpsffxxHfr+9xVdBiploDN4BtmVDQEPoGp0t6/VqFNPLboMVML2TdLGlW9t37ymb/AdhoyAB1AVutraNPLtpxVdBiplzZKB26NH6mirbC2JIuABVIVtj/9Gh72P7vm6MVD3/G5chy8LAh5AVejdukXDp04tugxUyr4CnuvwZUHAAyhc9PSoqbm56DJQKb29UtteuuglzuDLhIAHULidz63QmHPOKboMVMrGl6TOzXufzxl8WRDwAIoXvWqaMKHoKlAp++qeHz1Bap5ZuVoS1lR0AQDQePjhRZeASuof8GMnSye/Xzr5MunYc6SGxmLqSgwBD6BQ0d3N9fd609YqjZvaF+inXC4d3SI10KFcbgQ8gEK5qUlu4ldR3YiQrviONOltErckzhWfKgBA5djSkdzQqBLoEwEAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIKGFPC2/6vtZ2332m7pN+/ztlfafsH2e0raL8naVtq+cSjbBwAAAxvqGfxySX8q6bHSRtunSLpK0qmSLpG0wHaj7UZJ35J0qaRTJF2dvRYAAJRR01AWjogVkmS7/6zLJd0dEZ2SXrG9UtKZ2byVEfFyttzd2WufG0odAABgT3ldgz9a0u9KnrdlbXtrBwAAZbTfM3jbD0s6coBZN0XET8tf0pvbnS9pfva00/byvLZVBSZIer3oInLE/tW2lPcv5X2T2L9aN3MoC+834CNi3iDWu0bSMSXPp2Rt2kd7/+0ulLRQkmy3RkTLQK9LAftX29i/2pXyvknsX62z3TqU5fPqor9f0lW2R9ieJmmGpP+U9KSkGban2R6uvoF49+dUAwAAdWtIg+xsXyHpm5KaJf3M9tMR8Z6IeNb2PeobPNct6VMR0ZMtc72kX0pqlHRHRDw7pD0AAABvMdRR9PdJum8v826WdPMA7Q9KevAgN7Xw4KurKexfbWP/alfK+yaxf7VuSPvniChXIQAAoEpwq1oAABJUdQFfT7e/tf0T209nj1dtP521H2d7R8m87xRc6qDY/qLtNSX78d6SeQMey1ph+6u2n7e91PZ9tsdl7UkcO6l2P1d7Y/sY24/Yfi77HXND1r7X92mtyX6PLMv2ozVrO9z2Q7Zfyn6OL7rOg2V7Zsnxedp2h+3P1Pqxs32H7fWlXwPf2/Fyn29kn8eltmfvdwMRUVUPSSer77t//0dSS0n7KZKekTRC0jRJq9Q3UK8xm54uaXj2mlOK3o9B7Pctkv42mz5O0vKiayrDPn1R0ucGaB/wWBZd70Hu27slNWXTX5b05cSOXRKfq377NFnS7Gx6rKQXs/figO/TWnxIelXShH5tX5F0YzZ94+73aq0+svfmWknH1vqxk3SBpNmlvzP2drwkvVfSzyVZ0tmSntjf+qvuDD4iVkTECwPMevP2txHxiqTdt789U9ntbyOiS9Lu29/WDPfd6/dKSXcVXUuF7O1Y1oyIWBQR3dnTxeq7p0NKav5z1V9EtEfEU9n0FkkrVB930rxc0p3Z9J2SPlBcKWUxV9KqiFhddCFDFRGPSdrUr3lvx+tyST+IPosljbM9eV/rr7qA34eUb397vqR1EfFSSds027+1/ajt84sqrAyuz7qT7ijpGkzhmJX6qPr+st4thWOX2jHag+3jJJ0u6YmsaaD3aS0KSYtsL3Hf3UAlaVJEtGfTayVNKqa0srlKe54MpXLsdtvb8Troz2QhAW/7YdvLB3jU9BnCQA5wX6/Wnm/YdklTI+J0Sf9d0o9tH1rJug/Ufvbv25KOlzRLfft0S5G1HqwDOXa2b1LfvR5+lDXVzLGrV7YPkXSvpM9ERIdq/H3az3kRMVt9/7HzU7YvKJ0ZfX29NfvVKffdIO0ySf+SNaV07N5iqMdrSN+DH6wo6Pa3RdjfvtpuUt+/3D2jZJlOSZ3Z9BLbqySdKGlIty3Mw4EeS9u3S3oge7qvY1k1DuDYfVjS+yTNzT6INXXs9qMmjtHBsj1MfeH+o4j4N0mKiHUl80vfpzUnItZkP9fbvk99l1rW2Z4cEe1Zl+76QoscmkslPbX7mKV07Ers7Xgd9GeylrroU7397TxJz0dE2+4G2822G7Pp6erb15cLqm/Q+l0fukLS7pGiezuWNcP2JZL+WtJlEbG9pD2JY6fa/1y9RTbW5fuSVkTEP5W07+19WlNsj7E9dve0+gaCLlffcbs2e9m1knL7J2EVsEdvZyrHrp+9Ha/7JX0oG01/tqTNJV35AyrkDH5fXH+3v+1/PUnqG1n5Jdu7JPVKui4i+g/EqAVfsT1LfV1Mr0r6uCTt61jWkNvU9y2Ah/pyQ4sj4jolcuwiorvGP1cDOVfSNZKWOftKqqQvSLp6oPdpDZok6b7s/dgk6ccR8QvbT0q6x/bHJK1W34DempP90fIu7Xl8BvwdUyts3yXpIkkTbLdJ+jtJ/6iBj9eD6htJv1LSdkkf2e/6s55FAACQkFrqogcAAAeIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABP1/EgPb6K22ORgAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkqklEQVR4nO3deXQc9Znu8eeVZHnHLBa2LONgg1lsGAwo3CSsCRCWYR9C4NybgSRznZwLAw7JyUCYJUPCGQghySSTZZwTJ4SwhAwDIRknwUC2CcNig2MkWcaWLS/ClrxLtmRt/d4/uozbRrLVUleX+tffzzk6rv5Vd9dTp1p6XNXV1ebuAgAAYSlJOgAAAMg9Ch4AgABR8AAABIiCBwAgQBQ8AAABouABAAhQTgrezBaYWYuZ1WSMHWlmi8xsZfTvEdG4mdk3zWyVmS0zszNykQEAAOyTqz34H0m69ICxuyS94O4zJb0Q3ZakyyTNjH7mSvpujjIAAIBITgre3f8gadsBw1dLejiafljSNRnjP/a0lyUdbmaVucgBAADS4nwPfpK7b4ymN0maFE1XSVqfcb8N0RgAAMiRsnwsxN3dzLK6Jq6ZzVX6EL7Gjh175kknnRRLNgAAhqMlS5ZscfeKwT4+zoJvNrNKd98YHYJvicabJB2Tcb+p0dh+3H2+pPmSVF1d7YsXL44xKgAAw4uZrR3K4+M8RP+spJuj6Zsl/Txj/K+js+nfJ2lnxqF8AACQAznZgzezxyVdIGmimW2Q9E+S7pf0pJl9UtJaSTdEd18o6XJJqyS1S/p4LjIAAIB9clLw7n5TP7Mu7OO+LunWXCwXAAD0jSvZAQAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8ECoeruTTgAgQRQ8EKrudmnt/ySdAkBCKHggVKMmSG1vSyt+lXQSAAmg4IGQzb5OWvxDaeWipJMAyDMKHgiZmXTZ/dJTfyM1vJh0GgB5RMEDoTtyhnT27dLjN0lr/pB0GgB5QsEDxeADt6eL/rGPSo1/SjoNgDyg4IFiUDpCuvKbUneH9OhHpHWvJJ0IQMwoeKBYHPNe6b2flLp3Sz/5K2nD4qQTAYgRBQ8Ukwv/URpfKXW1SY9cJzW9nnQiADGh4IFiMmqCdNlX0tOdO6VHrpU2Lks2E4BYUPBAsTn5SunEy9PTe3ZIP75aaq5NNBKA3KPggWJjJl3+oFQ+Ln27Y5v08FVSS32yuQDkFAUPFKMJU6UP/cO+2+1bpIevlLasTC4TgJyi4IFiddb/laacse/27pZ0yW9tSC4TgJyh4IFiVVIqXfmvkpXuG2vbmC75bWuSywUgJyh4oJhV/oX0/lv3H2ttSpf8jnXJZAKQExQ8UOwuuEs6fNr+YzvXSz+6QtrZlEwmAENGwQPFrnys9Jdff/f4jrXSw1dIrRvznwnAkFHwAKSZF0mnXP/u8W2r04fr25rznwnAkFDwANIu/Zf0le4OtHWl9OOrpF2b858JwKBR8ADSxh0tXfylvudtrk9f8W731vxmAjBoFDyAfU7/mDTtA33Pa6mVHrlaat+W30wABoWCB7BPSYl05Tek0vK+5296M/0FNR078pkKwCBQ8AD2V3GidM6d/c/fuDT9ffJ7WvMWCUD2KHgA73bundJRM/uf31wj9ezJXx4AWaPgAbxb2cj0ofr+nHlL+qQ8AMMWBQ+gb8eekz7p7kCl5dIHbs9/HgBZibXgzexEM1ua8dNqZvPM7Itm1pQxfnmcOQAM0sX3SmMr9h+b87+lCVXJ5AEwYLEWvLuvcPc57j5H0pmS2iU9Hc3++t557r4wzhwABmnMkdKl9++7baXSOfMSiwNg4PJ5iP5CSQ3uvjaPywQwVKf8lXTchenp026Ujjg20TgABiafBX+jpMczbt9mZsvMbIGZHXHgnc1srpktNrPFmzdziUwgMWbSFV+Tyscd/ONzAIYVc/f4F2JWLultSbPdvdnMJknaIsklfUlSpbt/or/HV1dX++LFi2PPCeAgml6Xqs5IOgVQNMxsibtXD/bx+dqDv0zS6+7eLEnu3uzuve6ekvR9SWflKQeAwaLcgYKSr4K/SRmH582sMmPetZJq8pQDAICiUBb3AsxsrKSLJX0qY/grZjZH6UP0jQfMAwAAQxR7wbv7bklHHTDWx9UzAABArnAlOwAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCj4IpZqb086AgAgJhR8EeveuFGbvnyfultako4CAMgxCr6IjTzuOI2cOVMNl16mzd/5jlIdHUlHAgDkCAVf5A6/4SMad9552vLNb6nh0su04+ln5KlU0rEAAENEwRc5M1Plvf+sEVVV6mlu1sa779aa66/X7pdfSToaAGAIKHio9LDDVPW1h6SyMklSZ91yrbvlFq3/f7eqc/WahNMBAAaDgockafRpp+noz8zbb2zXiy9q9VVXadOX71PP9u3JBAMADAoFj3cc+fGPa+w55+w/2NOj7T/5iRo+fInafvvbZIIBALJGweMdVlKiKQ/cr9KKie+al2prk5WXJ5AKADAYFDz2U3bUUap64AHJbL/xkvHjNfa9700oFQAgWxQ83mXsBz6go+bO3W9s3PnnswcPAAWEgkefKv72No0+44x3bo+/6MIE0wAAskXBo09WVqaqrz6oksMOk5WXa+w55yYdCQCQBQoe/RoxZYoq7/uyxr7//SodNzbpOACALJQlHQDD22EXX6zRs2cnHQMAkCX24HFII6ZMSToCACBLFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQoNi/LtbMGiW1SeqV1OPu1WZ2pKSfSjpWUqOkG9x9e9xZAAAoFvnag/+gu89x9+ro9l2SXnD3mZJeiG4DAIAcSeoQ/dWSHo6mH5Z0TUI5AAAIUj4K3iU9Z2ZLzGxuNDbJ3TdG05skTcpDDgAAikbs78FLOsfdm8zsaEmLzKw+c6a7u5n5gQ+K/jMwV5KmTZuWh5gAAIQj9j14d2+K/m2R9LSksyQ1m1mlJEX/tvTxuPnuXu3u1RUVFXHHBAAgKLEWvJmNNbPxe6clfVhSjaRnJd0c3e1mST+PMwcAAMUm7kP0kyQ9bWZ7l/WYu//azF6T9KSZfVLSWkk3xJwDAICiEmvBu/tqSaf1Mb5V0oVxLhsAgGLGlewAAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgADFVvBmdoyZ/dbM6sys1szuiMa/aGZNZrY0+rk8rgwAABSrshifu0fSZ939dTMbL2mJmS2K5n3d3b8a47IBAChqsRW8u2+UtDGabjOz5ZKq4loeAADYJy/vwZvZsZJOl/RKNHSbmS0zswVmdkQ+MgAAUExiL3gzGyfpKUnz3L1V0nclHSdpjtJ7+A/187i5ZrbYzBZv3rw57pgAAAQl1oI3sxFKl/uj7v6fkuTuze7e6+4pSd+XdFZfj3X3+e5e7e7VFRUVccYEACA4cZ5Fb5J+IGm5u38tY7wy427XSqqJKwMAAMUqzrPoz5b0MUlvmtnSaOwLkm4yszmSXFKjpE/FmAEAgKIU51n0/y3J+pi1MK5lAgCANK5kBwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDAILU0dGRdIRElSUdAACAXFu2bJmeeeYZjRkzRlOnTtXUqVNVVVWlqqoqlZeXJx0vLyh4AEBQXn/9df3iF7+Qu2vXrl2qr69XfX29JMnMdPTRR79T+lOnTtXEiRNlZgmnzj0KHgAQjFdffVULFy7sd767q7m5Wc3NzVqyZIkkadSoUaqqqtK0adM0c+ZMVVZWBlH4FDwAIAgvvfSSnnvuOUnSiBEjNHr0aI0ZM+adfzOn+5o3cuTIIIp9LwoeAFDwent7NWPGDN15550aPXq0RowYkXSkxFHwAICCV1paqsmTJycdY1jhY3IAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgBIreDO71MxWmNkqM7srqRwAAIQokYI3s1JJ35Z0maRZkm4ys1lJZAEAIERJ7cGfJWmVu6929y5JT0i6OqEsAIAEdPd2Jx0haEkVfJWk9Rm3N0Rj7zCzuWa22MwWb968Oa/hAADxeq7xOfV6b9IxgjZsT7Jz9/nuXu3u1RUVFUnHAQDkyGPLH1NbV5tGlY1KOkrQkir4JknHZNyeGo0BAAL21FtP6YkVT+ia469JOkrwkir41yTNNLPpZlYu6UZJzyaUBQCQJwtqFuj2029XaUlp0lGCV5bEQt29x8xuk/QbSaWSFrh7bRJZAAD5saVji44YdYQues9FSUcpCokUvCS5+0JJC5NaPgAgv5a2LNW8M+YlHaNoDNuT7AAAYRlXPk7Vk6uTjlE0KHgAQF6cOenMpCMUFQoeAJAXI0pGJB2hqFDwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4xC6V6k06AgAUHQoeserqaNeeXbuSjgEARYeCR2zaW3fKrERjDpuQdBQAKDplSQdAeHp7etTZvlujxo1TSUlp0nEAoChR8Mip7j17lEql2GsHgIRxiB454e7as3uXrLRUI8eMSToOABQ99uAxZL09Perp6tLIMWNlZknHAQCIgscQdXd1ShJ77QAwzFDwGBR3V09Xp0rLRqiklBPpAGC44T14ZC3V26ue7i6NGDmKcgcKUHtrV9IRkAcUPLLS29Mtd9eI8pFJRwGQpc6OHj33g1q1bd2TdBTkAYfoMSDurlRvj0pKSmUl/L8QKDRvr9yh539Yp9HjR2jS9MOSjoM8oOBxSJ5Kyd1VWjYi6SgAstTbm9Li/2rUkl81yl0668rpSUdCnsRS8Gb2oKQrJXVJapD0cXffYWbHSlouaUV015fd/dNxZEBuuLtkphL22oGCs6OlXYsW1KmlsVWSNGrsCB1ffXTCqZAvce3BL5J0t7v3mNkDku6W9HfRvAZ3nxPTcpFD7i5JfLYdKDDurvr/2ag//HSlejr3fZvjrHMqVTaCE2OLRSwF7+7PZdx8WdL1cSwH8aLYgcKzZ3e3fvdovRpe37z/DJNmn1uVTCgkIh/vwX9C0k8zbk83szcktUr6e3f/Yx4yAEDwNqzYrud/WKfdOzrfNe/YUyfqsImjE0iFpAy64M3seUmT+5h1j7v/PLrPPZJ6JD0azdsoaZq7bzWzMyU9Y2az3b21j+efK2muJE2bNm2wMQEgeL09Kb3y7Gq9sWid5H3f59QL2HsvNoMueHe/6GDzzewWSVdIutCjN3PdvVNSZzS9xMwaJJ0gaXEfzz9f0nxJqq6u7uclCwDFbfum3Vq0oE6b17X1e58JR4/WMScdmcdUGA7iOov+Ukmfl3S+u7dnjFdI2ubuvWY2Q9JMSavjyAAAIXN31f7xbf3pZyvV05066H1PPX+qrIRzaopNXO/B/5ukkZIWRSdq7f043HmS7jWzbkkpSZ92920xZQCAIHW0denFR+rVuGzLIe9bVl6ik97f17upCF1cZ9Ef38/4U5KeimOZAFAM1tVt1Qs/Wj7g68mf8L8ma+QYLlJVjLiSHQAUgJ7uXr389Gr9+cX1WT3u1POnxpQIwx0FDwDD3NamXVq0oFZbm3Zn9bjK4ydo4tRxMaXCcEfBA8Aw5e5683cb9NJTDertOfiJdH059QL23osZBQ8Aw1B7a5deeHi51tVuHdTjx0wo14w5FTlOhUJCwQPAMNO4bItefGS5Otq6B/0cs8+ZotIyviSqmFHwADBMdHf16qWnVqnm901Dep6SEuO686DgAWA42Ly+TYt+UKvtm9oPfedDmHF6hcYePjIHqVDIKHgASJCnXEtfWK+Xn2lQqjc3V+XmuvOQKHgASMyu7Z164eE6bajfnrPnPHLKWFUef3jOng+Fi4IHgASsfmOzXvzJcnXu7snp8556wVRFlwhHkaPgASCPuvb06E8/W6m6P23M+XOXjyrVCWdNyvnzojBR8ACQJ82NrVq0oFY7Wzpief6T3l+p8lH8WUcarwQAiFkq5XrjubV69dk1SqVycyJdX045n5PrsA8FDwAx6mjr0q/n1+jtlTtiXc4xJx+hIyaPjXUZKCxc5ggAYjR6fLk++H9O0tnXH6+qE49QSUk8J8CdwrfG4QDswQNAzA6fNEZzJk3TnIumqbOjR+vrtqnxzS1aW7NVe3YN/nK0e407cqSO/YuJOUiKkFDwAJBHI0eX6fgzj9bxZx6tVMrV0tiqxmVb1PjmVm1t2jWo5zzlvKrYjgygcFHwAJCQkhLT5BkTNHnGBL3vmuPUtm2P1r65RWuWbVXTiu0D+orY0rISzTp7Sh7SotBQ8AAwTIw/cpROOX+qTjl/qro7e7Whfpsa39yqxje3qH1nV5+POb76aI0eX57npCgEFDwADEMjRpZq+mkVmn5ahdxdW9bvUuObW9S4bIta1ra9c79TObkO/aDgAWCYMzNVTBuvimnj9d6/nK7dOzu1tmartr29W5OmH5Z0PAxTFDwAFJixE0byvjsOic/BAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgBQFHZ39mjt1t1Jx8gbLlULACgKY0eWaezI4qk99uABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAEKDYCt7MvmhmTWa2NPq5PGPe3Wa2ysxWmNklcWUAAKBYxf21Ol93969mDpjZLEk3SpotaYqk583sBHfvjTkLAABFI4lD9FdLesLdO919jaRVks5KIAcAAMGKu+BvM7NlZrbAzI6Ixqokrc+4z4ZoDAAA5MiQCt7Mnjezmj5+rpb0XUnHSZojaaOkh7J87rlmttjMFm/evHkoMQEAKDpDeg/e3S8ayP3M7PuSfhndbJJ0TMbsqdHYgc89X9J8Saqurvah5AQAoNjEeRZ9ZcbNayXVRNPPSrrRzEaa2XRJMyW9GlcOAACKUZxn0X/FzOZIckmNkj4lSe5ea2ZPSqqT1CPpVs6gBwAgt2IreHf/2EHm3SfpvriWDQBAseNKdgAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAVj48an5e5JxwAKQiwFb2Y/NbOl0U+jmS2Nxo81s46Med+LY/kAwtLb267aus9pef1dMrOk4wAFoSyOJ3X3j+6dNrOHJO3MmN3g7nPiWC6A8LS11amm9na1t69RaenYpOMABSOWgt/L0v/VvkHSh+JcDoAwrV//I61qeECpVJckqaRkZMKJgMIRa8FLOldSs7uvzBibbmZvSGqV9Pfu/se+HmhmcyXNlaRp06bFHBPAcNLdvUN1y/9OW7Y8v984BQ8M3KAL3syelzS5j1n3uPvPo+mbJD2eMW+jpGnuvtXMzpT0jJnNdvfWA5/E3edLmi9J1dXVnFUDFIntO15Tbe08dXZuete80tJRCSQCCtOgC97dLzrYfDMrk3SdpDMzHtMpqTOaXmJmDZJOkLR4sDkAhME9pTWN31Zj47fk3tvnfdiDBwYuzkP0F0mqd/cNewfMrELSNnfvNbMZkmZKWh1jBgAFoLOzWTW1n9GOHa8c9H4UPDBwcX4O/kbtf3heks6TtCz62Nx/SPq0u2+LMQOAYW7Llt/qlVevOGS5S1JJCYfok3TXWxvU0L4n6RgYoNj24N39lj7GnpL0VFzLBFA4UqkurWp4UOvX/1DSwE6zKSkpjzcUDmqESR98dYX+ZmqF7jx2ksaVlSYdCQfBlewA5F17+1otXnKD1q9foIGWu8Qh+qRdMnGCutz1nfUtOvuV5frZpm1cWXAYo+AB5NWmTc/q1deuUlvbm1k/tpRD9Il634RxOjzaa2/u6tHfLl+nq15fpTXtnQknQ18oeAB50dvbrrq6z6u27jPq7d01qOdgDz5ZZSWmi446bN9tk847cpyOGcVbJ8NR3Be6AQC17apXTc3tam9vGNLzlJRS8Em7ZOIE/Ufzdh0/ZqS+dfJ7dPphY5KOhH5Q8ABitX7DI1q16l+USg39MC5n0SfvQ0eO16emVuiuGZUaXcpB4OGMggcQi+7unVpef5c2b34uZ8/JIfrkjS0r1T/PrEo6BgaAggeQczt2LFZt7We0p/PtnD4vBQ8MHAUPIGfcU2pc+12tWfOv/V5udihKKXhgwCh4ADnR2dmi2rrPavv2l2JbBnvwwMBR8ACGbOvW36u27nPq7o73ytMlfJscMGAUPIBBS6W61dDwoNZleUW6wWIPHhg4Ch7AoHR0rFNNzR1qbVuWt2VS8MDAUfAAstbc/Estr79n0FekGywuVQsMHAUPYMB6ezv01lv36u2NTyayfL5NDhg4Ch7AgOzatUI1tXdo9+6ViWXgED0wcBQ8gEPa0PSYVq78ck4uNzsUnEUPDBwFD6Bf3d2tqq//glo2/yrpKJLYgweyQcED6NPOnW+opnae9uzZkHSUd3AlO2DgKHgA+3F3rV37Pa1e8w259yQdZz98mxwwcBQ8gHd0dm1RXe1ntW37fycdpU8cogcGjoIHIEnauvWPqlv+OXV1bUk6Sr8oeGDgKHigyKVSPVq9+iGtXfd95eNys0NBwQMDR8EDRayjY4NqaueptfWNpKMcUklJucws6RhAwaDggSLV3PIr1dffrZ6etqSjDAgn2AHZoeCBItPbu0dvrfyS3n77iaSjZIXD80B2KHigiOzavVI1Nbdr9+63ko6SNQoeyA4FDxSJpqbH9dbKLyuV2pN0lEHhED2QHQoeCFxPT5uW139BLS0Lk44yJFzFDsgOBQ8EbGfrn1VTc4f27FmfdJQh46tigexQ8ECA3F3r1s1Xw+qvy7076Tg5wTfJAdmh4IHAdHVtUW3d57Rt2x+TjpJTnGQHZIeCBwKybdufVFv3WXV1bU46Ss5R8EB2KHggAKlUj1av+YbWrv13Samk48SilLPogaxQ8ECB6+hoUm3dPO3c+XrSUWLFHjyQHQoeKGAtLb/R8vq71NPTmnSU2FHwQHYoeKAA9fZ2auWq+9TU9GjSUfKmpJSCB7JBwQMFZvfuBtXU3q5du+qTjpJX7MED2aHggQLy9ttPasVb9yqV6kg6St5xkh2QHQoeKAA9PW2qX/EPam7+RdJREsMePJAdCh4Y5lpbl6mm9g51dKxLOkqiKHggOyVJBwBwcG1tteroKPxryQ8V3yaHbLl70hESRcEDw1xV1U066aT7JFnSURLFl80gay6lunqLtugpeKAAVE35qE4+6X4V868sH5NDtqzEVFJeKrPi/M9x8f61AArMlCnXa9bJD6hYf205ix7ITnH+pQAKVGXldZo160GZlSYdJe84yQ7IzpAK3sw+Yma1ZpYys+oD5t1tZqvMbIWZXZIxfmk0tsrM7hrK8oFiVDn5Gs06+atFV/IUPJCdoe7B10i6TtIfMgfNbJakGyXNlnSppO+YWaml/yJ9W9JlkmZJuim6L4AsTJ58lWbP+prMiueTrpxFD2RnSH8d3H25pL5OYLha0hPu3ilpjZmtknRWNG+Vu6+OHvdEdN+6oeQAitGkSVdIVqra2nly70k6TuzYgweyE9d78FWSMj+4uyEa628cwCBMOvoynTL7mzIbkXSU2FHwQHYOuQdvZs9LmtzHrHvc/ee5j/TOcudKmhvd7DSzmriWNQxMlLQl6RAxYv0K2zBZv6lxPOkwWbfYsH6F7cShPPiQBe/uFw3ieZskHZNxe2o0poOMH7jc+ZLmS5KZLXb36r7uFwLWr7CxfoUr5HWTWL9CZ2aLh/L4uA7RPyvpRjMbaWbTJc2U9Kqk1yTNNLPpZlau9Il4z8aUAQCAojWkk+zM7FpJ35JUIem/zGypu1/i7rVm9qTSJ8/1SLrV3Xujx9wm6TeSSiUtcPfaIa0BAAB4l6GeRf+0pKf7mXefpPv6GF8oaWGWi5qffbqCwvoVNtavcIW8bhLrV+iGtH5WrBfhBwAgZFyqFgCAAA27gi+my9+a2U/NbGn002hmS6PxY82sI2Pe9xKOOihm9kUza8pYj8sz5vW5LQuFmT1oZvVmtszMnjazw6PxILadVLi/V/0xs2PM7LdmVhf9jbkjGu/3dVpoor8jb0brsTgaO9LMFpnZyujfI5LOmS0zOzFj+yw1s1Yzm1fo287MFphZS+bHwPvbXpb2zej3cZmZnXHIBbj7sPqRdLLSn/37naTqjPFZkv4saaSk6ZIalD5RrzSaniGpPLrPrKTXYxDr/ZCkf4ymj5VUk3SmHKzTFyV9ro/xPrdl0nmzXLcPSyqLph+Q9EBg2y6I36sD1qlS0hnR9HhJb0WvxT5fp4X4I6lR0sQDxr4i6a5o+q69r9VC/Ylem5skvafQt52k8ySdkfk3o7/tJelySb+SZJLeJ+mVQz3/sNuDd/fl7r6ij1nvXP7W3ddI2nv527MUXf7W3bsk7b38bcGw9LV+b5D0eNJZ8qS/bVkw3P0533d92JcV01VYElTwv1cHcveN7v56NN0mabmK40qaV0t6OJp+WNI1yUXJiQslNbj72qSDDJW7/0HStgOG+9teV0v6sae9LOlwM6s82PMPu4I/iJAvf3uupGZ3X5kxNt3M3jCz35vZuUkFy4HbosNJCzIODYawzTJ9Qun/We8VwrYLbRvtx8yOlXS6pFeiob5ep4XIJT1nZkssfTVQSZrk7huj6U2SJiUTLWdu1P47Q6Fsu736215Z/04mUvBm9ryZ1fTxU9B7CH0Z4LrepP1fsBslTXP30yXdKekxMzssn7kH6hDr911Jx0mao/Q6PZRk1mwNZNuZ2T1KX+vh0WioYLZdsTKzcZKekjTP3VtV4K/TA5zj7mco/Y2dt5rZeZkzPX2st2A/OmXpC6RdJeln0VBI2+5dhrq9EvmuSU/o8rdJONS6Wvr7Pq+TdGbGYzoldUbTS8ysQdIJkoZ02cI4DHRbmtn3Jf0yunmwbTlsDGDb3SLpCkkXRr+IBbXtDqEgtlG2LP2tPE9JetTd/1OS3L05Y37m67TguHtT9G+LmT2t9FstzWZW6e4bo0O6LYmGHJrLJL2+d5uFtO0y9Le9sv6dLKRD9KFe/vYiSfXuvmHvgJlVmFlpND1D6XVdnVC+QTvg/aFrJe09U7S/bVkwzOxSSZ+XdJW7t2eMB7HtVPi/V+8SnevyA0nL3f1rGeP9vU4LipmNNbPxe6eVPhG0RuntdnN0t5slxfYlYXmw39HOULbdAfrbXs9K+uvobPr3SdqZcSi/T4nswR+MFd/lbw98P0lKn1l5r5l1S0pJ+rS7H3giRiH4ipnNUfoQU6OkT0nSwbZlAfk3pT8FsCjdG3rZ3T+tQLadu/cU+O9VX86W9DFJb1r0kVRJX5B0U1+v0wI0SdLT0euxTNJj7v5rM3tN0pNm9klJa5U+obfgRP9puVj7b58+/8YUCjN7XNIFkiaa2QZJ/yTpfvW9vRYqfSb9Kkntkj5+yOePjiwCAICAFNIhegAAMEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAE6P8DdzPslmTYW0MAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbrElEQVR4nO3df7DddX3n8dc7uUkIIRICEVJICkhEUduoGcqO4tpCKzrdUruzFmbXWtvZ6Kx06m53u/6Yad3uONO60s5229qNU3bpDvVHh6LUohWc/rDOoASliCIKGJQQIQQFCSTkx2f/uCd4E28gP+65J/dzHo+ZO/ec7/ec+32f+d6bZ873fO+51VoLANCXeaMeAACYeQIPAB0SeADokMADQIcEHgA6JPAA0KEZCXxVXVVVD1XVHVOWLa+qG6vqG4PPJw2WV1X9YVXdXVW3V9XLZmIGAOAHZuoZ/P9NcskBy96R5DOttTVJPjO4niSvTbJm8LE+yQdmaAYAYGBGAt9a+8ckjxyw+NIkVw8uX53k56cs//M26eYky6pq5UzMAQBMGuZr8Ke21rYMLn8nyamDy6cn+faU290/WAYAzJCJ2dhIa61V1WG9J25Vrc/kIfwsWbLk5S94wQuGMhsAHItuvfXWh1trK470/sMM/INVtbK1tmVwCP6hwfLNSVZNud0Zg2X7aa1tSLIhSdatW9c2btw4xFEB4NhSVfcdzf2HeYj++iRvGlx+U5KPT1n+S4Oz6S9I8uiUQ/kAwAyYkWfwVfWhJK9OckpV3Z/kt5P8bpKPVtWvJrkvyRsGN78hyeuS3J3kiSRvnokZAIAfmJHAt9YuP8iqi6a5bUvytpnYLgAwPe9kBwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA5NDPOLV9W5ST4yZdHZSX4rybIk/z7J1sHyd7XWbhjmLAAwToYa+NbaXUnWJklVzU+yOcl1Sd6c5A9aa+8f5vYBYFzN5iH6i5Lc01q7bxa3OXSttVGPAAA/ZKjP4A9wWZIPTbl+RVX9UpKNSX6jtfbdqTeuqvVJ1ifJ6tWrZ23I6Tz42I7ct+2JbNq2Pd/a9/mRJ3Lftidy4uIFueKnzskvvPT0TMx3SgMAx4aajWegVbUwyQNJXtRae7CqTk3ycJKW5L8nWdla+5WD3X/dunVt48aNQ5/zQHv3tmz+3pN5bMeu7N7Tsnvv3uza07Jnb8uuPXv3W3b6SYvzstUnzfqMAPSpqm5tra070vvP1jP41yb5YmvtwSTZ9zlJquqDST4xS3MclnnzKquWHz/qMQDgsM3WMeXLM+XwfFWtnLLu9UnumKU5AGAsDP0ZfFUtSfLTSd4yZfH7qmptJg/RbzpgHQB0Yfuu7VmyYMlItj30wLfWtic5+YBlbxz2dgFg1LY9uS23fOeWvHrVq2d92077BoAhWf2c1XlkxyMj2bbAA8AQnXfyefnWY9+a9e0KPAAM0QuWvyAPbH9g1rcr8AAwZMuPW56n9jw1q9sUeAAYsjXL1uTB7Q8++w1nkMADwJBVVU5YeMKsblPgAWAWnLjoxOzeu3vWtjebf2wGAMbWvJqXeTV7z6s9gweADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwwCHZu3dndux4YNRjAIdoYtQDAHPDvHmL8uST9+erX/0v2dt254QTzs0JS86d/HzCuZmYWDrqEYEpBB44ZCeddH6WLft/eWDLX+aee67M5l3XPL1u0aKV+0V/yQnnZsnxZ2fevIUjnBjGl8ADh6VqXk7/kV/Mqc99Xb656Y/y7W//eVp7Kjt3bsnOnVuybdvfP33bs896e84669dGNyyMMa/BA0dkYmJp1pzzzlzwE5/MKadcPO1tFi9ePctTAfsIPHBUjj/+zPz4j/3vrF17dZYsWbPfuuMWnzGiqQCBB2bEyctfmZ84/2/y/Oe/JxMTy5Iki49bNdqhYIx5DR6YMVXzs+qMN+a0U/9VNm36kyxcuGLUI8HYEnhgxi1YsCxr1rxr1GPAWHOIHgA6JPAA0CGBB4AOCTwAdEjgAaBDQz+Lvqo2Jfl+kj1JdrfW1lXV8iQfSXJmkk1J3tBa++6wZwGAcTFbz+B/srW2trW2bnD9HUk+01pbk+Qzg+sAwAwZ1SH6S5NcPbh8dZKfH9EcANCl2Qh8S/Lpqrq1qtYPlp3aWtsyuPydJKfOwhwAMDZm453sXtla21xVz01yY1V9berK1lqrqnbgnQb/GVifJKtX+4tUAHA4hv4MvrW2efD5oSTXJTk/yYNVtTJJBp8fmuZ+G1pr61pr61as8H7WAHA4hhr4qlpSVUv3XU7yM0nuSHJ9kjcNbvamJB8f5hwAMG6GfYj+1CTXVdW+bf1Fa+1TVXVLko9W1a8muS/JG4Y8B8DTnnz8+1l8wtJRjwFDNdTAt9buTfLj0yzfluSiYW4bYDo7Hn88X7zh43nFG/7dqEeBofLnYoGxcstfX5vHtz086jFg6LxVLTA2nnjs0Xzpk3+dHU9sH/UoMHQCD4yNL3zsL7Nr547s3P74qEeBoRN4YCw8/si2/PONn8z8iYm88JWvHvU4MHRegwfGwuc/9tGcsHx5fvbX/2tOPfucUY8DQyfwQPcee/ih7NqxI2/83f+ZhYuPH/U4MCsEHujexIKFueQ//MdRjwGzymvwQPeOP3HZqEeAWSfwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRpa4KtqVVX9XVV9taq+UlW/Plj+nqraXFW3DT5eN6wZAGBcTQzxa+9O8huttS9W1dIkt1bVjYN1f9Bae/8Qtw0AY21ogW+tbUmyZXD5+1V1Z5LTh7U9AOAHZuU1+Ko6M8lLk3x+sOiKqrq9qq6qqpNmYwYAGCdDD3xVnZDk2iRvb609luQDSZ6XZG0mn+FfeZD7ra+qjVW1cevWrcMeEwC6MtTAV9WCTMb9mtbaXyVJa+3B1tqe1treJB9Mcv50922tbWitrWutrVuxYsUwxwSA7gzzLPpK8mdJ7myt/f6U5Sun3Oz1Se4Y1gwAMK6GeRb9K5K8McmXq+q2wbJ3Jbm8qtYmaUk2JXnLEGcAgLE0zLPo/ylJTbPqhmFtEwCY5J3sAKBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0KGRBb6qLqmqu6rq7qp6x6jmAIAejSTwVTU/yR8neW2S85JcXlXnjWIWAOjRqJ7Bn5/k7tbava21p5J8OMmlI5oFALozqsCfnuTbU67fP1j2tKpaX1Ubq2rj1q1bZ3U4AJjrjtmT7FprG1pr61pr61asWDHqcQBgThlV4DcnWTXl+hmDZQDADBhV4G9JsqaqzqqqhUkuS3L9iGYBgO5MjGKjrbXdVXVFkr9NMj/JVa21r4xiFgDo0UgCnySttRuS3DCq7QNAz47Zk+wAgCMn8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABZsDu7343T375jlGPAU+bGPUAAHPdrs2bs+exx7L4JS8e9SjwNIEHOAq7Hnoo85YuzYLTTx/1KLAfgQc4Qu2pp7Lguc8d9RgwLa/BAxyhWrhw1CPAQQk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOjQUAJfVf+jqr5WVbdX1XVVtWyw/MyqerKqbht8/Okwtg8A425Yz+BvTPLi1tqPJfl6kndOWXdPa23t4OOtQ9o+AIy1oQS+tfbp1truwdWbk5wxjO0AANObjdfgfyXJJ6dcP6uqvlRV/1BVF87C9gFg7Ewc6R2r6qYkp02z6t2ttY8PbvPuJLuTXDNYtyXJ6tbatqp6eZKPVdWLWmuPTfP11ydZnySrV68+0jEBYCwdceBbaxc/0/qq+uUkP5vkotZaG9xnZ5Kdg8u3VtU9SZ6fZOM0X39Dkg1Jsm7dunakcwLAOBrWWfSXJPnNJD/XWntiyvIVVTV/cPnsJGuS3DuMGQBgnB3xM/hn8UdJFiW5saqS5ObBGfOvSvI7VbUryd4kb22tPTKkGQBgbA0l8K21cw6y/Nok1w5jmwDAD3gnOwDokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADrUTeAf2bU7t3//iQz+Mi0AjLVh/TW5WXfSxPy87d4tuWv7jvz0yc/Ja045Ma846YQsmtfN/2EA4JB1E/iqyvvPXZVXf+FrufqBbbn6gW1ZMn9efnL50rzmlBNz0cnPyfIF3TxcAHhGXT29Pf24hflv55z+9PXte/bmE1sfza/d+a28+J/uyO/du2WE0wHA7Okq8Ely+crl+cnlS39o+TnHH5e3rFoxgokAYPZ1F/h9h+qXzv/BQ3vuwolc8+NnZ5lD9ACMie4Cn+x/qP74+fNyzY+dnVXHLRzxVAAwe7p9Snv5yuX55MOP5s2nn5KXLD1+1OMAwKzqNvBVlf/z4rMyMa9GPQoAzLouD9HvI+4AjKuuAw8wrjZt2pQ9e/aMegxGSOABOrNr167ccsstmT9//qhHYYQEHqAzn/3sZ7Nwod8cGncCD9CRhx9+OJ/73OeycuXKUY/CiAk8QEfuv//+7NmzJ6eddtqoR2HEBB6gIy984QuzcOFCgUfgAXqyaNGiXHjhhV6DR+ABenPBBReMegSOAQJ/JFob9QQAB7VgwYJRj8AxQOAP15PfTXbvGPUUAPCMBP5wbN+WPHp/smDxqCcBgGck8Ifqqe3J1z+VnPaSUU8CAM9K4A/Fnl3JZ69MXvyvRz0JABwSgX82e/cmn3pnsvbfJguOG/U0AHBIBP7Z3PRbyY/+i+Tk5416EgA4ZAL/TB64LVlwvEPzAMw5E6Me4Jj2I2snPwBgjvEMHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOjQ0AJfVe+pqs1Vddvg43VT1r2zqu6uqruq6jXDmgEAxtWw3+jmD1pr75+6oKrOS3JZkhcl+ZEkN1XV81tre4Y8CwCMjVEcor80yYdbaztba99McneS80cwBwB0a9iBv6Kqbq+qq6rqpMGy05N8e8pt7h8sAwBmyFEFvqpuqqo7pvm4NMkHkjwvydokW5JceZhfe31VbayqjVu3bj2aMQFg7BzVa/CttYsP5XZV9cEknxhc3Zxk1ZTVZwyWHfi1NyTZkCTr1q1rRzMnAIybYZ5Fv3LK1dcnuWNw+fokl1XVoqo6K8maJF8Y1hwAMI6GeRb9+6pqbZKWZFOStyRJa+0rVfXRJF9NsjvJ25xBDwAza2iBb6298RnWvTfJe4e1bQAYd97JDgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBZ+j27tg96hEAxo7AM1R7n9qTnd98dNRjAIwdgWeonvjiQ5m3eGLUYwCMHYFnaNrelsc/tzkTpywe9SgAY0fgGZodX/9u9jz2VOYtWTDqUYAhe+Du7416BA4g8AzN4/80+ey9qkY9CjBkjzywfdQjcACBZyie2rI9O+/+nsPzMCYWLJo/6hE4gMAzFHsffypJMnHycSOeBJgNJ65YnO3f2znqMZhC4BmKRecsy4KVSzyDhzFxyqoT8ujWJ0Y9BlP4/SWGoqqy9F+ekfnLPYOHcTCxYH7ifJtjisAzNItfsiJtz95RjwHMkgULvQ5/LBF4hqbmV2q+H3gYF060O7Z4DR6AGTGxUFKOJfYGADNi8XMWZtfOPaMegwGH6AGYEfPnz0ua826OFZ7BAzBj5k/IyrHCngCADgk8AHRI4AGgQwIPAB0ayln0VfWRJOcOri5L8r3W2tqqOjPJnUnuGqy7ubX21mHMAADjbCiBb6394r7LVXVlkkenrL6ntbZ2GNsFACYN9ffgq6qSvCHJTw1zOwDA/ob9GvyFSR5srX1jyrKzqupLVfUPVXXhwe5YVeuramNVbdy6deuQxwSAvhzxM/iquinJadOsendr7eODy5cn+dCUdVuSrG6tbauqlyf5WFW9qLX22IFfpLW2IcmGJFm3bl070jkBYBwdceBbaxc/0/qqmkjyC0lePuU+O5PsHFy+taruSfL8JBuPdA4A4IcN8xD9xUm+1lq7f9+CqlpRVfMHl89OsibJvUOcAQDG0jBPsrss+x+eT5JXJfmdqtqVZG+St7bWHhniDAAwloYW+NbaL0+z7Nok1w5rmwDAJO9kBwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQoaMKfFX9m6r6SlXtrap1B6x7Z1XdXVV3VdVrpiy/ZLDs7qp6x9FsHwCY3tE+g78jyS8k+cepC6vqvCSXJXlRkkuS/ElVza+q+Un+OMlrk5yX5PLBbQGAGTRxNHdurd2ZJFV14KpLk3y4tbYzyTer6u4k5w/W3d1au3dwvw8PbvvVo5kDANjfsF6DPz3Jt6dcv3+w7GDLAYAZ9KzP4KvqpiSnTbPq3a21j8/8SE9vd32S9YOrO6vqjmFt6xhwSpKHRz3EEHl8c1vPj6/nx5Z4fHPduUdz52cNfGvt4iP4upuTrJpy/YzBsjzD8gO3uyHJhiSpqo2ttXXT3a4HHt/c5vHNXT0/tsTjm+uqauPR3H9Yh+ivT3JZVS2qqrOSrEnyhSS3JFlTVWdV1cJMnoh3/ZBmAICxdVQn2VXV65P8ryQrkvxNVd3WWntNa+0rVfXRTJ48tzvJ21prewb3uSLJ3yaZn+Sq1tpXjuoRAAA/5GjPor8uyXUHWffeJO+dZvkNSW44zE1tOPzp5hSPb27z+Oaunh9b4vHNdUf1+Kq1NlODAADHCG9VCwAdOuYCP05vf1tVH6mq2wYfm6rqtsHyM6vqySnr/nTEox6RqnpPVW2e8jheN2XdtPtyrqiq/1FVX6uq26vquqpaNljexb5L5u7P1cFU1aqq+ruq+urg35hfHyw/6PfpXDP4d+TLg8excbBseVXdWFXfGHw+adRzHq6qOnfK/rmtqh6rqrfP9X1XVVdV1UNTfw38YPurJv3h4Ofx9qp62bNuoLV2TH0keWEmf/fv75Osm7L8vCT/nGRRkrOS3JPJE/XmDy6fnWTh4DbnjfpxHMHjvjLJbw0un5nkjlHPNAOP6T1J/vM0y6fdl6Oe9zAf288kmRhc/r0kv9fZvuvi5+qAx7QyycsGl5cm+frge3Ha79O5+JFkU5JTDlj2viTvGFx+x77v1bn6Mfje/E6SH53r+y7Jq5K8bOq/GQfbX0lel+STSSrJBUk+/2xf/5h7Bt9au7O1dtc0q55++9vW2jeT7Hv72/MzePvb1tpTSfa9/e2cUZPv9fuGJB8a9Syz5GD7cs5orX26tbZ7cPXmTL6nQ0/m/M/VgVprW1prXxxc/n6SOzMe76R5aZKrB5evTvLzoxtlRlyU5J7W2n2jHuRotdb+MckjByw+2P66NMmft0k3J1lWVSuf6esfc4F/Bj2//e2FSR5srX1jyrKzqupLVfUPVXXhqAabAVcMDiddNeXQYA/7bKpfyeT/rPfpYd/1to/2U1VnJnlpks8PFk33fToXtSSfrqpba/LdQJPk1NbalsHl7yQ5dTSjzZjLsv+ToV723T4H21+H/TM5ksBX1U1Vdcc0H3P6GcJ0DvGxXp79v2G3JFndWntpkv+U5C+q6jmzOfehepbH94Ekz0uyNpOP6cpRznq4DmXfVdW7M/leD9cMFs2ZfTeuquqEJNcmeXtr7bHM8e/TA7yytfayTP7FzrdV1aumrmyTx3rn7K9O1eQbpP1ckr8cLOpp3/2Qo91fR/V78Eeqjejtb0fh2R5rVU1k8k/uvnzKfXYm2Tm4fGtV3ZPk+UmO6m0Lh+FQ92VVfTDJJwZXn2lfHjMOYd/9cpKfTXLR4AdxTu27ZzEn9tHhqqoFmYz7Na21v0qS1tqDU9ZP/T6dc1prmwefH6qq6zL5UsuDVbWytbZlcEj3oZEOeXRem+SL+/ZZT/tuioPtr8P+mZxLh+h7ffvbi5N8rbV2/74FVbWiquYPLp+dycd674jmO2IHvD70+iT7zhQ92L6cM6rqkiS/meTnWmtPTFnexb7L3P+5+iGDc13+LMmdrbXfn7L8YN+nc0pVLamqpfsuZ/JE0Dsyud/eNLjZm5IM7Y+EzYL9jnb2su8OcLD9dX2SXxqcTX9BkkenHMqf1kiewT+TGr+3vz3w9aRk8szK36mqXUn2Jnlra+3AEzHmgvdV1dpMHmLalOQtSfJM+3IO+aNM/hbAjZPdyM2ttbemk33XWts9x3+upvOKJG9M8uUa/EpqkncluXy679M56NQk1w2+HyeS/EVr7VNVdUuSj1bVrya5L5Mn9M45g/+0/HT23z/T/hszV1TVh5K8OskpVXV/kt9O8ruZfn/dkMkz6e9O8kSSNz/r1x8cWQQAOjKXDtEDAIdI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AO/X9KUqDUSlyxkAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmj0lEQVR4nO3deZhcdZ3v8c83vWQP2UMSErMQ1ggBW8ZBwQVR8HpBHHUCV8HlTuRRRr2MMwOi4oM6jjroXDecKBlwRkAwgTCKCzCOjgtgB7mQhUAgnaSbLJ3EpDvd6bW+9486Has7vVedOnV+9X49Tz196ndOnfOtnOr+5Pc7S5m7CwAAhGVM0gUAAIDCI+ABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAFSTgzWyNme0zs405bdPN7GEzez76OS1qNzP7mpltM7OnzezcQtQAAAD+pFA9+DskXdKn7QZJj7r7MkmPRs8l6VJJy6LHKkm3FagGAAAQKUjAu/uvJB3s03y5pDuj6TslvS2n/Xue9ZikqWY2txB1AACArDiPwc9x993R9B5Jc6Lp+ZJ25SxXH7UBAIACqSzGRtzdzWxE98Q1s1XKDuFr4sSJrzjttNNiqQ0AgFK0YcOG/e4+a7SvjzPg95rZXHffHQ3B74vaGyQtyFnupKitF3dfLWm1JNXU1HhtbW2MpQIAUFrMbEc+r49ziP5BSddE09dIWp/TfnV0Nv2rJB3OGcoHAAAFUJAevJndLel1kmaaWb2kmyX9o6R7zewDknZIele0+EOS3iJpm6RWSe8rRA0AAOBPChLw7n7lALMu6mdZl/ThQmwXAAD0jzvZAQAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAABRIxj3pEo4h4AEAKICMu450Z5Iu4xgCHgCAAtjV1qEplRVJl3EMAQ8AQJ52HG3XjKrKpMvohYAHACAPf+zsUmt3RpNKqPcuEfAAAOTlicMtOn3S+KTLOA4BDwDAKP2k8ZDOnzop6TL6RcADADAKG5tbNbWqUpNLbGi+BwEPAMAItXR16zeHjujPS7T3LhHwAACM2Dd37dO7585IuoxBEfAAAIzAfXsO6jVTJ2tiiQ7N9yDgAQAYpm2tbdrW2q7zp5Xu0HwPAh4AgGFoz2T0xRf36KMvm5N0KcNCwAMAMAyffeElrVowSxMq0hGd6agSAIAEPdR4SNU2Rq88YWLSpQxbad04FwCAElPf1qFv72rUfSuWJl3KiNCDBwBgAF0Z13Wbd+iWk+dr7Jh0RWa6qgUAoIi+XLdHr5o6SSumTEi6lBFjiB4AgH786mCzHj3QpIdesSzpUkaFgAcAoI/Gjk79n2d36ntnLVF1yobme8Qa8GZ2qqQf5DQtkfRpSVMl/ZWkxqj9E+7+UJy1AAAwHO6uj2zZqf81b4bOLMGvgR2uWAPe3bdKWiFJZlYhqUHS/ZLeJ+mr7v5PcW4fAICR+sbOfTrY2aWPLEzHDW0GUswh+oskveDuO8ysiJsFAGB4Nhxu0T/v2Ksfv2KZKsekO6uKeWBhpaS7c55fZ2ZPm9kaM5vWd2EzW2VmtWZW29jY2Hc2AAAFdbizS9du3qGPvWyOTpuY3qH5HkUJeDOrlnSZpPuiptskLVV2+H63pFv7vsbdV7t7jbvXzJo1qxhlAgDK2N9s3aXZ1ZX60MLZSZdSEMUaor9U0pPuvleSen5Kkpl9R9KPilQHAADHubNhvx490KRHXnmqKgI5jFysIforlTM8b2Zzc+ZdIWljkeoAAKCXLUeO6uZtDbpxyVwtnTAu6XIKJvYevJlNlHSxpA/mNH/JzFZIckl1feYBAFA0n97WoBWTJ+ivTgrrcHDsAe/uLZJm9Gl7T9zbBQBgOGZUVerGJXMV2hVe3MkOAFDWbjl5vmaPrUq6jIJL5/33AAAokBDDXQo84Lu725MuAQCARAQd8JlMuxobH0m6DAAAii7ogK+qmqKJE5fp2Wc/qa6u5qTLAQCgaIIOeEmaMOFlmjfvXdrw5Eo1NXO5PQCgPAQf8JI0ZcpZWrrk43ryyatU33BX0uUAABC7sgh4SZo58/U6ZdmntHXrp7Rp0/Xq7m5NuiQAAGJTVtfBz5v3TrW179H27f+s5iObtXz51zVp4rKkywIAoODKpgffY8niv9a8eSvV0vK8amvfrj171iddEgAABVd2AS9Jp516i2bOvEjd3a3atPl6bXn2JmUyXDMPAAhHWQa8WYWWn/l/NWXKOZKkl166R7W179TRozsTrgwAgMIoy4CXpIqK8Tr7rNWaMGGxJKn5yCY98fvLtK/xZwlXBgBA/so24CWpunq6Vpz9r6qunilJ6upq1jPPfEgtLS8kXBkAAPkp64CXpPHjF+jss29XRcVESdKECUs1ceLShKsCACA/ZR/wkjRl8nK9fPk3ZFaleXP/IulyAADIW1ldBz+YGTMu1OmnfUHTp78m6VIAAMgbAZ9j7twrki4BAICCYIgeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAguXdnnQJQGIIeADB6tx9JOkSgMTEHvBmVmdmz5jZU2ZWG7VNN7OHzez56Oe0uOsAUH46djQlXQKQmGL14F/v7ivcvSZ6foOkR919maRHo+cAUDCecbXvak66DCAxSQ3RXy7pzmj6TklvS6gOAKHKuDoIeJSxYgS8S/q5mW0ws1VR2xx33x1N75E0pwh1ACgjnnF1H2hTprUz6VKARFQWYRuvcfcGM5st6WEzezZ3pru7mR13qmv0n4FVkrRw4cIilAkgKJnsn5WOXc0ad+r0hIsBii/2Hry7N0Q/90m6X9J5kvaa2VxJin7u6+d1q929xt1rZs2aFXeZAALTc4kcw/QoV7EGvJlNNLPJPdOS3iRpo6QHJV0TLXaNpPVx1gGgDPX04Ou5VA7lKe4h+jmS7jeznm3d5e4/NbPfS7rXzD4gaYekd8VcB4Byk6EHj/IWa8C7+4uSzu6n/YCki+LcNoDy5lHAZ1o61XWwTZXTxyVcEVBc3MkOQJgyfzp3l148yhEBDyBITsCjzBHwAMKUG/D1BDzKDwEPIEi53yTX2XCEb5ZD2SHgAYQppwfvnRl17m1JsBig+Ah4AEHKPQYvcRwe5YeABxAmAh5ljoAHEKY+Ad/JiXYoMwQ8gCD1HaLv3NuqTHt3QtUAxUfAAwhTps9zlzob6MWjfBDwAILUtwcvSR27+OIZlA8CHkCY+rnunRveoJwQ8ACC1H8PnoBH+SDgAYSpn4DvPtSu7uaOBIoBio+ABxCmfgJeoheP8kHAAwhSf0P0EgGP8kHAAwjTQAHPiXYoEwQ8gCAN3IM/Ine+WQ7hI+ABhGmAgPe2LnXtP1rkYoDiI+ABBGmw73/nODzKAQEPIEwD9OAlAh7lgYAHEKSBjsFLUkc9t6xF+Ah4AGEaJOA7Xzoi7+r7bTRAWAh4AGEaJODV7erc3VK8WoAEEPAAgjTYEL3EcXiEj4AHECYCHmWOgAcQpCF78NzRDoEj4AGEaZDr4CWpa/9RZY52FakYoPgIeABBGqoHL6cXj7AR8ADCNFTAi+PwCBsBDyBMw7jMvW/Ab9jxx5iKAYqPgAcQpCGH6NV7iH5jw2GtXP07/eLZfXGWBRQNAQ8gTMMI+Exzp7oOtUmSbv/1dnV2uz70/Se1YcfBuKsDYkfAAwjScHrwUnaYfm9Tm3709EuSpKOd3Xr/HbXauofj80g3Ah5AmIYd8Ed0x2/r1JlzWd3ho526es3j2nWwNa7qgNgR8ACCNNj3wedq29mkux7feVz73qZ2vef2x9XY3F7o0oCiIOABhGmYPfi2Xc1qPtrZ77y6A626Zs0Tam7rfz5Qygh4AEEa7jH4ym7XokH+FG7e3aT/fWet2jq7C1UaUBQEPIAwDTPgJel0VQw6//HtB/XXd/9B3SNYJ5A0Ah5AmEYQxmcMEfCS9PDmvbph7dP5VAQUFQEPIEjDHaKXhu7B97hvQ72+8NCW0ZYEFFVl0gUAQCxGEPAnW4VuuvgUtUvq6MqovTujzi5XR3d39DOTfXRltHVvsx578YBetWRGfLUDBUDAAwjSSHrwY1y6eslsjV10QowVAcXFED2AMA3zOvgefLMcQkPAAwjSSHrwEgGP8MQW8Ga2wMx+YWabzWyTmX00av+MmTWY2VPR4y1x1QCgjI004OuPxFQIkIw4j8F3Sfobd3/SzCZL2mBmD0fzvuru/xTjtgGUuxEGfPfBNnUf6VDFpOqYCgKKK7YevLvvdvcno+lmSVskzY9rewCQa6RD9BK9eISlKMfgzWyRpHMkPR41XWdmT5vZGjObVowaAJSZEZ5kJ3EcHmGJPeDNbJKktZI+5u5Nkm6TtFTSCkm7Jd06wOtWmVmtmdU2NjbGXSaAwIyqB0/AIyCxBryZVSkb7t9393WS5O573b3b3TOSviPpvP5e6+6r3b3G3WtmzZoVZ5kAQjSKgO+sJ+ARjjjPojdJt0va4u5fyWmfm7PYFZI2xlUDgPI1mh58prVLXfuPxlANUHxxnkX/aknvkfSMmT0VtX1C0pVmtkKSS6qT9MEYawBQrkb5zW8d9c2qnDm+wMUAxRdbwLv7ryVZP7MeimubANBjND14KXscfsKK2QWuBig+7mQHIEx5BDwQAgIeQJgyo3tZx0st8u5RvhgoIQR8CrS1dGrLb19SZ0d30qUAqeCjuAb+mK6MOne3FK4YICEEfAr8cXeL/vN7z+qOv/+NfnX3Vh1o4G5bwKBGOTzfo4PL5RAAAj4FDkeX7XQc7dIzv2zQPZ97Qvv5AwQMaLQn2PXo2MV/opF+BHwKNDX2vi73zAvma+ZJkxOqBkiBvAOe/0Aj/Qj4FGja33ZsetK0sTr/7UsTrAYoffn24LsaW5Vp6ypQNUAyCPgUaMq5s9ZrrzpV1ePivD8REIA8A17ON8sh/Qj4FOg5Br/slXO06OUzE64GKH359uAlTrRD+hHwJa6ro1utTR0aN6lKF/zlsqTLAdIhn8vkIhyHR9oR8CXu8P6jkksXvGuZxk+qTrocIB0K0IPvJOCRcgR8iWva36ZFL5+hU847MelSgNQoxBB9d1OHug+3F6AaIBkEfIlrO9Kp1151atJlAOlSgICXGKZHuhHwJW7pubM0adq4pMsAUqUQPXiJE+2QbgR8ieOSOGAU6MEDBDyA8BSuB3+kYOsCio2ABxCeAoWyt3erq7G1IOsCio2ABxCcvL4utg++eAZpRcADCE8Bh9U50Q5pRcADCE8hA54T7ZBSnKINIDh5nRg3RqqaPUFV8yapav4kVS/gq5mRTgQ8gPAMN+ArTFVzsmFePT8K9LkTZVUV8dYHFAEBDyA4/fbgK01VJ07MBnlPoJ84UVbJkUqEiYAHEBwbM0bVCydne+TRUHvVnImyCku6NKBoCHgAwRl/5gyNP3NG0mUAiWJsCgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIUGIBb2aXmNlWM9tmZjckVQcG17Zli/bd+pWkywAAjFBlEhs1swpJ35R0saR6Sb83swfdfXMS9aC37kOHdPg/fqRD69apfcsWSdL0979PldOmJVwZAGC4Egl4SedJ2ubuL0qSmd0j6XJJBHxCPJNRy29+o0Nr1+nIf/6nvKOj1/yO7XUEPACkSFIBP1/Srpzn9ZL+LHcBM1slaZUkLVy4sHiVlZmOnTt1aN06HX5gvbr27Bl4ue3bNeHcc4pYGQAgH0kF/JDcfbWk1ZJUU1PjCZcTlExrq5p+9nMdXrtWrRs2SD70P29HXV38hQEACiapgG+QtCDn+UlRG2LU+uQfdGjdWjX/5KfKtLSM6LUdddtjqgoAEIekAv73kpaZ2WJlg32lpKsSqiVonfv26fD69Tq87n51bB99SLfn8VoAQPElEvDu3mVm10n6maQKSWvcfVMStYTIOzvV/Itf6PDadTry619L3d15r7Nz5y55JiMbw60TACANEjsG7+4PSXooqe2HqO2553R47Vod/o8fqfvgwYKu2zs61NnQoOoFC4ZeGACQuJI9yQ7D093UpKYf/1iH1q5T28aNsW6rY/t2Ah4AUoKATyF3V+vvfqdDa9ep+ZFH5O3tRdluR12ddOGFRdkWACA/BHyKdDY06NDadTr8wAPqfOmlom+fE+0AID04YypF3KWWxx5LJNyl7N3sAADpQMCnSPVJ8/Wyf/ueZn7kr6XK4g++cLMbAEgPAj5lrKJCsz70IS36939TVZFPeOvau1eZ1taibhMAMDoEfEqNX7FCi++/Xye87W3F26g7vXgASAkCPsUqJk3UvH/8guZ/9SsaM2VKUbZJwANAOhDwAZhy6aVasv4BTXjlK2PfFmfSA0A6EPCBqJo7VwvvvEOzrr9eqqqKbTucSQ8A6UDAB8TGjNHMVX+lRXfdpepFi2LZBkP0AJAOBHyAxr98uRavW6up73xHwdedzzfSAQCKh4AP1JgJEzT3s5/V/K9/TRVTpxZsvZmWFnXu21ew9QEA4kHAB27KxRdr8fr1mvDnryrYOhmmB4DSR8CXgao5s7VwzRrN/tu/lRXgBDxOtAOA0kfAlwkz04wPvF+L7v2BqpcuzWtdHIcHgNJHwJeZcaefrsVrf6ipV64c9ToYogeA0kfAl6Ex48Zp7s0366RvfUsV06eP+PX04AGg9BHwZWzyG16vJesf0MTXvGZEr+toaJB3dsZUFQCgEAj4Mlc5a5YWfGe15nziRll19fBe1NWljl318RYGAMgLAQ+ZmaZffbUW3Xefxi5bNqzXdNQxTA8ApYyAxzHjTj1Fi354n6a9+91DLstxeAAobQQ8ehkzdqxO/ORNWrD6X1Qxc+aAy/GtcgBQ2gh49GvShRdqyYPrNel1r+t3PpfKAUBpI+AxoMrp07Xg27dpzqc/JRs3rtc87mYHAKWNgMeQpl91lRb/8D6NPe20Y23dBw6ou6kpwaoAAIMh4DEsY08+WYvv/YGmv/e9kpkkhukBoJQR8Bg2q67WnBv+Xgtv/64qZ8/mTHoAKGEEPEZs4vnna/H6B1Q5d27SpQAABlCZdAFIp8pp01R53nlJlwEAGAA9eAAAAkTAAwAQIAIeAIAAEfDozV3a+XjSVQAA8kTAozczqeOI9NMbpUx30tUAAEaJgMfxTr5I2v+8dPeVUht3qwOANCLg0b83fU7a9oi05s3SH3ckXQ0AYIQIePRv9mlSzfukfZul714k7Xoi6YoAACNAwGNgr7tRGnuC1NIo3fFW6ZkfJl0RAGCYCHgMbOJM6cKPZ6e726W1H5B+8Q/ZM+0BACWNgMfg/uyD0rRFf3r+yy9KP3y/1Hk0sZIAAEMj4DG4yrHSxbf0btu0Trrjf0jNe5OpCQAwJAIeQzv9Mmnh+b3bGjZI33mDtOeZZGoCAAyKgMfQzKQ3f/749qZ66fY3S1t/UvyaAACDIuAxPPPPlc5aeXx7Z0v2hji//QYn3wFACYkl4M3sy2b2rJk9bWb3m9nUqH2RmR01s6eix7fj2D5ictGnpcrx/cxw6ec3Sf/xEamro+hlAQCOF1cP/mFJy939LEnPSboxZ94L7r4ielwb0/YRhxPmS6/+yMDzn/ye9O9vl1oPFq8mAEC/Ygl4d/+5u3dFTx+TdFIc20ECzv+INOnEgefX/bf03TdK+7cVryYAwHGKcQz+/ZJyz8JabGZ/MLNfmtkFRdg+CmnspOxQ/WAOvpC9ve2LvyxOTQCA44w64M3sETPb2M/j8pxlbpLUJen7UdNuSQvd/RxJ10u6y8ymDLD+VWZWa2a1jY2Noy0TcTj7SunEswZfpu1Qdrh+wx3FqAgA0Id5TGc+m9l7JX1Q0kXu3jrAMv8l6ePuXjvYumpqary2dtBFUGzb/1u6863DW/bPr8veLGdMRbw1AUBAzGyDu9eM9vVxnUV/iaS/k3RZbrib2Swzq4iml0haJunFOGpAzBZfIJ02zID/3Teke66S2pvjrQkAcExcx+C/IWmypIf7XA53oaSnzewpST+UdK27c8p1Wl18izSmanjLPvdTac0l0uH6eGsCAEiSKuNYqbufPED7Wklr49gmEjBjqXTeKumxbw5v+aYGybi3EgAUA39tkZ/X/q00ftrwlr3s69KUefHWAwCQRMAjX+OnSa+9Yejlzr1GOv1/xl8PAEASAY9CeOUHpBn9HpXJmnGydMkXilcPAICARwFUVElv+lz/88ZUSn/xXal6YnFrAoAyR8CjME65RFr82uPb3/BJad45xa8HAMocAY/COPad8fantkUXSOd/NLGSAKCcEfAonBNfLp3z7uz0uKnSFf8ijeEjBgBJ4K8vCusNn5KqJ0mXfS379bIAgETEcqMblLHJc6SrH5ROekXSlQBAWaMHj8Ij3AEgcQQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECAYgt4M/uMmTWY2VPR4y058240s21mttXM3hxXDQAAlKvKmNf/VXf/p9wGMztD0kpJZ0qaJ+kRMzvF3btjrgUAgLKRxBD95ZLucfd2d98uaZuk8xKoAwCAYMUd8NeZ2dNmtsbMpkVt8yXtylmmPmoDAAAFklfAm9kjZraxn8flkm6TtFTSCkm7Jd06wnWvMrNaM6ttbGzMp0wAAMpOXsfg3f2Nw1nOzL4j6UfR0wZJC3JmnxS19V33akmrJammpsbzqRMAgHIT51n0c3OeXiFpYzT9oKSVZjbWzBZLWibpibjqAACgHMV5Fv2XzGyFJJdUJ+mDkuTum8zsXkmbJXVJ+jBn0AMAUFixBby7v2eQeZ+X9Pm4tg0AQLnjTnYAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiARyq4uzbt35R0GQCQGgQ8UsHM9JuXfqOO7o6kSwGAVCDgkRrvPv3denTno0mXAQCpQMAjNSZUTdDymctV31yfdCkAUPIIeKTKgskLNMbGqDvTnXQpAFDSCHikzrxJ85RRJukyAKCkEfBIpaoxVUmXAAAljYAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAEKDKOFZqZj+QdGr0dKqkQ+6+wswWSdoiaWs07zF3vzaOGgAAKGexBLy7/2XPtJndKulwzuwX3H1FHNsFAABZsQR8DzMzSe+S9IZCrdPdlV0tAAAYSNzH4C+QtNfdn89pW2xmfzCzX5rZBQO90MxWmVmtmdU2NjYea9+zZ0+M5QIAEIZRB7yZPWJmG/t5XJ6z2JWS7s55vlvSQnc/R9L1ku4ysyn9rd/dV7t7jbvXzJo1q6dNmzdvHm3JAACUjVEP0bv7Gwebb2aVkt4u6RU5r2mX1B5NbzCzFySdIql2ONs8cOCA9u3bN9qSAQAoG3EO0b9R0rPuXt/TYGazzKwiml4iaZmkF4e7wrq6OrW2tha8UAAAQhPnSXYr1Xt4XpIulHSLmXVKyki61t0PDneFO3bsIOABABiG2ALe3d/bT9taSWtHuT7V1dWpq6sr39IAAAherJfJFdLBgwfV3NwsM1Mmk9GYMdyEDwCAgaQmJevq6iRle/JtbW3JFgMAQIlLXcBL4jg8AABDIOABAAhQKgK+q6tLzc3Nx54T8AAADC4VAd/R0dHr+dGjRxOqBACAdEhlwNODBwBgcKkI+Pb29l7PCXgAAAaXioDv7u7u9ZyABwBgcKkI+L4IeAAABpfKgOckOwAABpfKgKcHDwDA4Ah4AAAClMqAP3r0qDKZTNJlAABQslIZ8O5+3KVzAFAMmT5X9QClKpUBLzFMD6D4nn/8t2ra35h0GcCwEPAAMAz1WzbqV3f9q06YPSfpUoBhIeABYAj7d9bpgS9/VvOWnSYzS7ocYFgIeAAYRNP+Rq39ws1qb2nRgjPPSrocYNhSG/Dc7AZA3NpbW7TuCzfryMEDkkTAI1VSG/D04AHEbe+L23Sgfqck6YTZczj+jlQh4AFgAO0tLcem6b0jbQh4ABhAeysBj/RKbcBzDB5A3HoH/MsTrAQYudQGPD14AHFri4bop82dr8nTZyZcDTAyBDwADKC99Ygkeu9Ip1QHvLsnXQaAgPWcZLdw+dkJVwKMXGoD3t3V1taWdBkAAtZzDH7BGfTgkT6pDXiJE+0AxKu9pUUzF7xME06YmnQpwIilOuA5Dg8gTu2t3J4W6UXAA8AAsgHP8DzSiYAHgAF0tLbqJI6/I6VSEfDTp0/X8uXLVVVV1audY/AA4uKZjE6Yc6LGT5qcdCnAqFQmXcBwjBs3Tu94xzvU0dGh5557Ths3btTzzz9PDx5AbNqPtuqk05cnXQYwaqkI+B7V1dVavny5li9frra2Nh0+fDjpkgAEqr2lhevfkWqpCvhc48aN07hx45IuA0CgOtvbNP+0M5MuAxi11AY8AMTphFlzVEUnAimWipPsAKDYCHekHQEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAHKK+DN7J1mtsnMMmZW02fejWa2zcy2mtmbc9ovidq2mdkN+WwfAAD0L98e/EZJb5f0q9xGMztD0kpJZ0q6RNK3zKzCzCokfVPSpZLOkHRltCwAACigvG5V6+5bJMnM+s66XNI97t4uabuZbZN0XjRvm7u/GL3unmjZzfnUAQAAeovrGPx8SbtyntdHbQO1AwCAAhqyB29mj0g6sZ9ZN7n7+sKXdGy7qyStip62m9nGuLZVAmZK2p90ETHi/aVbyO8v5Pcm8f7S7tR8XjxkwLv7G0ex3gZJC3KenxS1aZD2vttdLWm1JJlZrbvX9LdcCHh/6cb7S6+Q35vE+0s7M6vN5/VxDdE/KGmlmY01s8WSlkl6QtLvJS0zs8VmVq3siXgPxlQDAABlK6+T7MzsCklflzRL0o/N7Cl3f7O7bzKze5U9ea5L0ofdvTt6zXWSfiapQtIad9+U1zsAAADHyfcs+vsl3T/AvM9L+nw/7Q9JemiEm1o98upShfeXbry/9Ar5vUm8v7TL6/2ZuxeqEAAAUCK4VS0AAAEquYAvp9vfmtkPzOyp6FFnZk9F7YvM7GjOvG8nXOqomNlnzKwh5328JWdev/syLczsy2b2rJk9bWb3m9nUqD2IfSel9/dqIGa2wMx+YWabo78xH43aB/ycpk30d+SZ6H3URm3TzexhM3s++jkt6TpHysxOzdk/T5lZk5l9LO37zszWmNm+3MvAB9pflvW16PfxaTM7d8gNuHtJPSSdruy1f/8lqSan/QxJ/0/SWEmLJb2g7Il6FdH0EknV0TJnJP0+RvG+b5X06Wh6kaSNSddUgPf0GUkf76e9332ZdL0jfG9vklQZTX9R0hcD23dB/F71eU9zJZ0bTU+W9Fz0Wez3c5rGh6Q6STP7tH1J0g3R9A09n9W0PqLP5h5JL0v7vpN0oaRzc/9mDLS/JL1F0k8kmaRXSXp8qPWXXA/e3be4+9Z+Zh27/a27b5fUc/vb8xTd/tbdOyT13P42NSx7r993Sbo76VqKZKB9mRru/nN374qePqbsPR1Ckvrfq77cfbe7PxlNN0vaovK4k+blku6Mpu+U9LbkSimIiyS94O47ki4kX+7+K0kH+zQPtL8ul/Q9z3pM0lQzmzvY+ksu4AcR8u1vL5C0192fz2lbbGZ/MLNfmtkFSRVWANdFw0lrcoYGQ9hnud6v7P+se4Sw70LbR72Y2SJJ50h6PGrq73OaRi7p52a2wbJ3A5WkOe6+O5reI2lOMqUVzEr17gyFsu96DLS/Rvw7mUjAm9kjZraxn0eqewj9GeZ7vVK9P7C7JS1093MkXS/pLjObUsy6h2uI93ebpKWSVij7nm5NstaRGs6+M7OblL3Xw/ejptTsu3JlZpMkrZX0MXdvUso/p328xt3PVfYbOz9sZhfmzvTsWG9qL52y7A3SLpN0X9QU0r47Tr77K6/r4EfLE7r9bRKGeq9mVqnsV+6+Iuc17ZLao+kNZvaCpFMk5XXbwjgMd1+a2Xck/Sh6Oti+LBnD2HfvlfRWSRdFv4ip2ndDSMU+Gikzq1I23L/v7uskyd335szP/Zymjrs3RD/3mdn9yh5q2Wtmc919dzSkuy/RIvNzqaQne/ZZSPsux0D7a8S/k2kaog/19rdvlPSsu9f3NJjZLDOriKaXKPteX0yovlHrc3zoCkk9Z4oOtC9Tw8wukfR3ki5z99ac9iD2ndL/e3Wc6FyX2yVtcfev5LQP9DlNFTObaGaTe6aVPRF0o7L77ZposWskxfYlYUXQa7QzlH3Xx0D760FJV0dn079K0uGcofx+JdKDH4yV3+1v+x5PkrJnVt5iZp2SMpKudfe+J2KkwZfMbIWyQ0x1kj4oSYPtyxT5hrJXATyczQ095u7XKpB95+5dKf+96s+rJb1H0jMWXZIq6ROSruzvc5pCcyTdH30eKyXd5e4/NbPfS7rXzD4gaYeyJ/SmTvSflovVe//0+zcmLczsbkmvkzTTzOol3SzpH9X//npI2TPpt0lqlfS+IdcfjSwCAICApGmIHgAADBMBDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAAB+v9tUZ4mouEyLwAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAhaElEQVR4nO3deZBc5Xnv8d/T3aOZ0YzQYsbakCxhi0XEWIaBwsF2nLCrzCLKYHFvMDiuyFSZcuwkNwZ847hcl6qYGDvJdYwjV7gXV2E2C4HKYLOZ5eIyi4QWJMSiDSQxEkKCGQkNs3Q/948+knpGs0+fOX3e/n6quub0e7r7PEenR79+3/P2GXN3AQCAsGSSLgAAAJQfAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASoLAFvZreb2Ttmtr6kbYqZPWZmb0Q/J0ftZmb/bmabzGydmZ1WjhoAAMAR5erB/19JF/Zqu0HSE+4+T9IT0X1JukjSvOi2RNJtZaoBAABEyhLw7v6MpH29mi+VdEe0fIeky0raf+lFz0maZGbTy1EHAAAoivMc/FR3b4mWd0maGi3PlLS95HE7ojYAAFAmubHYiLu7mQ3rmrhmtkTFIXw1NDScftJJJ8VSGwAAlWjVqlXvunvTSJ8fZ8DvNrPp7t4SDcG/E7XvlDSr5HHHRW09uPtSSUslqbm52VeuXBljqQAAVBYze3M0z49ziH6FpGui5WskPVjS/pVoNv1ZklpLhvIBAEAZlKUHb2Z3SfqCpGPNbIekf5L0z5LuNbOvSXpT0pXRwx+WtFDSJkkHJX21HDUAAIAjyhLw7n5VP6vO6eOxLukb5dguAADoG1eyAwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABCgXJwvbmYnSrqnpOl4Sd+TNEnSX0vaE7Xf5O4Px1kLAADVJNaAd/fXJC2QJDPLStopabmkr0r6ibv/KM7tAwBQrcZyiP4cSZvd/c0x3CYAAFVpLAN+saS7Su5fb2brzOx2M5vc+8FmtsTMVprZyj179vReDQAABjAmAW9m4yRdIum+qOk2SR9Xcfi+RdKtvZ/j7kvdvdndm5uamsaiTAAAgjFWPfiLJL3k7rslyd13u3ve3QuSfiHpzDGqAwCAqjBWAX+VSobnzWx6ybpFktaPUR0AAFSFWGfRS5KZNUg6T9LXS5pvMbMFklzStl7rAADAKMUe8O7+gaSP9Gq7Ou7tAgBQzbiSHQAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQoFzcGzCzbZL2S8pL6nb3ZjObIukeSXMkbZN0pbu/F3ctAABUi7Hqwf+5uy9w9+bo/g2SnnD3eZKeiO4DAIAySWqI/lJJd0TLd0i6LKE6AAAI0lgEvEt61MxWmdmSqG2qu7dEy7skTR2DOgAAqBqxn4OX9Fl332lmH5X0mJm9WrrS3d3MvPeTog8DSyRp9uzZY1AmAADhiL0H7+47o5/vSFou6UxJu81suiRFP9/p43lL3b3Z3ZubmpriLhMAgKDEGvBm1mBmEw4tSzpf0npJKyRdEz3sGkkPxlkHAADVJu4h+qmSlpvZoW39yt1/Z2YvSrrXzL4m6U1JV8ZcBwAAVSXWgHf3LZI+1Uf7XknnxLltAACqGVeyAwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEKJd0AWmypu2gvrnxLU2qyeqkhjqd3Fhf/NlQp0k1/FMCACoHqTRE9+7ap//x2nZ1FFyS9ELrBz3WTxtXo5Mb63RSQ51OaqjXyY11mje+TvVZBkkAAGOPgB9EV8H1g8079Ysd7w74uF2dXdq1r0tP7tt/uC0jaW59rU5qrNP8hnotbJqokxvrY64YAAACfkB7O7u1ZMM2/eH9A8N6XkbSvIY6fbKxXqdOqNepE8brlMZ6Tchl4ykUAIBeCPh+rN9/UNeu36odH3YN+LicSSc11OuTE+qjQB+v+Y31Gs/QPAAgQbEFvJnNkvRLSVMluaSl7v5vZvZ9SX8taU/00Jvc/eG46hiJ5bvf09+++pbao/Pth9RmTCc3FHvlxUAfr5Ma6lRHmAMAKkycPfhuSX/n7i+Z2QRJq8zssWjdT9z9RzFue0Ty7rp5c4t+tv0d1WdMzceM16kTxuuT0TD7CePrVJOxpMsEAGBQsQW8u7dIaomW95vZRkkz49peOTy9b7/mN9bp6TNP0ifG1yprhDkAIJ3G5By8mc2R9GlJz0s6W9L1ZvYVSStV7OW/NxZ1DOYvPnJM0iUAAFAWsZ88NrNGScskfcvd2yTdJunjkhao2MO/tZ/nLTGzlWa2cs+ePX09BAAA9CPWgDezGhXD/U53v1+S3H23u+fdvSDpF5LO7Ou57r7U3ZvdvbmpqSnOMgEACE5sAW9mJum/JG109x+XtE8vedgiSevjqgEAgGoV5zn4syVdLellM1sTtd0k6SozW6DiV+e2Sfp6jDUAAFCV4pxF/6ykvqahV9R33gEACBFXaAEAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAHKJV0AAPSpdaf02sNSoVuqmyTVT5bqJ0XL0f1cbbI1AhWMgAdQmSbOlE6/Vnr1N9KqO6QtT0nyno/J1R8J/Yt+KB3/Z2NeJlCpGKIHULmyNdIpi6SvPCB9c7X0ub+TGqcdWd/dLu1vkfZslO67VnpvW0KFApWHgAeQDlPmSud8T/r2BunLd0qfOE+ykv/C2vdJd/03qfOD5GoEKggBDyBdsjnp5C9Kf/lr6W/WSX/2HemYmcV172yQln9dch/4NYAqQMADSK9Js6Q/v0n61svSVfdIJy6UXn1YevqWpCsDEkfAA0i/TFY68ULpqrukb68v3m9Zl3RVQKKYRQ8gLMfMkD7/90lXASSOHjwAAAEi4AEACBABDwBAgAh4AAAClFjAm9mFZvaamW0ysxuSqgMAgBAlEvBmlpX0H5IukjRf0lVmNj+JWgAACFFSPfgzJW1y9y3u3inpbkmXJlQLAADBSSrgZ0raXnJ/R9R2mJktMbOVZrZyz549Y1ocMBSFgmvL6j3K5wtJlwIAR6nYSXbuvtTdm929uampKelygKNkMqaJH63XhmfeVvuBzqTLAYAekrqS3U5Js0ruHxe1AanykZmN+sjMRnV15JMuBQB6SKoH/6KkeWY218zGSVosaUVCtQCjVlObTboEAOghkR68u3eb2fWSHpGUlXS7u29IohYAAEKU2B+bcfeHJT2c1PYBAAhZxU6yAwAAI0fAAwAQIAIeAIAAEfAAAASIgAcAIEAEPJAiXiho3513qn093yoFMLDEviYHYPgsk9Gkyy7TtquvVs30GWr65jdVd+IJSZcFoALRgwdSJtPQoFm33aYP16/X1ssu045vf1sdW7YkXRaACkPAAylUM3WqZv38NmXq67X/t7/Tlosv0dvf+Y46t28f/MkAqgIBD6RU3ckna8aPb5WyWSmfV+uDK7T5ooVq+cd/VFdLS9LlAUgYAQ+k2IQvfEFTb7zxSEN3t96/79fafNFCJuIBVY6AB1Juyl/+d02++urD93NTp2rW0v9U/Z+ckmBVAJLGLHogAFNvvEFdO3ZIZpp+8/9SbvLkpEsCkDACHgiAZTKa+W//qsy4cUmXAqBCMEQPBIJwB1CKgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8MAg8oV80iUAwLAR8MAA3F33vX5f0mUAwLAR8MAAXtn7ilZsXpF0GQAwbAQ8MIAn3npCr+x9Rfs79yddCgAMCwEPDODJ7U8q73mt3LUy6VIAYFgIeKAf29u2a2vrVp0z+xzNmjAr6XIAYFhySRcAVKpu79ZvFv1Gx004LulSAGDYCHigH3Mnzk26BAAYMYboAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBAsQS8mf2Lmb1qZuvMbLmZTYra55hZu5mtiW4/j2P7AABUu7h68I9J+hN3P1XS65JuLFm32d0XRLfrYto+AABVLZaAd/dH3b07uvucJK71CQDAGBqLc/B/Jem3JffnmtlqM3vazD43BtsHAKDqjPha9Gb2uKRpfaz6rrs/GD3mu5K6Jd0ZrWuRNNvd95rZ6ZIeMLNT3L2tj9dfImmJJM2ePXukZQIAUJVGHPDufu5A683sWklflHSOu3v0nA5JHdHyKjPbLOkESUf9sW13XyppqSQ1Nzf7SOsEAKAaxTWL/kJJ/yDpEnc/WNLeZGbZaPl4SfMkbYmjBgAAqllcfy72p5JqJT1mZpL0XDRj/vOSfmBmXZIKkq5z930x1QAAQNWKJeDd/RP9tC+TtCyObQIAgCO4kh0AAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8ACTM3ZMuAQEi4AEgYfmCE/IoOwIeABKWy2b0QWc+6TIQGAIeACpARxcBj/Ii4AGgAnTlXfkCw/QoHwIeACrARyfUavu+g0mXgYAQ8ABQATIZU0d3IekyEBACHgAqRHehoK48IY/yIOABoEKcMHWCXt7ZmnQZCAQBDwAVoiab0cEOZtOjPAh4AKgwH/KVOZQBAQ8AFeS0j03SHzfvTboMBICAB4AKMn5cThPH1yRdBgIQW8Cb2ffNbKeZrYluC0vW3Whmm8zsNTO7IK4aACCNTps9OekSEIBczK//E3f/UWmDmc2XtFjSKZJmSHrczE5wd046AQBQJkkM0V8q6W5373D3rZI2STozgToAAAhW3AF/vZmtM7PbzezQmNNMSdtLHrMjagMAAGUyqoA3s8fNbH0ft0sl3Sbp45IWSGqRdOswX3uJma00s5V79uwZTZkAAFSdUZ2Dd/dzh/I4M/uFpN9Ed3dKmlWy+riorfdrL5W0VJKam5v5E0sAAAxDnLPop5fcXSRpfbS8QtJiM6s1s7mS5kl6Ia46AACoRnHOor/FzBZIcknbJH1dktx9g5ndK+kVSd2SvsEMegAAyiu2gHf3qwdYd7Okm+PaNgAA1Y4r2QEAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADAIbEvaADB17Tzp13K59vT7ocDCKXdAEAgMrU1dWq1rbVam1drbbW1WptW6t8/oDMcpox48qky8MgCHgAgNwL+uCDN9Ta+pJaW1ertW2NDh7cIsmPeuy4ccfKjAHgSkfAA0AV6q93PhS1tdNjrg7lQMADQOCO7p2v1sGDW9VX73wo6mqnlbdAxIKAB4DAdHW9f3iYfbi986GorZ1attdCfAh4AEixcvfOh6K2jh58GhDwAJAiR3rn0fnztnVl7Z0PRS1D9KlAwANAhXIv6MAHrxeH2ceodz4UdUyySwUCHgAqRCX0zoeCc/DpQMADQAIO9c5bW19SW+uaiumdD84I+JQg4AFgDKSldz6YmpopymTGJV0GhoCAB4Ay69k7P3TufJsqv3c+uDpm0KcGAQ8AoxRK73wouIpdesQS8GZ2j6QTo7uTJL3v7gvMbI6kjZJei9Y95+7XxVEDAMSh79751qTLGjOcf0+PWALe3b98aNnMbpXUWrJ6s7sviGO7AFBuXV3vqbV1TfFCMm1rgu6dDwWXqU2PWIfozcwkXSnpL+LcDgCUQ7X3zoeCi9ykR9zn4D8nabe7v1HSNtfMVktqk/Q/3f3/9fVEM1siaYkkzZ49O+YyAVSjnr3zQ+fOP0i6rIpGwKfHiAPezB6X1NeR/q67PxgtXyXprpJ1LZJmu/teMztd0gNmdoq7t/V+EXdfKmmpJDU3N6d/6imARLnndeDA68Ugp3c+YgR8eow44N393IHWm1lO0uWSTi95Toekjmh5lZltlnSCpJUjrQMA+kLvPB58TS494hyiP1fSq+6+41CDmTVJ2ufueTM7XtI8SVtirAFAFSjtnbe2vqS2tjX0zmOQyx2jbHZ80mVgiOIM+MXqOTwvSZ+X9AMz65JUkHSdu++LsQYAAaJ3ngyG59MltoB392v7aFsmaVlc2wQQnt6989bW1Wpv35Z0WVWJ78CnC1eyA1BRir3zI38eld555eDPxKYLAQ8gMfTO04Uh+nQh4AGMmSO982KYt+1/md55itQygz5VCHgAsSj2zl9Ta9saeueB4DK16ULAAyiLzs59aisJc3rn4WGIPl0IeADDdrh3XvInUumdh4+ATxcCHsCg6J0jmx2vmpqJSZeBYSDgAfTQs3d+6Nz5m0mXhYTxHfj0IeCBKtfZue/wMHsbvXP0o3YcAZ82BDxQReidY6T4ilz6EPBAwEp7562tL2n//vX0zjEitVzFLnUIeCAgBw9u1b73/qjW1lX0zlFWfAc+fQh4ICDjx89Vff0cTZ+2SPn8QeXz7dHP6FYo3i8cbm/v0X7ofqGf9ny+XcU/BIlqw1fk0oeABwJjZspm65XN1sfy+vn8h0dCv9DHh4V8u957f5eef/4ZmTp14olzNWVKQ8kHjeLz8r2eVyi0yz0fS80YPWbRpw8BD2BYstk6ZbN1/a7v7OzUsmX/qb175+szn/mM/vRPLxjyaxcKHUcFf88PBB8on29XYYDRh+L6oz9EuHeVY/erVm0d5+DThoAHUFYPPfSQ9u7dq7lz5+q8884b1nMzmVplMrWqqZlU9roKha4+RxEK/X6Y6LW+14eMIx8q2uXeWfZ6K4nZOI2r+UjSZWCYCHgAZbN27VqtXbtWEydO1Je+9CVlMpmkSzosk6lRJjMxlquxFQrdKhTae36A6OMDw5HTGYONQJTMlyh0lL3e4aqt/ajMLOkyMEwEPICyePfdd/XQQw8pl8tp8eLFamhoSLqkMZPJ5JTJTFAuN6Hsr+2ePzxScOQDQR+nKoY9YfKgCoUPh1QD59/TiYAHMGrd3d369a9/rc7OTl1++eWaPp3zteVillUu16hcrrHsr+1eiEYZen9Y6PmBoXbcR8u+bcSPgAcwao8++qh27dqls846S6eeemrS5aRSIZ/X7q2bVDu+UXUNDaptaFQ2F+9/0WYZ5XINyql6RluqCQEPYFQ2btyoF154QXPmzNH555+fdDmptfHZp/S7n/2kR1uutlZ144thXzu+QbUNDdHPRtU1NOqYY5s07RMn6NjZH1Mmk02oclQqAh7AiL3//vt68MEHNXHiRF1xxRUVNakuTdxdL65YdlR7d0eHPujsUramRscc26TJ02dqyoyZmjLjOE2ecZwaJ09JoFqkBQEPYETy+byWLVum7u5uXXPNNVU1qa7cNr34Rx3Yt1fTPnGCpkyfqckzjtOUmcdpyvSZmjRthnLjxiVdIlKIgAcwIk8++aS2b9+uRYsWMalulOYsOF3X/597ki4DgWE8DcCwbd68Wc8++6zOOussfepTn0q6nNSrGVebdAkIEAEPYFgOHDig+++/X3PmzBn2leoAjB0CHsCQFQoF3X///crlcrriiiuUzTJzG6hUBDyAIXv22Wf11ltv6ctf/jKT6oAKR8ADGJK33npLTz31lC6++GLNmDEj6XIADIKABzCo9vZ2LVu2TGeccQaT6oCUIOABDOqBBx7Q5MmTuVIdkCIEPIABPf/889q1axeT6oCUIeAB9KulpUW///3vmVQHpBABD6BPHR0duu+++7Rw4UIm1QEpRMAD6NNDDz2kefPmMakOSCkCHsBRVq9erba2NibVASlGwAPoYc+ePfrDH/7ApDog5Qh4AId1dXXpgQce0OWXX86kOiDlCHgAhz3yyCM644wzmFQHBICAByBJ2rBhgzKZjBYsWJB0KQDKoKoCPt/aIe/KJ10GUHHee+89rVu3ThdccEHSpQAok6oK+I6trdr90zVJlwFUlHw+r8cee0wXX3wxk+qAgFRVwCtjkiddBFBZnn76aZ199tlqbGxMuhQAZVRVAW9ZU/aYcUmXAVSMN954Q1OmTNHMmTOTLgVAmVVVwCubUbaxJukqgIqwf/9+vf3220yqAwI1qoA3syvMbIOZFcysude6G81sk5m9ZmYXlLRfGLVtMrMbRrP9YdebMWXowQMqFApatWqVPvvZzyZdCoCYjLYHv17S5ZKeKW00s/mSFks6RdKFkn5mZlkzy0r6D0kXSZov6arosWMja8pOIOCBtWvXqrm5mUl1QMByo3myu2+UJDPrvepSSXe7e4ekrWa2SdKZ0bpN7r4let7d0WNfGU0dQ2UEPKAdO3Zo2rRpTKoDAhfXOfiZkraX3N8RtfXXPjYypgwBjyp28OBBdXR0aPr06UmXAiBmg/bgzexxSdP6WPVdd3+w/CUd3u4SSUuiux1mtj6ubVWAYyW9m3QRMWL/0i3k/Qt53yT2L+1OHM2TBw14dz93BK+7U9KskvvHRW0aoL33dpdKWipJZrbS3Zv7elwI2L90Y//SK+R9k9i/tDOzlaN5flxD9CskLTazWjObK2mepBckvShpnpnNNbNxKk7EWxFTDQAAVK1RTbIzs0WS/rekJkkPmdkad7/A3TeY2b0qTp7rlvQNd89Hz7le0iOSspJud/cNo9oDAABwlNHOol8uaXk/626WdHMf7Q9LeniYm1o6/OpShf1LN/YvvULeN4n9S7tR7Z+5c3F2AABCU12XqgUAoEpUXMCn7fK3o2Fm95jZmui2zczWRO1zzKy9ZN3PEy51RMzs+2a2s2Q/Fpas6/NYpoWZ/YuZvWpm68xsuZlNitqDOHZSen+v+mNms8zsSTN7Jfo/5m+i9n7fp2kT/T/ycrQfK6O2KWb2mJm9Ef2cnHSdw2VmJ5YcnzVm1mZm30r7sTOz283sndKvgfd3vKzo36Pfx3VmdtqgG3D3irpJOlnF7/49Jam5pH2+pLWSaiXNlbRZxYl62Wj5eEnjosfMT3o/RrDft0r6XrQ8R9L6pGsqwz59X9Lf99He57FMut5h7tv5knLR8g8l/TCwYxfE71WvfZou6bRoeYKk16P3Yp/v0zTeJG2TdGyvtlsk3RAt33DovZrWW/Te3CXpY2k/dpI+L+m00v8z+jtekhZK+q0kk3SWpOcHe/2K68G7+0Z3f62PVYcvf+vuWyUduvztmYouf+vunZIOXf42Nax4rd8rJd2VdC1jpL9jmRru/qi7d0d3n1Pxmg4hSf3vVW/u3uLuL0XL+yVt1FheSTM5l0q6I1q+Q9JlyZVSFudI2uzubyZdyGi5+zOS9vVq7u94XSrpl170nKRJZjbgJSkrLuAHUJmXvy2Pz0na7e5vlLTNNbPVZva0mX0uqcLK4PpoOOn2kqHBEI5Zqb9S8ZP1ISEcu9COUQ9mNkfSpyU9HzX19T5NI5f0qJmtsuLVQCVpqru3RMu7JE1NprSyWayenaFQjt0h/R2vYf9OJhLwZva4ma3v45bqHkJfhrivV6nnG7ZF0mx3/7Skv5X0KzM7ZizrHqpB9u82SR+XtEDFfbo1yVqHayjHzsy+q+K1Hu6MmlJz7KqVmTVKWibpW+7eppS/T3v5rLufpuJf7PyGmX2+dKUXx3pT+9UpK14g7RJJ90VNIR27o4z2eI3qe/Aj5Qld/jYJg+2rmeVU/JO7p5c8p0NSR7S8ysw2SzpB0qguWxiHoR5LM/uFpN9Edwc6lhVjCMfuWklflHRO9IuYqmM3iFQco+EysxoVw/1Od79fktx9d8n60vdp6rj7zujnO2a2XMVTLbvNbLq7t0RDuu8kWuToXCTppUPHLKRjV6K/4zXs38k0DdGHevnbcyW96u47DjWYWZOZZaPl41Xc1y0J1Tdivc4PLZJ0aKZof8cyNczsQkn/IOkSdz9Y0h7EsVP6f6+OEs11+S9JG939xyXt/b1PU8XMGsxswqFlFSeCrlfxuF0TPewaSbH9kbAx0GO0M5Rj10t/x2uFpK9Es+nPktRaMpTfp0R68AOx6rv8be/zSVJxZuUPzKxLUkHSde7eeyJGGtxiZgtUHGLaJunrkjTQsUyRn6r4LYDHirmh59z9OgVy7Ny9O+W/V305W9LVkl626Cupkm6SdFVf79MUmippefR+zEn6lbv/zsxelHSvmX1N0psqTuhNnehDy3nqeXz6/D8mLczsLklfkHSsme2Q9E+S/ll9H6+HVZxJv0nSQUlfHfT1o5FFAAAQkDQN0QMAgCEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQP8fkgtmDqR33e8AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAjFklEQVR4nO3deZAc5Znn8d/T1afUrbOb1o0OBEICJKE2a9aDbMxhwF5kZsdYjAMwJiwTC7v2zm7MYrM76/COYz22MbEz9npCjmGWibDxEZgxMRYeDoEZGMu2BLIsgTACgSVZ6m50duvo89k/KhuVmupWH5WVlW99PxEVynqzMvNJZVX9+s16K8vcXQAAICwVSRcAAAAKj4AHACBABDwAAAEi4AEACBABDwBAgAh4AAACVJCAN7MHzazNzLbntE0zsyfN7LXo36lRu5nZX5vZLjPbZmaXFqIGAABwWqF68P9P0nWD2u6V9LS7L5b0dHRfkq6XtDi6rZP07QLVAAAAIgUJeHd/TtKhQc1rJD0UTT8k6aM57f/gWZskTTGzmYWoAwAAZMX5GXyzu++Ppg9Iao6mZ0vak/O4vVEbAAAokMpibMTd3cxGdU1cM1un7Cl8TZw4cdWSJUtiqQ0AgFK0ZcuWt929aazLxxnwrWY20933R6fg26L2fZLm5jxuTtR2BndfL2m9JLW0tPjmzZtjLBUAgNJiZm+NZ/k4T9E/Jun2aPp2ST/Jab8tGk3/XklHc07lAyhRnb19SZcAYBQK9TW5hyX9QtIFZrbXzO6U9BVJ15jZa5Kuju5L0gZJb0jaJek7kv5DIWoAEK/fdJxIugQAo1CQU/TufssQs67K81iXdHchtgugONxd2zpO6n1TG5IuBcAIcSU7AGe1o/OkenxU42QBJIyAB3BWzx/u1IQMbxdAmvCKBXBWzx/pVD0BD6QKr1gAw+rtd2060qn6TCbpUgCMAgEPYFi/6Tihzr5+1VfydgGkCa9YAMN6/nCnJNGDB1KGgAcwrOePdEiSJvIZPJAqvGIBDKm7v1+bjx6XJNVX0oMH0oSABzCkzUdP6GR/9vvvjKIH0oVXLIAhDZyel/gMHkgbAh7AkF6IBtjVVJiqKizhagCMBgEPIC93f+cHZhhgB6QPr1oAeZmZlkysk8TpeSCNCHgAQ3r/tOyvxzHADkgfXrUAhnTF1HpJfEUOSCMCHsCQ3jN5ouoqKvgMHkihdLxqO/ZLR/YkXQVQdmoqKvTeKRMJeCCF0vGq7Tgg/Z9LpO9+TNq5QervS7oioGxcMbWBQXZAClUmXcCIeb/02hPZ26TZ0qW3ZW+TZiVdGRC01VPr9Yeu7qTLADBK6ejBD3Zsn/Ts/5YeuEh6+BbptSel/v6kqwKCtKy+TvPrapIuA8AopacHn4/3Sa9uyN4mz5NW3SatvE1qaE66MiAYZqYPNU5OugwAo5TOHnw+R38vbfxL6YGl0g9ulV7fKLknXRUQhLm11UmXAGCU0t2Dz6e/V3rlsext6gJp1e3SyluliY1JVwYAQNGE04PP5/Bu6akvSt+4UPrRHdLu55KuCACAogivB59PX7e048fZ2/TF0qpPSiv+VJowLenKAACIRdg9+HwOviY9cZ90/xLpkU9Lb/1r0hUBAFBw5dGDz6evS/rtD7O3piXSqjuk5WuluilJVwYAwLiVXw8+n/ad0s/+W7ZX/8R/l/p6k64IAIBxKd8e/GDzLpda7pSW3ihl+G8BAKRbeSdZdYO0/ONSy6ek5mVJVwMAQMGUZ8DPuDjbW7/4Y1JNfdLVAABQcOUT8JW10rKbssE+9z1JVwMAQKzCD/hpi6SWO6QVn+B77wCAshFmwFdUShdcn+2tL/yAZJZ0RQBS4rPff0knuvu0qKlei5omatE59VrUWK/JE6qSLg0YlbACvmFW9ip1l94mTZqZdDUAUujQ8W79y2tv60m1ntHeWF+jRU0TtTAn+M9rqtesKXXKVNCJQOkJIOBNWnRltrd+wfVSRSbpggCk2KS6/D31tzu79HZnl365+9AZ7TWVFVrQOPGdHv9HV87WwiYG7yJ56Q34umnSyk9kr0A3fVHS1QAIxKTa0Z2K7+rt184DHdp5oEPnTp+gz7yf9yOUhvQF/Nx/k+2tL/uoVFmTdDUAAjOpbmxvi2bS1z+2XBNr0ve2ijCl45lomezFaFrulGZclHQ1AAI22h78gE9fsVDvmc83dVA60hHwMy6SPvJA0lUAKAOTakf/tnjeOfX6s2vOj6EaYOzS8WMzlo4yAaTfUIPshpKpMH3j5uWqrWKAL0oLyQkAOUZ7iv7uK8/TJXOmxFMMMA4EPADkaBjFKfplsybpnivPi7EaYOwIeADIMdJT9NWZCt1/83JVV/I2itLEMxMAcoz0FP1/vuZ8LZkxKeZqgLEj4AEgx0i+B79y3hStW72wCNUAYxfr1+TM7AJJP8hpWijpLyRNkfRpSe1R+xfcfUOctQDASNRVZZSpMPX1e975tVUVuv9jy7n+PEperAHv7q9KWiFJZpaRtE/So5LukPSAu389zu0DwGiZmSbVVurwiZ688++9bgnXmkcqFPMU/VWSXnf3t4q4TQAYtaEG2l2+cLpuu3x+cYsBxqiYAb9W0sM59+8xs21m9qCZTR38YDNbZ2abzWxze3v74NkAEJt8A+3qayr11T+5RBWcmkdKFCXgzaxa0o2SfhQ1fVvSImVP3++XdP/gZdx9vbu3uHtLU1NTMcoEAEn5vwv/Pz5yoeZOm5BANcDYFKsHf72kF929VZLcvdXd+9y9X9J3JF1WpDoA4KwG9+CvvKBJN7fMTagaYGyKFfC3KOf0vJnNzJl3k6TtRaoDAM4q96tyk+uq9JV/f4nMODWPdIn91+TMbKKkayR9Jqf5q2a2QpJLenPQPABIVG4P/ktrlql5Um2C1QBjE3vAu/txSdMHtd0a93YBxKf38CnJTJVTapIuJRYDo+hvuHiGblw+K+FqgLHhSnYARqzn7ZM69KPf6cDXNqu39XjS5cSmobZSjfXV+l9rLuLUPFIr9h48gPTrOXBcx57Zo5Pb2rMfrEny/Bd6C8Kk2ip9+aaLNb0+zDMUKA8EPIAhde/t0LGNe3Tq5YPvnhlwwl+9tFmTR/irckCpIuABvEvXm0d1bOMedf3u8NAPCjffCXcEgYAHIElyd3XtOqJjG/eoe/fRsy8wxI+xACgNBDxQ5txdp145pGPP7FHPno5RLBdjUQDGjYAHypT3u05uf1sdz+xRz/4xjIgn4YGSRsADZcb7+nVia7s6nt2j3vaT41hR4WoCUHgEPFAmvLdfx7e0quPZPeo73FWAFZLwQCkj4IHA9Xf36fivDqjjub3qP9ZdsPWS70BpI+CBQPWf6lXnpv3q/Jd96j/eU5iVVpiqZk5U9Zx6Vc+aWJh1AogFAQ8Epv9Ejzpe+IM6X/iD/FTvuNaVmVar6rkNqp7ToOp5DaqeNVFWlSlQpQDiRMADgejr6FbH8/t0/Bf75d19o17e6iqzYT5wm1OvTH11DJUCKAYCHki53iNd6nxurzp/dUDq7R/ZQhlT9az6d8K8am6DKqfX8sMqQEAIeCCleg+eVMeze3X8xVapb/gRb5WNdWf0zqtmTpRV8mOSQMgIeCBlelqPq+PZvTqxtS3vd9Er6qtOf24enWqvmMC11YFyQ8ADKdG9r1Mdz/xeJ3ccfCfYrapCVbPrz+idZ6bUcKodAAEPlLqut46pY+Pvdep3h1V5zgRNWNV8+lR780RZhjAH8G4EPFCC3F29B0+p67XD6u/qU/3qOZr2p0tUUcNLFsDI8G4BlKiqxjpVNdYlXQaAlGIYLVCC+AwdwHgR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgABVxr0BM3tTUoekPkm97t5iZtMk/UDSfElvSrrZ3Q/HXQsAAOWiWD34K919hbu3RPfvlfS0uy+W9HR0HwAAFEhSp+jXSHoomn5I0kcTqgMAgCAVI+Bd0hNmtsXM1kVtze6+P5o+IKm5CHUAAFA2Yv8MXtIfufs+MztH0pNmtjN3pru7mfnghaI/BtZJ0rx584pQJgAA4Yi9B+/u+6J/2yQ9KukySa1mNlOSon/b8iy33t1b3L2lqakp7jIBAAhKrAFvZhPNrGFgWtK1krZLekzS7dHDbpf0kzjrAACg3MR9ir5Z0qNmNrCt77n7z8zs15J+aGZ3SnpL0s0x1wEAQFmJNeDd/Q1Jy/O0H5R0VZzbBgCgnHElOwAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQLEFvJnNNbNnzOxlM9thZp+N2r9oZvvMbGt0uyGuGgAAKFeVMa67V9J/cfcXzaxB0hYzezKa94C7fz3GbQMAUNZiC3h33y9pfzTdYWavSJod1/YAAMBpRfkM3szmS1op6ZdR0z1mts3MHjSzqcWoAQCAchJ7wJtZvaRHJH3O3Y9J+rakRZJWKNvDv3+I5daZ2WYz29ze3h53mQAABCXWgDezKmXD/bvu/mNJcvdWd+9z935J35F0Wb5l3X29u7e4e0tTU1OcZQIAEJw4R9GbpL+T9Iq7fyOnfWbOw26StD2uGgAAKFdxjqJ/n6RbJf3WzLZGbV+QdIuZrZDkkt6U9JkYawAAoCzFOYr+eUmWZ9aGuLYJAACyuJIdAAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAMPwftervzygrhM9SZcCjAoBDwDD2P/6UVVkTDUTqpIuBRiVOH9NDgBSr35ajWYtnpJ0GcCo0YMHgGFMml6XdAnAmBDwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAlFvBmdp2ZvWpmu8zs3qTqAAAgRIkEvJllJH1L0vWSlkq6xcyWJlELAAAhSqoHf5mkXe7+hrt3S/q+pDUJ1QIAQHCSCvjZkvbk3N8btb3DzNaZ2WYz29ze3l7U4gAASLuSHWTn7uvdvcXdW5qampIuBwCAVEkq4PdJmptzf07UBgAACiCpgP+1pMVmtsDMqiWtlfRYQrUAABCcyiQ26u69ZnaPpH+WlJH0oLvvSKIWAABClEjAS5K7b5C0IantAwAQspIdZAcAAMaOgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMAjCCdO7Nbu3X+j7Ts+l3QpAFASEvs9eGC8TpzYrda2DWpr26DOzp2SpBkzbkq4KgAoDQQ8UuXEibfU1vZTtbY9rs7Ol981v6FhWQJVAUDpIeBR8k6e/L1aW7M99Y7OHcM+tqHhoiJVBQCljYBHSTp5cm/UU9+gjo7tI1zK1FC/NNa6ACAtCHiUjFOn/qDWtp+qrXWDjnVsG/XyEybMV2XlxBgqA4D0IeCRqGyob1Bb2+M6dmzruNbVUM/n7wAwgIBH0Z06tV9tbY+rtW1DFOpekPUywA4ATiPgURRdXa3vfKXt6NGXVKhQz0XAA8BpBDxi09XV9k5P/ejRLYoj1HMxgh4ATiPgUVBdXe1qa39cba0bdOToFkn9Rdlube1cVVVNLsq2xmr7s09p5ws/l5lJZjJJVhFdTNJMZhUykySTVZhM0ePs9L+5yw4sI5Mqq6r0wTvuUkUmk9j+ASgtBDzGrav7bbW3/UytbRt05MivVaxQz5WG0/OVVVV6a9tLsaz7gn+7mnAHcAYCHuPS3X1IBw8+q97eTk1quEi1tbPU03NI3d2H1NNzWD09h9TXdyL2OialIOCbF54X27pXXHtDbOsGkE4EPMalunqaZs38k2Ef09d3Khv6PYfUEwX/wHR3zyH19BxST/fh09M9RzXaswBp6MFPaZ6p6ro6dZ88WdD1Ns49V7OXlP7+AyguAh6xy2RqlcnMUm3trBE93r1PPT1Hoj8CDp/xx0H+PwgOpSLgraJC5yxYpL0vj/TKfCOz/NoPZz+bB4AcBDxKjllG1dXTVV09XQrswnTNC84raMBX1dZp6RUfKNj6AISD34MHiqh5waKCrm/p6g+qum5CQdcJIAwEPFBE5xR4oN2Ka64v6PoAhIOAB4po6sxZqqqpLci65lx4kRrnzS/IugCEh4AHiqiiIqNzFiwsyLqW89U4AMMg4IEia14w/tP0EyZP0eLLLi9ANQBCRcADRXZOAQbaXXLVh5SprCpANQBCRcADRTbeK9qZVejiq64rUDUAQkXAA0U2bdYcVVbXjHn5RS2XaVJjUwErAhAiAh4osopMRk3zF4x5+eXXfriA1QAIFQEPJGCsA+2mzpylcy9aXuBqAISIgAcSMNYr2i2/5obTvyEPAMPgnQJIwFgG2lVW12jZ+6+OoRoAISLggQRMmz1XmarRfc1tyftWq7a+PqaKAISGgAcSkKmsVNO5oxtot4LBdQBGgYAHEjKagXYzzjt/3N+fB1BeYgl4M/uame00s21m9qiZTYna55vZSTPbGt3+No7tA2kwmiva0XsHMFpx9eCflHSRu18i6XeSPp8z73V3XxHd7opp+0DJG2mPvLa+Qedf/kcxVwMgNLEEvLs/4e690d1NkubEsR0gzRrnzlOmsvKsj7voymtUNY4r3wEoT8X4DP5Tkh7Pub/AzF4ys5+b2RVF2D5QkjKVVSP6PfflV18ffzEAgnP27sMQzOwpSTPyzLrP3X8SPeY+Sb2SvhvN2y9pnrsfNLNVkv7RzJa5+7E8618naZ0kzZs3b6xlAiWtecF5an1j15Dz569YpSkzZhaxIgChGHPAu/uwV9wws09K+oikq9zdo2W6JHVF01vM7HVJ50vanGf96yWtl6SWlhYfa51AKTvbQLsV195QpEoAhCauUfTXSfpzSTe6+4mc9iYzy0TTCyUtlvRGHDUAaTDcQLuGxiYtWNlSxGoAhGTMPfiz+KakGklPmpkkbYpGzK+W9CUz65HUL+kudz8UUw1AyWuce64qMhn19/W9a97yq69XRUUmgaoAhCCWgHf3vN0Sd39E0iNxbBNIo8rqak2fe67a3zzzRFZFplIXf/DahKoCEAKuZAckLN8V7c5/7/s0YfKU4hcDIBgEPJCwfD8dy5XrAIwXAQ8kbPBAu6Z58zXrggsTqgZAKAh4IGGN586XVZx+KS6/9sOKBqcCwJgR8EDCqqprNH1O9mJO1XV1uvCKDyRbEIAgEPBACRgYaLd09VWqrq1LuBoAISDggRIwcEU7rlwHoFAIeKAENC88T3OXXvzOqXoAGC8CHigB55y7QCuv+3dJlwEgIAQ8UAKqamt13mWXJ10GgIAQ8ECJ4KtxAAqJgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAGKLeDN7Itmts/Mtka3G3Lmfd7MdpnZq2b2obhqAACgXFXGvP4H3P3ruQ1mtlTSWknLJM2S9JSZne/ufTHXAgBA2UjiFP0aSd939y533y1pl6TLEqgDAIBgxR3w95jZNjN70MymRm2zJe3JeczeqA0AABTIuALezJ4ys+15bmskfVvSIkkrJO2XdP8o173OzDab2eb29vbxlAkAQNkZ12fw7n71SB5nZt+R9E/R3X2S5ubMnhO1DV73eknrJamlpcXHUycAAOUmzlH0M3Pu3iRpezT9mKS1ZlZjZgskLZb0q7jqAACgHMU5iv6rZrZCkkt6U9JnJMndd5jZDyW9LKlX0t2MoAcAoLBiC3h3v3WYeV+W9OW4tg0AQLnjSnYAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeADAuO08tFPunnQZyEHAAwDGrbGuUfc9f59ePfRq0qUgQsAXSH93t7yvL+kyACARjXWNunvl3drXuU99/bwXloLKpAtIs96DB3V80yZlJk9RzeLFqmo+J+mSACAxs+tna3b97KTLQISAH6Wu3bvVuXGjTrz4kmqXXqipa9eqcvr0pMsCAOAMBPxZeF+fTv5mmzo3Pq2Ojc/Ie3o07ZO3a/bXv6aKurqkywMAIC8CPo/+U6d0/F9/oY6NT6vzmWfVd/Cgai++WE3/6T+q4ZprZJlM0iUCADAsAj7Se+iQOp95Vh0bN+r4Cy/IT52SJNW///2aduenNOE975GZJVwlAAAjU/YB3/H00zr44N/r5EsvSf392caqKk2+6SZN/9Qdqlm8ONkCAQAYg7IP+LpLL1X/N78l9feror5eU9d+XFNvvVVVzc1JlwYAwJiVfcBXTp2qc//+QR396U81ec0aZerrky4JAIBxK/uAl6TMlCma9olPJF0GAAAFw5XsAAAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgADF8mtyZvYDSRdEd6dIOuLuK8xsvqRXJL0azdvk7nfFUQMAAOUsloB3948PTJvZ/ZKO5sx+3d1XxLFdAACQFevvwZuZSbpZ0gfj3A4AADhT3J/BXyGp1d1fy2lbYGYvmdnPzeyKoRY0s3VmttnMNre3t8dcJgAAYRlzD97MnpI0I8+s+9z9J9H0LZIezpm3X9I8dz9oZqsk/aOZLXP3Y4NX4u7rJa2XpJaWFh9rnQAAlKMxB7y7Xz3cfDOrlPTHklblLNMlqSua3mJmr0s6X9LmsdYBAADeLc5T9FdL2unuewcazKzJzDLR9EJJiyW9EWMNAACUpTgH2a3VmafnJWm1pC+ZWY+kfkl3ufuhGGsAAKAsxRbw7v7JPG2PSHokrm0CAIAsrmQHAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfCB6e3tTboEAEAJGFfAm9nHzGyHmfWbWcugeZ83s11m9qqZfSin/bqobZeZ3Tue7eNMfX19MrOkywAAlIDx9uC3S/pjSc/lNprZUklrJS2TdJ2k/2tmGTPLSPqWpOslLZV0S/RYFEAmk1Emk0m6DABACagcz8Lu/oqkfL3GNZK+7+5dknab2S5Jl0Xzdrn7G9Fy348e+/J46gAAAGeK6zP42ZL25NzfG7UN1Q4AAArorD14M3tK0ow8s+5z958UvqR3trtO0rrobpeZbY9rWyWgUdLbSRcRI/Yv3ULev5D3TWL/0u6C8Sx81oB396vHsN59kubm3J8TtWmY9sHbXS9pvSSZ2WZ3b8n3uBCwf+nG/qVXyPsmsX9pZ2abx7N8XKfoH5O01sxqzGyBpMWSfiXp15IWm9kCM6tWdiDeYzHVAABA2RrXIDszu0nS30hqkvRTM9vq7h9y9x1m9kNlB8/1Srrb3fuiZe6R9M+SMpIedPcd49oDAADwLuMdRf+opEeHmPdlSV/O075B0oZRbmr96KtLFfYv3di/9Ap53yT2L+3GtX/m7oUqBAAAlAguVQsAQIBKLuDL6fK3ZvYDM9sa3d40s61R+3wzO5kz728TLnVMzOyLZrYvZz9uyJmX91imhZl9zcx2mtk2M3vUzKZE7UEcOym9r6uhmNlcM3vGzF6O3mM+G7UP+TxNm+h95LfRfmyO2qaZ2ZNm9lr079Sk6xwtM7sg5/hsNbNjZva5tB87M3vQzNpyvwY+1PGyrL+OXo/bzOzSs27A3UvqJulCZb/796yklpz2pZJ+I6lG0gJJrys7UC8TTS+UVB09ZmnS+zGG/b5f0l9E0/MlbU+6pgLs0xcl/dc87XmPZdL1jnLfrpVUGU3/laS/CuzYBfG6GrRPMyVdGk03SPpd9FzM+zxN403Sm5IaB7V9VdK90fS9A8/VtN6i5+YBSeem/dhJWi3p0tz3jKGOl6QbJD0uySS9V9Ivz7b+kuvBu/sr7v5qnlnvXP7W3XdLGrj87WWKLn/r7t2SBi5/mxqWvdbvzZIeTrqWIhnqWKaGuz/h7gM/3bdJ2Ws6hCT1r6vB3H2/u78YTXdIekXlcSXNNZIeiqYfkvTR5EopiKskve7ubyVdyHi5+3OSDg1qHup4rZH0D561SdIUM5s53PpLLuCHEfLlb6+Q1Orur+W0LTCzl8zs52Z2RVKFFcA90emkB3NODYZwzHJ9Stm/rAeEcOxCO0ZnMLP5klZK+mXUlO95mkYu6Qkz22LZq4FKUrO774+mD0hqTqa0glmrMztDoRy7AUMdr1G/JhMJeDN7ysy257mluoeQzwj39Rad+YTdL2meu6+U9GeSvmdmk4pZ90idZf++LWmRpBXK7tP9SdY6WiM5dmZ2n7LXevhu1JSaY1euzKxe0iOSPufux5Ty5+kgf+Tulyr7i513m9nq3JmePdeb2q9OWfYCaTdK+lHUFNKxe5fxHq9xfQ9+rDyhy98m4Wz7amaVyv7k7qqcZbokdUXTW8zsdUnnSxrXZQvjMNJjaWbfkfRP0d3hjmXJGMGx+6Skj0i6KnohpurYnUUqjtFomVmVsuH+XXf/sSS5e2vO/Nznaeq4+77o3zYze1TZj1pazWymu++PTum2JVrk+Fwv6cWBYxbSscsx1PEa9WsyTafoQ7387dWSdrr73oEGM2sys0w0vVDZfX0jofrGbNDnQzdJGhgpOtSxTA0zu07Sn0u60d1P5LQHceyU/tfVu0RjXf5O0ivu/o2c9qGep6liZhPNrGFgWtmBoNuVPW63Rw+7XVJsPxJWBGec7Qzl2A0y1PF6TNJt0Wj690o6mnMqP69EevDDsfK7/O3gz5Ok7MjKL5lZj6R+SXe5++CBGGnwVTNboewppjclfUaShjuWKfJNZb8F8GQ2N7TJ3e9SIMfO3XtT/rrK532SbpX0W4u+kirpC5Juyfc8TaFmSY9Gz8dKSd9z95+Z2a8l/dDM7pT0lrIDelMn+qPlGp15fPK+x6SFmT0s6QOSGs1sr6T/Kekryn+8Nig7kn6XpBOS7jjr+qMziwAAICBpOkUPAABGiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAD9f37spcSmC4MnAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAjl0lEQVR4nO3dfXRddb3n8c83SdOm6TNJQy2UFijKw2ALGR4GimhRHoahVEeE5VJ8msISvNd7dVwgaxSd4V6vynXWnavcKUuuyAUUB1HGQQUEQVkWmpZaUvrcpg8hTUNb89Tm6Zzv/JGdcpombZqcffY5v/N+rXVW9/7tp+9e+5x8+ttnn73N3QUAAMJSknQBAAAg+wh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQFkJeDN7yMz2mll9RtsMM3vOzDZH/06P2s3M/snMtpjZWjO7IBs1AACAd2SrB/8jSdcMartL0u/cfb6k30XjknStpPnRa5mkB7JUAwAAiGQl4N39ZUn7BzUvkfRwNPywpBsz2n/s/VZImmZms7JRBwAA6Bfnd/A17t4UDe+RVBMNz5a0K2O+3VEbAADIkrJcbMTd3cxO6J64ZrZM/afwVVlZeeF73vOeWGoDACAfrVq16m13rx7t8nEGfLOZzXL3pugU/N6ovVHSqRnznRK1HcHdl0taLkm1tbVeV1cXY6kAAOQXM9sxluXjPEX/tKRbo+FbJf0yo/2T0dX0l0hqzTiVDwAAsiArPXgze1zSlZKqzGy3pK9L+pakJ8zss5J2SLopmv0ZSddJ2iLpoKRPZ6MGAADwjqwEvLvfMsykxUPM65LuyMZ2AQDA0LiTHQAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAlcW5cjN7t6SfZjSdLulrkqZJ+i+SWqL2r7r7M3HWAgBAMYk14N19o6QFkmRmpZIaJT0l6dOSvufu341z+wAAFKtcnqJfLGmru+/I4TYBAChKuQz4myU9njF+p5mtNbOHzGz64JnNbJmZ1ZlZXUtLy+DJAADgGHIS8GZWLukGST+Lmh6QdIb6T983Sbp/8DLuvtzda929trq6OhdlAgAQjFz14K+VtNrdmyXJ3ZvdPeXuaUkPSroorg23tdfHtWoAAPJWrgL+FmWcnjezWRnTlkqKJYUPHtyuVas+qgMHVsSxegAA8lbsAW9mlZI+KOnnGc3fNrM3zGytpPdL+ps4tt3Q8AOl0z16o/4LOnRoVxybAAAgL8X6MzlJcvdOSScNavtE3Ns9dGiX9jQ/LUnq7d2vtWtv04UX/kxlZZVxbxoAgMQFeye7hh0PyL3v8HhH50a9uf7LcvcEqwIAIDeCDPiurrfU1PTUUe0tLc9q2/b/mfuCAADIsSADfseO5XLvGXJaQ8P31bz31zmuCACA3Aou4Lu79+qtpieOMYfrzTf/q9rb38xZTQAA5FpwAb9j54NKp7uPOU86fUhr196mnp63c1QVAAC5FVTA9/TsU2Pj48efUVJX91ta+8YdSqd7Y64KAIDcCyrgd+78odLpQyOev7W1Ths3fT3GigAASEYwAd/b+xftbvy3E16upeV57d//SgwVAQCQnNhvdJMrO3f9q1KpziGnlZZWamLFXE2cOO+oV1nZ5BxXCgBA/III+L6+djU2PqaJE0/vD+5BYT5+fE3SJQIAkFNBBHxJyXgtunyFzEqTLgUAgLwQSMCXJ10CAAB5JZiL7AAAwDsIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAY+gvbX5L0mXAACJIOARrL80H9TvH92QdBkAkAgCHkFyd73wyHq1thySpz3pcgAg5wh4BGndH95S05ZWpVOuztbupMsBgJwj4BGcjgPd+tPPtxweb9/XlWA1AJAMAh7BeenxjerpSh0eb99PwAMoPgQ8grK5rlkNa98+oo2AB1CMCHgEo6uzV3/46aaj2jlFD6AYEfAIxis/26xD7b1HtdODB1CMyuLegJk1SGqXlJLU5+61ZjZD0k8lzZXUIOkmdz8Qdy0I164392vDij1DTqMHD6AY5aoH/353X+DutdH4XZJ+5+7zJf0uGgdGpbc7pd8/NvwNbejBAyhGSZ2iXyLp4Wj4YUk3JlQHAvDq09vU9vbwId7Xk9ahjp4cVgQAyctFwLukZ81slZkti9pq3L0pGt4jqSYHdSBAzdvbtPaFXcedr2M/N7sBUFxi/w5e0uXu3mhmMyU9Z2ZHnEt1dzezo+4lGv1nYJkkzZkzJwdlotCkUmm9+G/r5SO4E237vi5Vz5kcf1EAkCdi78G7e2P0715JT0m6SFKzmc2SpOjfvUMst9zda929trq6Ou4yUYBe/+0O7WvsHNG8fA8PoNjEGvBmVmlmkweGJX1IUr2kpyXdGs12q6RfxlkHwnNgT6fqntkx4vm5kh5AsYn7FH2NpKfMbGBbj7n7b8xspaQnzOyzknZIuinmOhAQd9eLj2xQqi894mXowQMoNrEGvLtvk/TeIdr3SVoc57YRrvqXGtW0tfWEliHgARQb7mSHgtK+v0t/+sXWE1+OU/QAigwBj4Ly0uMb1ZvxpLiR6ursVW/3iS8HAIWKgEfB2LRyj3a8sW/Uy9OLB1BMCHgUhK6OXv3xic1jWgffwwMoJgQ8CsIffrZpyCfFnQgCHkAxIeCR93au26dNrzaPeT2cogdQTAh45LWerj79/tGNWVkXPXgAxYSAR15b9euGrAUzPXgAxYSAR15b+KHTdP77T1FJiY15XfTgARQTAh55bULlOC362Fn62H+7SKeeM2NM6zrY2q1UauS3twWAQkbAoyDMmFWpG/5qga77/PmaWl0xqnW481x4AMUjF8+DB7Jm3vlVmnPODP35hV1a9UyDek7wrnbt+7tG/R8EACgk9OBRcErLSnTBh07Tx795qc7+D7OkE/h6ngvtABQLAh4Fa+KUcn3gk2fro3fV6uTTp45omY4DBDyA4kDAo+DNPG2KPvKVC/XBz5yjSdPHH3NeevAAigXfwSMYZ110suYtqNbq3+zQmud2qq/36Cvm+akcgGJBDx5BGVdeqotvOF233Huxzrhg5lHT6cEDKBYEPII05aQKXbPsPC390kJVnTrpcHvHgW65e4KVAUBuEPAI2rvmT9dNd/97Xfnxd6ti8jil+tI62NaTdFkAEDu+g0fwrMR07qLZOrO2Rit/tV2df+lW5dRjX4wHAIWOgEfRGF9Rpss/Oj/pMgAgJzhFDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACFBsAW9mp5rZi2b2ppmtM7O/jtrvNbNGM1sTva6LqwYAAIpVWYzr7pP0JXdfbWaTJa0ys+eiad9z9+/GuG0AAIpabAHv7k2SmqLhdjNbL2n2qNaVzcIAACgCOfkO3szmSloo6dWo6U4zW2tmD5nZ9OMtv/1gtzpTqThLBAAgKLEHvJlNkvSkpC+6e5ukBySdIWmB+nv49w+z3DIzqzOzutb9+/SxNVvV2tsXd7kAAAQh1oA3s3HqD/dH3f3nkuTuze6ecve0pAclXTTUsu6+3N1r3b126oyTVNd2UB9Zs1UtPb1xlgwAQBDivIreJP1Q0np3/8eM9lkZsy2VVH+8dZ0+cbyeuWC+Zo0fp6Wvb1FjV0/2CwYAICBxXkV/maRPSHrDzNZEbV+VdIuZLVD/tXMNkm4bycoumFqpR84/XfXtB/Xg7hZ9enaVTqsYn/2qAQAIQJxX0f9Rkg0x6ZmxrPe8yRN13uSJOsD38QAADKtg72Q3fVycJx8AAChsBRvwAABgeAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEf2d+buWSoEPAAAOfDihr36xv9dl7Ptcb9XAABi9vrOA/r8o6s1t6oyZ9ukBw8AQIy2tnToMz9aqUO9KW1/u0PptOdkuwQ8AAAxcXc99Mft6uxJSZK6etNqauvKybY5RQ8AQEzMTPct/Xe65z+erT9t3acXN+7Vgc4ezZ5WEfu2CXgAAGI2sbxMi8+u0eKza3K2TU7RAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLggSLifemkSwCQI4kFvJldY2YbzWyLmd2VVB1AMende1B9+w4lXQaAHEgk4M2sVNL3JV0r6RxJt5jZOUnUAhSTsukT1Pb8zqTLAJADSfXgL5K0xd23uXuPpJ9IWpJQLUDRKKkoU9fmA+pt7ky6FAAxSyrgZ0valTG+O2o7zMyWmVmdmdW1tLTktDggZGUnVajt2R1JlwEgZnl7kZ27L3f3Wnevra6uTrocIBhlVRU6tG6fena3J10KgBglFfCNkk7NGD8lagMQs7KqCZKkVnrxQNCSCviVkuab2TwzK5d0s6SnE6oFKCplVRWSpO5NB9Td0JpwNQDikkjAu3ufpDsl/VbSeklPuPu6JGoBik1Z1cTDw62/aUiuEACxKktqw+7+jKRnkto+UKzKTpogmSSXehra1LXpgCacNT3psgBkWd5eZAcgHiXlpSqdUn54vPXZhuSKARAbAh4oQmUnVRwe7t3doUP1bydYDYA4EPBAESqrrjhivPW5HfK0J1QNgDgQ8EARGriSfkBf80Ed+jM3lAJCQsADRSjzFP2A1ud3yFP04oFQEPBAERp8il6SUvu61Fm3J4FqAMSBgAeKUNmMCUN++ttf2Mkz44FAEPBAEbLSEpVOn3BUe6q1Rx0rmhKoCEC2EfBAkRpXdfRpeklq//0upXtSOa4GQLYR8ECRGnwl/YB0R686XuHZT0ChI+CBIjVcwEtS+0uNSh/qy2E1ALKNgAeK1LEC3rv61P7y7hxWAyDbCHigSB0r4CWp45W3lOroyVE1ALKNgAeKVOnU8VLZ8H8CvCel9hd35bAiANlEwANFykqs/9Gxx9DxapP6WrtzVBGAbCLggSJ2vNP06nO1/25nbooBkFUEPFDEjhvwkjrrmtW371AOqgGQTQQ8UMSGu9nNEdKutufpxQOFhoAHithIevCSdHDNXvU2d8ZcDYBsIuCBIjbSgJdLbc/uiLcYAFlFwANFrHRyuWx86YjmPbRun3p2t8dcEYBsIeCBIjfiXrykVnrxQMEg4IEidyIB373pgLq3t8ZYDYBsIeCBInciAS9Jrb9tiKcQAFlFwANFbkQ/lcvQ09Cmrk0HYqoGQLYQ8ECRO9EevCS1PtuQ/UIAZBUBDxS50QR87+4OHap/O4ZqAGQLAQ8UuZKKMpVUjjvh5Vqf2yFPewwVAcgGAh7AqHrxfc0HdfDPLTFUAyAbCHgAowp4SWp7foc8RS8eyEcEPIBRB3xqX5c66/ZkuRoA2UDAA1BZ1YRRL9v+wk55XzqL1RSHdDqt3t7epMtAwMqSLiAWbW9JP18mTZopVVa/88ocnzRTGje6XgsQmglnTNOMW96jVEeP0h29Snf0KtXRo1RHr9JRm/cOHeKp1h51rGjS5Mtn57jqwlZSUqJt27bpzDPPTLoUBCrMgO9olhr+cPz5yidJlVVR6M/sH555jnTeR6RJ1fHXCeSJkonjNPG9x37Pp7v7ouDvD/1UR6/S7T1Kdfaq7+1DcneZWY4qDkNDQwMBj9iEGfCHRniXrZ4Oqa9bmnKKdMqF0hmLpVnvlfgjBRylZHyZSsaXqewkznxlU0NDg+bOnZt0GQhQcQb8jNP7w/zMxdLcRdL4SbmpCwAyzJw5U6+99hoBj1iEGfAH9x85Pn6KNO8K6Yz39wf7jHnJ1AUAGWpqavSLX/xCbW1tmjJlStLlIDBhBnx3m/Suhe/00k+5SCoNc1cBFK6qqipJUl1dnT7wgQ8kXA1CE2bqXfY30qIvJV0FABxTaWmpqqqqtGrVKl1xxRUqKwvzTzKSEebv4EvC3C0A4Zk5c6Y6Ozu1bt26pEtBYEhCAEjQzJkzJUmvvfZawpUgNAQ8ACSopqZGktTY2KjGxsaEq0FICHgASNBAD16iF4/sIuABIEHTpk1TeXm5JKm+vl6dnZ0JV4RQEPAAkCAzO9yLT6VSWr16dcIVIRSxBLyZfcfMNpjZWjN7ysymRe1zzeyQma2JXv8Sx/YBoJBknqavq6tTOs3T+TB2cfXgn5N0nrufL2mTpLszpm119wXR6/aYtg8ABWPgQjtJam1t1caNGxOsBqGIJeDd/Vl374tGV0g6JY7tAEAIMnvwkvTqq68mVAlCkovv4D8j6dcZ4/PM7HUze8nMFuVg+wCQ1wYHfENDg/bu3ZtQNQjFqAPezJ43s/ohXksy5rlHUp+kR6OmJklz3H2hpL+V9JiZDfmEBTNbZmZ1ZlbX0tIy2jIBIO9VVlZq0qQjn2rJT+YwVqMOeHe/yt3PG+L1S0kys09Jul7Sx93do2W63X1fNLxK0lZJZw2z/uXuXuvutdXV1aMtEwAKwuBe/Nq1a9XV1ZVQNQhBXFfRXyPpK5JucPeDGe3VZlYaDZ8uab6kbXHUAACFZHDA9/T0aM2aNckUgyDE9R38P0uaLOm5QT+Hu0LSWjNbI+n/SLrd3fcPsw4AKBqZV9IPWLlypaIToMAJi+XZhO5+5jDtT0p6Mo5tAkAhG9yDl6R9+/Zp69atOvPMIf+kAsfEnewAIA+cfPLJQ/biudgOo0XAA0AeKC0t1Yc//GGVlpYe0b5582YdOHAgoapQyAh4AMgTNTU1Wrx48RFt7k4vHqNCwANAHrn00ks1b968I9pef/119fb2JlQRChUBDwB5xMx04403asKECYfburq6tHbt2gSrQiEi4AEgz0ydOlXXXXfdEW0rV65MqBoUKgIeAPLQ+eefr3PPPffw+J49e7Rjx47E6km1teng66/zu/wCQsADQJ66/vrrNWXKO4/rSPJiu9IpU1Q2fbr2fP1edW3alFgdGDkCHgDyVEVFhZYsOfz8Lq1fv15tbW2J1VM+d66qv3Cnmr56j5q+8Q318fO9vEbAA0AeO+OMM3TxxRdLktLptFatWpVoPWXV1Zrzo39Vz/YGbb36Gu1/+GE5V/jnJQIeAPLcVVddpYGnaq5atUqpVCrRekonTdKpy/+3Jl1+uZr//lvadsMSdbz8cqI14WgEPADkuXHjxh2+y11HR4fWrVuXdEkqKS/Xu777Hc249ZPq2b5du5bdpp3Llql7Gw8IzRcEPAAUgFmzZunKK6+UlD/3p7eSEs286y7N/PKXJEmdL/9B225Yoj1/93dKtbYmXB0IeAAoEJdddpnmzJmj3bt366233kq6HEn9N+Y56XOf06xv/b1UVib19enAjx/R1g9drf2PPirv60u6xKJFwANAgSgpKdHSpUtVXl6eN734AdNuvFGnPvADWUWFJCnV2qrm//4/tH3pUnW88krC1RUnAh4ACsj06dN17bXXqr6+XgcPHky6nCNMWrRIpz38I5VOn364rXvzFu367Oe06/N3qKehIbniihABDwAFZuHChZo/f75Wr16ddClHqTj/fJ322KMaN3v2Ee0dL7ygrf/pBjV/+ztKtbcnVF1xIeABoABdf/312rBhg9LpdNKlHGX8vHma+5PHNf7ss4+c0Nur/Q89pK1XX6MDTzwhT/jnfqEj4AGgAFVWVup973ufNuXpbWPLqqt12iM/1sRLLjlqWmr/fu352te1/SP/WZ2v5te1BCEh4AGgQM2fPz+vH/4ycEOcKdddO+T07g0btPPWW7X7C3+l3sbGHFcXvrKkCwAAjN6ZZ56pVCql0tLSpEsZUv8Ncb6r0qoqHfjxI4fbbdw4VSxcqMpLL1HlpZeqrKYmwSrDRMADQAEbN25c0iUcl5WUqObuu1U+e7b6Wlo08ZJLNfHCC1QS/aQO8SDgAQCxMzPNuPXWpMsoKnwHDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBAsQW8md1rZo1mtiZ6XZcx7W4z22JmG83s6rhqAACgWJXFvP7vuft3MxvM7BxJN0s6V9K7JD1vZme5eyrmWgAAKBpJnKJfIukn7t7t7tslbZF0UQJ1AAAQrLgD/k4zW2tmD5nZ9KhttqRdGfPsjtoAAECWjCngzex5M6sf4rVE0gOSzpC0QFKTpPtPcN3LzKzOzOpaWlrGUiYAAEVnTN/Bu/tVI5nPzB6U9KtotFHSqRmTT4naBq97uaTlklRbW+tjqRMAgGIT51X0szJGl0qqj4aflnSzmY03s3mS5kt6La46AAAoRnFeRf9tM1sgySU1SLpNktx9nZk9IelNSX2S7uAKegAAsiu2gHf3Txxj2n2S7otr2wAAFDvuZAcAQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQGVxrNTMfirp3dHoNEl/cfcFZjZX0npJG6NpK9z99jhqAACgmMUS8O7+sYFhM7tfUmvG5K3uviCO7QIAgH6xBPwAMzNJN0n6QJzbAQAAR4r7O/hFkprdfXNG2zwze93MXjKzRcMtaGbLzKzOzOpaWlpiLhMAgLCMugdvZs9LOnmISfe4+y+j4VskPZ4xrUnSHHffZ2YXSvqFmZ3r7m2DV+LuyyUtl6Ta2lofbZ0AABSjUQe8u191rOlmVibpw5IuzFimW1J3NLzKzLZKOktS3WjrAAAAR4vzFP1Vkja4++6BBjOrNrPSaPh0SfMlbYuxBgAAilKcF9ndrCNPz0vSFZK+aWa9ktKSbnf3/THWAABAUYot4N39U0O0PSnpybi2CQAA+nEnOwAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDyAvNLc2aztrduTLgMoeAQ8gLxSWlKqeVPnJV0GUPAIeAB5paqiKukSgCAQ8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIDGFPBm9lEzW2dmaTOrHTTtbjPbYmYbzezqjPZrorYtZnbXWLYPAACGNtYefL2kD0t6ObPRzM6RdLOkcyVdI+kHZlZqZqWSvi/pWknnSLolmhcAAGRR2VgWdvf1kmRmgyctkfQTd++WtN3Mtki6KJq2xd23Rcv9JJr3zbHUAQAAjjSmgD+G2ZJWZIzvjtokadeg9otjqgGSDnW0a8/mjaqYMlUTp05VxZSpGlc+PumyAAAxO27Am9nzkk4eYtI97v7L7Jd0eLvLJC2LRrvNrD6ubeWBKklvJ11EjNi/whby/oW8bxL7V+jePZaFjxvw7n7VKNbbKOnUjPFTojYdo33wdpdLWi5JZlbn7rVDzRcC9q+wsX+FK+R9k9i/QmdmdWNZPq6fyT0t6WYzG29m8yTNl/SapJWS5pvZPDMrV/+FeE/HVAMAAEVrTN/Bm9lSSf9LUrWk/2dma9z9andfZ2ZPqP/iuT5Jd7h7KlrmTkm/lVQq6SF3XzemPQAAAEcZ61X0T0l6aphp90m6b4j2ZyQ9c4KbWn7i1RUU9q+wsX+FK+R9k9i/Qjem/TN3z1YhAAAgT3CrWgAAApR3AV9Mt781s5+a2Zro1WBma6L2uWZ2KGPavyRc6qiY2b1m1pixH9dlTBvyWBYKM/uOmW0ws7Vm9pSZTYvagzh2UuF+roZjZqea2Ytm9mb0N+avo/Zh36eFJvo78ka0H3VR2wwze87MNkf/Tk+6zhNlZu/OOD5rzKzNzL5Y6MfOzB4ys72ZPwMf7nhZv3+KPo9rzeyC427A3fPqJels9f/27/eSajPaz5H0Z0njJc2TtFX9F+qVRsOnSyqP5jkn6f0YxX7fL+lr0fBcSfVJ15SFfbpX0peHaB/yWCZd7wnu24cklUXD/yDpHwI7dkF8rgbt0yxJF0TDkyVtit6LQ75PC/ElqUFS1aC2b0u6Kxq+a+C9Wqiv6L25R9JphX7sJF0h6YLMvxnDHS9J10n6tSSTdImkV4+3/rzrwbv7enffOMSkw7e/dfftkgZuf3uRotvfunuPpIHb3xYM67/X702SHk+6lhwZ7lgWDHd/1t37otEV6r+nQ0gK/nM1mLs3ufvqaLhd0nq9c4fNkC2R9HA0/LCkG5MrJSsWS9rq7juSLmSs3P1lSfsHNQ93vJZI+rH3WyFpmpnNOtb68y7gj2G2jr7N7exjtBeSRZKa3X1zRts8M3vdzF4ys0VJFZYFd0ankx7KODUYwjHL9Bn1/896QAjHLrRjdAQzmytpoaRXo6ah3qeFyCU9a2arrP9uoJJU4+5N0fAeSTXJlJY1N+vIzlAox27AcMfrhD+TiQS8mT1vZvVDvAq6hzCUEe7rLTryDdskaY67L5T0t5IeM7Mpuax7pI6zfw9IOkPSAvXv0/1J1nqiRnLszOwe9d/r4dGoqWCOXbEys0mSnpT0RXdvU4G/Twe53N0vUP8TO+8wsysyJ3r/ud6C/emU9d8g7QZJP4uaQjp2Rxnr8YrrYTPH5And/jYJx9tXMytT/yN3L8xYpltSdzS8ysy2SjpL0phuWxiHkR5LM3tQ0q+i0WMdy7wxgmP3KUnXS1ocfRAL6tgdR0EcoxNlZuPUH+6PuvvPJcndmzOmZ75PC467N0b/7jWzp9T/VUuzmc1y96bolO7eRIscm2slrR44ZiEduwzDHa8T/kwW0in6UG9/e5WkDe6+e6DBzKrNrDQaPl39+7otofpGbdD3Q0slDVwpOtyxLBhmdo2kr0i6wd0PZrQHcexU+J+ro0TXuvxQ0np3/8eM9uHepwXFzCrNbPLAsPovBK1X/3G7NZrtVkmxPSQsB4442xnKsRtkuOP1tKRPRlfTXyKpNeNU/pAS6cEfixXf7W8Hf58k9V9Z+U0z65WUlnS7uw++EKMQfNvMFqj/FFODpNsk6VjHsoD8s/p/BfBcf25ohbvfrkCOnbv3FfjnaiiXSfqEpDcs+kmqpK9KumWo92kBqpH0VPR+LJP0mLv/xsxWSnrCzD4raYf6L+gtONF/Wj6oI4/PkH9jCoWZPS7pSklVZrZb0tclfUtDH69n1H8l/RZJByV9+rjrj84sAgCAgBTSKXoAADBCBDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABOj/AznZ+Yjzpl+qAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAlV0lEQVR4nO3de5RddX338c93zlwzk+vM5EKuk2SSIdxCmCIVAeWigNaUWi34NKZSiayKrb2sLpU+rbWPbbVS+thaaVBW6aOCtsgj9SGQBAXEZTAXQkgIhBCCSZjc75lL5vJ9/pideDLMfc4++5zfeb/WOivn/PY+Z3929kw+2fvss4+5uwAAQFiKkg4AAAAyj4IHACBAFDwAAAGi4AEACBAFDwBAgCh4AAAClJGCN7MHzGy/mW1OG5tgZqvM7LXoz/HRuJnZ18xsu5ltMrNFmcgAAAB+JVN78P8u6cYeY5+V9JS710t6KnosSTdJqo9uyyR9I0MZAABAJCMF7+7PSjrcY3ixpAej+w9K+s208f/wbmskjTOzKZnIAQAAusX5Hvwkd2+K7u+VNCm6P1XSrrT5dkdjAAAgQ4qzsRB3dzMb0jVxzWyZug/hq7Ky8rKGhoZYsgEAkIvWr19/0N1rh/v8OAt+n5lNcfem6BD8/mh8j6TpafNNi8bO4e7LJS2XpMbGRl+3bl2MUQEAyC1m9uZInh/nIfrHJC2N7i+V9MO08Y9FZ9NfIelY2qF8AACQARnZgzezhyS9W1KNme2W9FeS/l7S983s9yW9Kekj0eyPS7pZ0nZJzZI+nokMAADgVzJS8O5+Wx+TrutlXpf0qUwsFwAA9I4r2QEAECAKHgCAAFHwAApG285jSUcAsoaCB1AwTjyzW80vHUw6BpAVFDyAgnLkP7epfX9z0jGA2FHwAArGuMVzVVxdrkP/52V1tXUkHQeIFQUPoGAUjytT7Z2XqLimQkf+6zV1f2oXCBMFD6CgFJWlVL1kgVLjy3Xyp2+7SjYQDAoeQMGxItO4m+tUVFWitjePJx0HiAUFD6BgVS6apKKKYnl7V9JRgIzLytfFAkCuKpk4KukIQCzYgwcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAhuzgwYP69re/raampqSjAOhDcdIBAOSPtrY2PfPMM1qzZo26urpUWVmpW265JelYAHpBwQMYkLvrxRdf1OrVq3Xy5Mmz45s3b9YNN9ygqqqqBNMB6A0FD6Bfe/bs0YoVK7R79+63Tevs7NTatWv1nve8J4FkAPpDwQPo1alTp7R69Wpt3LhR7t7nfOvWrdNVV12l4mL+OQFyCb+RAM7R2dmpX/ziF3rmmWfU2to64PynTp3Spk2btGjRoiykAzBYFDyAs3bs2KEVK1bowIEDQ3re888/T8EDOYaCB6CjR4/qySef1NatW4f1/H379mnHjh2aPXt2hpMBGC4KHihg7e3teu655/Szn/1MHR0dI3qtNWvWUPBADqHggQK1ZcsWrVy5UseOHcvI623btk2HDh1SdXV1Rl4PwMhQ8ECB2bdvn1asWKGdO3dm/LXXrFmj97///Rl/XQBDR8EDBaKlpUU/+clPtHbt2n4/9jYSGzdu1LXXXquKiopYXj9nuEtmSacA+hVrwZvZfEnfSxuaLekvJY2TdIekM6fqft7dH48zC1Courq6tGHDBv34xz9Wc3NzrMtqb2/Xhg0bdOWVV8a6nES1t0ipUslSSScB+hVrwbv7q5IWSpKZpSTtkfSopI9Lutfdvxrn8oFC98tf/lIrVqzI6pfCrF+/PtyC7zgtpcqkIr6nC7kvm4for5P0uru/aRzaAmJ1/PhxrVq1Si+99FJWlldWVqb6+no1NDSovr4+K8vMus4OKVXCoXnkjWwW/K2SHkp7fJeZfUzSOkl/6u5H0mc2s2WSlknSjBkzshYSyGcdHR36+c9/rp/+9Kc6ffp0rMuqqqrS/Pnz1dDQoLq6urAvVesuFaUod+QVi+tkm3MWYlYq6S1JF7j7PjObJOmgJJf0N5KmuPvtfT2/sbHR161bF3tOIJ9t27ZNTzzxhA4fPhzbMiZMmKCGhgY1NDRo2rRpKuJQNRAbM1vv7o3DfX62/st9k6QN7r5Pks78KUlmdr+kH2UpBxCcQ4cO6YknntBrr70Wy+tPmTLlbKlPmjQplmUAyLxsFfxtSjs8b2ZT3P3MWT+3SNqcpRxAMNra2vTss89qzZo16uzszNjrmplmzpx5ttTHjRuXsdcGkD2xF7yZVUq6QdIn04a/YmYL1X2IfmePaQD64e7atGmTVq1apZMnT2bkNYuLizVnzhw1NDRo/vz5GjVqVEZeF0ByYi94dz8lqbrH2JK4lwuE6K233tKKFSu0a9euEb9WeXm55s2bp4aGBs2dO1elpaUZSAggVwR82isQjlOnTumpp57SCy+8MKKr0I0ePfrsofdZs2YpleJiLUCoKHggh3V2dmrt2rV6+umn1draOqzXqKmpOVvqU6dOFdehwHDc9+J9uuOiO5Qq4j+F+YKCB3LUjh079MQTT2j//v1Dfu7UqVPPlnptbW0M6VBontz5pF49/Kr+7qq/U3lxedJxYnWitV27Drdo95Fm7T7Sot1HWnS8tV3vmT9R150/UeUl+fGfHAoeyDFHjx7Vk08+qa1btw76OUVFRZo1a9bZUh8zZkyMCVGIqiuqtfqXq3Vw5UH987X/rHHl45KOlFGff/QlvbjrqHYfadGxlvaz4xMqS3X7lbP0mRvqNaa8JMGEQ0fBAzmivb1dzz33nH72s5+po6NjwPlLSko0d+5cNTQ0aN68eeF/gxsSVVvRfSRo44GNWrJiif71+n/V9NHTE06VOc+9dlC/PPyrL2OaPKZcd1w9Wx+9fIYqSvNjj70nCh7IAVu2bNHKlSt17NixfuerqKg4e3nYOXPmqKQkv/YokL/OFLwk7Ty+U7/7+O/q69d9XRfWXJhgqsw5c2rKzOpRuvOaOfrQomkqLc7vKzVS8ECC9u/frxUrVuiNN97oc56xY8eePfQ+c+ZMLg+LRNRU1Jzz+HDrYd3+5O366jVf1dXTrk4oVeacP3mM/uSGefrAxecpVRTGiagUPJCAlpYWPf3001q7dq26urreNn3ixIlnS/28885LICFwrp4FL0ktHS369I8/rb+44i/04XkfTiBV5ty35LKkI2QcBQ9kUVdXl1544QU99dRTam7+1ft9ZqZp06adLfXq6up+XgXIvtpRvX8ao8u79MWff1FNJ5v06Us/zccwcwgFD2TJrl279Pjjj6upqftrGFKplOrq6s6WelVVVcIJgb71tgef7v6X7tfeU3v11+/8a5WkODckF1DwQMxOnDihVatWadOmTSotLdUFF1yghoYG1dfXq7w87M8TIxwDFbwk/feO/9b+lv269933anTp6CykQn8oeCAmHR0dWrNmjdavX6+6ujp99KMf1ezZs1VczK8d8k9VSZXKU+Vq7ez/iorPNz2vu5+7W1+79mtZSoa+8C8NEIODBw9q586dmjFjht75zndy5jvynpmppqJGu0/uHnDe62Zcl4VEGAgFD8SgpqZGNTUDH9IE8kntqNoBC35q1VTdPPvmLCVCf9itAAAMymDeh7/9wttVUsRJdrmAggcADMpABV9bUavFcxdnKQ0GQsEDAAYl/XK1vVl6wVKVpcqylAYDoeABAIPS3x78uLJxeX81u9BQ8ACAQemv4JcsWKJRJaOymAYDoeABAIPS1+VqR5eM1m0Nt2U5DQZCwQMABqWvPfhbG27lynU5iIIHAAzK+LLxKrJza6OiuEJLFixJKBH6Q8EDAAYlVZRSdfm533T44Xkf1vjy8QklQn8oeADAoKUfpi8pKtHSC5YmmAb9oeABAIOWfqLdLXNv0cRRExNMg/5Q8ACAQTuzB5+ylG6/6PaE06A/FDwAYNDOFPz7Z79fU6umJpwG/aHgAQCDVltRK5PpExd9IukoGAAFDwAYtJqKGr131ntVN7Yu6SgYAAUPABi02lG1uuOiO5KOgUEoTjoAACB/XFh9oVJFqaRjYBDYgwcADBrlnj8oeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAsX9drJntlHRCUqekDndvNLMJkr4naZaknZI+4u5H4s4CAEChyNYe/HvcfaG7N0aPPyvpKXevl/RU9BgAAGRIUofoF0t6MLr/oKTfTCgHAABBykbBu6SVZrbezJZFY5PcvSm6v1fSpCzkAACgYMT+Hrykd7n7HjObKGmVmb2SPtHd3cy855Oi/wwsk6QZM2ZkISYAAOGIfQ/e3fdEf+6X9KikyyXtM7MpkhT9ub+X5y1390Z3b6ytrY07JgAAQYm14M2s0sxGn7kv6b2SNkt6TNLSaLalkn4YZw4AAApN3IfoJ0l61MzOLOu77v6Ema2V9H0z+31Jb0r6SMw5AAAoKLEWvLvvkHRJL+OHJF0X57IBAChkXMkOAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAEKDipAMAABAnd5e3t6vr1Cl5c7O6WlrU1dycdmuRt7aoZMYMlZ9/vlKjRycdOSMoeABAsA5985vaf+8/SZ2d54xbSYnKL75Yoy67TKMaL1PFNVcHU+xnUPAAgGAVVVZKnZ0qqqpSxaWXni308osuUlFZWdLxYkXBAwCCVXnV1ar7wSMqmz9flkolHSerKHgAQLBKp02VNDXpGIngLHoAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgGIreDObbmY/MbOXzWyLmf1RNP4FM9tjZhuj281xZQAAoFDFeSW7Dkl/6u4bzGy0pPVmtiqadq+7fzXGZQMAUNBiK3h3b5LUFN0/YWZbVajXCwQAIMuy8h68mc2SdKmk56Ohu8xsk5k9YGbjs5EBAIBCEnvBm1mVpEckfcbdj0v6hqQ5khaqew//nj6et8zM1pnZugMHDsQdEwCAoMRa8GZWou5y/467/0CS3H2fu3e6e5ek+yVd3ttz3X25uze6e2NtbW2cMQEACE6cZ9GbpG9J2uru/5g2PiVttlskbY4rAwAAhSrOs+ivlLRE0ktmtjEa+7yk28xsoSSXtFPSJ2PMAABAQYrzLPrnJFkvkx6Pa5kAAKAbV7IDACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEXiNa2vUlHAABkUZyfg0eCmpvf0OEjP9eRI2vU2vqWzm/4W6lsctKxAABZQsEHoqXllzpyZE337ejzaov22MeOXaRLLv43lZZWJ5wQAJBNFHyeam19K63Q16i1dc/b5pk06YNacP7fq6ioLIGEAIAkUfB5aO26D+n48Y39zGGqq/sjza77dLYiAQByDAWfh7q6WvucVlRUpgXnf0WTJn0gi4kAALmGgs9DpSW9v59eWlqjiy/6N40duzC7gQAAOYeCz0OlpTVvG6uqnK+LL75fFRVTE0gEAMg1FHwe6lnw1dXv1oUX/G8VF1cllAgAkGso+DyU/pG3adOWal793TJLJZgIAJBrKPg8VFpaI7Nizav/S02b9j+SjgMAyEEUfB6qGDVLl1z8TVVXX5V0FABAjqLg89C4sZclHQEAkOP4shkAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCB9K0n+5MOgIAZAQFD6Q5uq9ZXV2edAwAGDEKHkhTfV6lXt+wP+kYADBiFDyQpihVpPJRJdqz7UjSUQBgRCh4oIfpCyZo2y/2qfVke9JRAGDYKHigFwuvn66ffOeVpGMAwLBR8EAvxk+uVNW4Mr34411JRwGAYaHggT782gfqtOHJN3Vg14mkowDAkFHwQB/KK0t02Y2ztPKbW9TexufjAeQXCh7ox4VXnycrMj378KtJRwGAIaHggX4UpYr0rt+eq1d+vlfb1/P5eAD5g4IHBjDjgmrNvLBaxaX8ugDIH8VJBwDywTUfna+q8WVJxwCAQaPggUEYPaE86QgAMCQccwQAIEAUPAAAAUqs4M3sRjN71cy2m9lnk8oBAECIEil4M0tJ+rqkmyQtkHSbmS1IIgsAACFKag/+cknb3X2Hu5+W9LCkxQllAQAgOEkV/FRJ6d/isTsaO8vMlpnZOjNbd+DAgayGAwAg3+XsSXbuvtzdG929sba2Nuk4AADklaQKfo+k6WmPp0VjAAAgA5Iq+LWS6s2szsxKJd0q6bGEsgAAEJxErmTn7h1mdpekJyWlJD3g7luSyAIAQIgSu1Stuz8u6fGklg8AQMhy9iQ7AAAwfBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAADIK7y92TjjFoFDwAAINw2l1mlnSMQaPgAQAYQGtnl4qUP+UuUfAAAAyotatLJUUUPAAAwTh0ukOji1NJxxgyCh4AgD60d7k63ZXKo/fez6DgAQDow1ttpzWxrCTpGMNCwQMA0Isj7R2qTOXfofkzKHgAAHqxt61dNaXFSccYNgoeAIAetje3anp5adIxRoSCBwAgTXuX62RHl6ry8Mz5dBQ8AABpNhw/pYtHVyQdY8QoeAAAIvvb2jWmOKWiPPxYXE8UPAAAkc0nW3R+Vf7vvUsUPAAAkqRNJ5rVUFmedIyMoeABAAWvo8u1p/W0zsvzM+fTUfAAgIK3+tBxXTNhTNIxMoqCBwAUtAOn21VWZBqVCqsSw1obAACGaNWh43r3hNFJx8g4Ch4AULDWHzuli6oqZAF8LK4nCh4AUJA6ulwvnmjWRaNHJR0lFhQ8AKAgPbr/iH5j4rikY8QmloI3s38ws1fMbJOZPWpm46LxWWbWYmYbo9t9cSwfAID+HDjdrtNdrtrS/Pyu98GIaw9+laQL3f1iSdskfS5t2uvuvjC63RnT8gEA6NPDTYf14cnjk44Rq1gK3t1XuntH9HCNpGlxLAcAgKFad+yU5leWq7Qo7Heps7F2t0takfa4zsxeMLNnzOyqLCwfAABJUqe7Vh48phuqw7qoTW+Kh/tEM1staXIvk+529x9G89wtqUPSd6JpTZJmuPshM7tM0v81swvc/Xgvr79M0jJJmjFjxnBjAgBw1kNNh/WhyROC/FhcT8MueHe/vr/pZvZ7kj4g6Tp39+g5bZLaovvrzex1SfMkrevl9ZdLWi5JjY2NPtycAABI0qHTHWpqO635ldVJR8mKuM6iv1HSn0v6oLs3p43Xmlkquj9bUr2kHXFkAAAg3X279usT02qTjpE1w96DH8C/SCqTtCo6DLImOmP+aklfNLN2SV2S7nT3wzFlAABAkrTh2ClNLS/V+JK4ai/3xLKm7j63j/FHJD0SxzIBAOhNp7sefOuQ7pk/PekoWRX2ZwQAAAXvO28d0m9PGq/iovBPrEtHwQMAgnW4vUMvnGjWVQF+W9xAKHgAQLDueWOv/nDGpKRjJIKCBwAEaePxZlWmilQ3qizpKImg4AEAwely171v7tUfzizMvXeJggcABOihpsO6sWasqopTSUdJDAUPAAjKkfYO/ejAUf3O5AlJR0kUBQ8ACMqX39irP545SUUFcL35/lDwAIBgbDrRrBMdnbp8XFXSURJHwQMAgtDlri9uf0ufnz0l6Sg5gYIHAATh4b2HdcW4Kk0tL006Sk6g4AEAee9oe4f+fc9B/cGMiUlHyRkUPAAg7335jb36g+kTNSpFrZ3B3wQAIK9tPtGsV061aPHEcUlHySmF88W4AIDgdLnr7tf26Iv1U2UF/rG4ntiDBwDkrf/ce0SzR5XpktGjko6Sc9iDBwDkpWPtHfqnN/fqh5fWJx0lJ7EHDwDIS/+wc69+97waTSwrSTpKTqLgAQB55+WTLXr68Al9YlpN0lFyFgUPAMgr7q7Pbdut/znnPJUVUWN94W8GAJBX/mvfEZUXFem91WOSjpLTOMkOAJA3jnd06m93NOmhS2bzsbgBsAcPAMgbX31jr26qGauGyoqko+Q89uABAHlh68kW/WDfEf30HQ1JR8kL7MEDAHLemRPr/njWJI0vYd90MCh4AEDOe3T/UR3p6NTS8/hY3GBR8ACAnFddUqz/NXeqios4sW6wOM4BAMh510wYnXSEvMMePAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABiq3gzewLZrbHzDZGt5vTpn3OzLab2atm9r64MgAAUKiKY379e939q+kDZrZA0q2SLpB0nqTVZjbP3TtjzgIAQMFI4hD9YkkPu3ubu78habukyxPIAQBAsOIu+LvMbJOZPWBm46OxqZJ2pc2zOxoDAAAZMqKCN7PVZra5l9tiSd+QNEfSQklNku4Z4msvM7N1ZrbuwIEDI4kJAEDBGdF78O5+/WDmM7P7Jf0oerhH0vS0ydOisZ6vvVzScklqbGz0keQEAKDQxHkW/ZS0h7dI2hzdf0zSrWZWZmZ1kuol/SKuHAAAFKI4z6L/ipktlOSSdkr6pCS5+xYz+76klyV1SPoUZ9ADAJBZsRW8uy/pZ9qXJH0prmUDAFDouJIdAAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQM5rrOjXccP7k86BoA8U5x0AAC/4u46fmC/mra/qqbXXlXT9ld14I0d+uCf3a0xNROTjgcgj1DwQILampu19/Vt2rt9m9567RXt3b5NzceOnjNPw5XXqG7hZckEBJC3KHggS7o6O3Vw15vau33b2T30Q3t2Se59Pqe8skrvWXpHFlMCCAUFD8Tk5OFDZw+zN21/Vfte3672ttYhvcbVS27XqLHj4gkIIGgUPBCD9tZWfesP71BH++lhv8b0BRfpwnffkMFUAAoJZ9EDMSgpL9fMSxYN+/mpkhJdf8ddMrMMpgJQSCh4ICbzrrhy2M+94pbf0YTzpmYwDYBCQ8EDMZm96NdUlBr6u2DV02bo1xZ/KIZEAAoJBQ/EpLyySjMvumTIz7th2aeVKi6JIRGAQhJLwZvZ98xsY3TbaWYbo/FZZtaSNu2+OJYP5Ir6dwztMP0lN9ykqfPPjykNgEISy1n07v47Z+6b2T2SjqVNft3dF8axXCDXzGl8h+z+InlX14DzVo6foHfdtjQLqQAUglgP0Vv3KcAfkfRQnMsBctWoMWM1fcFFg5r32o9/UuWVVTEnAlAo4n4P/ipJ+9z9tbSxOjN7wcyeMbOr+nqimS0zs3Vmtu7AgQMxxwTiM5jD9HMa36H6y9+ZhTQACsWwC97MVpvZ5l5ui9Nmu03n7r03SZrh7pdK+hNJ3zWzMb29vrsvd/dGd2+sra0dbkwgcfWX/7rUz+fZS8ordO3H7+Qz7wAyatjvwbv79f1NN7NiSb8l6ey3ZLh7m6S26P56M3td0jxJ64abA8h1lePGa+r887XnlZd7nf6uWz+mMTX8JxZAZsV5iP56Sa+4++4zA2ZWa2ap6P5sSfWSdsSYAcgJ8/o4TD957jwtfN/NWU4DoBDEWfC36u0n110taVP0sbn/knSnux+OMQOQE+b28v66FRXphjvuUlFRKoFEAEIX25fNuPvv9TL2iKRH4lomkKvG1NRq8tx52rt929mxxt/4LU2cNTvBVABCxpXsgCxJP0t+7KTJ+vUP3ZpgGgCho+CBLEl/H/76T3xKJWXlCaYBEDq+Dx7IknGTp6h21mzVTJ+pWRdfmnQcAIGj4IEsuuT6G4d8fXoAGA4KHsiii6+/iQvaAMgK3oMHsohyB5AtFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAARoRAVvZh82sy1m1mVmjT2mfc7MtpvZq2b2vrTxG6Ox7Wb22ZEsHwAA9G6ke/CbJf2WpGfTB81sgaRbJV0g6UZJ/2pmKTNLSfq6pJskLZB0WzQvAADIoOKRPNndt0qSmfWctFjSw+7eJukNM9su6fJo2nZ33xE97+Fo3pdHkgMAAJwrrvfgp0ralfZ4dzTW1zgAAMigAffgzWy1pMm9TLrb3X+Y+Uhnl7tM0rLoYZuZbY5rWTmgRtLBpEPEiPXLbyGvX8jrJrF++W7+SJ48YMG7+/XDeN09kqanPZ4Wjamf8Z7LXS5puSSZ2Tp3b+xtvhCwfvmN9ctfIa+bxPrlOzNbN5Lnx3WI/jFJt5pZmZnVSaqX9AtJayXVm1mdmZWq+0S8x2LKAABAwRrRSXZmdoukf5ZUK+n/mdlGd3+fu28xs++r++S5DkmfcvfO6Dl3SXpSUkrSA+6+ZURrAAAA3makZ9E/KunRPqZ9SdKXehl/XNLjQ1zU8qGnyyusX35j/fJXyOsmsX75bkTrZ+6eqSAAACBHcKlaAAAClHMFX0iXvzWz75nZxui208w2RuOzzKwlbdp9CUcdFjP7gpntSVuPm9Om9bot84WZ/YOZvWJmm8zsUTMbF40Hse2k/P296ouZTTezn5jZy9G/MX8Ujff5c5pvon9HXorWY100NsHMVpnZa9Gf45POOVRmNj9t+2w0s+Nm9pl833Zm9oCZ7U//GHhf28u6fS36fdxkZosGXIC759RN0vnq/uzf05Ia08YXSHpRUpmkOkmvq/tEvVR0f7ak0mieBUmvxzDW+x5JfxndnyVpc9KZMrBOX5D0Z72M97otk847xHV7r6Ti6P6XJX05sG0XxO9Vj3WaImlRdH+0pG3Rz2KvP6f5eJO0U1JNj7GvSPpsdP+zZ35W8/UW/WzulTQz37edpKslLUr/N6Ov7SXpZkkrJJmkKyQ9P9Dr59wevLtvdfdXe5l09vK37v6GpDOXv71c0eVv3f20pDOXv80b1n2t349IeijpLFnS17bMG+6+0t07oodr1H1Nh5Dk/e9VT+7e5O4bovsnJG1VYVxJc7GkB6P7D0r6zeSiZMR1kl539zeTDjJS7v6spMM9hvvaXosl/Yd3WyNpnJlN6e/1c67g+xHy5W+vkrTP3V9LG6szsxfM7BkzuyqpYBlwV3Q46YG0Q4MhbLN0t6v7f9ZnhLDtQttG5zCzWZIulfR8NNTbz2k+ckkrzWy9dV8NVJImuXtTdH+vpEnJRMuYW3XuzlAo2+6MvrbXkH8nEyl4M1ttZpt7ueX1HkJvBrmut+ncH9gmSTPc/VJJfyLpu2Y2Jpu5B2uA9fuGpDmSFqp7ne5JMutQDWbbmdnd6r7Ww3eiobzZdoXKzKokPSLpM+5+XHn+c9rDu9x9kbq/sfNTZnZ1+kTvPtabtx+dsu4LpH1Q0n9GQyFtu7cZ6fYa0efgh8sTuvxtEgZaVzMrVvdX7l6W9pw2SW3R/fVm9rqkeZJGdNnCOAx2W5rZ/ZJ+FD3sb1vmjEFsu9+T9AFJ10W/iHm17QaQF9toqMysRN3l/h13/4Ekufu+tOnpP6d5x933RH/uN7NH1f1Wyz4zm+LuTdEh3f2JhhyZmyRtOLPNQtp2afraXkP+ncynQ/ShXv72ekmvuPvuMwNmVmtmqej+bHWv646E8g1bj/eHbpF05kzRvrZl3jCzGyX9uaQPuntz2ngQ2075/3v1NtG5Lt+StNXd/zFtvK+f07xiZpVmNvrMfXWfCLpZ3dttaTTbUkmxfUlYFpxztDOUbddDX9vrMUkfi86mv0LSsbRD+b1KZA++P1Z4l7/t+X6S1H1m5RfNrF1Sl6Q73b3niRj54CtmtlDdh5h2SvqkJPW3LfPIv6j7UwCruntDa9z9TgWy7dy9I89/r3pzpaQlkl6y6COpkj4v6bbefk7z0CRJj0Y/j8WSvuvuT5jZWknfN7Pfl/Smuk/ozTvRf1pu0Lnbp9d/Y/KFmT0k6d2Sasxst6S/kvT36n17Pa7uM+m3S2qW9PEBXz86sggAAAKST4foAQDAIFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABCg/w8nwXwrpVL76QAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgRElEQVR4nO3de5Ad5X3m8eeZuyQkoctY9ysaISQuspnFTriUbXAM2IDt2mCoio0db2SqTBJnnc3iy9oub7nKcYydcuw4JVfYxVX4QpYQUwlxDATEJZFhhIUQkkBCSAhZiJEwSCBppJn57R/TEmdGM0KaOX36nHe+n6pT0/129+lfq3vmUXe/p48jQgAAIC11RRcAAADKj4AHACBBBDwAAAki4AEASBABDwBAggh4AAASVJaAt32r7Zdtry9pm2z7Xtubs5+Tsnbb/q7tLbbX2X5HOWoAAABvKtcZ/P+VdPmAtpsl3R8RbZLuz8Yl6QpJbdlrhaQflKkGAACQKUvAR8RDkl4Z0HyNpNuy4dskfaik/UfRZ7Wk023PKEcdAACgT5734KdFxK5s+CVJ07LhWZJ2lMz3YtYGAADKpKESK4mIsH1Kz8S1vUJ9l/A1bty485csWZJLbQAAVKM1a9bsiYjW4S6fZ8Dvtj0jInZll+Bfztp3SppTMt/srK2fiFgpaaUktbe3R0dHR46lAgBQXWxvH8nyeV6iv1vSDdnwDZJ+XtL+8aw3/bskvVZyKR8AAJRBWc7gbf9E0rslTbX9oqSvSPqGpDtsf0rSdknXZrPfI+lKSVskHZD0yXLUAAAA3lSWgI+I64eYdOkg84akz5RjvQAAYHA8yQ4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAghryfHPbZ0r6WUnTQklflnS6pD+S1Jm1fyEi7smzFgAARpNcAz4inpG0XJJs10vaKekuSZ+U9J2I+Fae6wcAYLSq5CX6SyU9FxHbK7hOAABGpUoG/HWSflIyfpPtdbZvtT1p4My2V9jusN3R2dk5cDIAADiBigS87SZJV0v6h6zpB5LOUN/l+12Sbhm4TESsjIj2iGhvbW2tRJkAACSjUmfwV0h6IiJ2S1JE7I6InojolfRDSRdUqA4AAEaFSgX89Sq5PG97Rsm0D0taX6E6AAAYFXLtRS9JtsdJep+kT5c0f9P2ckkhaduAaQAAYIRyD/iIeEPSlAFtH8t7vQAAjGY8yQ4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgBqwKuvvqpVq1bp8OHDRZeCGtFQdAEAgKF1d3dr9erVWrVqlY4cOaL169fr2muvVWtra9GlocpxBg8AVay3t1fTpk3TBRdcoJkzZ2rPnj1auXKl1q1bV3RpqHKcwQNAFWtqalJbW5va2tokSYcOHdILL7ygbdu2qbu7W+edd57q6+sLrhLViIAHgBrS0tKixYsXa/HixUWXgirHJXoAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABYAT2v3Ko6BKAQRHwADBMRw736N9/tLHoMoBBEfAAMEwvPL1XL276rTp37C+6FOA4BDwADNPza/dIktav2llwJcDxCHgAGIbenl5te6ov4J997CV1HewupI6IUPRGIetGdSPgAWAYdm5+VV0H+kK9+3CvNv3HrkLqsC31hKKHkEd/BDwADMPzT+7pN77+oZ2KKCZk3Vin6OpW9PQWsn5UJwIeAIbh/MvnaelFM+U6S5Je3X1AL276bWH11I1tVM/rRziTxzEEPAAMw7iJzXrPHyzRR7/0XzR32RRJxXe2a5jYrO69B7knD0kEPACMyJSZp+mqPz5PV//Jcu1/5ZBe/22xD75paB2jOFRMhz9Ul4a8V2B7m6T9knokdUdEu+3Jkn4mab6kbZKujYjirm0BwAjNWTpZs5dMOtbxrii25bGNhdaA6lCpM/j3RMTyiGjPxm+WdH9EtEm6PxsHgJrmOqvlNMIV1aGoS/TXSLotG75N0ocKqgMAgCRVIuBD0i9tr7G9ImubFhFHPzT6kqRpFagDAIBRI/d78JIuioidtt8m6V7bm0onRkTYPq7LZ/afgRWSNHfu3AqUCQBAOnI/g4+IndnPlyXdJekCSbttz5Ck7OfLgyy3MiLaI6K9tbU17zIBAEhKrgFve5zt8UeHJf2epPWS7pZ0QzbbDZJ+nmcdAACMNnlfop8m6S7bR9f144j4he3HJd1h+1OStku6Nuc6gFPywt4DmjtlbNFlAMCw5RrwEbFV0nmDtO+VdGme6waG47UDR/TCKwc0fyrhDqC2VaKTHVATDh7uUX29dc7siUWXAgAjRsADmTFN9UWXAABlw7Poy6S3q6voEgAAOIYz+DLZ8ekbdWTXb9S8qE3Nixapua1NzW2L1LRggeqamoouDwAwyhDwZTLxgx/Qri/9Lx3Z/oJev//+NyfU16tp3rx+od/c1qamuXPlRp5ZDQDIhyOq/3uD29vbo6Ojo+gyTqhn/35tvvAixeHDJ7dAY6Oa58/vF/oty5apccaMfAsFANQE22tKvqTtlHEGXyb148frtPe+V/t/8YuTW+DIEXVt3qyuzZuPNU35o/+mt33uczlVCAAYTehkV0YTr756RMu3nHtumSoBAIx2BHwZnXbRhao//fRhLz/m3OOeCQQAwLAQ8GXkpiZNuPLKYS3bMH26Gqe9rcwVAQBGKwK+zCZefdWwlhvD5XkAQBkR8GXWct55apx36t9fP+Y8Ah4AUD4EfJnZ1sSrTr2zHWfwAIByIuBzMPGqD57aAvX1alm2LJ9iAACjEgGfg6Z58zRm+fKTnr+5rU11Y/l6UgBA+RDwOZlwCp3tuDwPACg3Aj4nE664Qmo4uQcF0sEOAFBuBHxOGiZN0mmXXHJS83IGDwAoNwI+Ryfz6Nq6cePUtHBhBaoBAIwmBHyOTnvPu1U3fvwJ52k59xy5vr4yBQEARg0CPkd1zc2acPn7TzgPz58HAOSBgM/ZhKtO3JueDnYAgDwQ8Dkb296uhpkzhpxOBzsAQB4I+Jy5rk4TPzj4WXzjzJlqmDq1whUBAEYDAr4ChvqGuRYuzwMAckLAV0DzokVqWbr0uHY62AEA8kLAV8hgj66lgx0AIC8EfIVM/MAHpLqSf+6GhkHP6gEAKAcCvkIaWls17nd/99h4y+LFqmtpKbAiAEDKCPgKmnjNm4+upYMdACBPBHwFjb/0Ujn73nc62AEA8kTAV1Dd2LGa8L7LJNHBDgCQLwK+wiZcdbXqxo9X0/z5RZcCAEgYAV9h4971zr5L9XX80wMA8kPKVJgbGtT6Z58tugwAQOII+AI0TptWdAkAgMQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACQot4C3Pcf2A7Y32H7a9p9m7V+1vdP22ux1ZV41AAAwWjXk+N7dkj4XEU/YHi9pje17s2nfiYhv5bhuAABGtdwCPiJ2SdqVDe+3vVHSrLzWBwAA3lSRe/C250t6u6RfZU032V5n+1bbkypRAwAAo0nuAW/7NEl3SvpsROyT9ANJZ0harr4z/FuGWG6F7Q7bHZ2dnXmXCQBAUnINeNuN6gv32yPiHyUpInZHRE9E9Er6oaQLBls2IlZGRHtEtLe2tuZZJgAAycmzF70l/b2kjRHx7ZL2GSWzfVjS+rxqAABgtMqzF/2Fkj4m6Snba7O2L0i63vZySSFpm6RP51gDAACjUp696B+R5EEm3ZPXOgEAQB+eZAcAQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AGgXHq6i64AOIaAB4By6O2V9m4pugrgGAIeAMrhpSeLrgDoh4AHgHJ47t+lsVOKrgI4hoAHgHJ47gFpzKSiqwCOIeABYKS6Xpf2PCvVNxRdCXAMAQ8AI7X9Ual5fNFVAP0Q8AAwUlvul8ZOLboKoB8CHgBGig52qEIEPACMxKsvSHs3S2MnF10J0A8BDwAj8dwDfT/HcYke1YWAB4CReG2HNGO51Lqk6EqAfvhMBwCMxHu/1PcCqgxn8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBhQW87cttP2N7i+2bi6oDAIAUFRLwtuslfV/SFZKWSrre9tIiagEAIEVFncFfIGlLRGyNiMOSfirpmoJqAQAgOUUF/CxJO0rGX8zajrG9wnaH7Y7Ozs6KFgcAQK2r2k52EbEyItojor21tbXocgAAqClFBfxOSXNKxmdnbQAAoAyKCvjHJbXZXmC7SdJ1ku4uqBYAAJLTUMRKI6Lb9k2S/k1SvaRbI+LpImoBACBFhQS8JEXEPZLuKWr9AACkrGo72QEAgOEj4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8ACQgEPdh4ouAVWGgAeABOw+sLvoElBlCHgASEAdf84xAEcEACTAdtEloMoQ8ACQgDrz5xz9cUQAQAIIeAzEEQEACZjUMkmvdb1WdBmoIgQ8ACSgub5ZR3qPFF0GqggBDwCJsOhohzcR8ACQiHrXF10CqggBDwCJ4KNyKEXAA0Ai6EmPUhwNAJAIAh6lOBoAIBH1rldEFF0GqgQBDwCJaGlo0eHew0WXgSpBwANAQrhMj6M4EgAgIXyrHI7iSACAhHAGj6M4EgAgIXwWHkcR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASFAuAW/7r2xvsr3O9l22T8/a59s+aHtt9vq7PNYPAMBol9cZ/L2Szo6IcyU9K+nzJdOei4jl2evGnNYPAMColkvAR8QvI6I7G10taXYe6wEAAIOrxD34P5T0ryXjC2z/2vYq2xdXYP0AAIw6DcNd0PZ9kqYPMumLEfHzbJ4vSuqWdHs2bZekuRGx1/b5kv7J9rKI2DfI+6+QtEKS5s6dO9wyAQAYlYYd8BFx2Ymm2/6EpA9KujQiIlumS1JXNrzG9nOSFkvqGOT9V0paKUnt7e0x3DoBABiN8upFf7mkv5B0dUQcKGlvtV2fDS+U1CZpax41AAAwmg37DP4tfE9Ss6R7bUvS6qzH/CWSvmb7iKReSTdGxCs51QAAwKiVS8BHxKIh2u+UdGce6wQAAG/iSXYAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIJyC3jbX7W90/ba7HVlybTP295i+xnb78+rBgAARquGnN//OxHxrdIG20slXSdpmaSZku6zvTgienKuBahJPT2HtPbJT6qra7eamqaosXGympqmqKlxshqbpqipcUpJ+2Q1Nk5WXV1j0WUDKFjeAT+YayT9NCK6JD1ve4ukCyT9ZwG1AFWvvr5FZy35hh7v+JAOHtx+Uss0NEzo/5+Bpqk6Y+Gfq7FxYs7VAqgWed+Dv8n2Otu32p6Utc2StKNknhezNgBDGDt2npYt/bYkn9T83d37dODA83rttTXq7PylGhsnEe7AKDOigLd9n+31g7yukfQDSWdIWi5pl6RbTvG9V9jusN3R2dk5kjKBJEyd+h4tmH/TKS83efLFWrjgs+UvCEBVG9El+oi47GTms/1DSf+cje6UNKdk8uysbeB7r5S0UpLa29tjJHUCqViw4E+0b/867d276qTmb2mZrbOX/bVsPjADjDZ59qKfUTL6YUnrs+G7JV1nu9n2Akltkh7Lqw4gJXadli39jsa0zH3LeevqmnXOOd9XY+Pp+RcGoOrk+d/6b9p+yvY6Se+R9GeSFBFPS7pD0gZJv5D0GXrQAyevsXGizjnn+6qraznhfGcu/pomjD+7QlUBqDa59aKPiI+dYNrXJX09r3UDqRs/fqmWnPm/tWHj/xh0+syZH9XMmf+1wlUBqCbcmANq1IwZH9GsWX9wXPuE8efqzMVfKaAiANWEgAdq2OK2L2nihLcfG29snJxdvm8usCoA1YCAB2pYXV2jzj7ne2pqmiq7Xmcv+2u1tMwsuiwAVaCIJ9kBKKOW5uk6e9l3tW/fk5o8+cKiywFQJQh4IAGTJr1Tkya9s+gyAFQRLtEDAJAgzuABAJKkAz29unP3K+oN6YZZU4suByNEwAPAKLfz0GH9n517dPtv9uq33X3PHZva1KAPtJ5ebGEYEQIeAEapXV2H9eXNv9E9e15Vz4Bv/Lhpw3bNenuTlk8YW0xxGDHuwQPAKDWjuUn/c+F03TR3mmY1N/abdrA39PGntmrnocMFVYeRIuABYBRbNLZFn184Q4//zlL9v+Vn6NrpkzS2vi8aXj7crY+t26rXu/m6kFpEwAMAVGfroknj9d2z5umpC5fpb86aq0smnaaNbxzSjRu2qyf41u5aQ8ADAPoZV1+v358+WXcsX6SO31mqd04cp9t/s7fosnCK6GQHABjSrJYm/fG8aYoIRYRsF10SThIBDwB4SwR77eESPQAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkiIAHACBBBDwAAAki4AEASBABDwBAggh4AAASRMADAJAgAh4AgAQR8AAAJIiABwAgQQQ8AAAJIuABAEgQAQ8AQIIIeAAAEkTAAwCQIAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABJEwAMAkCACHgCABBHwAAAkqCGPN7X9M0lnZqOnS3o1Ipbbni9po6RnsmmrI+LGPGoAAGA0yyXgI+KjR4dt3yLptZLJz0XE8jzWCwAA+uQS8EfZtqRrJb03z/UAAID+8r4Hf7Gk3RGxuaRtge1f215l++KhFrS9wnaH7Y7Ozs6cywQAIC3DPoO3fZ+k6YNM+mJE/Dwbvl7ST0qm7ZI0NyL22j5f0j/ZXhYR+wa+SUSslLRSktrb22O4dQIAMBoNO+Aj4rITTbfdIOkjks4vWaZLUlc2vMb2c5IWS+oYbh0AAOB4eV6iv0zSpoh48WiD7Vbb9dnwQkltkrbmWAMAAKNSnp3srlP/y/OSdImkr9k+IqlX0o0R8UqONQAAMCrlFvAR8YlB2u6UdGde6wQAAH14kh0AAAki4AEASBABDwBAggh4AAASRMADAFBB0dtbkfUQ8AAAVEhPd7cOvr6/Iusi4AEAqJDO7c9rzPgJFVkXAQ8AQIXs39upvi9azR8BDwBABRw+eEBdb7xRsfUR8AAAVMCWx1dr+hltFVsfAQ8AQAU8v3aNpsyeW7H1EfAAAOTsjVd/q96eHrmucrFLwAMAkLNNjz6kWUuWVnSdBDwAADnb+MgDmrP0nIquk4AHACBHe3fu0Gsv79bUOfMqul4CHgCAHG165EHNWrKsovffJQIeAIDcRIQ2PPxgxS/PSwQ8AAC5+c0zG7Wvc7dmLz274usm4AEAyMnGRx5U87hxap03v+LrJuABAMhBT/cRPfOfD2vWkmWqq6uv+PoJeAAAcrDtySd06PX9mnNW5S/PSwQ8AAC52PDwg5KkOcvOLWT9BDwAAGXWdeCAtnb8Sk1jxqp1/oJCaiDgAQAos82P/Ye6jxzW7LOKuf8uEfAAAJTdxocfkCTNLuj+u0TAAwBQVvtf2aMXnl4nSYV8/v0oAh4AgDJ65tGHpAg1tozRtAWLCquDgAcAoIw2PPKgJGnWkqWqqy/m/rtEwAMAUDZ7dmxX57atklTI8+dLEfAAAJTJxuzsXSq2g51EwAMAUBbR23ss4BubWzRtYXH33yUCHgCAsti5aYP27+mUJM088yzVNzQUWg8BDwBAGZReni/6/rtEwAMAMGLdR47omdUPHxufTcADAFD7nv/14+p64w1JUkNTs6afUez9d4mABwBgxEovz89cvET1DY3FFZMh4AEAGIFDb7yurWseOzZeDfffJQIeAIAReXb1o+rp7j42XuTz50sR8AAAjMCmksvzDY1Nmr7ozOKKKUHAAwAwTPv2vKwdG546Nj5j8RI1NBZ//10i4AEAGLZNjz7Ub7zox9OWIuABABim0t7zkjRnWXV0sJMIeAAAhqVz+/Pa88K2Y+P1jY2aUSX33yUCHgCAYdnw8AP9xme0namGpqaCqjkeAQ8AwCmK3l5tenRVv7bZZ1XP5XlphAFv+/dtP22713b7gGmft73F9jO231/SfnnWtsX2zSNZPwAARdixYb1ef2Vvv7Y5VfL596NGega/XtJHJPXrRmh7qaTrJC2TdLmkv7Vdb7te0vclXSFpqaTrs3kBAKgZGx/pf3m+vqFBM9qq5/67JI3oy2ojYqMk2R446RpJP42ILknP294i6YJs2paI2Jot99Ns3g0jqQMAgErpPnxYz65+tF/b9EWL1djcUlBFg8vrHvwsSTtKxl/M2oZqBwCgJmx94jEdPnigX1u13X+XTuIM3vZ9kqYPMumLEfHz8pd0bL0rJK3IRrtsr89rXVVgqqQ9RReRI7avtqW8fSlvm8T2Vc4d/yJd//Fyv+uIrvm/ZcBHxGXDeN+dkuaUjM/O2nSC9oHrXSlppSTZ7oiI9sHmSwHbV9vYvtqV8rZJbF+ts90xkuXzukR/t6TrbDfbXiCpTdJjkh6X1GZ7ge0m9XXEuzunGgAAGLVG1MnO9ocl/Y2kVkn/YnttRLw/Ip62fYf6Os91S/pMRPRky9wk6d8k1Uu6NSKeHtEWAACA44y0F/1dku4aYtrXJX19kPZ7JN1ziqtaeerV1RS2r7axfbUr5W2T2L5aN6Ltc0SUqxAAAFAleFQtAAAJqrqAH02Pv7X9M9trs9c222uz9vm2D5ZM+7uCSx0W21+1vbNkO64smTbovqwVtv/K9ibb62zfZfv0rD2JfSfV7u/VUGzPsf2A7Q3Z35g/zdqHPE5rTfZ35KlsOzqytsm277W9Ofs5qeg6T5XtM0v2z1rb+2x/ttb3ne1bbb9c+jHwofaX+3w3+31cZ/sdb7mCiKiql6Sz1PfZvwcltZe0L5X0pKRmSQskPae+jnr12fBCSU3ZPEuL3o5hbPctkr6cDc+XtL7omsqwTV+V9OeDtA+6L4uu9xS37fckNWTDfynpLxPbd0n8Xg3YphmS3pENj5f0bHYsDnqc1uJL0jZJUwe0fVPSzdnwzUeP1Vp9ZcfmS5Lm1fq+k3SJpHeU/s0Yan9JulLSv0qypHdJ+tVbvX/VncFHxMaIeGaQSccefxsRz0s6+vjbC5Q9/jYiDks6+vjbmuG+Z/1eK+knRddSIUPty5oREb+MiO5sdLX6numQkpr/vRooInZFxBPZ8H5JGzU6nqR5jaTbsuHbJH2ouFLK4lJJz0XE9qILGamIeEjSKwOah9pf10j6UfRZLel02zNO9P5VF/AnkPLjby+WtDsiNpe0LbD9a9urbF9cVGFlcFN2OenWkkuDKeyzUn+ovv9ZH5XCvkttH/Vje76kt0v6VdY02HFai0LSL22vcd/TQCVpWkTsyoZfkjStmNLK5jr1PxlKZd8dNdT+OuXfyUIC3vZ9ttcP8qrpM4TBnOS2Xq/+B+wuSXMj4u2S/rukH9ueUMm6T9ZbbN8PJJ0habn6tumWIms9VSez72x/UX3Perg9a6qZfTda2T5N0p2SPhsR+1Tjx+kAF0XEO9T3jZ2fsX1J6cTou9Zbsx+dct8D0q6W9A9ZU0r77jgj3V8j+hz8cEVBj78twlttq+0G9X3l7vkly3RJ6sqG19h+TtJiSSN6bGEeTnZf2v6hpH/ORk+0L6vGSey7T0j6oKRLs1/Emtp3b6Em9tGpst2ovnC/PSL+UZIiYnfJ9NLjtOZExM7s58u271LfrZbdtmdExK7sku7LhRY5MldIeuLoPktp35UYan+d8u9kLV2iT/Xxt5dJ2hQRLx5tsN1quz4bXqi+bd1aUH3DNuD+0IclHe0pOtS+rBm2L5f0F5KujogDJe1J7DvV/u/VcbK+Ln8vaWNEfLukfajjtKbYHmd7/NFh9XUEXa++/XZDNtsNknL7krAK6He1M5V9N8BQ++tuSR/PetO/S9JrJZfyB1XIGfyJePQ9/nbg/SSpr2fl12wfkdQr6caIGNgRoxZ80/Zy9V1i2ibp05J0on1ZQ76nvk8B3NuXG1odETcqkX0XEd01/ns1mAslfUzSU84+kirpC5KuH+w4rUHTJN2VHY8Nkn4cEb+w/bikO2x/StJ29XXorTnZf1rep/77Z9C/MbXC9k8kvVvSVNsvSvqKpG9o8P11j/p60m+RdEDSJ9/y/bMriwAAICG1dIkeAACcJAIeAIAEEfAAACSIgAcAIEEEPAAACSLgAQBIEAEPAECCCHgAABL0/wFd8aidzcPZXAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmWklEQVR4nO3de3gcd33v8c9XK1myZFuybPluxxecm0nixCIEQlJoEkhCjwNtya0FA2lNzkPOU6CnPCmcQymUllKgfVpoqDlNSXtCIJw0xEBoCZwkHOzc5BCM7/E1tuOLEsm2bOu20vf8oXGylndXsrSzs/vT+/U8ejT7m5md7zyzmo9m9re/NXcXAAAIS0XSBQAAgMIj4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAVJODN7F4zO2xmGzLaGs3sMTN7Mfo9OWo3M/t7M9tuZuvN7LJC1AAAAF5XqCv4b0m6flDb3ZJ+5u6LJf0seixJN0haHP2slHRPgWoAAACRggS8u/9cUtug5psk3RdN3yfpPRnt/+oDnpbUYGYzC1EHAAAYEOd78NPd/UA0fVDS9Gh6tqS9Gcvti9oAAECBVBZjI+7uZnZWY+Ka2UoN3MJXXV3dsvPPPz+W2gAAKEXr1q17xd2bRrp+nAF/yMxmuvuB6Bb84ah9v6S5GcvNidpO4+6rJK2SpObmZm9paYmxVAAASouZ7RnN+nHeol8taUU0vULSIxntH4h6018h6WjGrXwAAFAABbmCN7MHJL1d0lQz2yfpzyR9UdKDZnaHpD2Sbo4Wf1TSjZK2Szop6UOFqAEAALyuIAHv7rflmHVNlmVd0kcLsV0AAJAdI9kBABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABoByke6Tvvl/64Sekk4O/+gM4U1GGqgUAjEK6W3pwhbTtxwOPN31fuvbPpaW/J1VwnYbseGUAQClzl37wR6+HuySdfFVafZd077ukA79KrjaUNAIeAEqZmbT8H6Tf/3fpsg9I4xtfn7fvWWnV26VH/0TqPJJUhShRNjCwXGnjy2YAINKXlvb8Qtr4fWnzD6STrwy01zVJ131OuuS2gX8KUPbMbJ27N494fQIeAMpUf5+0Z6206RFp82rp+CFp3lukG/9GmnFR0tVhlAh4AMBA2O99ZiDst/xIOv/d0js+JdXUJ10ZRoiABwCcrr9f2vec9NJT0pw3See8ldv2ZWi0Ac/H5AAgNBUV0rw3D/y4S/1pKVWVdFUoMnrRA0DIzAj3MYqABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMBD3ek+9fV70mUAAAqoMukCkLzVL7ysP//BJl12zmRdPn+y3jS/UZfMbVBNVSrp0gAAI0TAQy/sPaLj3Wn9fFurfr6tVZI0LlWhi+bU603zG3X5gsladk6j6sdXJVwpAGC4CHjoV/uOnNHW09evdXvatW5Pu77xpGQmnTd9oi5f0BiFfqOmT6opfrEAgGEx99J/77W5udlbWlqSLiNYWw926NXj3Wo72aP2k706ciL6fbJH7Sczp3t1tLP3tfXmNo4fCPv5jXrTgkYtnFonM0twTwAgHGa2zt2bR7o+V/DQeTMmSpo4rGXTff062tl7Wui3n+zRzzYf0hMVFXrDtAl6w7QJmlVfQ9gDQIIIeJyVylSFpkyo1pQJ1UmXAgDIg4/JAQAQIAIeAIAAEfAAAAQo1vfgzew8Sd/NaFoo6TOSGiT9oaTWqP1T7v5onLUAADCWxBrw7r5V0lJJMrOUpP2SHpb0IUl/6+5fjnP7AACMVcW8RX+NpB3uvqeI2wQAYEwqZsDfKumBjMd3mdl6M7vXzCYPXtjMVppZi5m1tLa2Dp4NAADyKErAm9k4ScslfS9qukfSIg3cvj8g6SuD13H3Ve7e7O7NTU1NxSgTAIBgFOsK/gZJz7v7IUly90Pu3ufu/ZK+KenyItUBAMCYUKyAv00Zt+fNbGbGvPdK2lCkOgAAGBNiH6rWzOokXSfpIxnNXzKzpZJc0u5B8wAAwCjFHvDufkLSlEFt7497uwAAjGWMZAcAQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPBCAjnSfevr7ky4DQAkh4IEy5+764617VWmWdCkASggBD5S5f9zbqjXtx1VBwAPIQMADZWxNe4e+sONlNValki4FQIkh4IEydaC7Rx/ZuEf9kqZUxT7qNIAyQ8ADZainv18rN+zRK71pSdKUcQQ8gNMR8EAZ+tyOl/XcsROvPW7kCh7AIAQ8UGYePtSu/7XvldPauEUPYDACHigjW0506hNb9p7RTic7AIMR8ECZ6Ej36Y5f71ZnlgFtuEUPYDACHigD7q6PbXlJOzq7s84n4AEMRsADZeCeva36UevRnPPpRQ9gMAIeKHFr24/rCztfzrsMV/AABiPggRJ2oLtHKzfuVp/nX45OdgAGI+CBEjV4MJtcxleY6lIEPIDTEfBAiRo8mE0u3J4HkA0BD5SgbIPZ5ELAA8iGgAdKTK7BbHJhFDsA2XBmQGz60v2SSWamigq+q3w48g1mk0sjH5EDkAVnBsQmVckNorMx1GA2udCDHkA2nIGBEjHUYDa58B48gGwIeKAEDGcwm1x4Dx5ANgQ8kLCD3b36yKahB7PJhSt4ANkQ8ECCevtdKzfuVmtP/sFs8uE9eADZEPBAgj63Y7+ePTr0YDb58EUzALIh4IGEfP9Qu745zMFs8uE9eADZEPBAArac6NQntg5/MJt8GioJeABnIuCBIjs1mM3JvuEPZpNLQ2VKVQwiBCALAh4oopEOZpMLPegB5ELAA0U00sFscqEHPYBcCHigSEYzmE0uXMEDyIWAB4pgtIPZ5MJH5ADkQsADMSvEYDa5cAUPIBcCHohZIQazyYWAB5ALAQ/EqFCD2eQyhU52AHIg4IGYbD3RVbDBbHLhCh5ALgQ8EIOOdJ/u2LCrIIPZ5MMwtQByIeCBAjs1mM32k4UZzCYfetEDyIWABwrsGwUezCYfbtEDyCX2s4OZ7ZbUIalPUtrdm82sUdJ3Jc2XtFvSze7eHnctQNzWth/XXxR4MJtcKk2amOJ/dADZFevs8A53X+ruzdHjuyX9zN0XS/pZ9Bgoa3ENZpNLY1WlzPiiGQDZJfXv/02S7oum75P0noTqAAoizsFscqGDHYB8ihHwLuknZrbOzFZGbdPd/UA0fVDS9CLUAcQmzsFscuH9dwD5FOMM8TZ3329m0yQ9ZmZbMme6u5vZGTc1o38GVkrSvHnzilAmMDJxD2aTCwEPIJ/Yr+DdfX/0+7CkhyVdLumQmc2UpOj34SzrrXL3ZndvbmpqirtMYESKMZhNLnxEDkA+sQa8mdWZ2cRT05LeKWmDpNWSVkSLrZD0SJx1AHEo1mA2ufBd8ADyifsSYLqkh6OevpWSvu3u/2Fmz0l60MzukLRH0s0x1wEUVDEHs8mFW/QA8on1DOHuOyVdkqX9VUnXxLltIE7FHMwml6kEPIA8GCUDOEtPHSneYDb5cAUPIB8CHjgLB7t7tXJj8QazyYf34AHkQ8ADw5TEYDb5cAUPIB8CHhimz+94ueiD2eRDwAPIh4AHhuH7h9q1al9r0mW8pi5VoRq+aAZAHpwhgCEkOZhNLly9AxgKAQ/kkfRgNrnwRTMAhkLAAzmUwmA2udCDHsBQCHggh1IYzCYXbtEDGAoBD2RRKoPZ5MIXzQAYCgEPDFJKg9nkwnvwAIZCwAMZSm0wm1y4RQ9gKAQ8kKHUBrPJhU52AIZCwAORRw6X1mA2+XCLHsBQCHhAA4PZfHxLaQ1mkw+36AEMhYDHmHc83ac/KMHBbPIh4AEMhYDHmHZqMJsXS3Awm1wqJDXwHjyAIRDwGNNW7WvVD0t0MJtcGqpSSpklXQaAEsd9Poxpt8+conNqqvV42zE93tahl7p6ki5pSHSwAzAcnCkwpk2sTOn6pnpd31Qvd9euzh493nZMT7R1aM2R4yX5vjwBD2A4OFMAETPTwtpqLaxt0h1zmtTd36/njp7Q420deqLtmDYe70q6REl0sAMwPJwpgByqKyr0tskT9bbJE/U/F83S4e5ePdHeoSeiwG/r7UukLgIewHBwpgCGaVp1lW6e0aibZzSq313rOzr1RHQ7v+XYCaWLNHY9o9gBGA4CHhiBCjMtnVSrpZNq9bH5M3R4Q6t+8pPtempKSk9NrdTLtfF9QIVvkgMwHJwpgFHy3n71Pbpbb29L6+2H03J166Va01NTK/X0lEq1TEmpK1W4j7Vxix7AcHCmAEap48m96mt7vQOeSTrnpOucl3p160u96jFp1+8t0poa6Ym2Y9p0YnSd9Qh4AMPBmQIYhXRblzqe3Jd3mepxKb2ttk7XLKzXZzRLh7p7X+uo92R7x1l31uNjcgCGgzMFMApHfrhT3pv7s/Kp+mpN/dASVc2oe61tenWVbpnZqFtmNqovS2e9viE669HJDsBwEPDACHVubVPXpldzzq+aPUFTVyxRatK4nMukzHTppFpdOqlWH58/Q8fSffpFe4ceb+vQ423HtK+r94x1uIIHMBycKYAR8HS/jq7ekXN+zQWNarztfFWMO7ur7UmVKd3Y1KAbmxrk7trR2a0n2jr0+KsdWnukQy6pNsVXSAAYGgEPjEDHz/cp/Wr2znITrpyl+ncvlFWMrue8mekNtTV6Q22N/mBOk7r6+rW+46SML5oBMAwEPHCW0ke61PH43jNnVEgN716oCVfOjmW7NakKXd4wIZbnBhAeAh44S0d/cGbHOhuXUuPt52v8+Y0JVQUApyPggbPQ9WK7Ojee3rGuYtI4TV2xRONmc3UNoHQQ8MAwebpfRwZ1rKuaWacpH1yiyvrqhKoCgOwIeGCYOn6xX+nWztce15w3WY23X6CKaj6XDqD0EPDAMKSPdqvj/7702uO6K2aqYfmiUfeUB4C4EPDAMBz90U55T79kUv2NCzTxqjlJlwQAeRHwwBC6trerc/0rsqoKNd56nsYvmZp0SQAwJAIeyMP7BjrWVUyoGugpP3di0iUBwLAQ8EAex9e8LJlp2keXqnJyTdLlAMCwEfBADn3HutWz55im/ddLVFHDnwqA8sJZC8iht7VTjbdfIEvRUx5A+SHggRxqFjUkXQIAjBjfOwkAQIBiC3gzm2tmj5vZJjPbaGZ/FLV/1sz2m9kL0c+NcdUAAMBYFect+rSkP3b3581soqR1ZvZYNO9v3f3LMW4bAIAxLbaAd/cDkg5E0x1mtllSPF+UDQAATlOU9+DNbL6kSyU9EzXdZWbrzexeM5tcjBoAABhLYg94M5sg6SFJH3P3Y5LukbRI0lINXOF/Jcd6K82sxcxaWltb4y4TAICgxBrwZlalgXC/393/XZLc/ZC797l7v6RvSro827ruvsrdm929uampKc4yAQAITpy96E3SP0va7O5fzWifmbHYeyVtiKsGAADGqjh70V8p6f2Sfm1mL0Rtn5J0m5ktleSSdkv6SIw1AAAwJsXZi/4XkrKN8floXNsEAAADGMkOAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIASC3gzu97MtprZdjO7O6k6AAAIUSIBb2YpSV+XdIOkCyXdZmYXJlELAAAhSuoK/nJJ2919p7v3SPqOpJsSqgUAgOAkFfCzJe3NeLwvanuNma00sxYza2ltbS1qcQAAlLuS7WTn7qvcvdndm5uampIuBwCAspJUwO+XNDfj8ZyoDQAAFEBSAf+cpMVmtsDMxkm6VdLqhGoBACA4lUls1N3TZnaXpP+UlJJ0r7tvTKIWAABClEjAS5K7Pyrp0aS2DwBAyEq2kx0AABg5Ah4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAGKJeDN7G/MbIuZrTezh82sIWqfb2adZvZC9PONOLYPAMBYF9cV/GOS3ujuF0vaJulPM+btcPel0c+dMW0fAIAxLZaAd/efuHs6evi0pDlxbAcAAGRXjPfgPyzpxxmPF5jZL83sSTO7qgjbBwBgzKkc6Ypm9lNJM7LM+rS7PxIt82lJaUn3R/MOSJrn7q+a2TJJ3zezJe5+LMvzr5S0UpLmzZs30jIBABiTRhzw7n5tvvlm9kFJvyXpGnf3aJ1uSd3R9Doz2yHpXEktWZ5/laRVktTc3OwjrRMAgLEorl7010v6pKTl7n4yo73JzFLR9EJJiyXtjKMGAADGshFfwQ/ha5KqJT1mZpL0dNRj/mpJnzOzXkn9ku5097aYagAAYMyKJeDd/Q052h+S9FAc2wQAAK9jJDsAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTA4wzunnQJAIBRIuBxhtavflWvfutb8v7+pEsBAIxQZdIFoLT0nzih9m8/oP4TJ3TiF2s066/+UpVNTUmXBQA4S1zB4zQVdXVa+IPVmvKHf6iuDRu086b3qOPxx5MuCwBwlqwc3m9tbm72lpaWpMsYc/q7unTsRz9S2/33q3bppZr2yT9RRU1N0mUVTV86rVQlN7kAJMPM1rl780jX5woeOVXU1Kjhd35HCx56SJPefaNevfdede/YkXRZsevt7lJvTzfhDqCscQbDkMxMtcuWqXbZMqXb2+XptCzA8Ovt7lJvd7dq6iaoIpVKuhwgaEeOtKi+fpnMLOlSgsUVPM5K5eTJwYV7X7pXx145rP6+ftVOqifcgSJ4te3/6Zlnb9DBg4/IvS/pcoJEwGNMaz+wXyeOHNGkqdNUXVubdDnAmDFnzvvV2blHGzd9Qk89fa32739A/f09SZcVFAIeY9LRw4fU+tJu1U+foUlT+RggUGzV46Zq+rT/Iknq7HxJW7b+D6196h16ae+/qK+vM+HqwkDAY0w5efSIXt62ReNqa9U0b74qKrgdDyRl7rwPn/a4u/ugXnzxL7Rm7dXatfvrSqc7EqosDAQ8xoR0T4/2blyvrhMnNOvc8zV+wsSkSwLGvIkTztfkyW85o723t007d35Va9ZepR07vqyenlcTqK78EfAI3r5NG3Rw+zbNufAiNc6anXQ5ADLMm/vhnPPS6Q7t3nOP1qz9DW3b9nl1dR8sYmXlL6zu0ECGw7t36mjrIZ3zxks0bjwd6IBSNGXKO1Rbu0AnT+7KuUx/f6f27vuW9u3/tmbOeI/OOedO1daeU8QqyxNX8AhSb3eXKsdVa/Gb3kK4AyXMzDR3zgeHtax7j14+8KCefuY6bdj4cR0/vi3e4socAY8gVVXXcDseKBMzZ/62Kivrh728e58OHVqtZ569UevX36ljx9bHWF35IuABAIlKpWo1e9atI1jT1frKY3qu5b365S9XqL39mYLXVs4IeABA4ubM/YDMqka8flv7L/T8L29Xy7qb9cqrTxSusDJGwAMAEldTPUPTpt0w6uc5enSdfvWrO/Tss8t16PCP5d5fgOrKEwEPACgJ8+Z+qGDP1XF8ozZsuEtPP3O9Dhx4SP396YI9d7kg4AEAJWHSpItVXz/irz/P6uTJHdq0+ZN66ulrtG/f/erv7y7o85cyAh4AUDLyDXwzGl1d+7R122e0Zu3bteelbyqdPhHLdkoJAQ8AKBlNTdeppmZubM/f03NY27d/UWvWXq2du/5Bvb1HY9tW0gh4AEDJMKvQ3LkrYt9OOn1Eu3b9ndasvVrbt39JPT2vxL7NYiPgAQAlZdbM9ymVmlCUbfX1Hdeel/5Ja9b+hrZu+6y6ul4uynaLgYAHAJSUysoJmjXr5qJus7+/S/v2/ZvWPvWb2rT57rxj45cLAh4AUHLmzlkhs1TRt+veqwMHvqdNm+9Wf39P0bdfSAQ8AKDkjB8/R1OnXpfItqdOvUaXLr1PFRXjEtl+ocQW8Gb2WTPbb2YvRD83Zsz7UzPbbmZbzexdcdUAAChfhRz4ZrhmzbxZF190j1KpmqJvu9Di/j74v3X3L2c2mNmFkm6VtETSLEk/NbNz3b0v5loAAGWkoaFZkyZdomPHflWU7c2ff5cWLfx4UbZVDEncor9J0nfcvdvdd0naLunyBOoAAJS4uUW5iq/Qeed9Pqhwl+IP+LvMbL2Z3Wtmk6O22ZL2ZiyzL2oDAOA005puUHX1zNiev6KiWhdd9DXNmX17bNtIyqgC3sx+amYbsvzcJOkeSYskLZV0QNJXzvK5V5pZi5m1tLa2jqZMAECZqqio1Nw574/luSsr63Xp0n/VtKYwu4KN6j14d792OMuZ2Tcl/TB6uF9S5jiEc6K2wc+9StIqSWpubvbR1AkAKF+zZt2mXbu/pr6+kwV7zurqGVp6yb9owoRzC/acpSbOXvSZ91TeK2lDNL1a0q1mVm1mCyQtlvRsXHUAAMpbVdUkzZzxOwV7vrq6xWpe9n+CDncp3l70XzKzpZJc0m5JH5Ekd99oZg9K2iQpLemj9KAHAOQzd+4K7dv/vzUQKSPXUP8mXXzxP6mqqr4whZWw2ALe3XO+aeLuX5D0hbi2DQAIS23tAk2d+pt65ZWfjfg5mpreqSUX/p1SqeoCVla6GMkOAFAWRvORudmzb9dFb/z6mAl3iYAHAJSJxslv0YQJF571egsXfEznn/d5mY2tyBtbewsAKGtnM3ytWUoXnP9XWrDgv8VYUeki4AEAZWP69N/SuHFNQy5XUVGjiy66p+hfO1tKCHgAQNmoqBinObN/P+8yVVWTddml/6amqdcUqarSRMADAMrK7Nm3q6Iie2e5mprZWnbZd1Vff1mRqyo9BDwAoKyMG9eoGTPec0b7hAnnq3nZ91RXt6j4RZUgAh4AUHYGf2SuoeHNWnbZd1RdPT2hikoPAQ8AKDsT6harsfEqSdK0aTfq0qX/osrKiQlXVVriHKoWAIDYzJv7YdXWzte5iz8z5j7jPhwEPACgLE2ZcrWmTLk66TJKFv/yAAAQIAL+LKXTae3evVvufEU9AKB0cYt+GLq7u7Vt2zZt2bJF27dv1/Lly2VmSZcFAEBOBHwOx48f19atW7V582bt2rVLfX0DX1l/5ZVXasmSJQlXBwBAfgR8hvb2dm3ZskWbN2/W3r17z7gNv2jRIl1zzdge+hAAUB4IeEltbW168MEHdfDgwZzLTJ48Wb/7u7+rigq6LQAASh9ppYEr93zhXlVVpVtuuUXjx48vYlUAAIwcAS+ps7Mz7/ybbrpJM2bMKFI1AACMHgGv/AH/1re+VW984xuLWA0AAKNHwCt3wC9cuFDXXnttkasBAGD0CHhJXV1dZ7Q1NDTQqQ4AULZIL515BV9ZWalbbrlFtbW1CVUEAMDoEPA6M+CXL1+umTNnJlQNAACjR8Dr9IC/4oordPHFFydYDQAAo0fA6/X34OfPn6/rrrsu4WoAABg9Al4DV/D19fV63/vep1QqlXQ5AACMGgGvga+AveWWW1RXV5d0KQAAFMSYD/h0Oq13vvOdmjVrVtKlAABQMGM+4CsrK7V06dKkywAAoKDGfMADABAiAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJUGceTmtl3JZ0XPWyQdMTdl5rZfEmbJW2N5j3t7nfGUQMAAGNZLAHv7recmjazr0g6mjF7h7svjWO7AABgQCwBf4qZmaSbJf1mnNsBAACni/s9+KskHXL3FzPaFpjZL83sSTO7KteKZrbSzFrMrKW1tTXmMgEACMuIr+DN7KeSZmSZ9Wl3fySavk3SAxnzDkia5+6vmtkySd83syXufmzwk7j7KkmrJKm5udlHWicAAGPRiAPe3a/NN9/MKiX9tqRlGet0S+qOpteZ2Q5J50pqGWkdAADgTHHeor9W0hZ333eqwcyazCwVTS+UtFjSzhhrAABgTIqzk92tOv32vCRdLelzZtYrqV/Sne7eFmMNAACMSbEFvLt/MEvbQ5IeimubAABgACPZAQAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ+MYX39fepMd8rdky4FQIFVJl0AgOI62n1U7V3tqqmsUV1VnSaOm5h0SQBiQMADY8DOozvVerJV1alqTa+drvn185MuCUDMCHggQL39vXr+0PM6dPKQalI1uqDxAr155puTLgtAERHwQIAOnjio6bXTCXVgDCPggQDNnTg36RIAJIxe9AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEaFQBb2bvM7ONZtZvZs2D5v2pmW03s61m9q6M9uujtu1mdvdotg8AALIb7RX8Bkm/LennmY1mdqGkWyUtkXS9pH80s5SZpSR9XdINki6UdFu0LAAAKKDK0azs7pslycwGz7pJ0nfcvVvSLjPbLunyaN52d98ZrfedaNlNo6kDAACcLq734GdL2pvxeF/UlqsdAAAU0JBX8Gb2U0kzssz6tLs/UviSXtvuSkkro4fdZrYhrm2VgKmSXkm6iBixf+Ut5P0Led8k9q/cnTealYcMeHe/dgTPu1/S3IzHc6I25WkfvN1VklZJkpm1uHtztuVCwP6VN/avfIW8bxL7V+7MrGU068d1i361pFvNrNrMFkhaLOlZSc9JWmxmC8xsnAY64q2OqQYAAMasUXWyM7P3SvoHSU2SfmRmL7j7u9x9o5k9qIHOc2lJH3X3vmiduyT9p6SUpHvdfeOo9gAAAJxhtL3oH5b0cI55X5D0hSztj0p69Cw3tersqysr7F95Y//KV8j7JrF/5W5U+2fuXqhCAABAiWCoWgAAAlRyAT+Whr81s++a2QvRz24zeyFqn29mnRnzvpFwqSNiZp81s/0Z+3Fjxrysx7JcmNnfmNkWM1tvZg+bWUPUHsSxk8r37yoXM5trZo+b2aboHPNHUXvO12m5ic4jv472oyVqazSzx8zsxej35KTrPFtmdl7G8XnBzI6Z2cfK/diZ2b1mdjjzY+C5jpcN+Pvo73G9mV025AbcvaR+JF2ggc/+PSGpOaP9Qkm/klQtaYGkHRroqJeKphdKGhctc2HS+zGC/f6KpM9E0/MlbUi6pgLs02cl/fcs7VmPZdL1nuW+vVNSZTT915L+OrBjF8Tf1aB9minpsmh6oqRt0Wsx6+u0HH8k7ZY0dVDblyTdHU3ffeq1Wq4/0WvzoKRzyv3YSbpa0mWZ54xcx0vSjZJ+LMkkXSHpmaGev+Su4N19s7tvzTLrteFv3X2XpFPD316uaPhbd++RdGr427JhA2P93izpgaRrKZJcx7JsuPtP3D0dPXxaA2M6hKTs/64Gc/cD7v58NN0habPGxkiaN0m6L5q+T9J7kiulIK6RtMPd9yRdyGi5+88ltQ1qznW8bpL0rz7gaUkNZjYz3/OXXMDnEfLwt1dJOuTuL2a0LTCzX5rZk2Z2VVKFFcBd0e2kezNuDYZwzDJ9WAP/WZ8SwrEL7RidxszmS7pU0jNRU7bXaTlyST8xs3U2MBqoJE139wPR9EFJ05MprWBu1ekXQ6Ecu1NyHa+z/ptMJODN7KdmtiHLT1lfIWQzzH29Tae/YA9Imuful0r6hKRvm9mkYtY9XEPs3z2SFklaqoF9+kqStZ6t4Rw7M/u0BsZ6uD9qKptjN1aZ2QRJD0n6mLsfU5m/Tgd5m7tfpoFv7PyomV2dOdMH7vWW7UenbGCAtOWSvhc1hXTszjDa4zWqz8GPlCc0/G0ShtpXM6vUwFfuLstYp1tSdzS9zsx2SDpX0qiGLYzDcI+lmX1T0g+jh/mOZckYxrH7oKTfknRN9IdYVsduCGVxjM6WmVVpINzvd/d/lyR3P5QxP/N1WnbcfX/0+7CZPayBt1oOmdlMdz8Q3dI9nGiRo3ODpOdPHbOQjl2GXMfrrP8my+kWfajD314raYu77zvVYGZNZpaKphdqYF93JlTfiA16f+i9kk71FM11LMuGmV0v6ZOSlrv7yYz2II6dyv/v6gxRX5d/lrTZ3b+a0Z7rdVpWzKzOzCaemtZAR9ANGjhuK6LFVkiK7UvCiuC0u52hHLtBch2v1ZI+EPWmv0LS0Yxb+VklcgWfj4294W8Hv58kDfSs/JyZ9Urql3Snuw/uiFEOvmRmSzVwi2m3pI9IUr5jWUa+poFPATw2kBt62t3vVCDHzt3TZf53lc2Vkt4v6dcWfSRV0qck3ZbtdVqGpkt6OHo9Vkr6trv/h5k9J+lBM7tD0h4NdOgtO9E/Ldfp9OOT9RxTLszsAUlvlzTVzPZJ+jNJX1T24/WoBnrSb5d0UtKHhnz+6M4iAAAISDndogcAAMNEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgP4/MYEZy6qDUSMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAnx0lEQVR4nO3de3xcdZ3/8fdncr/0kiZpWnpLC70GsUAWWV1UoHJbFkT4IfxYRXG31oVddf0peHmo6y7KoujDK2t5iKv8BEHualXEn66XXZAUC0JLoS1NaUjbQFt6SZvr5/dHpjBNkyaZzJkz853X8/GYR2a+Z845n9Mz6TvnnO/5jrm7AABAWBJxFwAAADKPgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAKUkYA3s1vNbIeZPZXSNsXMfmlmzyV/1iTbzcy+ZmYbzOxJMzspEzUAAIDXZOoI/j8lnTOo7TpJv3L3+ZJ+lXwtSedKmp98LJd0c4ZqAAAASRkJeHf/raSdg5ovlPS95PPvSXp7Svv3fcAjkiab2fRM1AEAAAZEeQ2+wd3bk8+3SWpIPp8h6YWU921NtgEAgAwpzsZK3N3NbExj4prZcg2cwldVVdXJixYtiqQ2AABy0erVq19y9/p0548y4Leb2XR3b0+egt+RbG+TNCvlfTOTbYdx95WSVkpSc3Ozt7S0RFgqAAC5xcxaxzN/lKfoH5R0ZfL5lZIeSGl/d7I3/amSXkk5lQ8AADIgI0fwZnaHpLdKqjOzrZI+I+kGSXeZ2fsktUq6NPn2VZLOk7RBUqek92aiBgAA8JqMBLy7Xz7MpDOHeK9LujoT6wUAAENjJDsAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASqOcuFmtlDSnSlN8yR9WtJkSX8vqSPZ/gl3XxVlLQAAFJJIA97d10taKklmViSpTdJ9kt4r6Svu/qUo1w8AQKHK5in6MyVtdPfWLK4TAICClM2Av0zSHSmvrzGzJ83sVjOrGfxmM1tuZi1m1tLR0TF4MgAAOIqsBLyZlUq6QNKPkk03SzpWA6fv2yXdNHged1/p7s3u3lxfX5+NMgEACEa2juDPlfS4u2+XJHff7u597t4v6RZJp2SpDgAACkK2Av5ypZyeN7PpKdMukvRUluoAAKAgRNqLXpLMrErS2yS9P6X5RjNbKsklbR40DQAAjFPkAe/u+yXVDmp7V9TrBQCgkDGSHQAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHgBzR39cXdwkICAEPADli28bn4i4BASHgASAH9Pb0qGryEd+cDaSNgAeAHNB9oFOTpjbEXQYCQsADQA4oq6yKuwQEhoAHgBxQVBz5d3+hwBDwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEfIe93HXx2l/b9z4vynr64ywEAFJDiuAsIUe/Og9rfsk2dj+9Q6YxqTblskayEv6UAANlDwGeI9/TrwNMvaf9j29S16RXJpapTp2vyBcfKEhZ3eQCAAkPAj1P31r3a37JdnWs65Ad7X22feNYcTTxjdoyVAQAKGQGfhv7OHu3/0w51tmxXT/v+wycmTDUXHaeqv5gWT3EAAIiAHzXvd3Vt2K39Ldt0YO3LUq8f8R4rSWjKFYtVsWhKDBUCAPAaAn4EvTsPav/q7epcvV19u7uGfV+iqli1VzapbPbELFYHAMDQCPghvNphrmW7ujbulo48WD9MUU2Z6q46XiX1lVmpDwCAkRDwKbrb9mn/Y9vU+USH/EDvyDNIKplepbr3Hq+iiaURVwcAwOgVfMD3d/ao8087tH+oDnMjKDt2kmrftUSJ8oL/ZwQA5JiCTKbRdJgbScUJdZpy6UJZMQPYAAByT0EF/Gg7zI2k+k3HaNL582TGADYAgNwUecCb2WZJeyX1Sep192YzmyLpTkmNkjZLutTdd0Wx/rF2mDsqkyadM1cT3jIzU+UBABCJbB3Bn+7uL6W8vk7Sr9z9BjO7Lvn62kyusLtt38B48GtG32HuqIpMNZcsUNWJU8e/LAAAIhbXKfoLJb01+fx7kn6jDAT8eDrMHY2VFqn2XYtVPr8mY8sEAOS/7v5+lSZysy9WNgLeJT1kZi7p2+6+UlKDu7cnp2+T1JD2wjPQYe5oEtUlqntPk0pnTsjocgEA+e2nHbs1r6JMi6sr4i5lSNkI+L9y9zYzmyrpl2b2TOpEd/dk+B/GzJZLWi5Js2cf+aUtmeowdzTFteWqu+p4Fdfm5s4DAGTf/r4+feq5Ns2rKNNf10+Ou5xhRR7w7t6W/LnDzO6TdIqk7WY23d3bzWy6pB1DzLdS0kpJam5udinDHeZGUDKzWnXvaVJRNQPYAAAGPLW3UyvWtqqxokxfXjgr7nKOKtKAN7MqSQl335t8fpakz0l6UNKVkm5I/nzgaMvxnn7temBD5jrMjaBsQY1q/3axEqVFka8LAJAfVr6wQ9dvalddSbG+vnh2zt8qHfURfIOk+5L/CMWSbnf3n5vZY5LuMrP3SWqVdOnRFtKzo1P7/6f9aG/JmMoTp6rmkvmyotzsNAEAyK6Xunv1wXVb9Kude1RippVNjaopyf1hZCKt0N03SXr9EO0vSzozynWnY8JbZmriOY05/1cZACA7frtzr65Z16od3QNnjz85b7pOnlQVc1Wjk/t/gmSDSZPOn6cJb5oRdyUAgBzQ0++64fl2fWvLjle7e51TN1ErZufPWCgEfLFpyqULVXlCfdyVAABywOYDXVrxdKvW7O18tW1Weam+uujIO7pyWUEHvJUVqfbdS1R+7OS4SwEA5IB7tu3Utc9u1b6+/lfbSpPX3SflwXX3VPlVbQYlJpaq7r3Hq3R6flxLAQBEZ39vn659dqvu3n7k16J8+rhjdOLEyhiqGp+CDPji+oqBAWxqyuMuBQAQszV7OvWBtZv1/IHuI6b9df0k/d3M/LyEW3ABXzp7gmqvbFJRVUncpQAAYuTu+tYLHbphU7t6/MiR0xorSvWVPLvunqqgAr588RRNuXwRA9gAQIHb0dWjf1q3Rb/ZtXfI6WUJ0y1NjZpYnL95UTABX/UX0zT5ouNkCe5xB4BC9quX9+iD67bopZ7hR0b9l+Nm6HUT8u+6e6qCCPgJZ8zSpLMa4y4DABCj7v5+Xb+xXSu3dhz1q0zePnWy3jOjLmt1RSXsgDdp8oXHqfrU6XFXAgCI0cbOg1rxdKv+vO/AUd93bEWZvpTjXyIzWuEGfHFCtZcvVEVT/v8VBgBI3+3tL+tTz7WpM+Xe9qGUJ0wrj29UdR5fd08VZMBbRbHqrlyissZJcZcCAIjJnt4+fWz9C7p/x+5Rvf/f5s9UU3VFtEVlUXABXzSpTHVXNamkgQFsAKBQtbyyXx9Y26oXDh55b/tQLm6o0d8eUxtxVdkVVMAXN1QODGAzqSzuUgAAMeh319dat+tLm7ep92g96VLMryzTjQtnRltYDIIJ+NK5E1X37iYlKoLZJADAGLR3deuatVv0h937Rj1PRSKhW45vVFVRGNfdUwWRhhVNtZpy2SJZSSLuUgAAMfjFS6/ow89s0c6evjHN94UFM7SoKpzr7qnyPuCrTp2uyRccywA2AFCADvb16182vqjvtr005nnfOW2KLpse1nX3VHkd8BPPmqOJZ+TvOMEAgPSt339QK57erHX7D4553oVV5frCgvCuu6fKz4BPmGrecZyqmqfFXQkAIAbfb3tJn9nQpgP9o+xJl6KyKKFbmhpVWRT2Zd28C3grSWjKFYtVsWhK3KUAALJsd0+vPrL+Bf2045W0l3HjgplaUBX+14XnVcAnqopVe2WTymZPjLsUAECWPbJ7n65e26q2rp60l3HF9Cm6ZFphHCDmTcAXTSlX3XubVFKf39/uAwAYmz533bR5m77aul19Yz8j/6qm6nJdP3/01927u3fKvUdlZQ3przRGeRHwVpLQ1A+8XkUTSuMuBQCQRVsPduvqta169JX941pOdVFCtzTNVfkYrru3b7tXO3f+Xktf/12Z5d+dWnnRw6CkvoJwB4AC85Mdu7XssfXjDndJ+tLCWZpXOfpRTt1dL774Q+3c+Tu1td0+7vXHIS+O4JWHfzkBANJzoK9fn97QpttefDkjy7vymFq9vaFmTPPs3v2oOjuflyT193dlpI5sy4+ABwAUhLX7DmjF0616tnPs97YP5YTqCn1u/owxz9fWdockqbHxGs2efVVGask2Ah4AkBO+s7VD/7rxRR1M4972oUwoSmjl8Y0qS4ztanR398va0fGQZs68UvPmfigjtcSBgAcAxGpnT68+/MwW/eKlPRld7lcWzVZjxdi/XbR9272a1vA3WjD/U3nZue4QAh4AEJvf79qra9Zu0bbu9O9tH8r7ZtTp/KmTxzyfu6un5xUtWvR5meVFP/RhEfAAgKzr7Xfd+Hy7vrFlh/ozvOylEyr1meOOSWve/v4Dmjf3H5VI5H885v8W5Jndnd3q2Nul+Q0T4i4FAGLReqBL/7C2Vav3dGZ82ZOKi7SyaY5Kx3jd/ZCionAGU8vv8w955lfrtuusr/xWZcVFcZcCALG4f/suLXtsfSThLklfXTRbs9O47h4ijuCz4JUDPfrcj9fqnse3avH0iZpdG85fiAAwGvv7+vSJZ9t057adka3j/bPqdU79pMiWn28I+Ij9ev0OffyeP2vbnoF7Os9uys8xjQEgXU/u7dQHnm7VxgPRDRhz8sRKfWpeetfdQ0XAR2TPwR5d/5N1urPlhcPazzme77AHUBjcXd9+oUOf39Subs/Mve1DqSku0rebGlWSyN9b2qJAwEfgd8916Nq7n9SLrxw+EtOc2kotpHMdgALQ0d2jf1q3Rb/euTfS9Zikry2erZnlfF/JYAR8Bu3r6tXnV63T7Y9uGXL62U3T8nrQBAAYjd/s3KN/XLdFHd29ka/rH2ZP1dvquO4+FAI+Q/6w4SV97O4n1bb7wLDvObuJ0/MAwtXT77p+04v69gsdiu6E/GtOmVSlj8+dnoU15ScCfpz2d/Xqhp89o9seaT3q+6ZOKNOJsyZnpygAyLLnO7u0Yu1mPbF3+IOcTJpSUqRvN81RMdfdh0XAj8Mjm17WR+9+Qi/sHPkDfVZTgxJ8EAEE6M72nfrEc1u1vy/TY9INzSR9c/EcTS/juvvREPBp6Ozu1Y0/X6///O/No56H0/MAQrOvt0/XPrtV92zfldX1fnBOg06vnZjVdeYjAn6MVrfu0kfuWqPNL49+FKaJ5cU6dV5thFUBQHY9vme/PvB0q1oPdmd1vW+cXK2PzuWAaTQI+DG6449bxhTukrRscYNKihgVGED+c3d9Y8sO3fj8NvVEeG/7UOpKinXzkjkq4m6kUSHgx6iiZOzjyJ/F6XkAAdjR1aNr1rXqt7v2ZX3dCUk3L5mjhrKSrK87X3FYOUblJWP7JysvSegtC+ojqgYAssdM2tXTF8u6P9zYoNOmMFDYWEQW8GY2y8x+bWZrzexpM/tgsv2zZtZmZmuSj/OiqiEKYz2Cf8uCelWU8u1xAPJffWmJ7j3xOL1xcnVW13taTbU+0siZ0LGK8gi+V9JH3H2JpFMlXW1mS5LTvuLuS5OPVRHWkHHlYwxres8DCMmE4iLd8fp5Oi9Lo8c1lBbrW0vmKMF19zGLLODdvd3dH08+3ytpnaQZUa0vW8ZyBF+cMJ25iG+PAxCWskRCtxzfqL+dHu3dQUUm3bykUfWlXHdPR1auwZtZo6QTJT2abLrGzJ40s1vNrCYbNWTKWAL+L4+t1aRKPpgAwlNkpi8tmqUPzonuIOajjdP0xprsXg4ISeQBb2bVku6R9CF33yPpZknHSloqqV3STcPMt9zMWsyspaOjI+oyR20s19PpPQ8gdB+fN13/etwMZfoE+ulTJkT6x0MhiDTgzaxEA+H+A3e/V5Lcfbu797l7v6RbJJ0y1LzuvtLdm929ub4+d3qhl4/hCP6sJXw4AYTv72fV65tL5qgkQ9fJp5eV6BuL5/Dtm+MUZS96k/QdSevc/csp7alf/XORpKeiqiEKoz1Ff9LsyWqYWB5xNQCQG97RUKPvvW6uKhLji5Vik/5jyRzVljJMy3hFeQT/JknvknTGoFvibjSzP5vZk5JOl/ThCGvIuNGeoqf3PIBCc0btRN299FjVFKd/a/C1c6frDVm+DS9Ukf2J5O6/l4a8LJNXt8UNNtojeAIeQCE6eVKV7j9pvi5/YqNe7OoZ07zLaifqmtlTI6qs8DCS3RiN5hr8omkT1FhXlYVqACD3LKwq149Pmq/5lWWjnmdGWYm+vng2190ziIAfo9Gcoqf3PIBCN6O8VA+cNF8nTqgc8b0lZlrZ1KiaEq67ZxIBP0ajOUV/dhO95wFgSkmx7j7xWL215uhjyH9y3nSdPImznplGwI/RSF82M2tKhZZMn5ilagAgt1UVFen7J8zV26dOHnL6OXUTtYLr7pEg4MeofITeoWcvmcY1JABIUZpI6FtL5uiqGXWHtc8qL9VXF82OqarwEfBjlEiYyoqH/2c753iuvwPAYAkzfX7BTH00+a1wpcnr7pO47h4Z/mXTUFFapK7e/iPa66rLdNLsvBpaHwCy6iNzp6mutFi97jpx4sgd8JA+Aj4NFSVF2q0j7+9825IGJRKcngeAo7ly0Kl6RINT9GkYric9p+cBALmCgE/DUIPdTCgv1l/Oi/a7kQEAGC0CPg1DDXZzxqKpKj1K5zsAALKJRErDUKfoz2H0OgBADiHg0zD4FH1ZcUJvWZg731kPAAABn4bBp+hPm1+vSr67GACQQwj4NFQMGq6W3vMAgFxDwKch9RR9UcK0bDHjKAMAcgsBn4bUTnZvmDtFkytLY6wGAIAjEfBpSD2C5/Q8ACAXEfBpSO1kd9YSAh4AkHsI+DQcOkX/+lmTNW1SeczVAABwJAI+DYcCnsFtAAC5ioBPQ3nyFP3ZTQ0xVwIAwNAI+DRUlBRpQUO15tVXx10KAABDIuDTUFFSpLM5PQ8AyGEEfBoqShMEfA7o3NMddwkAkLMYQD0NjbVVmlLF4DZxalu/SyXlRaqcyH4AgKFwBJ+G2uoymVncZRSsnu4+/fe9G1Q3a0LcpQBAziLgkXce+/Hzqq4pVyLBH1kAMBwCHnllR+serXl4i2Yuqom7FADIaQQ88kZfX7/+3/efkbsIeAAYAQGPvPGnX2zRy237VF1TpskNlXGXAwA5jV70yBuNJ9SqYkKJLGF0cgSAERDwyBt1MyeobiY95wFgNDhFDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAAQotoA3s3PMbL2ZbTCz6+KqAwCAEMUS8GZWJOmbks6VtETS5Wa2JI5aAAAIUVxH8KdI2uDum9y9W9IPJV0YUy0AAAQnroCfIemFlNdbk22vMrPlZtZiZi0dHR1ZLQ4AgHyXs53s3H2luze7e3N9fX3c5QAAkFfiCvg2SbNSXs9MtgEAgAyIK+AfkzTfzOaaWamkyyQ9GFMtAAAEpziOlbp7r5ldI+kXkook3eruT8dRCwAAIYol4CXJ3VdJWhXX+gEACFnOdrIDAADpI+ABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAI+ID0798v7+uLuwwAQA4g4APg7trz0EPq+MY3ZUVFcZcDAMgBxXEXgPHpaWvTtn+7Xvv/8Acd+7NVcZcDAMgRBHye8t5e7fz+ber4+tflBw6odvlylcyYEXdZAIAcwSn6PLVn1Sq9fOut8gMHVFRbq9rlfx93SQCAHMIRfJ6adMEFmnjeedr3u9/JEgkVVVfHXRIAIIcQ8HnMios14fTT4y4DAJCDOEUPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABCgSALezL5oZs+Y2ZNmdp+ZTU62N5rZATNbk3z8RxTrBwCg0EV1BP9LSce7+wmSnpX08ZRpG919afKxIqL1AwBQ0CIJeHd/yN17ky8fkTQzivUAAIChZeMa/FWSfpbyeq6Z/cnM/svMTsvC+gEAKDhpfx+8mT0sadoQkz7p7g8k3/NJSb2SfpCc1i5ptru/bGYnS7rfzJrcfc8Qy18uabkkzZ49O90yAQAoSGkHvLsvO9p0M3uPpPMlnenunpynS1JX8vlqM9soaYGkliGWv1LSSklqbm72dOsEAKAQRdWL/hxJH5N0gbt3prTXm1lR8vk8SfMlbYqiBgAAClnaR/Aj+IakMkm/NDNJeiTZY/7Nkj5nZj2S+iWtcPedEdUAAEDBiiTg3f24YdrvkXRPFOsEAACvYSQ7AAACRMADABAgAh4AgABF1ckOmfLCY9JvviBNmC5NXSTVL5bqF0qTZ8VdGQAghxHwuW7WX0jnfVH64f+W1vzf19pLJwwE/aHQP/Rz0oz4agUA5AwCPh/UHiv93cPSPX8nPfvzgbbuvVJby8Aj1bk3Sm94f/ZrBADkFK7B54uyCdJld0h/9c/DvMGkc79IuAMAJBHw+SWRkJZ9Rrr4O1JxxWvtViRd+E3pDcvjqw0AkFMI+Hz0ukukq34uTZwpFZVKl9wqnXhF3FUBAHII1+Dz1TFLpeW/ljrWS3P51l0AwOEI+HxWPXXgAQDAIJyiBwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AKCgdXZ2xl1CJAh4AEBBa21tjbuESBDwAICC9vzzz8ddQiQIeABAQdu9e7d27doVdxkZR8ADAApaV1eX2tvb4y4j4wh4AEBB6+rq0osvvhh3GRlHwAMAChpH8AAABKirq0uzZs2Ku4yMK467AAAA4nTuuefqda97XdxlZFxkR/Bm9lkzazOzNcnHeSnTPm5mG8xsvZmdHVUNAACMJMRwl6I/gv+Ku38ptcHMlki6TFKTpGMkPWxmC9y9L+JaAAAoGHFcg79Q0g/dvcvdn5e0QdIpMdQBAECwog74a8zsSTO71cxqkm0zJL2Q8p6tyTYAAJAh4wp4M3vYzJ4a4nGhpJslHStpqaR2STeNcdnLzazFzFo6OjrGUyYAAAVnXNfg3X3ZaN5nZrdI+knyZZuk1PsRZibbBi97paSVktTc3OzjqRMAgEITZS/66SkvL5L0VPL5g5IuM7MyM5srab6kP0ZVBwAAhSjKXvQ3mtlSSS5ps6T3S5K7P21md0laK6lX0tX0oAcAILMiC3h3f9dRpl0v6fqo1g0AQKFjqFoAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AGfBExxPq6e+JuwzgVQQ8AGTA6u2rtexHy/Tl1V/Wlj1b4i4HIOABIBMunn+xDvQe0Hef+q7Ov+98ve8X79OqTavU3dcdd2koUAQ8AGTApLJJ+pt5fyNJcrn+uO2PuvZ31+rMH52pGx+7UZte2RRzhSg0BDwAZMgVi6+QyQ5r2921W7etvU0X3n+hrvzZlfrxxh+rq68rpgpRSAh4AMiQeZPn6Y3HvHHY6Y/veFyf+P0ndPpdp+vzj35ez+56NovVodAQ8ACQQVcsvmLE9+zt3qs7nrlDFz94sa746RW697l71dnTmYXqUEjM3eOuYUTNzc3e0tISdxkAMCJ31wX3X6DNezaPab7qkmqdO/dcXbLgEi2pXRJNccgrZrba3ZvTnZ8jeADIIDMb1VH8YPt69ulHz/5I7/zJO3Xpjy/VXevv0v6e/RFUiELBETwAZFhnT6eW3b1Me7v3jms5FcUVOnfuubp4/sU6of6EDFWHfMERPADkmMqSSl08/+JxL+dA7wHd+9y9umLVFbr4wYt1+7rbta97XwYqRCEojrsAAAjR5Ysu121rb1Of943q/cVWrLrKOk2tmKr6ynpNrZyqqZVTVV9Rr/rKejVUNqi+sl7VpdURV45QEPAAEIFjqo/RGbPP0MOtD6umvObVsH41uA+FdjLAa8trZWYjLxgYJa7BA0BEDvYeVFGiSCWJkrhLQR4a7zV4juABICLlxeVxl4ACRic7AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECAiqNYqJndKWlh8uVkSbvdfamZNUpaJ2l9ctoj7r4iihoAAChkkQS8u7/z0HMzu0nSKymTN7r70ijWCwAABkQS8IeYmUm6VNIZUa4HAAAcLupr8KdJ2u7uz6W0zTWzP5nZf5nZacPNaGbLzazFzFo6OjoiLhMAgLCkfQRvZg9LmjbEpE+6+wPJ55dLuiNlWruk2e7+spmdLOl+M2ty9z2DF+LuKyWtlKTm5mZPt04AAApR2gHv7suONt3MiiW9Q9LJKfN0SepKPl9tZhslLZDUkm4dAADgSFGeol8m6Rl333qowczqzawo+XyepPmSNkVYAwAABSnKTnaX6fDT85L0ZkmfM7MeSf2SVrj7zghrAACgIEUW8O7+niHa7pF0T1TrBAAAAxjJDgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAI0LgC3sz+l5k9bWb9ZtY8aNrHzWyDma03s7NT2s9Jtm0ws+vGs34AADC08R7BPyXpHZJ+m9poZkskXSapSdI5kr5lZkVmViTpm5LOlbRE0uXJ9wIAgAwqHs/M7r5Oksxs8KQLJf3Q3bskPW9mGySdkpy2wd03Jef7YfK9a8dTBwAAOFxU1+BnSHoh5fXWZNtw7QAAIINGPII3s4clTRti0ifd/YHMl/TqepdLWp582WVmT0W1rhxQJ+mluIuIENuX30LevpC3TWL78t3C8cw8YsC7+7I0ltsmaVbK65nJNh2lffB6V0paKUlm1uLuzUO9LwRsX35j+/JXyNsmsX35zsxaxjN/VKfoH5R0mZmVmdlcSfMl/VHSY5Lmm9lcMyvVQEe8ByOqAQCAgjWuTnZmdpGkr0uql/RTM1vj7me7+9NmdpcGOs/1Srra3fuS81wj6ReSiiTd6u5Pj2sLAADAEcbbi/4+SfcNM+16SdcP0b5K0qoxrmrl2KvLK2xffmP78lfI2yaxffluXNtn7p6pQgAAQI5gqFoAAAKUcwFfSMPfmtmdZrYm+dhsZmuS7Y1mdiBl2n/EXGpazOyzZtaWsh3npUwbcl/mCzP7opk9Y2ZPmtl9ZjY52R7EvpPy9/dqOGY2y8x+bWZrk//HfDDZPuznNN8k/x/5c3I7WpJtU8zsl2b2XPJnTdx1jpWZLUzZP2vMbI+ZfSjf952Z3WpmO1JvAx9uf9mAryV/H580s5NGXIG759RD0mIN3Pv3G0nNKe1LJD0hqUzSXEkbNdBRryj5fJ6k0uR7lsS9HWls902SPp183ijpqbhrysA2fVbS/xmifch9GXe9Y9y2syQVJ5//u6R/D2zfBfF7NWibpks6Kfl8gqRnk5/FIT+n+fiQtFlS3aC2GyVdl3x+3aHPar4+kp/NbZLm5Pu+k/RmSSel/p8x3P6SdJ6kn0kySadKenSk5efcEby7r3P39UNMenX4W3d/XtKh4W9PUXL4W3fvlnRo+Nu8YQNj/V4q6Y64a8mS4fZl3nD3h9y9N/nyEQ2M6RCSvP+9Gszd29398eTzvZLWqTBG0rxQ0veSz78n6e3xlZIRZ0ra6O6tcRcyXu7+W0k7BzUPt78ulPR9H/CIpMlmNv1oy8+5gD+KkIe/PU3Sdnd/LqVtrpn9ycz+y8xOi6uwDLgmeTrp1pRTgyHss1RXaeAv60NC2Heh7aPDmFmjpBMlPZpsGupzmo9c0kNmttoGRgOVpAZ3b08+3yapIZ7SMuYyHX4wFMq+O2S4/TXm38lYAt7MHjazp4Z45PURwlBGua2X6/APbLuk2e5+oqR/lnS7mU3MZt2jNcL23SzpWElLNbBNN8VZ61iNZt+Z2Sc1MNbDD5JNebPvCpWZVUu6R9KH3H2P8vxzOshfuftJGvjGzqvN7M2pE33gXG/e3jplAwOkXSDpR8mmkPbdEca7v8Z1H3y6PKbhb+Mw0raaWbEGvnL35JR5uiR1JZ+vNrONkhZIGtewhVEY7b40s1sk/ST58mj7MmeMYt+9R9L5ks5M/iLm1b4bQV7so7EysxINhPsP3P1eSXL37SnTUz+necfd25I/d5jZfRq41LLdzKa7e3vylO6OWIscn3MlPX5on4W071IMt7/G/DuZT6foQx3+dpmkZ9x966EGM6s3s6Lk83ka2NZNMdWXtkHXhy6SdKin6HD7Mm+Y2TmSPibpAnfvTGkPYt8p/3+vjpDs6/IdSevc/csp7cN9TvOKmVWZ2YRDzzXQEfQpDey3K5Nvu1JSZF8SlgWHne0MZd8NMtz+elDSu5O96U+V9ErKqfwhxXIEfzRWeMPfDr6eJA30rPycmfVI6pe0wt0Hd8TIBzea2VINnGLaLOn9knS0fZlHvqGBuwB+OZAbesTdVyiQfefuvXn+ezWUN0l6l6Q/W/KWVEmfkHT5UJ/TPNQg6b7k57FY0u3u/nMze0zSXWb2PkmtGujQm3eSf7S8TYfvnyH/j8kXZnaHpLdKqjOzrZI+I+kGDb2/VmmgJ/0GSZ2S3jvi8pNnFgEAQEDy6RQ9AAAYJQIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAL0/wE92DLV9ofcogAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAlzklEQVR4nO3de5RV9X338c93ZrjIcIcREUQB8YKREBjRJpqYx7u1GntJdHWlSZqG+DyxbZI+qzXX+mStrCdNk6Y1SU1ItNXESzRq9ElBrqIYL3QwCIOIDAgKDjAwXAaGuZ7v88fZwAFmBpg5++yzf+f9Wuss9vnt23evPTMffr+9zz7m7gIAAGEpS7oAAACQfwQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQoLwEvJndb2Y7zKw2p22kmS00s/XRvyOidjOze8yszsxWmdmMfNQAAACOyFcP/j8lXX9M212SFrv7FEmLo/eSdIOkKdFrtqR781QDAACI5CXg3f0FSY3HNN8i6YFo+gFJH8tpf9CzXpE03MzG5qMOAACQFec1+DHuXh9Nb5M0JpoeJ+ndnOW2RG0AACBPKgqxE3d3MzulZ+Ka2Wxlh/BVWVk584ILLoilNgAAitGKFSt2untVb9ePM+C3m9lYd6+PhuB3RO1bJZ2Vs9z4qO0o7j5H0hxJqq6u9pqamhhLBQCguJjZ5r6sH+cQ/TOSPhVNf0rS0zntfxHdTX+ZpL05Q/kAACAP8tKDN7NHJF0pabSZbZH0j5K+I+kxM/uspM2SPh4tPlfSjZLqJDVL+kw+agAAAEfkJeDd/fZuZl3VxbIu6Qv52C8AAOgaT7IDACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAEKCKODduZudL+lVO0yRJ35Q0XNLnJDVE7V9197lx1gIAQCmJNeDdfZ2k6ZJkZuWStkp6StJnJP3A3b8X5/4BAChVhRyiv0rSBnffXMB9AgBQkgoZ8LdJeiTn/Z1mtsrM7jezEccubGazzazGzGoaGhqOnY1uuHvSJQAAikBBAt7M+ku6WdLjUdO9kiYrO3xfL+n7x67j7nPcvdrdq6uqqgpRZhDcpUxnRpmME/YAUMIK1YO/QdJr7r5dktx9u7t3untG0s8kzSpQHcErKzOVlZeprMxkZkmXAwBISKEC/nblDM+b2dicebdKqi1QHQAAlIRY76KXJDOrlHSNpM/nNH/XzKZLckmbjpkHAAD6KPaAd/cDkkYd0/bJuPcLAEAp40l2AAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMCHYN2z0u5NSVcBACgiBHwI2vZL98yQnvgrafuapKsBABQBAj4EU66Vysql1Y9L935Ievg26d3lSVcFAEgQAR+CgUOlc66I3rj01jzpvmuk//hDqW5RoqUBAJJBwIfigj88vm3zi9Iv/0T66YelNU9JmUzh6wIAJIKAD8X5N0qyrufVvy49/mnpx5dIrz0odbQVsjIAQAII+FAMHSuNm9HzMrvqpGf+WrpnuvTyj6W2AwUpDQBQeAR8SLoapu/Kvq3S/K9KP3iftPQ7UnNjvHUBAAqOgA/JBTed2vIHG6Wl/1f614ul+V+T9tXHUxcAoOAI+JBUnS+NmnLq67Xtl17+kfRv06Rn/kbatSH/tQEACoqAD80FN/Z+3c426bUHpB9dIj3+Gal+Vf7qAgAUFAEfmlMdpu+Kd0prnpR+eoX0yz+VNr/U920CAAqKgA/N+EukwWPyt726hdJ/3CDdd5301vz8bRcAECsCPjRm0vk35H+7774iPfzx7KNwV/9aynTmfx8AgLwh4EOUj2H67myvlZ74rPTDmVLN/VJHa3z7AgD0WuwBb2abzGy1ma00s5qobaSZLTSz9dG/I+Kuo6RM/IjUf0i8+9j9tvTbL0n/Ok363T1S6/549wcAOCWF6sF/1N2nu3t19P4uSYvdfYqkxdF75EtFf2nK1YXZ1/5t0sJvSD+4SFrybenArsLsFwDQI3P3eHdgtklStbvvzGlbJ+lKd683s7GSlrr7+d1to7q62mtqamKtMzh7t0obl0rbVknbVmdfrfvi32+/QdKMT0kfvFMaNj7+/QFAoMxsRU7H+NTXL0DAvy1ptySX9FN3n2Nme9x9eDTfJO0+9L4rBHweuGeH1betzn6+fdvqbPg3xfT0urJ+0rRPSJd/URrdi4fvAECJS0PAj3P3rWZ2uqSFkv5a0jO5gW5mu919xDHrzZY0W5ImTJgwc/PmzbHWWbL2N0S9/FVHwr9xg+R5+mpZK8ve9HfFl6UzP5CfbQJACSj6gD9qZ2Z3S9ov6XNiiL54tR2Qtq/Jfs3soeDf/obU2cc75id9NBv0Ez+cnzoBIGB9DfiKfBZzLDOrlFTm7k3R9LWSviXpGUmfkvSd6N+n46wDp6h/pXTWrOzrkM4Oaedb2cCvz+nxt+w5+e1ufC77GledDfrzb8x+bh8AkHex9uDNbJKkp6K3FZIedvdvm9koSY9JmiBps6SPu3u331lKD76I7Xnn6MCvXyXt23Jy61ZdKF3+Jel9fyKVx/p/TQBInVQN0fcWAZ8yzY05Pf3oZr6d67PPuO/K8AnSB/9G+sAnpX4DC1srABQpAh7p0H4wex1/2+tHgn/7Gqnj4JFlKk+XLvuf0iV/JQ0cmlytAFAECHikV6ZT2lUXBf7rR4b4M53SJZ+VLvtf0uCqpKsEgEQU9U12QI/KyqWq87OvaX92pH3v1uyw/uuPSGOnSRM+mH06HwDgpBHwKD7DxmVfcXwrHgCUCL5NDgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4oMgdefjnpEgAEgIAHikimtVXb7v4/8s5uvnkPAE4SAQ8Ukda31qtt82Y1LV6cdCkAUo6AB4pIyxtvSJIaH3gw4UoApB0BDxSRlrXZgD+4YoUOrq5NuBoAaUbAA0Wk5Y21h6cbH6QXD6D3CHigSHhHh1rXrTv8ft+8eWrfviPBigCkGQEPFInWjRvlra1HGjo6tPvhh5MrCECqEfBAkWhdu/a4tj2/+pUyBw8mUA2AtCPggSJx6A76XJ179mjvM/8vgWoApB0BDxSJ3BvscjU++KDcvcDVAEg7Ah4oAp7JqKWLIXpJatuwQQde/F2BKwKQdgQ8UATat2xRZv/+bufzkTkAp4qAB4pAV9ffcx1YtkytGzYUqBoAISDggSLQsqbngJekxgd/UYBKAISCgAeKQHfX33PtffppdezeXYBqAISAgAeKQP+zzz7hMt7Soj2PPV6AagCEgIAHisAZ3/i6zvzuP8kGDepxud0PPSRvaytQVQDSjIAHisSwm2/WxCd+rQEXXtjtMh07dmjf/AUFrApAWhHwQBEZMHGiznn0EY348z/vdpnGBx7gwTcAToiAB4pM2YABOuMbX9e4H96jsqFDj5vfUlurg7//fQKVAUgTAh4oUkOvuUaTnnpSp02ffty8xv98oPAFAUgVAh4oYv3GjdPZv3hQoz73uaPamxYtUtuWrQlVBSANCHigyFm/fjr9776ss37+c5WPGpVtzGS0+5e/TLYwAEWNgAdSYvDlH9Kk3zylQX9wmSRpz69/rc79BxKuCkCxIuCBFKmoqtKEn/9cVV/8W2Wam7X3ySeTLglAkSLggZSx8nKNvuMOnf2LB9W0aJG8szPpkgAUIQIeSKlBM2dq3L/9qzr37k26FABFqCLpAgD0XsWIEUmXAKBI0YMHACBABDwAAAEi4AEACBABDwBAgGILeDM7y8yeM7M3zGyNmf1t1H63mW01s5XR68a4agAAoFTFeRd9h6S/c/fXzGyIpBVmtjCa9wN3/16M+wYAoKTFFvDuXi+pPppuMrO1ksbFtT8AAHBEQa7Bm9k5kj4g6dWo6U4zW2Vm95sZH+QFACDPYg94Mxss6QlJX3T3fZLulTRZ0nRle/jf72a92WZWY2Y1DQ0NcZcJAEBQYg14M+unbLg/5O5PSpK7b3f3TnfPSPqZpFldrevuc9y92t2rq6qq4iwTAIDgxHkXvUm6T9Jad/+XnPaxOYvdKqk2rhoAAChVcd5F/yFJn5S02sxWRm1flXS7mU2X5JI2Sfp8jDUAAFCS4ryL/kVJ1sWsuXHtEwAAZPEkOwAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPJAQd1dzZybpMgAEqiLpAoBScqCjUy/u2a+avQd08ZBBunbU0KRLAhAoAh6IkbvrzQMtWtLYpOd27dOKfc26bexI/d05Z2h0f379AMSHvzBAjL614T3d+26DJOm60UO18JLzdO6ggQlXBaAUEPBAjL4++UydVl6mDw4frMtHDEm6HAAlhIAHYlRupr+fODbpMgCUIO6iBwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIUGIBb2bXm9k6M6szs7uSqgMAgBAlEvBmVi7px5JukDRV0u1mNjWJWgAACFFSPfhZkurcfaO7t0l6VNItCdUCAEBwkgr4cZLezXm/JWo7zMxmm1mNmdU0NDQUtDgAANKuaG+yc/c57l7t7tVVVVVJlwMAQKokFfBbJZ2V83581AYAAPIgqYD/b0lTzGyimfWXdJukZxKqBQBQQurr65MuoSASCXh375B0p6T5ktZKeszd1yRRCwCgdNTV1Wn58uVJl1EQFUnt2N3nSpqb1P4BAKWlo6ND8+bNU2VlZdKlFERiAQ8AQCEtX75cu3btUmtra9KlFETR3kUPAEC+NDU1aenSpZKk/fv3l0TIE/AAgOAtXrxYbW1th983NjYmWE1hEPAAgKBt2bJFK1euPKpt165dyRRTQAQ8ACBYmUxGc+cefz83PXgAAFLs9ddf13vvvXdcOwEPAEBKtbS0aNGiRV3OY4geAICUev7553XgwIEu59GDBwAghRoaGvTqq692O//AgQNqaWkpYEWFR8ADAILi7nr22WeVyWR6XC70XjwBDwAIyrp167Rhw4YTLhf6dXgCHgAQjPb2dj377LMntSw9eAAAUuLll1/Wnj17TmpZevAAAKTA3r17tWzZspNenh48AAApsGDBArW3t5/08vTgAQAocps2bdKaNWtOaZ2DBw/q4MGDMVWUPAIeAJBqnZ2dmjdvXq/WDbkXT8ADAFJtxYoV2r59e6/WDfk6PAEPAEit5uZmLVmypNfr04MHAKAILVmypE+PnKUHDwBAkamvr9eKFSv6tA168AAAFBF317x58+TufdpOY2Njn7dRrAh4AEDq1NbW6p133unzdlpaWtTc3JyHiooPAQ8ASJW2tjYtWLAgb9sL9To8AQ8ASJVly5apqakpb9sL9To8AQ8ASI3Gxka99NJLed9miAh4AEBqzJ8/X52dnXndJgEPAECC6urqtG7durxvlyF6AAAS0tHR0evnzZ9IqB+VI+ABAEVv+fLlsfW0W1tbdeDAgVi2nSQCHgBQ1JqamrR06dJY9xHidXgCHgBQ1BYvXqy2trZY9xHidXgCPkVCvEYEAD3ZsmWLVq5cGft+6MEjUW2b9hHyAEpGJpPR3LlzC7IvevBIVNmgCjUteTfpMgCgIF5//XW99957BdkXPXgkqt+YSrXU7VHz6p1JlwIAsWppadGiRYsKtr9du3YFN0JKwKfM4MvGavdj69T23v6kSwGA2Dz//PMF/ehae3u79u8P6+8qAZ8yp100SjagXPtfKsywFQAUWkNDg1599dWC7ze06/AEfMpYRZlGf/oijfjjKUmXAgB55+569tlnlclkCr7v0K7DVyRdAE5d//FDki4BAGLx5ptvasOGDYnsmx48AAAxaG9v1/z58xPbf2g9eAIeAFAUXnrpJe3Zsyex/dODBwAgz/bu3atly5YlWkNjY2Mi1/7jQsADABK3YMECdXR0JFpDR0eHmpqaEq0hnwh4AECiNm3apDVr1iRdhqSwrsPHEvBm9s9m9qaZrTKzp8xseNR+jpkdNLOV0esncewfAJAOnZ2dmjdvXtJlHBbSdfi4evALJb3P3adJekvSV3LmbXD36dHrjpj2DwBIgRUrVmj79u1JlyFJ6t+/v9rb25MuI29i+Ry8uy/IefuKpD+NYz8AgPRqbm7WkiVLCrrPsrIyjRgxQqNHj9aoUaOOeg0ePFhmVtB64lSIB938paRf5byfaGa/l7RP0tfdPdnbJgEAiViyZIlaWlpi2faQIUM0atSo44J8+PDhKi8vj2WfxabXAW9miySd0cWsr7n709EyX5PUIemhaF69pAnuvsvMZkr6jZld5O77utj+bEmzJWnChAm9LRMAUITq6+u1YsWKPm1jwIABR4X3oTAfOXKkBgwYkKdK06vXAe/uV/c038w+LekmSVd59B187t4qqTWaXmFmGySdJ6mmi+3PkTRHkqqrq8P6Dj8AKGHurnnz5p3U17OWlZVp5MiRxw2njx49WpWVlUENqedbLEP0Zna9pL+X9BF3b85pr5LU6O6dZjZJ0hRJG+OoAQBQnGpra/XOO+8c1caQev7FdQ3+R5IGSFoY/e/qleiO+Q9L+paZtUvKSLrD3cP50CEAoEfurm3btunKK69kSD1mcd1Ff2437U9IeiKOfQIAip+Z6Zprrkm6jJLAk+wAAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgADFFvBmdreZbTWzldHrxpx5XzGzOjNbZ2bXxVUDAAClqiLm7f/A3b+X22BmUyXdJukiSWdKWmRm57l7Z8y1AABQMpIYor9F0qPu3urub0uqkzQrgToAAAhW3AF/p5mtMrP7zWxE1DZO0rs5y2yJ2gAAQJ70KeDNbJGZ1XbxukXSvZImS5ouqV7S909x27PNrMbMahoaGvpSJgAAJadP1+Dd/eqTWc7Mfibpt9HbrZLOypk9Pmo7dttzJM2RpOrqau9LnQAAlJo476Ifm/P2Vkm10fQzkm4zswFmNlHSFEnL46oDAIBSFOdd9N81s+mSXNImSZ+XJHdfY2aPSXpDUoekL3AHPQAA+RVbwLv7J3uY921J345r3wAAlDqeZAcAQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAVSRdAOLR3pnRa5t3a9n6nVq/o0k//WR10iUBAAqIgA/Ixob9WrZ+p5atb9ArGxu1v7VDkvQXf3B2wpUBAAqNgE+xvQfb9VLdTr2wvkHL1u/Ult0Hu1zuuovOKHBlAICkEfAp0tGZ0cp39+iFqJe+astedWa8x3WGD+qnSyeOLFCFAIBiQcCnxEt1O/X5X65QU0vHKa33Py44XRXlYd1LuaNhvhp2zFdl5ZTDr9NOO0tmYR0nAPQFAZ8SF505TK3tmVNeL8Th+aFDpmn16i9IOjJ6UVY2UJWVk6PAP0+Do+AfOHC8zCy5YgEgIQR8Sgwb1E9XTBmtxW/uOOl1TutXro+cVxVjVckYOHCshg+/RHv2LD/clsm0qKlpjZqa1hy1bHn5IFUOOjcb/IOzoT+48jwNHHhmocsGgIIi4FPkj95/5ikF/BVTRmtgv/IYK0rOmWd+Qm1tO+WZDmW8Xe7tymQ65DnTUkadnc3a17RK+5pWHbV+eflgVVaeGwX+kaH+gQPHJnNAAJBnBHyKXD11jAb2K1PLSQ7Vhzg8f8jYMz6msWd8rMdl3Duj0G+Te4cymfbo39z37Yenm5s3qqX1PQ067Wz17z+6MAcCADEh4FNk8IAKffT80zWvdtsJl60oM1194ZgCVFW8zMpVXl4uaUDSpQBAwXHbccrcNO3krh1fOmmkhg3qF3M1AIBiRcCnzFUXnq7K/ie+rh7y8DwA4MQI+JQZ2K9cV51g6N1MunYqAQ8ApYyAT6E/en/Pw/TTxg/XGcMGFqgaAEAxIuBT6CPnVWnowO7vj7zuotK+uQ4AQMCnUv+KMl3bwzV2rr8DAAj4lOpumP7c0wdrctXgAlcDACg2BHxKfWjyKI2s7H9cO8PzAAAppoA3s1+Z2crotcnMVkbt55jZwZx5P4lj/6WgorxM17/v+KF4hucBAFJMT7Jz908cmjaz70vamzN7g7tPj2O/peamaWP18KvvHH4/dthATRs/PLmCAABFI9Yhest+T+fHJT0S535K1WUTR+n0IUcew3rtVIbnAQBZcV+Dv0LSdndfn9M20cx+b2bPm9kV3a1oZrPNrMbMahoaGmIuM53Kykw3Xnzk288YngcAHNLrgDezRWZW28XrlpzFbtfRvfd6SRPc/QOSvizpYTMb2tX23X2Ou1e7e3VVVXjfaZ4vf/T+bMAPH9RPsyaOTLgaAECx6PU1eHe/uqf5ZlYh6Y8lzcxZp1VSazS9wsw2SDpPUk1v6yh1MyaM0Ljhp+mySaNUUc6HIgAAWXF+XezVkt509y2HGsysSlKju3ea2SRJUyRtjLGG4JmZ/nDaWFWfPSLpUgAARSTOgL9Nx99c92FJ3zKzdkkZSXe4e2OMNZSEP505XhNGDkq6DABAEYkt4N390120PSHpibj2WarOGzMk6RIAAEWGi7YAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AH0Sntbq3Zve0/unnQpALpQkXQBANKpX/8BynR2atHPf6x+AwZo8sxLdeb5U1VewZ8VoBjwmwig10aNO0tX/9UXtO7lZZr7w++pva1VE6dXa3L1pZo4faYGDKpMukSgZFkahteqq6u9pqYm6TIA9KDtYLNe+vUjem3u0/JMRmXl5Ro/9WJNnnmpJs+cpWGnj0m6RBSxva17NWzAsKTLKCpmtsLdq3u9PgEPIJ92vrNJi+//ibasrT2qffSEc7JhXz1LZ0yaIivjFiAccc9r92jisIm6adJNMrOkyykKBDyAouPuWvviUj3/i/vUvHfPcfMrh4/QpJmzNHnmLE143/vVb8DAwheJorJ1/1bd9ORNunz85frmZd9U1aCqpEtKHAEPoGi1Nh/Q7x77pVY++19yz3S5TEX/ATp72nRNnnmpJs24RJXDRxS4ShSLb/zuG/pN3W80tP9Q3TXrrpLvzRPwAIrejk0btfi+e/XeW2t7XtBMYyefp8nV2ev2o846u6T/wJeazfs26+bf3KxM9J/BK8+6sqR78wQ8gFTwTEZrXliiFx76Dx3ct/ek1hl2+phsz37mLI2/8H18BK8E/MML/6C5b889/L6Ue/MEPIBUadm/Xy8++qBeXzRPOoW/PwMGVeqc6TMPfwRvYOXgGKtEUup21+nWZ249rr0Ue/OJBryZ/ZmkuyVdKGmWu9fkzPuKpM9K6pT0N+4+P2q/XtK/SSqX9HN3/86J9kPAA+HZvrFOi+77d22re+uU1y0rL9f4Cy/SpBmXanL1pRo+5owYKkRSvvTcl7TonUXHtZdabz7pgL9QUkbSTyX970MBb2ZTJT0iaZakMyUtknRetNpbkq6RtEXSf0u63d3f6Gk/BDwQJs9ktPq5BVr28ANq2d/U6+2MGj8hum5/qcaeex4fwUu5N3a9oU/89hPdzi+V3nxfA75PF7TcfW1UxLGzbpH0qLu3SnrbzOqUDXtJqnP3jdF6j0bL9hjwAMJkZWWadtX1OveSP9CLjz6o1Yvn92o7u7a8o11b3tHy3zyuQcOGa9KMSzR55qU6++Lp6jeQj+ClzdRRU3XFuCu0bOuyLucvfXepXtv+Wkn15nsjrjtWxkl6Jef9lqhNkt49pv3SmGoAkBKDhg7TtbP/Whd/9Fotuu/ftePtDb3eVvPePap9bqFqn1uoin79NeHi92ty9aWaNGOWBo8YmceqEafZ02Z3G/CStK9tn7764le1YPOCkujN98YJA97MFknq6gLX19z96fyXdHi/syXNjt62mlltT8un3GhJO5MuIkYcX7ql/Pie6mlmyo/thII/vlrV7vyRfpR0HXE5vy8rnzDg3f3qXmx3q6Szct6Pj9rUQ/ux+50jaY4kmVlNX65DFDuOL904vvQK+dgkji/tzKxPN5/FdSfKM5JuM7MBZjZR0hRJy5W9qW6KmU00s/6SbouWBQAAedSna/BmdqukH0qqkvRfZrbS3a9z9zVm9piyN891SPqCu3dG69wpab6yH5O7393X9OkIAADAcfp6F/1T6uYCl7t/W9K3u2ifK2nu8Wv0aM6pV5cqHF+6cXzpFfKxSRxf2vXp+FLxJDsAAHBqeBoEAAABKrqAN7M/M7M1ZpYxs+pj5n3FzOrMbJ2ZXZfTfn3UVmdmdxW+6t4xs1+Z2crotcnMVkbt55jZwZx5P0m41F4xs7vNbGvOcdyYM6/Lc5kWZvbPZvamma0ys6fMbHjUHsS5k9L7e9UdMzvLzJ4zszeivzF/G7V3+3OaNtHfkdXRcRx6suhIM1toZuujf1P3fbxmdn7O+VlpZvvM7ItpP3dmdr+Z7cj9GHh358uy7ol+H1eZ2YwT7sDdi+ql7HPtz5e0VFJ1TvtUSa9LGiBpoqQNyt6oVx5NT5LUP1pmatLH0Yvj/r6kb0bT50iqTbqmPBzT3co+wvjY9i7PZdL1nuKxXSupIpr+J0n/FNi5C+L36phjGitpRjQ9RNnHZk/t7uc0jS9JmySNPqbtu5LuiqbvOvSzmtZX9LO5TdLZaT93kj4saUbu34zuzpekGyXNk2SSLpP06om2X3Q9eHdf6+7ruph1+PG37v62pEOPv52l6PG37t4m6dDjb1PDss9Z/Liyz+8vBd2dy9Rw9wXu3hG9fUXZZzqEJPW/V8dy93p3fy2abpK0VkeesBmyWyQ9EE0/IOljyZWSF1dJ2uDum5MupK/c/QVJjcc0d3e+bpH0oGe9Imm4mY3taftFF/A9GKfjH3M7rof2NLlC0nZ3X5/TNtHMfm9mz5vZFUkVlgd3RsNJ9+cMDYZwznL9pbL/sz4khHMX2jk6ipmdI+kDkl6Nmrr6OU0jl7TAzFZY9mmgkjTG3euj6W2SxiRTWt7cpqM7Q6Gcu0O6O1+n/DuZSMCb2SIzq+3ileoeQldO8lhv19E/sPWSJrj7ByR9WdLDZja0kHWfrBMc372SJkuaruwxfT/JWk/VyZw7M/uass96eChqSs25K1VmNljSE5K+6O77lPKf02Nc7u4zJN0g6Qtm9uHcmZ4d603tR6cs+4C0myU9HjWFdO6O09fzFdeXzfTIE3r8bRJOdKxmViHpjyXNzFmnVVJrNL3CzDYo+3W7RfeduSd7Ls3sZ5J+G73t6VwWjZM4d5+WdJOkq6JfxFSduxNIxTk6VWbWT9lwf8jdn5Qkd9+eMz/35zR13H1r9O8OM3tK2Ust281srLvXR0O6OxItsm9ukPTaoXMW0rnL0d35OuXfyTQN0Yf6+NurJb3p7lsONZhZlZmVR9OTlD3WjQnV12vHXB+6VdKhO0W7O5epYWbXS/p7STe7e3NOexDnTun/vTpOdK/LfZLWuvu/5LR393OaKmZWaWZDDk0reyNorbLn7VPRYp+SFNuXhBXAUaOdoZy7Y3R3vp6R9BfR3fSXSdqbM5TfpUR68D2x0nv87bHXk6TsnZXfMrN2SRlJd7j7sTdipMF3zWy6skNMmyR9XpJ6Opcp8iNlPwWwMJsbesXd71Ag587dO1L+e9WVD0n6pKTVFn0kVdJXJd3e1c9pCo2R9FT081gh6WF3f9bM/lvSY2b2WUmblb2hN3Wi/7Rco6PPT5d/Y9LCzB6RdKWk0Wa2RdI/SvqOuj5fc5W9k75OUrOkz5xw+9HIIgAACEiahugBAMBJIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIED/HyX3pvb6gDh1AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAlf0lEQVR4nO3de3SddZ3v8c83SZM0vbdJ09J7oQWKM1aIiBdQBEfgjIDiBUYUHNepeGQd9XiOB2TG62JGnXGcNaMDpy6ZwbUERRHhzBRoKwWUMxVa6P1O6ZXSJm2TXtKmuXzPH3kSdtOdNJf9PM/ev/1+rbVXnv17bt+nz04+/T23be4uAAAQlpK0CwAAALlHwAMAECACHgCAABHwAAAEiIAHACBABDwAAAHKScCb2QNmdsDM1mW0jTezJWa2Nfo5Lmo3M/snM9tmZmvM7OJc1AAAAN6Uqx78v0m6pkfbXZJ+5+5zJP0uei9J10qaE70WSLovRzUAAIBITgLe3Z+XdKhH8w2SHoyGH5R0Y0b7z7zTckljzWxyLuoAAACd4jwHX+vu+6LhNyTVRsNTJO3OmG5P1AYAAHKkLImVuLub2YCeiWtmC9R5CF8jRoy45IILLoilNgAA8tHKlSsb3L1msPPHGfD7zWyyu++LDsEfiNr3SpqWMd3UqO007r5Q0kJJqqur8xUrVsRYKgAA+cXMdg5l/jgP0T8h6bZo+DZJj2e0fzq6mv4ySU0Zh/IBAEAO5KQHb2YPS3qfpGoz2yPpG5K+K+kRM/uspJ2SPh5NvkjSdZK2SWqW9Jlc1AAAAN6Uk4B391t6GXVVlmld0hdysV4AAJAdT7IDACBABDwAAAEi4AEMSWt9c9olAMiCgAcwJKUjhql5dX3aZQDogYAHMCQlVcPUeqBZrfuPp10KgAwEPIAhG3nZZB361RZ5a3vapQCIEPAAhqx0VLnKp41S05IhPXgLQA4R8AByYtR7p+rEuoNplwEgQsADyImysZWqmDVGp14/lnYpAETAA8ihUe+bqpNbDqddBgAR8AByaFhNlWwYf1aAfMBvIoCcqjxvrDqaW9MuAyh6BDyAnBpWO0IqsbTLAIoeAQ8g50oqc/JFlQCGgIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABJK755ZfV1tCQdhlA0Ah4AImrvOgi7f3Sl9X8yitplwIEi4AHkLiSigqN/+xfauenb9Ohhx6Su6ddEhAcAh5AKkZdeaVGvOud2v/t72jfXXep48SJtEsCgkLAA0jNpLvvlg0bpqbHn9COW/5Cp3bvTrskIBgEPIDUlM+cqfGf+YwkqWXTJr1200d17LnnUq4KCAMBDyBV1Xd8TmWTJkmSOo4c0e47Pq/6f/6RvKMj5cqAwkbAA0hVSVWVav/3V99scFfDj3+s3Z//vNobG1OrCyh0BDyA1I265hpVveMdp7Udf+55vfbRj+nkxo0pVQUUNgIeQOrMTLX3fE0qLT2tvXXPHu24+RY1/va36RQGFDACHkBeqJw7V+Nv/eQZ7d7Son133a3ml15KoSqgcBHwAPJG9Z13qnTChKzjymfNSrgaoLAR8ADyRumoUZr4la+c0T5s6lSVVVenUBFQuAh4AHllzI03aPhb33pa2/D589MpBihgBDyAvGIlJar967+WzLrbegY+gLMj4AHkneFvuUhjP/axN9/TgwcGjIAHkJdqvvwllYwZI6uoUOX5c9MuByg4BDyAvFQ2bpxqvvjfVfmWt8jKy9MuByg4ZWkXkKb9La2qrRiWdhkAejHuE59Q6ahRaZcBFKSi7cGf6ujQ59bvSLsMAH2w0lKN+dCH0i4DKEhFG/AvHD6m5U3H9eyhI2mXAgBAzhVtwD/Z0CRJ+uedB1KuBACA3Is14M3sfDNblfE6YmZfMrNvmtnejPbr4qyjJ3fX4obOnvsLjcf0ypHmJFcPAEDsYg14d9/s7vPdfb6kSyQ1S3osGv3DrnHuvijOOnpadfSE3jjV2v3+R7v2J7l6AABil+Qh+qskveruOxNcZ1ZPR4fnuzxZ36RXm0+mVA0AALmXZMDfLOnhjPd3mtkaM3vAzMb1nNjMFpjZCjNbUV9fn9NCnuoR8B2S7tuV23UAAJCmRALezMolXS/pV1HTfZLOlTRf0j5JP+g5j7svdPc6d6+rqanJWS07T7Ro0/Eze+u/2n9IB1pas8wBAEDhSaoHf62kl919vyS5+353b3f3Dkk/kXRpQnXoyfqmrO0tHa6Fe+jFAwDCkFTA36KMw/NmNjlj3IclrUuojjMOz2f62esNOtrWnlQpAADEJvaAN7MRkj4g6TcZzd83s7VmtkbSlZK+HHcdknSotU0vHTne6/gjbR16cG9DEqUAABCr2J9F7+7HJU3o0fapuNebzZKGI2r3vqf5yZ56/ddpNaooKdpnAAEAAlBUKdbz9rhs9p9q06/fOJxANQAAxKdoAv5ke4eePXy0X9P+y64D6vCzdPUBAMhjRRPwzx8+qub2jn5N++qJlu5n1QMAUIiKJuD7uno+mx/xJTQAgAJWFAHfkfHlMv31ytFmvdDPQ/oAAOSbogj4lUea1dDaNuD5frSLXjwAoDAVRcAP9PB8l2WHjmr9sRM5rgYAgPgVRcD35/a43vyYXjwAoAAFH/Bbj5/UtuaWQc//+IHD2nVi8PMDAJCG4AN+sIfnu7S7dP9uvoQGAFBYgg/4Zw8N/Ur4h/cd0sFTA79IDwCAtAQf8P/2J7N075wpmltVOehlnOjo0E/30osHABSO4AN+VFmpPju1Rs+/4wI99rbzdOPEsSo3G/By/nVPg46381WyAIDCEHzAZ3rn2JG6/6KZWvmuebp71mRNrRzW73kPt7XrodcPxVgdAAC5U1QB36WmfJi+OLNWL142Tz/7k1m6avzofv1D3L/7gNo6+BIaAED+K8qA71Jipj+rHqOfv3W2/vOyC3Xn9ImaMKys1+n3trTqsQN8lSwAIP8VdcBnmjG8Qn917jl65V3z9C/zZugdY0Zkne7Huw7I+SpZAECeI+B7KC8p0Udqx+nxi+do2dvP1+1TqjWy9M1/pk3HT2rpwYF9cQ0AAEkj4Ptw4cjh+u7cqVr9rov0vblTNW9E5612PL4WAJDvCPh+GFFWqtumVOuZSy/Q/714jqZWlmvN0ea0ywIAoFe9X1GGrN4+ZoTe3sv5eQAA8gU9eAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIDK4l6Bme2QdFRSu6Q2d68zs/GSfilppqQdkj7u7ofjrgUAgGKRVA/+Snef7+510fu7JP3O3edI+l30HgAA5Ehah+hvkPRgNPygpBtTqgMAgCAlEfAuabGZrTSzBVFbrbvvi4bfkFSbQB0AABSN2M/BS3qPu+81s4mSlpjZpsyR7u5m5j1niv4zsECSpk+fnkCZAACEI/YevLvvjX4ekPSYpEsl7TezyZIU/TyQZb6F7l7n7nU1NTVxlwkAQFBiDXgzG2Fmo7qGJf2ZpHWSnpB0WzTZbZIej7MOAACKTdyH6GslPWZmXet6yN2fMrOXJD1iZp+VtFPSx2OuAwCAohJrwLv7dklvzdJ+UNJVca4bAIBixpPsAAAIEAEPADE5daJZh17fk3YZKFIEPADkWMOuHVr60/v0fz5/m17fvDHtclCkkrgPHgCC19baqq0v/j+tXvwf2rtpQ3d79bQZKVaFYkbAA8AQNB3YrzVLn9TaZUt04kjTGeMnTOVBXUgHAQ8AA9TR0a4dq1/W6sWLtP2VFZKf8TBOSdKY2kkaVlmZcHVAJwIeAPqpualRa5ct0ZqlT+lI/f6zTs/heaSJgAeAPri79m7eoNWLF2nrH19Qe1tbv+cl4JEmAh4Asjh1olkbfv+sVi9ZpIZdOwa1jAkEPFJEwANAhvpdO7R68SJt+P0ytZ48MaRl0YNHmgh4AEWvrbVVW5f/QauWPKnXN284+wz9UFJaqvHnTMnJsoDBIOABFK2mA29o9dKntK6XW9yGYtzkKSotG5bTZQIDQcADKCodHe167ZWVWr1kkV5btbLXW9yGivPvSBsBD6AoNDc1au0zi7Xmd0/pSP2B2NdXPY0H3CBdBDyAYLm79m5ar9VLntSW5S+oo73/t7gNFRfYIW0EPIDgtDQ3a+Pvl3Xe4rZ7Zyo1EPBIGwEPIBj1O1/T6iWLtOH3zw75FrehKBtWrjG1k1JbPyAR8AAKXNupU9ryxxe0evEivb4lP76adfzUaSopKU27DBQ5Ah5AQWrc/4bWLH2y8xa3o0fSLuc0HJ5HPiDgARSMzlvcVmj14kV6bfXLsd3iNlQEPPIBAQ8g7x1vPKx1y5Zo9dIndbShPu1yzoqARz4g4AHkJXfX3o3rtWrxf2jri/+Z6C1uQ8VDbpAPCHgAeaWluVkbfv+MVi9epIN7dqVdzoBVVI3QqAnVaZcBEPAA8sfaZYu17F8XqrXlZNqlDNqEaTNkZmmXAagk7QIAoMv577xctbPPS7uMIeERtcgXBDyAvFFeOVwfvusbmnrhW9IuZdC4wA75goAHkFe6Qn7KBRelXcqgEPDIFwQ8gLxTXjlcH7n7mwUZ8lxBj3xBwAPIS4UY8lVjxqpq9Ji0ywAkEfAA8lihhTyH55FPCHgAea2QQp6ARz4h4AHkvTdDfl7apfSJ8+/IJwQ8gILQGfLfyuuQpwePfELAAygY+R7yE6bykBvkDwIeQEEprxyuj9yVf4frR9dMVEVVVdplAN0IeAAFp3x4Vd6FPIfnkW8IeAAFqSvkzzk/P0KeC+yQbwh4AAWrfHiVbro7P0KeHjzyDQEPoKDlS8gT8Mg3BDyAgpd2yJuVaPw5U1NZN9AbAh5AELpDfu6Fia977ORzVFZenvh6gb4Q8ACCUT68Sjd97VuJh3z1NO5/R/4h4AEEJY2Q5/w78hEBDyA4SYc8AY98RMADCFL58Cp95O5kQp574JGPYgt4M5tmZsvMbIOZrTezL0bt3zSzvWa2KnpdF1cNAIpbRVX8IV9aVqZxk86JbfnAYMXZg2+T9BV3nyfpMklfMLOue1h+6O7zo9eiGGsAUOS6Qn7y3AtiWf74KdNUUloay7KBoYgt4N19n7u/HA0flbRR0pS41gcAvamoqtJNd387lpDn/DvyVSLn4M1spqS3Sfpj1HSnma0xswfMbFwSNQAobnGFPOffka9iD3gzGynpUUlfcvcjku6TdK6k+ZL2SfpBL/MtMLMVZraivr4+7jIBFIE4Qp4ePPJVrAFvZsPUGe4/d/ffSJK773f3dnfvkPQTSZdmm9fdF7p7nbvX1dTUxFkmgCLSHfJzzs/J8gh45Ks4r6I3ST+VtNHd/yGjfXLGZB+WtC6uGgAgm4qqKt30te8MOeSHVQ7X6Go6IMhPcfbg3y3pU5Le3+OWuO+b2VozWyPpSklfjrEGAMgqFyFfPXW6rITHiSA/lcW1YHf/gyTLMorb4gDkhc6Q/7Ye/Zuva9/WzQOenwvskM/4ryeAolZRNUI3fW1w5+RrphPwyF8EPICiN9iQpwePfEbAA4AyQv68/oc8V9AjnxHwABCpqBqhm+7pX8gPHzVaVWPGxl8UMEgEPABk6G/IV0+boc67gYH8RMADQA/9CXnOvyPfEfAAkEVXyE86b27W8Zx/R74j4AGgFxVVI/TRe76TNeQJeOQ7Ah5AXmtrO6qmple09/VfasuW76il5UCi6+8t5CdMm55oHcBAxfYkOwAYiPb2FjU3v6pjx7fo+LEtnT+Pb9HJk3u7p6mqmqU5c/4q8dq6bqF79G++rje2bdHICdWqHDEy8TqAgSDgASSqo6NNJ07sPCPIm5t3SOroc97a2htSu3K9csTI7pCvHDkqlRqAgSDgAcTC3XXy5Os6fjwK8WObozB/Ve6nBrXMSbUfynGVA9MV8q+tWplqHUB/EPAAhsTddar14JsBfmyLjh3fquPHt6q9/VjO1jN69HxVVc3M2fIGq3LESF347vemXQZwVgQ8gEFz71DDwWXat+/XOnToD2pvb45tXZNqr49t2UCICHgAg2ZWoprqq1RTfZU6Olp0+PCLajj4OzU0LNPJk3tyuJ5S1db+l5wtDygGBDyAnCgpqdCECZdrwoTLNXfON3T8+FYdPLhMDQ3L1Ni0Ume7gK4v48e/R+Xl1bkrFigCBDyAnDMzjRw5VyNHztWMGZ9Ta+thHTz4ezUcfEYHDz6ntrYjA1repNobYqoUSTh1ok3lw4mbpPEvDiB2w4aN06RJ12vSpOvV0dGmpqaX1XDwGTU0LFNz87Y+5y0pGa7q6qsTqhS51nzklIZVlqZdRlEi4AEkqqSkTOPGXapx4y7VnPPuUnPzzu5D+Ycb/yj31tOmr6n5gMrKRqRULYbq2OGTmjhjdNplFCUCHkCqqqpmqKrqdk2bdrva2o7p0KEXunv3ra0HuXq+wJ041nr2iRALAh5A3igrG6mJEz+oiRM/KPcOHTm6VqNGzku7LAzSyeOt8g5Pu4yixZfNAMhLZiUaM/qtKikZlnYpGKQ9mw5r0uwxaZdRtOjBAwBicd4lE9MuoajRgwcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeQNAaTzbK3dMuA0hcagFvZteY2WYz22Zmd6VVB4Cwja0cKzNLuwwgcakEvJmVSvqxpGslzZN0i5nNS6MWAABClFYP/lJJ29x9u7ufkvQLSTekVAsAAMFJK+CnSNqd8X5P1NbNzBaY2QozW1FfX59ocQAAFLq8vcjO3Re6e52719XU1KRdDgAABSWtgN8raVrG+6lRGwAAyIG0Av4lSXPMbJaZlUu6WdITKdUCAEBwytJYqbu3mdmdkp6WVCrpAXdfn0YtAACEKJWAlyR3XyRpUVrrBwAgZHl7kR0AABg8Ah4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAGKJeDN7O/MbJOZrTGzx8xsbNQ+08xOmNmq6HV/HOsHAKDYxdWDXyLpLe7+p5K2SLo7Y9yr7j4/et0R0/oBAChqsQS8uy9297bo7XJJU+NYDwAAyC6Jc/B/KenJjPezzOwVM3vOzC5PYP0AABSdssHOaGZLJU3KMuoed388muYeSW2Sfh6N2ydpursfNLNLJP3WzC5y9yNZlr9A0gJJmj59+mDLBACgKA064N396r7Gm9ntkv5c0lXu7tE8LZJaouGVZvaqpLmSVmRZ/kJJCyWprq7OB1snAADFKK6r6K+R9FVJ17t7c0Z7jZmVRsOzJc2RtD2OGgAAKGaD7sGfxY8kVUhaYmaStDy6Yv4KSd82s1ZJHZLucPdDMdUAAEDRiiXg3f28XtoflfRoHOsEAABv4kl2AAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECAYgt4M/umme01s1XR67qMcXeb2TYz22xmH4yrBgAAilVZzMv/obv/fWaDmc2TdLOkiySdI2mpmc119/aYawEAoGikcYj+Bkm/cPcWd39N0jZJl6ZQBwAAwYo74O80szVm9oCZjYvapkjanTHNnqgNAADkyJAC3syWmtm6LK8bJN0n6VxJ8yXtk/SDAS57gZmtMLMV9fX1QykTAICiM6Rz8O5+dX+mM7OfSPr36O1eSdMyRk+N2noue6GkhZJUV1fnQ6kTAIBiE+dV9JMz3n5Y0rpo+AlJN5tZhZnNkjRH0otx1QEAQDGK8yr675vZfEkuaYekz0mSu683s0ckbZDUJukLXEEPAEBuxRbw7v6pPsbdK+neuNYNAECx40l2AAAEiIAHkLxTx9OuAAgeAQ8geS1H064ACB4BDyBZ7W1Sa3PaVQDBI+ABJKtpt1Q5Nu0qgOAR8ACS1bSHgAcSQMADSNbJRqmEPz1A3PgtA5AsLrADEkHAA0gWAQ8kgoAHkKyWI2lXABQFAh5AsujBA4kg4AEkp61FajuVdhVAUSDgASSncbc0fGzaVQBFgYAHkJzGHdLwcWlXARQFAh5Achp3ScPHp10FUBQIeADJObyTHjyQEAIeQHIad0lVBDyQBAIeQHIa6cEDSSHgASSHc/BAYgh4AMk41Sw1H5Iqx6RdCVAUCHgAyWjc1XkPvFnalQBFgYAHkAzOvwOJIuABJOPwTs6/Awki4AEkgx48kCgCHkAyGndKVfTggaQQ8ACS0biLHjyQIAIeQDI4Bw8kioAHEL+TR6STjXxVLJAgAh5A/Bp3dv7kHDyQGAIeQPwad3X+5BA9kBgCHkD8Dkc9eC6yAxJDwAOIH4fogcQR8ADi132Inh48kBQCHkD8Du+USoZJFaPSrgQoGgQ8gPjxkBsgcQQ8gHg1H5JOHeX8O5AwAh5AvBq5gh5IAwEPIF7dt8jRgweSRMADiBdX0AOpIOABxKv7HngCHkgSAQ8gXjzFDkgFAQ8gXjyHHkhFWdoFAChcy5cv1/r16zV8+HBde+21GjcuSy/9iv8lPf7f6MEDCSPgAQzK9u3b9fTTT8vM9NGPfjR7uEvSn35MGlUrlY9MtkCgyBHwAAasqalJv/71r1VSUqJPfOITmjt3bt8zzLoimcIAdCPgAQxIW1ubHnnkEbW2tuqTn/ykZs+enXZJALKIJeDN7JeSzo/ejpXU6O7zzWympI2SNkfjlrv7HXHUACAeTz31lOrr63XrrbdqxowZaZcDoBexBLy7f6Jr2Mx+IKkpY/Sr7j4/jvUCiNeqVau0bt063XbbbZoyZUra5QDoQ6yH6M3MJH1c0vvjXA+A+O3bt0/Lli3T7bffrkmTJqVdDoCziPs++Msl7Xf3rRlts8zsFTN7zswu721GM1tgZivMbEV9fX3MZQLoS3NzsxYtWqRbb72VcAcKxKB78Ga2VFK23/R73P3xaPgWSQ9njNsnabq7HzSzSyT91swucvcjPRfi7gslLZSkuro6H2ydAIamo6NDzzzzjG688UZNmDAh7XIA9NOgA97dr+5rvJmVSfqIpEsy5mmR1BINrzSzVyXNlbRisHUAiNfatWv1nve8R2PHjk27FAADEOch+qslbXL3PV0NZlZjZqXR8GxJcyRtj7EGAENw+PBhzZ49m3AHClCcF9ndrNMPz0vSFZK+bWatkjok3eHuh2KsAcAQjB49WqWlpWmXAWAQYgt4d789S9ujkh6Na50AcotwBwoX3yYHAECACHgAAAJEwAMAECACHoNysrU97RIAAH0g4DFgK3YcklnaVQAA+kLAY0DaO1zPbalXRRlXVwNAPiPgMSC/WrFbU8YOT7sMAMBZEPDot+ZTbfqHJVt05QUT0y4FAHAWBDz67f7ntmvi6ArVjq5MuxQAwFkQ8OiXN5pO6ifPb9f7L6hNuxQAQD8Q8OiXv1+8WSda23UVh+cBoCAQ8DirDa8f0W9e3qPqkRX606lj0i4HANAPBDzO6t5FG9Th0pXn18i4AR4ACgIBjz49s2m/Xth2UJJ01YUcngeAQkHAo1ftHa6/XbRJklReWqLL59SkXBEAoL8IePTq4Rd3aeuBY5Kkd8werxEVZSlXBADoLwIeWR1radM/Lt3S/f7K8zk8DwCFhIBHVvc9u00Nx051v7/6Qu5/B4BCQsDjDK83ntBP//Ba9/tza0Zo+oSqFCsCAAwUAY8z/P3Tm3WytaP7/VX03gGg4BDwOM3aPU16bNXe09rez9PrAKDgEPA4zb2LNsj9zfejK8tUN2NcegUBAAaFgEe3JRv2a/n2Q6e1XTG3RmWlfEwAoNDwlxuSpLb2Dv3tkxvPaOfpdQBQmAh4SJIeenGXttcfP62txKT3zSXgAaAQEfCQJJ03caTKSk7/Ipm3TR+ncSPKU6oIADAUBDwkSe86t1pf/9C809q4eh4AChcBj26ffudM/cU7pne/5/w7ABQuvj0Ep/nW9Rdp24Fj2nv4hC6YNDrtcgAAg0TA4zTDSkt03ycv1q9X7km7FADAEHCIHmeYMLJCn3vvuWmXAQAYAgIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgIYU8Gb2MTNbb2YdZlbXY9zdZrbNzDab2Qcz2q+J2raZ2V1DWT8AAMhuqD34dZI+Iun5zEYzmyfpZkkXSbpG0r+YWamZlUr6saRrJc2TdEs0LQAAyKGyoczs7hslycx6jrpB0i/cvUXSa2a2TdKl0bht7r49mu8X0bQbhlIHAAA4XVzn4KdI2p3xfk/U1ls7AADIobP24M1sqaRJWUbd4+6P576k7vUukLQgettiZuviWlceqJbUkHYRMWL7ClvI2xfytklsX6E7fygznzXg3f3qQSx3r6RpGe+nRm3qo73nehdKWihJZrbC3euyTRcCtq+wsX2FK+Rtk9i+QmdmK4Yyf1yH6J+QdLOZVZjZLElzJL0o6SVJc8xslpmVq/NCvCdiqgEAgKI1pIvszOzDkv5ZUo2k/zCzVe7+QXdfb2aPqPPiuTZJX3D39mieOyU9LalU0gPuvn5IWwAAAM4w1KvoH5P0WC/j7pV0b5b2RZIWDXBVCwdeXUFh+wob21e4Qt42ie0rdEPaPnP3XBUCAADyBI+qBQAgQHkX8MX0+Fsz+6WZrYpeO8xsVdQ+08xOZIy7P+VSB8XMvmlmezO247qMcVn3ZaEws78zs01mtsbMHjOzsVF7EPtOKtzfq96Y2TQzW2ZmG6K/MV+M2nv9nBaa6O/I2mg7VkRt481siZltjX6OS7vOgTKz8zP2zyozO2JmXyr0fWdmD5jZgczbwHvbX9bpn6LfxzVmdvFZV+DuefWSdKE67/17VlJdRvs8SaslVUiaJelVdV6oVxoNz5ZUHk0zL+3tGMR2/0DS16PhmZLWpV1TDrbpm5L+Z5b2rPsy7XoHuG1/JqksGv6epO8Ftu+C+L3qsU2TJV0cDY+StCX6LGb9nBbiS9IOSdU92r4v6a5o+K6uz2qhvqLP5huSZhT6vpN0haSLM/9m9La/JF0n6UlJJukySX882/Lzrgfv7hvdfXOWUd2Pv3X31yR1Pf72UkWPv3X3U5K6Hn9bMKzzWb8fl/Rw2rUkpLd9WTDcfbG7t0Vvl6vzmQ4hKfjfq57cfZ+7vxwNH5W0UcXxJM0bJD0YDT8o6cb0SsmJqyS96u470y5kqNz9eUmHejT3tr9ukPQz77Rc0lgzm9zX8vMu4PsQ8uNvL5e03923ZrTNMrNXzOw5M7s8rcJy4M7ocNIDGYcGQ9hnmf5Snf+z7hLCvgttH53GzGZKepukP0ZN2T6nhcglLTazldb5NFBJqnX3fdHwG5Jq0yktZ27W6Z2hUPZdl97214B/J1MJeDNbambrsrwKuoeQTT+39Rad/oHdJ2m6u79N0v+Q9JCZjU6y7v46y/bdJ+lcSfPVuU0/SLPWgerPvjOze9T5rIefR00Fs++KlZmNlPSopC+5+xEV+Oe0h/e4+8Xq/MbOL5jZFZkjvfNYb8HeOmWdD0i7XtKvoqaQ9t0Zhrq/hnQf/GB5So+/TcPZttXMytT5lbuXZMzTIqklGl5pZq9KmitpSI8tjEN/96WZ/UTSv0dv+9qXeaMf++52SX8u6aroF7Gg9t1ZFMQ+GigzG6bOcP+5u/9Gktx9f8b4zM9pwXH3vdHPA2b2mDpPtew3s8nuvi86pHsg1SKH5lpJL3fts5D2XYbe9teAfycL6RB9qI+/vVrSJnff09VgZjVmVhoNz1bntm5Pqb5B63F+6MOSuq4U7W1fFgwzu0bSVyVd7+7NGe1B7DsV/u/VGaJrXX4qaaO7/0NGe2+f04JiZiPMbFTXsDovBF2nzv12WzTZbZJi+5KwBJx2tDOUfddDb/vrCUmfjq6mv0xSU8ah/KxS6cH3xYrv8bc9zydJnVdWftvMWiV1SLrD3XteiFEIvm9m89V5iGmHpM9JUl/7soD8SJ13ASzpzA0td/c7FMi+c/e2Av+9yubdkj4laa1Ft6RK+pqkW7J9TgtQraTHos9jmaSH3P0pM3tJ0iNm9llJO9V5QW/Bif7T8gGdvn+y/o0pFGb2sKT3Sao2sz2SviHpu8q+vxap80r6bZKaJX3mrMuPjiwCAICAFNIhegAA0E8EPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAE6P8Dpus5uih/aOIAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAjAklEQVR4nO3deZRU9Z338c+3V3ZpoG12WdKiuLXSQROjjwaNQkxcEnzgmaPG5BGdyMk2SR4TMpNMJnlOlnFyZh4Tc+DE6OQYjcRgNHEBozYkBqRBRRSURTAgsjRRaOxuevk+f/QFi7a6ge66dbt+9X6dU4d7f3f7Xm5Vffr+6tYtc3cBAICwFCRdAAAAyDwCHgCAABHwAAAEiIAHACBABDwAAAEi4AEACFBGAt7M7jKzXWa2NqVtiJktMbMN0b9lUbuZ2X+Z2UYzW2Nm52SiBgAA8J5MncHfLenyDm23SfqTu1dK+lM0LknTJVVGjzmS7sxQDQAAIJKRgHf3pZL2dmi+UtI90fA9kq5Kaf9vb7dc0mAzG5GJOgAAQLs4P4OvcPcd0fBbkiqi4VGS/pYy37aoDQAAZEhRNjbi7m5mx3VPXDObo/YufPXv33/KKaecEkttAHCsGuvr9c6ut446X3FpqYaMGpOFihCyVatW7XH38u4uH2fA7zSzEe6+I+qC3xW1b5eU+swfHbUdwd3nS5ovSdXV1V5bW5t2I+82v6vG1kYN6TMko8UDQKrmpkb98sv/qP11u7ucr3zsOH1q3r+p/+CyLFWGUJnZ1p4sH2cX/cOSboiGb5D0+5T266Or6c+T9E5KV/5xW7p9qQ62HuxZpQBwFCsf/t1Rw31E5SRd++0fEO7oFTL1Nbn7JP1V0iQz22Zmn5P0A0mXmtkGSZdE45L0qKTNkjZKWiDp8z3Z9pItS3qyOAAc1b49u7Xy4Qe7nGfs6Wfp09/6nvoMGJClqoCuZaSL3t1ndzJpWpp5XdKtmdhuQ0uDlm1fpq998GuZWB0ApLXs13er5WBTp9MnVp+nK774dRWVlGSxKqBrWbnILi7Pbn9WDS0NSZcBIGDb17+i9X+p6XT6qRdcrMtu+aIKi3L67RQByuln5OKti5MuAUDAvK1NT98zv9PpZ33s45p2482yAu76jd4nZwO+qbVJNdva/6o2WcLVAAjRyzV/0s7NG9NOm3rVTH1k1vUy4/0HvVPOBnztW7U60Hwg6TIABKrp3Xe17L570k674H99RlOv/HSWKwKOT872K02pmKIzh52ZdBkAArXioQf07jtvH9lopkv+9+cJd+SEnA34PkV99J8f/U+N7D+SLjIAGfX3t97U6j8+dESbFRRoxtx/0lmXzkimKOA45WwXvSQN6ztMd0y7QyUFfDUFQObU/Ooutba0HB4vLC7WJ758myZOOTfBqoDjk9MBL0mVZZVJlwAgIFvXvKBNtcsPjxf36aurvvbPGns6Hwkit+R8wANAprS1th7xtbg+/Qfomm/8q0ZUTkqwKqB7CHgAiLz45GOq2/aGJKn/4DJ9et6/adjYcckWBXQTAQ8Akhrq9+vZB+6VJA0qP1Gf/tb3VDZ8ZMJVAd1HwAOApL8u/LUa6/dryMjR+vS3vqeBQ4clXRLQIwQ8gLxXt+0NvbD4jzpx3ER9at531W/QCUmXBPQYAQ8gr7m7nr5ngUaefIqu/j/fVmm//kmXBGQEAQ8gr21e/ZysoECf+uZ3VVzaJ+lygIwh4AHkrdaWZu3Y8Kqu+tq3VFhUnHQ5QEYR8ADyVmN9vT587T+ooKAw6VKAjCPgAeSt/oPLki4BiE3O/tgMAADoHAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAEKCiOFduZpMk/SalaYKkf5E0WNJNknZH7d9090fjrAUAgHwSa8C7+6uSqiTJzAolbZe0SNKNkn7i7v8e5/YBAMhX2eyinyZpk7tvzeI2AQDIS9kM+FmS7ksZn2tma8zsLjMr6zizmc0xs1ozq929e3fHyQAAoAtZCXgzK5H0SUkLo6Y7JU1Ue/f9Dkm3d1zG3ee7e7W7V5eXl2ejTAAAgpGtM/jpkla7+05Jcved7t7q7m2SFkiamqU6AADIC9kK+NlK6Z43sxEp066WtDZLdQAAkBdivYpeksysv6RLJd2c0vwjM6uS5JK2dJgGAAB6KPaAd/cDkoZ2aLsu7u0CAJDPuJMdAAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAD0Eu6esXUR8AAA9BKtf/97xtZFwAMA0Et4c7Oa33orI+si4AEA6CWKKyrUsHp1RrrqCXgAAHqRvlVV2veHP/R4PQQ8AAC9SPHIkTr4xhs9Xg8BDwBAL1M2e3aP10HAAwDQyxQNGdLjdRDwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAEKCiuDdgZlsk7ZfUKqnF3avNbIik30gaJ2mLpGvd/e9x1wIAQL7I1hn8xe5e5e7V0fhtkv7k7pWS/hSNAwCADEmqi/5KSfdEw/dIuiqhOgAACFI2At4lLTazVWY2J2qrcPcd0fBbkiqyUAcAAHkj9s/gJX3E3beb2YmSlpjZ+tSJ7u5m5h0Xiv4YmCNJY8eOzUKZAACEI/YzeHffHv27S9IiSVMl7TSzEZIU/bsrzXLz3b3a3avLy8vjLhMAgKDEGvBm1t/MBh4alvQxSWslPSzphmi2GyT9Ps46AADIN3F30VdIWmRmh7b1a3d/3MxWSnrAzD4naauka2OuAwCAvBJrwLv7ZklnpWmvkzQtzm0DAJDPuJMdAAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwANAgNxdbzQ0acXb9UmXgoQUJV0AAKBn9ja3aF19g9YdaNT6+katP9Cg9QcaVd/apnkTRujcwQOSLhEJIOABIEc0trbptXcbta6+UesONGh99O/Ogy1p5x9aXKTPjh6W5SrRWxDwANDLtLlra8NBrTvQ8F6YH2jU6w1NavVjX8/csSeqf2FhfIWiVyPgASBBuw82Hw7xdfWNWn+gUa8eaFRDW1uP1ntiSZE+M4qz93xGwANAAg62tWnehu361Zt1saz/CydVqG8h11HnM44+ACSgpKBAP540RvecMV6jSoszuu4RpcW6buTQjK4TuYeAB4AEXTbsBC2deopuHlOuQsvMOr9wUoVKC3h7z3c8AwAgYf2LCvWvHxilx6ecrKqB/Xq0rlGlxfqHEUMyVBlyWWwBb2ZjzOxpM3vFzF42sy9G7d8xs+1m9kL0mBFXDQCQS84Y2E+PTqnU/60cpYHd/Pz8y+OGq4SzdyjeM/gWSf/k7pMlnSfpVjObHE37ibtXRY9HY6wBAHJKgZk+O7pcfz73VH2ifPBxLXtSnxLNGs7ZO9rFFvDuvsPdV0fD+yWtkzQqru0BQEgqSou14PRxuvfMCRrTp+SYlvnyuAoVFWTog3zkvKz045jZOElnS1oRNc01szVmdpeZlWWjBgDIRdOGDlLN1FM0d+yJKuoiuyf2LdVMzt6RIvaAN7MBkh6U9CV33yfpTkkTJVVJ2iHp9k6Wm2NmtWZWu3v37rjLBIBeq19hgb41caSWVE9S9aD0F+F9ZVyFCo2zd7wn1oA3s2K1h/u97v47SXL3ne7e6u5tkhZImppuWXef7+7V7l5dXl4eZ5nAsWtukHa+3P4vkGWnDuirR86p1I8njdbgovduQVvZr1RXV9AZiiPFeRW9SfqFpHXu/h8p7SNSZrta0tq4agAyoq1V2vSU9MwPpQ1LpGGTpOK+SVeFPGVmum7kMC079xRdE4X6V8cPVwFn7+ggzlvVni/pOkkvmdkLUds3Jc02sypJLmmLpJtjrAHoHnfpzdXSmoXS35ZLZ18nfeTLUtGxXewExK28pFg/m3ySbhg5VFNP6J90OeiFYgt4d/+zpHR/UvK1OPRedZukNQ9ILy2UmvZJH/mKdMl3pOI+SVcGpMVvvaMz/NgMsH+ntPbB9lB/c7XUZ7B0/helqXOkUt48AeQmAh75qXGftO4R6aUHpNeXSt4mlQyULvqGdN4/Sn1OSLpCAOgRAh75o6Wp/SK5lx6QXn1cam1qby/uJ517s/ThL0j9+B4xgDAQ8Ahf4z5pxc+lv/5Uanz7vfbCUumDn2u/eG7AiYmVBwBxIOARvj6DpP/xdem8z0t1G9sf72yTzpgpncDdkwGEiYBH/igdII2san8AQOD4TUEAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIASC3gzu9zMXjWzjWZ2W1J1AAAQokQC3swKJf1U0nRJkyXNNrPJSdQCAECIkjqDnyppo7tvdveDku6XdGVCtQAAEJykAn6UpL+ljG+L2g4zszlmVmtmtbt3785qcQAA5Lpee5Gdu89392p3ry4vL0+6HAAAckpSAb9d0piU8dFRGwAAyICkAn6lpEozG29mJZJmSXo4oVoAAAhOURIbdfcWM5sr6QlJhZLucveXk6gFAIAQJRLwkuTuj0p6NKntAwAQsl57kR0AAOg+Ah4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfDotsb65qRLAAB0goBHt2x6fpc2rt6VdBkAgE4Q8Dhua2u26YkFL2vcGcOSLgUA0InEfk0Oucfd9dwfXlftH7doxAdO0ICy0qRLAgB0goDHMWlrbVPN/a/plWVvSpIqqysSrggA0BUCHkfVcrBVi3/xsl5/cY8kyUyaeM6JCVcFAOgKn8HjqJ575PXD4S5JI08uU79BJQlWBAA4GgIeR7Xrjf1HjFdWc/YOAL0dAY+j2vtm/eFhKzBNOLs8wWoAAMeCgEeX3t13UA3737uhzZhTytR3AN3zANDbEfDoUl3K2bskTZxC9zwA5AICHl3au/3A4eGCQtOEKrrnASAXEPDoUt32987gx0weoj79ixOsBgBwrAh4dCk14CvpngeAnEHAo1Pe5tq7o72LvrCoQOPPonseAHIFAY9O7atrUMvBNknS2NOGqKQvNz4EgFxBwKNTdSkX2HHveQDILQQ8OnXo8/ei4gKddMbQhKsBABwPAh6dOnQGf9IZw1TSh+55AMglBDw6degWtR/g6nkAyDkEPNJqbW7T27saVFRaSPc8AOQgAh5p7X3rgLzNNf7MYSouKUy6HADAcSLgkdbe7XTPA0AuI+CRVt2bB1TSp1AnnUb3PADkIgIeadVtP6DxVeUqLOYpAgC5iHdvpLX3zXq65wEghxHweJ/GA81qbmrVmFOHJF0KAKCbCHi8z94dBzShqlyFRTw9ACBX8Q6O99m7vV4fqKZ7HgByGQGP9zmw76BGTypLugwAQA8Q8Hifsop+KijkqQEAuYx3cRzB3VU2on/SZQAAeoiAxxHaWl1DRw1IugwAQA/xG6A4AlfOA0AYeDcHACBAsQS8mf3YzNab2RozW2Rmg6P2cWbWYGYvRI+fx7F9AADyXVxn8Eskne7uZ0p6TdI3UqZtcveq6HFLTNsHACCvxRLw7r7Y3Vui0eWSRsexHQAAkF42PoP/rKTHUsbHm9nzZlZjZhdkYfsAAOSdbl9Fb2ZPShqeZtI8d/99NM88SS2S7o2m7ZA01t3rzGyKpIfM7DR335dm/XMkzZGksWPHdrdMAADyUrcD3t0v6Wq6mX1G0hWSprm7R8s0SWqKhleZ2SZJJ0uqTbP++ZLmS1J1dbV3t04AAPJRXFfRXy7p65I+6e7vprSXm1lhNDxBUqWkzXHUAABAPovrRjd3SCqVtMTMJGl5dMX8hZK+a2bNktok3eLue2OqAQCAvBVLwLv7Bzppf1DSg3FsEwAAvIc72QEAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAAYot4M3sO2a23cxeiB4zUqZ9w8w2mtmrZnZZXDUAAJCvimJe/0/c/d9TG8xssqRZkk6TNFLSk2Z2sru3xlwLAAB5I4ku+isl3e/uTe7+uqSNkqYmUAcAAMGKO+DnmtkaM7vLzMqitlGS/pYyz7aoDQAAZEiPAt7MnjSztWkeV0q6U9JESVWSdki6/TjXPcfMas2sdvfu3T0pEwCAvNOjz+Dd/ZJjmc/MFkj6QzS6XdKYlMmjo7aO654vab4kVVdXe0/qBAAg38R5Ff2IlNGrJa2Nhh+WNMvMSs1svKRKSc/FVQcAAPkozqvof2RmVZJc0hZJN0uSu79sZg9IekVSi6RbuYIeAIDMii3g3f26LqZ9X9L349o2AAD5jjvZAQAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHAGRV81sHtO/JrWo90Jx0KUEj4AEAWdO0+R3VP/um+n9opAr7FyddTtDi/LlYAAAOa9r8jtoaWlR2TWXSpeQFAh4AELvWfU0qKu+rwoElSZeSNwh4AEDsCgaWyMySLiOv8Bk8ACB2hHv2EfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AWdDW1ix3T7oM5JGipAsAgHxQUFCcdAnIM5zBAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECAYvkevJn9RtKkaHSwpLfdvcrMxklaJ+nVaNpyd78ljhoAAMhnsQS8u//PQ8Nmdrukd1Imb3L3qji2m05ra6uWLVumyspKjRo1KlubBQAgUbHeyc7MTNK1kj4a53a6snTpUtXU1KimpkbnnHOOpk2bpn79+iVVDgAAWRH3Z/AXSNrp7htS2sab2fNmVmNmF3S2oJnNMbNaM6vdvXt3twu4+OKLNXPmTJ1wwglatWqV7rjjDq1evZp7QgMAgmbdDToze1LS8DST5rn776N57pS00d1vj8ZLJQ1w9zozmyLpIUmnufu+rrZVXV3ttbW13arzkJaWFi1fvlxLly7VwYMHNXr0aH384x/XiBEjerReAADiYGar3L2628vHdSZrZkWStkua4u7bOpnnGUlfdfcu0zsTAX9IfX29nn76aa1evVqS9MEPflAf/ehH1adPn4ysHwCATOhpwMf5GfwlktanhruZlUva6+6tZjZBUqWkzTHW8D4DBgzQJz7xCU2dOlVPPPGEnnvuOb3yyiu69NJLddZZZ2WzFAAAYhPnZ/CzJN3Xoe1CSWvM7AVJv5V0i7vvjbGGTlVUVOj666/X7NmzVVpaqkWLFumXv/yldu3alUQ5AABkVGxd9JmUyS76dFpbW7Vy5UrV1NSoqalJ5557ri666CKVlpbGtk0AALrSm7voc0ZhYaHOO+88nXnmmaqpqdGKFSu0du1aXXbZZTr99NOTLg8AgOPGGXwae/bs0eLFi/Xaa69pwoQJmjFjhoYNG5a17QMA0Guvos+kbAf8IZs3b9YTTzyhPXv26MMf/rAuuOAClZSUZL0OAED+IeBj1tbWpueff15PPfWUioqKNH36dJ1yyimJ1AIAyB98Bh+zgoICTZkyRaeffrqWLVumhQsXasKECZo+fbqGDBmSdHkAAKTFz8Ueo9LSUl1yySWaO3euSkpK9LOf/UzPPPOMmpubky4NAID34Qz+OJWVlWnmzJl644039Pjjj+vFF1/UjBkzVFlZmXRpAAAcxhl8N40dO1Y33XSTLrroIj3yyCO6//779fbbbyddVl5a+tpu7WukJwUAUhHwPWBmOuusszR37lwNHz5cCxYs0LJly9Ta2pp0aXnD3fW9P76iW+9drebWtqTLAYBeg4DPgJKSEl100UW6+eabtWfPHt15553avDmrt9jPW3/ZWKfXdtZr2YY9mrfoJX4GGAAiBHwGDRo0SFdffbWuueYa1dTUaOHChdq3r8tfwkUP/fIvrx8efqB2m+54amOC1QBA70HAx2DkyJG68cYbddppp+nee+/Vs88+S7d9DLbsOaCnXj3yx4FuX/KaFj2f9teJASCvEPAxmjx5sm666Sa5u+6++25t3bo16ZKCcvezW5SuR/7rv12jv26qy35BANCLEPAxKyoq0vnnn69Zs2bppZde0kMPPaT6+vqky8p5+xub9dtV6c/Um1tdN/+qVht37c9yVQDQexDwWdK/f39dccUV+tCHPqTHHntMK1asUFsbV31318Labapvaul0+r7GFt1w10rt2t+YxaoAoPcg4LOsoqJCM2fOVFlZmRYtWqRt2/i8+Hi1trnufnZLp9MH9SnSNWeP0j9fMVkDS4uzVxgA9CLcyS4hJ598siZOnKhVq1Zp3bp1Ov/889WvX7+ky8oJT63fpTf2vntEW/nAUn1scoUuO224zpswVCVF/O0KIL8R8AkqLCzU1KlT1dDQoJUrV2rgwIGqqqqSmSVdWq926KtxY4b01eWnDdflpw/X2WPKVFDA/xsAHELA9wJ9+/bVhRdeqLq6Ov35z3/WxIkTNXLkyKTL6pX2Hjio6nFDNO/jp2ryiEH8MQQAneD34HuhLVu2qK6uTpMnT1bfvn2TLgcAkAB+Dz5A48aN09ixY7VhwwYVFhZq4sSJnKkCAI4LAd9LFRQUaNKkSWpqatLGjRs1ZMgQDR06NOmyAAA5gkuNe7nS0lJVVlaquLhY27ZtU1NTU9IlAQByAAGfIwYNGqTRo0eroaFBe/fuTbocAEAvRxd9jhk8eLDcXfv371dpaalKSkqSLgkA0AtxBp+DzEwDBw5UUVERv1IHAEiLM/gcVlDA32cAgPRICAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABCgHgW8mc00s5fNrM3MqjtM+4aZbTSzV83sspT2y6O2jWZ2W0+2DwAA0uvpGfxaSddIWpraaGaTJc2SdJqkyyX9zMwKzaxQ0k8lTZc0WdLsaF4AAJBBRT1Z2N3XSZKZdZx0paT73b1J0utmtlHS1GjaRnffHC13fzTvKz2pAwAAHCmuz+BHSfpbyvi2qK2zdgAAkEFHPYM3syclDU8zaZ67/z7zJR3e7hxJc6LRJjNbG9e2eoFhkvYkXUSM2L/cFvL+hbxvEvuX6yb1ZOGjBry7X9KN9W6XNCZlfHTUpi7aO253vqT5kmRmte5enW6+ELB/uY39y10h75vE/uU6M6vtyfJxddE/LGmWmZWa2XhJlZKek7RSUqWZjTezErVfiPdwTDUAAJC3enSRnZldLen/SSqX9Ecze8HdL3P3l83sAbVfPNci6VZ3b42WmSvpCUmFku5y95d7tAcAAOB9enoV/SJJizqZ9n1J30/T/qikR49zU/OPv7qcwv7lNvYvd4W8bxL7l+t6tH/m7pkqBAAA9BLcqhYAgAD1uoDPp9vfmtlvzOyF6LHFzF6I2seZWUPKtJ8nXGq3mNl3zGx7yn7MSJmW9ljmCjP7sZmtN7M1ZrbIzAZH7UEcOyl3X1edMbMxZva0mb0Svcd8MWrv9Hmaa6L3kZei/aiN2oaY2RIz2xD9W5Z0ncfLzCalHJ8XzGyfmX0p14+dmd1lZrtSvwbe2fGydv8VvR7XmNk5R92Au/eqh6RT1f7dv2ckVae0T5b0oqRSSeMlbVL7hXqF0fAESSXRPJOT3o9u7Pftkv4lGh4naW3SNWVgn74j6atp2tMey6TrPc59+5ikomj4h5J+GNixC+J11WGfRkg6JxoeKOm16LmY9nmaiw9JWyQN69D2I0m3RcO3HXqu5uojem6+JemkXD92ki6UdE7qe0Znx0vSDEmPSTJJ50lacbT197ozeHdf5+6vppl0+Pa37v66pEO3v52q6Pa37n5Q0qHb3+YMa7/X77WS7ku6lizp7FjmDHdf7O4t0ehytd/TISQ5/7rqyN13uPvqaHi/pHXKjztpXinpnmj4HklXJVdKRkyTtMndtyZdSE+5+1JJezs0d3a8rpT0395uuaTBZjaiq/X3uoDvQsi3v71A0k5335DSNt7MnjezGjO7IKnCMmBu1J10V0rXYAjHLNVn1f6X9SEhHLvQjtERzGycpLMlrYia0j1Pc5FLWmxmq6z9bqCSVOHuO6LhtyRVJFNaxszSkSdDoRy7Qzo7Xsf9mkwk4M3sSTNbm+aR02cI6Rzjvs7WkU/YHZLGuvvZkr4i6ddmNiibdR+ro+zfnZImSqpS+z7dnmStx+tYjp2ZzVP7vR7ujZpy5tjlKzMbIOlBSV9y933K8edpBx9x93PU/oudt5rZhakTvb2vN2e/OmXtN0j7pKSFUVNIx+59enq8evQ9+O7yhG5/m4Sj7auZFan9J3enpCzTJKkpGl5lZpsknSypR7ctjMOxHkszWyDpD9FoV8ey1ziGY/cZSVdImha9EHPq2B1FThyj42VmxWoP93vd/XeS5O47U6anPk9zjrtvj/7dZWaL1P5Ry04zG+HuO6Iu3V2JFtkz0yWtPnTMQjp2KTo7Xsf9msylLvpQb397iaT17r7tUIOZlZtZYTQ8Qe37ujmh+rqtw+dDV0s6dKVoZ8cyZ5jZ5ZK+LumT7v5uSnsQx065/7p6n+hal19IWufu/5HS3tnzNKeYWX8zG3hoWO0Xgq5V+3G7IZrtBkmx/UhYFhzR2xnKseugs+P1sKTro6vpz5P0TkpXflqJnMF3xfLv9rcdP0+S2q+s/K6ZNUtqk3SLu3e8ECMX/MjMqtTexbRF0s2S1NWxzCF3qP1bAEvac0PL3f0WBXLs3L0lx19X6Zwv6TpJL1n0lVRJ35Q0O93zNAdVSFoUPR+LJP3a3R83s5WSHjCzz0naqvYLenNO9EfLpTry+KR9j8kVZnafpIskDTOzbZK+LekHSn+8HlX7lfQbJb0r6cajrj/qWQQAAAHJpS56AABwjAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAjQ/wc1c0ffmtGxiAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAsvklEQVR4nO3deXxc9Xnv8e+j1fIuIeFVsmwWGwzGGNVQwAQuECBJcQi5BBoMZjM0oUlvb5pLQpPmpg1NoCQtWcg1hWxlyUIcaDCYJeAlBLC8YLyCV2JjbBmDDV61/O4fGuGxLNmSZs78zvnN5/166cXojDTnGY6kr5+zPMeccwIAAGEp8F0AAADIPgIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIUFYC3sweMLOtZrY0bVmFmT1jZm+k/lueWm5mdo+ZrTazJWY2IRs1AACAA7LVwf9U0sXtlt0m6Tnn3HGSnkt9LkmXSDou9TFN0r1ZqgEAAKRkJeCdc3MkbW+3eLKkn6Ue/0zSJ9OW/9y1eknSQDMbko06AABAqyiPwQ9yzm1OPX5b0qDU42GS/pz2dRtTywAAQJYU5WIlzjlnZt2aiWtm09S6C199+vQ5bcyYMZHUBgBAHC1YsGCbc66qp98fZcBvMbMhzrnNqV3wW1PLN0mqTvu64allB3HOTZc0XZLq6upcfX19hKUCABAvZrYhk++Pchf945KuTT2+VtJjacuvSZ1Nf4akHWm78gEAQBZkpYM3s4clnSup0sw2SvonSd+W9Cszu0HSBklXpL58pqSPSVotabek67JRAwAAOCArAe+cu6qTp87v4GudpM9nY70AAKBjTLIDACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAFfkuAAAQjrW79+n2NzaquleJqnuVqKas5MPHVSXFvsvLKwQ8ACBrRvUu1YY9+/X89vcPea5/UYG+ceww/fWQozxUln/YRQ8AyKrLB5UfsuzMgX31+ITjCPccIuABAFn16cHlstTjwSXFuvfEEfrtqcdqTJ8yr3XlG3bRAwCyakRZqc4c2Fcn9yvTl2oHq29Roe+S8hIBDwDIuodPGaWSAnYS+8T/fQBA1hHu/kXawZvZaEm/TFs0StLXJQ2UdJOkhtTyrzrnZkZZCwAA+STSgHfOrZI0XpLMrFDSJkkzJF0n6XvOuX+Lcv0AAOSrXO5DOV/SGufchhyuEwCAvJTLgL9S0sNpn99qZkvM7AEzO+SiSTObZmb1Zlbf0NDQ/mkAAHAYOQl4MyuRdKmkX6cW3SvpGLXuvt8s6e723+Ocm+6cq3PO1VVVVeWiTAAAgpGrDv4SSQudc1skyTm3xTnX7JxrkXSfpIk5qgMAgLyQq4C/Smm7581sSNpzl0lamqM6AADIC5EPujGzPpIulHRz2uI7zWy8JCdpfbvnAABAhiIPeOfcLklHtVs2Jer1AgCQzxg1BABAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAGdm1a5eef/557d6923cpANIU+S4AQDJ98MEHevHFFzV//nyNHTtWvXv39l0SgDQEPIBu2blzp1588UXV19erqalJknT22Wd7rgpAewQ8gC7ZsWOH5s2bp4ULF6q5ufnD5WPHjlVlZaXHygB0hIAHcFjvvvuu5s2bp0WLFqmlpeWQ5ydNmuShKgBHQsAD6NA777yjuXPnasmSJR0GuySNHj1agwcPznFlALqCgAdwkIaGBs2dO1evvfaanHOH/Vq6dyC+CHgAkqQtW7Zozpw5WrZsWZe+ftSoURo+fHjEVQHoKQIeyHObN2/WnDlztGLFim593znnnBNRRQCygYAH8tSmTZs0e/Zsvf76693+3pqaGo0YMSKCqgBkCwEP5Jk333xTc+bM0erVq3v8GpMmTZKZZbEqANlGwAN5Yv369Zo9e7bWrVuX0esMGTJExx57bJaqAhAVAh4ImHNOa9eu1ezZs/Xmm29m5TXPOeccuncgAQh4IEDOOa1evVqzZ8/Wxo0bs/a6VVVVGj16dNZeD0B0CHggIM45rVq1SnPmzNFbb72V9defNGmSCgq4CSWQBAQ8EICWlhatWLFCc+bM0ZYtWyJZR0VFhcaOHRvJawPIPgIeSLhNmzbpd7/7nRoaGiJdz9lnn63CwsJI1wEge9jXBiTc0KFDdemll+qUU06JLID79++vcePGRfLaAKJBBw8knJmpurpa1dXVuuiii7R48WLV19dr+/btWVvHWWedpaIi/lwAScJvLBCQ3r1768wzz9QZZ5yhdevWqb6+XitXrjziTWMOp0+fPpowYUIWqwSQCwQ8EKCCggIdc8wxOuaYY7Rz504tXLhQCxYs0Pvvv9/t1zrzzDNVXFwcQZUAokTAA4Hr37+/zj33XE2aNElvvPGG5s+frzVr1nTpe8vKylRXVxdxhQCiQMADeaKwsFBjxozRmDFjtH37di1YsECLFi3S7t27O/2e008/XaWlpTmsEkC2EPBAHqqoqNCFF16o8847T8uXL1d9ff0ho2xLSkp0+umne6oQQKYIeCCPFRUVady4cRo3bpy2bNmi+vp6vfrqq9q/f78mTpyosrIy3yUC6CHL5OzaXKmrq3P19fW+ywDywr59+/Taa69pzJgx6tu3r+9ygLxlZguccz0+CYYOHsBBSktLObEOCACT7AAACFDkHbyZrZf0vqRmSU3OuTozq5D0S0m1ktZLusI5927UtQAAkC9y1cGf55wbn3Ys4TZJzznnjpP0XOpzAACQJb520U+W9LPU459J+qSnOgAACFIuAt5JetrMFpjZtNSyQc65zanHb0salIM6AADIG7k4i/5s59wmMzta0jNmtjL9SeecM7NDrtVL/WNgmiTV1NTkoEwAAMIReQfvnNuU+u9WSTMkTZS0xcyGSFLqv1s7+L7pzrk651xdVVVV1GUCABCUSAPezPqYWb+2x5I+KmmppMclXZv6smslPRZlHQAA5Juod9EPkjTDzNrW9ZBz7ikzmy/pV2Z2g6QNkq6IuA4AAPJKpAHvnFsr6ZQOlr8j6fwo1w0AQD5jkh0AAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAEKDIAt7Mqs3seTNbbmbLzOyLqeXfMLNNZrY49fGxqGoAACBfFUX42k2S/rdzbqGZ9ZO0wMyeST33Pefcv0W4bgAA8lpkAe+c2yxpc+rx+2a2QtKwqNYHAEA2Ne5vVlFxgczMdyk9kpNj8GZWK+lUSS+nFt1qZkvM7AEzK89FDQAAdMe2N9/XplXv+i6jxyIPeDPrK+lRSX/nnNsp6V5Jx0gar9YO/+5Ovm+amdWbWX1DQ0PUZQIAcJAd2/Zo2dy3fJfRY5EGvJkVqzXcH3TO/VaSnHNbnHPNzrkWSfdJmtjR9zrnpjvn6pxzdVVVVVGWCQDAIXY07NHaxQ3avXO/71J6JMqz6E3S/ZJWOOe+m7Z8SNqXXSZpaVQ1AADQUzu37VFLs9PKP232XUqPRHkW/VmSpkh6zcwWp5Z9VdJVZjZekpO0XtLNEdYAAECP7GzYI0kq61fsuZKeifIs+nmSOjr1cGZU6wQAIFt2NOzR6ZNH6YQzh/oupUeYZAcAQDv79zbp+ImDVXdJre9SeoyABwCgncKiAp316WN9l5GRKI/BAwCQSIVFye9/k/8OAADAIQh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeCBbWlqk134jbVrguxIAYFQtkBXr5khPf03a+Zb098t9VwMABDyQka0rpGf+SXpjVuvnZ/8vqTCZ944GEBYCHuip2XdJL9whuZYDyyZc468eAEjDMXigp3Y1HBzuo86VKkZ5KwcA0hHwQE8dfcLBn5821UsZANARAh7oqaNPPPC4d6U0+uP+agGAdgh4oKeqRh94fOpnpaISf7UAQDsEPNBTZQOl/sNaH0+41mspANAeAQ9k4ugTpJEfkY46xncl3tz99Co9umCj9jY2+y4FQBoukwMycfQJ0tAJvqvw6tWNO/T9P6zWPz+xXJdPGK7Pnl6jUVV9fZcF5D0CHsjEyI+0fkDv7W7U/fPW6f556/SXo47SZ8+o0UVjB6u4kB2FgA8EPJCJYy+QzHxXETt/WvuO/rT2HVX2LdUVdcN11cQaVVf09l0WkFf4pzWQCcJdh/s/sO2DffrRC2v0kbue19SfvKJnlm9Rc4vLWW1APqODBxC5Fie9sKpBL6xq0NABvfSZv6jRlROrNah/L9+lAcGigweOoKVln+8SgvLWjr363rOv66xv/0E3/6Jec15vkHN09UC20cEDR+Bcs3btWqM+ffL3UrgoNLU4zVq2RbOWbdGIo3rrqok1uqKuWhV9GBgEZAMdPHAEhYW99f77y9TcvNt3KcHa8M5uffvJlTrjjuf0hYcX6aW17/guCUg8Ah7ogsrK87R+/Y98lxFL2TzPcH9zix5/9S1dOf0lXfDd2Xpg3jrt2NOYvRUAeYSAB7qgqKifrKBE77wz13cpeWP11g/0zd8v1+l3PKsv/fpVLXrzXd8lAYlCwANdVD18qt5Y/S01Nu70XUpe2dvYot8s2KjLfvSiPn7PXD348gbt2tfkuywg9gh4oIuKi/urquqjev31b/guJW8te2unbp+xVKff8Zxun/GaVmzmH1tAZwh4oBtqqq9Xw7bntHXrU75LiQ0fo34+2NekB19+U5f8x1xd9qM/6jfc7AY4BAEPdENx8UBVD5+ilau+pn37t/kuB5IWvfmevvTrV3X6Hc/pm/+9XGsaPvBdEhALBDzQTTU1N6isrFp79/zZdylIs2NPox744zqdf/ds/eJP632XA3jHoBugm4qLy/UXdb/1XQYOo08pf9oAOngAwRlxVB/fJQDeEfAAMmIxvKNe7VHcmhYg4AEEpV+vIh3Vt9R3GYB3BDyAoIygewckEfAAAsPxd6AVAQ8gI3E7As/xd6AVAQ8gKHTwQCsCHkBQagl4QJLHgDezi81slZmtNrPbfNUBICzsogdaeQl4MyuU9ENJl0g6UdJVZnaij1oAhKN3SaGO7t/LdxlALPjq4CdKWu2cW+uc2y/pEUmTPdUCIANxmnNTU0H3DrTxFfDDJKXfqWNjatmHzGyamdWbWX1DQ0NOiwOQTBx/Bw6I7Ul2zrnpzrk651xdVVWV73IAJMCISjp4oI2vgN8kqTrt8+GpZQDQY3TwwAG+An6+pOPMbKSZlUi6UtLjnmoBEAjG1AIHeLlpsnOuycxulTRLUqGkB5xzy3zUAiBT8TnLjg4eOMBLwEuSc26mpJm+1g8gLKVFBRoygEvk4mhX4y4VFRSptJC7/OVSbE+yA4DuqKnoHct700PasHODbnnmFu3cv9N3KXmFgAcQBGbQx9eepj2q31KvqU9N1ZZdW3yXkzcIeAAZiUvTzIja+NrTtEeS9Ma7b2jKk1O0dsdazxXlBwIeQBBGVNLBx1VbwEvS5l2bdc2T1+jVhlc9VpQfCHgAQaCDj6/0gJekHft26MZZN2rOxjmeKsoPBDyAIHCJXHztadxzyLK9zXv1hT98QTPemOGhovxAwANIvJLCAg0bWOa7DHSifQffptk16+svfl3Tl0yXcy7HVYWPgAeQkTicYze8okwFBXGoBB3pLODbfH/R93XHy3eouaU5RxXlBwIeQOKxez7ejhTwkvTIqkf0D3P+Qfua9+WgovxAwANIPGbQx9vupt1d+rpnNjyjW565Re/vfz/iivJDIgK+6d29en/2n7Vn+TtqbNgt18KxGgAH0MHHW1c6+DZtA3G27t4aYUX5wdss+u4oKCqQa2zR/jd3at+a9+RanAoHlKqovJcKy0tVNLCXCvoVM6YS8CAOv3Z08PHWnYCXpNfffV1TZk7Rjy/8sUYOGBlRVeFLRsD3K1H/C0b4LgNATNHBx1tXd9Gne2vXW7rmyWv0g/N/oFOqTomgqvAlYhc9AHSmqMA0vJxL5OKso+vgu+K9fe8xECcDBDyARBtWXqaiQv6UxVl3d9GnYyBOz/FbASDRuItc/GUS8NKBgTj3LbmPgTjdQMADyIh5HnXDDPr4yzTg29yz6B796yv/ykCcLiLgASQaHXz8ZSvgJenhlQ/ry3O+zECcLiDgASQaHXz89eQs+sN5esPT+ptn/4aBOEdAwANINDr4eGtsaVRTS1PWX3f+2/MZiHMEBDyAjPgcdFNgUk0FHXycZXP3fHttA3HW7VgX2TqSjIAHkFhDBpSppIg/Y3HW02vgu6ptIM6ShiWRrieJ+M0AkFi1lXTvcRdlB9/mvX3v6canGYjTHgEPILE4/h5/uQj4tvV84Q9f0O9W/y4n60sCAh5AYnEGffzlKuCl1oE4X/vj1/Sfr/0nA3FEwAPIkM+T7Ojg4y+XAd/mPxb+h779yrfV4lpyvu44IeABJBZ3kYu/bF8D31UPrXxIX57zZe1v3u9l/XFAwANIJDPuA58EPjr4NrPWz8rrgTgEPIBEGtSvl3oVF/ouA0cQ9WVyR/LK26/ouqeuU8PuBq91+EDAA8iIr5vN0L0ng88Ovs2qd1dpypNTtH7Het+l5BQBDyCROP6eDHEIeEna9MGmvBuIQ8ADSKQRDLlJhLgEvCS9u+9d3fj0jZq7ca7vUnKCgAeQSHTwyeDrLPrO7Gnao7/9w9/qsdWP+S4lcgQ8gETiGHwyxKmDb9PsmvWPf/xH3f/a/UEPxCHgAWTG06AbOvhkiGPAt/n3hf+u78z/TrADcQh4AIlT2bdUfUqLfJeBLojbLvr2HlzxYLADcQh4AInDDPrk8H0dfFfMWj9Ln3v2c/pg/we+S8kqAh5A4jCDPjnivIs+3ctvv6ypT00NaiAOAQ8gIz4OwdPBJ0dSAl4KbyAOAQ8gcWor6eCTIkkBLx0YiLN021LfpWSMgAeQOJxBnxxJC3ipdSDO9bOu17xN83yXkhECHkDiMMUuOZIY8FJqIM5zf6vH1zzuu5QeI+ABJEpFnxL171Xsuwx0QVNLkxpbGn2X0WNNrkm3z7tdDyx9IJEDcQh4ABkxy+1pdkywS46kdu/tfW/B93Tn/DsTNxCHgAeQKBx/T47djfEectMd/7Xiv/R/5vyfRA3EiSTgzewuM1tpZkvMbIaZDUwtrzWzPWa2OPXx4yjWDyBcdPDJEUoH3+ap9U/pc88lZyBOVB38M5JOcs6Nk/S6pK+kPbfGOTc+9XFLROsHECg6+OQILeAl6eXNL+u6Wddp255tvks5okgC3jn3tHOuKfXpS5KGR7EeAPmHDj45Qgx4SVq5faWunnm1Nuzc4LuUw8rFMfjrJT2Z9vlIM1tkZrPNbFIO1g8gQrmeZEcHnxyhBrzUOhBnyswpsR6I0+OAN7NnzWxpBx+T077mdklNkh5MLdosqcY5d6qkv5f0kJn17+T1p5lZvZnVNzSEMxsYQM8NKCtWeZ8S32Wgi0IOeCn+A3F6HPDOuQuccyd18PGYJJnZVEmfkPRZl7qA0Dm3zzn3TurxAklrJB3fyetPd87VOefqqqqqelomgICwez5ZQg946cBAnP9e89++SzlEVGfRXyzpy5Iudc7tTlteZWaFqcejJB0naW0UNQAID3eRS5Z8CHipdSDOV+d9VT9Z+pNYDcSJ6hj8DyT1k/RMu8vhzpG0xMwWS/qNpFucc9sjqgFADuRyzg13kUuWfAn4Nt9d8F3dVX9XbAbiFEXxos65YztZ/qikR6NYJ4DwJbmDd42N2vHEExr4yU/6LiVnQhp001W/WP4Lbdu9Tf9y9r+opNDv+SJMsgOQGEnu4K24WO/96tfa/vNf+C4lZ/Ktg2/z5PonYzEQh4AHkBhJ7uAlqezU8dpyxx3adt99vkvJid1N+dfBt3l588u6ftb1XgfiEPAAEqFvaZGq+pX6LiMjvSdMkCQ13P1dNdxzj+dqopevHXybFdtXeB2IQ8ADyEiuzrGrqUju7vk2Zaee+uHjbT+6V1vuvMtjNdHL94CXWgfiXPPkNVq2bVnO103AA0iE2srkB3xRRYX6nHmmSkaMUPGwYdr5xBNq+OEPfZcVGQK+1fa923XdrOv04qYXc7reSM6iB4BsS/rx9zY1D9zvu4ScIeAP2NO0R59/7vP65lnf1F8d81c5WScdPIBESPIZ9PmKgD9Y20Ccny79aU7WR8ADyIjlaNJNKB18PiHgO3b3grt11/zoB+IQ8AASgbvIJU8+Drrpqp8v/7lum3ubGpsbI1sHAQ8g9sqKCzWof7IvkctHdPCH9+S61oE4uxp3RfL6BDyA2Kup6J2zQwHIHgL+yF7a/JKue+q6SAbiEPAAYo/bxCZPU0uTGlui2/0ckhXbV2jKzCl6c+ebWX1dAh5ARnLRV9dWcvw9aejeu2fjBxs15ckpWR2IQ8ADiD06+OQh4Lsv2wNxCHgAsccZ9MlDwPdM20Cc36/9fcavRcADiD06+OQh4HuuyTXpK3O/kvHrEPAAMhPxQfiSogINHVAW7UqQdQS8fwQ8gFirLi9TQQGXyCUNQ278I+ABxBrH35OJDt4/Ah5ArDGDPpkIeP8IeACxNjKA+8DnIwLePwIeQEYs4rPs6OCTiYD3j4AHEGscg0+m3U2cZOcbAQ8gtooLTcPKuUQuiejg/SPgAcTW8PLeKuQSuUTa00jA+0bAA8hIlHdxZYJdctHB+0fAA4gtjr8nF8fg/SPgAcQWHXxy0cH7R8ADiC06+OQi4P0j4AHEFh18chHw/hHwADIS1Tl2hQWm6goCPqkIeP8IeACxNHRgLxUX8icqqQh4//jtARBLHH9PNgLePwIeQCxx/D3ZGHTjHwEPIJbo4JOrqaVJ+1v2+y4j7xHwADIS1SQ77iKXXOyejwcCHkAs1bKLPrEI+Hgg4AHEToFJNQR8YhHw8UDAA4idwf17qbSo0HcZ6CECPh4IeAAZsQhG3XD8PdkI+Hgg4AHETm0lu+eTjEvk4oGABxA7dPDJRgcfDwQ8gNjhDPpk417w8UDAA4gdOvhko4OPBwIeQEaiGHTDFLtkI+DjIbKAN7NvmNkmM1uc+vhY2nNfMbPVZrbKzC6KqgYAyXN0v1KVlXCJXJKxiz4eiiJ+/e855/4tfYGZnSjpSkljJQ2V9KyZHe+ca464FgAJQPeefHTw8eBjF/1kSY845/Y559ZJWi1pooc6AMQQd5FLPi6Ti4eoA/5WM1tiZg+YWXlq2TBJf077mo2pZQASKNvH4Gsr6eCTjg4+HjIKeDN71syWdvAxWdK9ko6RNF7SZkl3d/O1p5lZvZnVNzQ0ZFImgAShg08+Aj4eMjoG75y7oCtfZ2b3Sfp96tNNkqrTnh6eWtb+tadLmi5JdXV1LpM6ASQHx+CTj4CPhyjPoh+S9ullkpamHj8u6UozKzWzkZKOk/RKVHUASBY6+OQj4OMhyrPo7zSz8ZKcpPWSbpYk59wyM/uVpOWSmiR9njPoAUjSUX1K1K9Xse8ykCEuk4uHyALeOTflMM99S9K3olo3gFzK3ll2dO9hoIOPBybZAYgNzqAPAwEfDwQ8gNjgBLswEPDxQMADiA120YeBQTfxQMADyEg2B93QwSdfc0uz9rfs910GRMADiBGOwScfu+fjg4AHEAsDexdrQBmXyCUdAR8fBDyAWBjB7vkgEPDxQcADiIVaTrALAkNu4oOAB5CRbJ1jRwcfBjr4+CDgAcQCHXwYuEQuPgh4ALFABx8GOvj4IOABxAIdfBg4Bh8fBDyAjGRj0E2/XkU6qm9p5i8E7+jg44OAB+AdI2rDQcDHBwEPwDuOv4eDgI8PAh6Adxx/DwcBHx8EPADv6ODDsbuRk+zigoAHkBHLwqgb7iIXDjr4+CDgAXjHLvpwEPDxQcAD8Kp3SaGO7t/LdxnIEgI+Pgh4AF7VVNC9h4SAjw8CHoBXHH8PCwEfHwQ8gIxkOsluRCUdfEgI+Pgg4AF4RQcfFgI+Pgh4AF4xpjYsBHx8EPAAvKKDDwuDbuKDgAeQkUwOwZcWFWjIAC6RC0VzS7P2t+z3XQZSCHgA3tRU9JZl436ziAV2z8cLAQ/AG2bQh4WAjxcCHoA3jKgNCwEfLwQ8AG9GVNLBh4SAjxcCHkBGMjmGTgcfFgI+Xgh4AN5wiVxYdjdxiVycEPAAvCgpLNDQgWW+y0AW0cHHCwEPwIvh5WUqLOASuZAw5CZeCHgAXtRygl1w6ODjhYAH4AUz6MNDwMcLAQ/AC06wCw8BHy8EPAAv6ODDQ8DHCwEPwAs6+PAQ8PFCwAPISE/m3BQVmIaXc4lcaAj4eCHgAeTcsPIyFRXy5yc0BHy88BsGIOe4i1yYuA4+Xgh4ADnHDPow0cHHCwEPICOm7h+Ep4MPEwEfLwQ8gJyjgw8TAR8vRVG8qJn9UtLo1KcDJb3nnBtvZrWSVkhalXruJefcLVHUACC+6ODDRMDHSyQB75z7TNtjM7tb0o60p9c458ZHsV4A8VdgUk0FHXyICPh4iSTg25iZSbpC0v+Icj0AkmPIgDKVFHF0MEQEfLxE/Vs2SdIW59wbactGmtkiM5ttZpM6+0Yzm2Zm9WZW39DQEHGZAHqqu4Nuaivp3kPU3NKsfc37fJeBND3u4M3sWUmDO3jqdufcY6nHV0l6OO25zZJqnHPvmNlpkn5nZmOdczvbv4hzbrqk6ZJUV1fnelongHjh+HuY9jbv9V0C2ulxwDvnLjjc82ZWJOlTkk5L+559kvalHi8wszWSjpdU39M6ACQLZ9CHiSE38RPlLvoLJK10zm1sW2BmVWZWmHo8StJxktZGWAOAmKGDDxPH3+MnypPsrtTBu+cl6RxJ3zSzRkktkm5xzm2PsAYAEevumBvuIhcmAj5+Igt459zUDpY9KunRqNYJIN7MuA98qAj4+OFaFQA5M6hfL/UqLvRdBiKwu4lj8HFDwAPIGbr3cNHBxw8BDyBnOP6efS89+ogWznxMzU1NXusg4OMn0kl2AMLXnUE3Ixhyk1U7G7bqpRm/VHNjoxY/PVPnXH29jq073UstBHz80MEDyBk6+Oya98tfqLmxUZL07uZNeuyuf9av/+UftX9v7sN2TyMBHzcEPICc4Rh89mxdv1Yr5r1w0LLKmlqdfeUUlfQqy3k9nGQXP+yiB5AzdPDZM+fBn0iudYp3UXGJzrj8StX91adUWOTnzzq76OOHgAeQE5V9S9WnlD852bD+1YXasGSRJKn6xJN14bRbVT5kmNeaCPj44bcNQEasi2fZMYM+O5xzmvPQT9WrT1+dc/X1Oum8C7u8DaJEwMcPAQ8gJ5hBnx0r5r2g8sFDdflX/q/6DCz3Xc6HCPj4IeAB5AQdfHZU1dTqxEnn+S7jEAR8/HAWPYCcGFFJB58NVSNG+i6hQwR8/BDwADLS1aO/dPBh4zr4+CHgAeQEx+DDRgcfPwQ8gMhV9CnRgLJi32UgQgy6iR8CHkDkmGAXPjr4+CHgAUSOCXbhI+Djh4AHkJkunGVHBx+25pZm7Wve57sMtEPAA4gcHXzY9jbv9V0COkDAA4gcHXzY2D2ffaPLR2f8GkyyAxA5OviwcQ189oyrHKdp46bpnOHnqCDDHpyAB5ARO8JB+AFlxSrvU5KjauADl8hlrm5QnaaNm6YzhpyRtZsHEfAAIsXu+fCxi77nzhp6lm4ad5NOG3Ra1l+bgAcQKSbYhY8OvvvOqz5P08ZN00mVJ0W2DgIeQKSYQR8+OviuMZkurr1YN467UceXHx/5+gh4AJGigw8fAX94hVaoT4z6hG44+QaNHJC7uwES8AAycqTzgejgw0fAd6y4oFiXHXuZrjvpOg3vNzzn6yfgAUSKDj58XCZ3sF6FvfTp4z+tqWOnalCfQd7qIOABRKZvaZGq+pX6LgMRo4Nv1buot64ac5WmnDhFR5Ud5bscAh5AdGoq2D2fD/I94PuX9NfVJ1ytvz7hrzWgdIDvcj5EwAPIyOEOwddWEvD5IF8DvqJXha458Rp9ZvRn1Lekr+9yDkHAA4gMx9/zQ74F/NG9j9b1J12vTx33KZUVlfkup1MEPIDIcAZ9fsiXQTfD+g7TDSffoMnHTFZJYfzHLxPwACJDB58fQu/ga/vX6qZxN+mSkZeouKDYdzldRsADiAx3kcsPoQb88eXH66ZxN+nCmgtVWFDou5xuI+ABZKSzQTdlxYUa1J9L5PJBaNfBn3TUSZo2bpo+Uv0RFVhmt2z1iYAHEImait5Zu+0l4i2UDn7C0RN087ib9ZdD/zKIn10CHkAkuE1s/kh6wJ859EzddPJNqhtc57uUrCLgAUSitpLj7/kiqQF/bvW5mnbyNJ1cdbLvUiJBwAPIiHUy6oYOPn8kKeBNpo/WflQ3nXyTRleM9l1OpAh4AJHgDPr80NzSrL3Ne32XcUSFVqiPj/q4bjj5Bo0aMMp3OTlBwAOIBB18foh7uBcVFH14y9bqftW+y8kpAh5A1pUUFWjogPiO8ET2xHX3fGlh6Ye3bB3cZ7Dvcrwg4AFkXXV5mQoKkn+ZEY4sbtfA9y7qrc+M+YyuOfEaVZZV+i7HKwIeQEY6ulyY4+/5Iy5z6PuV9NPVJ1ytz57w2VjdstWnjEb0mNn/NLNlZtZiZnXtnvuKma02s1VmdlHa8otTy1ab2W2ZrB9APDGDPn/43kVfXlquL074op6+/Gl9bvznCPc0mXbwSyV9StL/S19oZidKulLSWElDJT1rZsennv6hpAslbZQ038wed84tz7AOADHCfeDzh6+AP7rsaE09aaouP+5y9S7m560jGQW8c26FpI5G+k2W9Ihzbp+kdWa2WtLE1HOrnXNrU9/3SOprCXggIHTw+SPXAT+s7zBdf9L1mnzsZJUWcq+Dw4nqGPwwSS+lfb4xtUyS/txu+ekR1QAgBzo6lY77wOePXAX8iP4jdOPJN+rjoz6eqFu2+nTEgDezZyV1dI3B7c65x7Jf0ofrnSZpWurTfWa2NKp1xUClpG2+i4gQ7y/Zuv3+ar8TUSXZx7ZLiKVaqif0RPvFwby/TmQ0au+IAe+cu6AHr7tJUvpEgeGpZTrM8vbrnS5puiSZWb1zLqy7AKTh/SUb7y+5Qn5vEu8v6cysPpPvj+pGt49LutLMSs1spKTjJL0iab6k48xspJmVqPVEvMcjqgEAgLyV0TF4M7tM0vclVUl6wswWO+cucs4tM7NfqfXkuSZJn3fONae+51ZJsyQVSnrAObcso3cAAAAOkelZ9DMkzejkuW9J+lYHy2dKmtnNVU3vfnWJwvtLNt5fcoX83iTeX9Jl9P7MOZetQgAAQExEdQweAAB4FLuAz6fxt2b2SzNbnPpYb2aLU8trzWxP2nM/9lxqj5jZN8xsU9r7+Fjacx1uy6Qws7vMbKWZLTGzGWY2MLU8iG0nJff3qjNmVm1mz5vZ8tTfmC+mlnf6c5o0qb8jr6XeR31qWYWZPWNmb6T+W+67zu4ys9Fp22exme00s79L+rYzswfMbGv6ZeCdbS9rdU/q93GJmU044gqcc7H6kHSCWq/9e0FSXdryEyW9KqlU0khJa9R6ol5h6vEoSSWprznR9/vowfu+W9LXU49rJS31XVMW3tM3JH2pg+Udbkvf9XbzvX1UUlHq8XckfSewbRfE71W79zRE0oTU436SXk/9LHb4c5rED0nrJVW2W3anpNtSj29r+1lN6kfqZ/NtSSOSvu0knSNpQvrfjM62l6SPSXpSrbOlzpD08pFeP3YdvHNuhXNuVQdPfTj+1jm3TlLb+NuJSo2/dc7tl9Q2/jYxrHXW7xWSHvZdS450ti0Twzn3tHOuKfXpS2qd6RCSxP9eteec2+ycW5h6/L6kFTowYTNkkyX9LPX4Z5I+6a+UrDhf0hrn3AbfhWTKOTdH0vZ2izvbXpMl/dy1eknSQDMbcrjXj13AH8YwHTrmdthhlifJJElbnHNvpC0baWaLzGy2mU3yVVgW3JranfRA2q7BELZZuuvV+i/rNiFsu9C20UHMrFbSqZJeTi3q6Oc0iZykp81sgbVOA5WkQc65zanHb0sa5Ke0rLlSBzdDoWy7Np1tr27/TnoJeDN71syWdvCR6A6hI118r1fp4B/YzZJqnHOnSvp7SQ+ZWf9c1t1VR3h/90o6RtJ4tb6nu33W2l1d2XZmdrtaZz08mFqUmG2Xr8ysr6RHJf2dc26nEv5z2s7ZzrkJki6R9HkzOyf9Sde6rzexl05Z64C0SyX9OrUopG13iEy3V1Q3mzks52n8rQ9Heq9mVqTWW+6elvY9+yTtSz1eYGZrJB0vKaOxhVHo6rY0s/sk/T716eG2ZWx0YdtNlfQJSeenfhETte2OIBHbqLvMrFit4f6gc+63kuSc25L2fPrPaeI45zal/rvVzGao9VDLFjMb4pzbnNqlu9VrkZm5RNLCtm0W0rZL09n26vbvZJJ20Yc6/vYCSSudcxvbFphZlZkVph6PUut7Xeupvh5rd3zoMkltZ4p2ti0Tw8wulvRlSZc653anLQ9i2yn5v1eHSJ3rcr+kFc6576Yt7+znNFHMrI+Z9Wt7rNYTQZeqdbtdm/qyayVFdpOwHDhob2co266dzrbX45KuSZ1Nf4akHWm78jvkpYM/HMu/8bftjydJrWdWftPMGiW1SLrFOdf+RIwkuNPMxqt1F9N6STdL0uG2ZYL8QK1XATzTmht6yTl3iwLZds65poT/XnXkLElTJL1mqUtSJX1V0lUd/Zwm0CBJM1I/j0WSHnLOPWVm8yX9ysxukLRBrSf0Jk7qHy0X6uDt0+HfmKQws4clnSup0sw2SvonSd9Wx9trplrPpF8tabek6474+qk9iwAAICBJ2kUPAAC6iIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAD9fxxr8GBUDnuuAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAp+ElEQVR4nO3deZhcZZn38d/dazoLWchCk33HQBZCgzBCXGBkGRHUkSEo4gIBFUeceXVQZhQZcQEZr1dFZ+JLnDBjCMgaEISAIihk6ZCdkJ1Op7N19qWT3up+/+gKVppO0kudOl1PfT/XVVefes6p57lPTnX/cpY6Ze4uAAAQlry4CwAAAOlHwAMAECACHgCAABHwAAAEiIAHACBABDwAAAFKS8Cb2Qwz22FmK1La+pjZXDNbm/zZO9luZvZTM1tnZsvMbHI6agAAAH+Vrj34/5Z0WbO22yW95O6jJb2UfC5Jl0sanXxMk/TLNNUAAACS0hLw7v6KpN3Nmq+SNDM5PVPS1SntD3qTeZJ6mVlpOuoAAABNojwHP8Ddtyant0kakJweKKkyZbnNyTYAAJAmBZkYxN3dzNp0T1wzm6amQ/jq1q3bOWeccUYktQEA0BktWrRop7v3a+/rowz47WZW6u5bk4fgdyTbqyQNTlluULLtGO4+XdJ0SSorK/Py8vIISwUAoHMxs4qOvD7KQ/RzJN2QnL5B0lMp7Z9JXk1/vqR9KYfyAQBAGqRlD97MHpL0AUl9zWyzpO9I+qGkR8zsC5IqJF2TXPxZSVdIWiepRtLn0lEDAAD4q7QEvLtPPc6si1tY1iV9OR3jAgCAlnEnOwAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPJDLEom4KwAQEQIeyGVzviLV1cRdBYAIEPBArqpaJC35X+mVe+OuBEAECHggV732s+TPn0o7VsVbC4C0I+CBXLR7o/Rm8ushEg3SM1/jfDwQGAIeyEXzfil5SqBver3pcD2AYBDwQK6p2S0t/p93t8/9tnRoZ+brARAJAh7INeUPSPUtXDl/eI/0wr9mvh4AkSDggVxSf0SaP/3485c+JG18JXP1AIgMAQ/kkmUPS4d2nHiZZ/5JaqjNTD0AIkPAA7kikfjrR+NOZNda6S//N/p6AESKgAdyxdrnm8K7NV75sbRrfbT1AIgUAQ/kir/8tPXLNtZKv/snyT26egBEioAHcsHmcmnTa217zYaXpeWPRlIOgOgR8EAueK0Ne++pnv9m08fnAGQdAh4I3e4N0qqn2/faQ9XSi99Nbz0AMoKAB0L3+i+OvS1tWy36tVS5IH31AMgIAh4I2aFd0uI03GP+6dukxvqO9wMgYwh4IGTlD0gNhzvez46V0rxfdLwfABlDwAOhqj8szf+v9PX38g+lvZvS1x+ASBHwQKiWzpZq0vjtcPU10rPf4LPxQJYg4IEQJRLS6z9Pf79rnpPeeib9/QJIOwIeCNGa56Rd66Lp+9lvSLUHoukbQNoQ8ECI2nJb2rY6sEX64/ej6x9AWhDwQGgqF0iV86IdY/5/SluWRDsGgA4h4IHQtPe2tG3hCemZ26REY/RjAWgXAh4Iya710qoMXQS3ZbG08IHMjAWgzQh4ICSv3y8pgx9je+kuaf/WzI0HoNUIeCAUh3ZKS36T2THrDki/vz2zYwJoFQIeCMXC/yc1HMn8uG8+Ka2dm/lxAZwQAQ+EoP6wtGB6fOP/7p+lupr4xgfwLgQ8EIIls6SaXfGNv7dCeuXe+MYH8C4EPJDtEo3Ji+ti9tpPpR2r4q4CQBIBD2S71c9Ku9fHW0N+kVTSO5r73wNol4K4CwDQQa/9rON9FPWQuvRMPk5p+ll8ygnaeh3bVtil4zUASCsCHshmm+ZLVYukrqc2C+CUIH5XW7Plik+R8vLjXhMAaUbAA9lsUJn0bzsls7grAdDJEPBANmPPG8BxcJEdAAABIuABAAgQAQ8AQIAiPQdvZmMlPZzSNELStyX1knSTpOpk+7fc/dkoawEAIJdEGvDuvlrSJEkys3xJVZKekPQ5ST9x9x9HOT4AALkqk4foL5a03t0rMjgmAAA5KZMBf62kh1Ke32pmy8xshpn1br6wmU0zs3IzK6+urm4+GwCQZrt3v6bKypmqqdkod4+7HHRQRgLezIokfVTSb5NNv5Q0Uk2H77dKuq/5a9x9uruXuXtZv379MlEmAOSshoZDenPVN7Sp8gFt3fak6utj/HZCpEWmbnRzuaQ33H27JB39KUlm9itJz2SoDgBACw4dWq0zx/1YvXqdJzM+YBWCTAX8VKUcnjezUnffmnz6MUkrMlQHAKAFPXtOjrsEpFnkAW9m3ST9raSbU5rvMbNJklzS283mAQCADoo84N39kKRTm7VdH/W4AADkMk60AAAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABKoh6ADN7W9IBSY2SGty9zMz6SHpY0jBJb0u6xt33RF0LAAC5IlN78B9090nuXpZ8frukl9x9tKSXks8BAECaxHWI/ipJM5PTMyVdHVMdAAAEKRMB75JeMLNFZjYt2TbA3bcmp7dJGpCBOgAAyBmRn4OXdKG7V5lZf0lzzeyt1Jnu7mbmzV+U/M/ANEkaMmRIBsoEACAcke/Bu3tV8ucOSU9IOk/SdjMrlaTkzx0tvG66u5e5e1m/fv2iLhMAgKBEGvBm1s3MehydlvRhSSskzZF0Q3KxGyQ9FWUdAADkmqgP0Q+Q9ISZHR1rlrv/3swWSnrEzL4gqULSNRHXAQBATok04N19g6SJLbTvknRxlGMDAJDLuJMdAAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAIU9bfJAUCrNDY2qra2VkeOHHnXz9TpUaNGaeTIkXGXC3R6BDyADjsazi0F8sl+Hp2ur69v1VhlZWURrw0QBgIeQKskEgmtXLlSy5Yt0+HDh48J6daGc0cNGzZMp556akbGArId5+ABtEpeXp7Gjx+vyy+/XIMHD9aBAwd04MCBjIW7JJ1zzjkZGwvIduzBA2iTPn366NJLL9UHPvABLV26VPPnz9euXbsiH7ekpERnnHFG5OMAoSDgAbRLcXGxzjvvPJWVlWnDhg2aN2+e1q1bF9l4EydOVGFhYWT9A6Eh4AF0SF5enkaNGqVRo0Zp586dWrBggZYsWaK6urq0jjN58uS09geEjoAHkDZ9+/bVFVdcoQ996ENavHixFixYoD179nS438GDB6t///5pqBDIHQQ8gLTr0qWLLrjgAr33ve/V2rVrNW/ePG3cuLHd/XFxHdB2BDyAyOTl5Wns2LEaO3astm/frgULFmjp0qVqaGhodR/FxcUaN25chFUCYSLgAWTEgAEDdOWVV+riiy/WG2+8oQULFmj//v0nfd2ECRNUVFSUgQqBsBDwADKqa9euuvDCC3XBBRdo9erVmjdvnjZt2nTc5bm4DmgfAh5ALPLz8zVu3DiNGzdOW7du1fz587V8+XI1Nja+s8zpp5+u0tLSGKsEshcBDyB2paWluvrqq3XJJZdo0aJFWrhwoQ4ePMjeO9ABBDyATqN79+56//vfr/e9731atWqVxowZE3dJQNYi4AF0OgUFBRo/fnzcZQBZjS+bAQAgIo1t+EhouhHwAABE5E//80BsIU/AAwAQgYb6ei1/6Xktfm5OLOMT8AAARGDr2rfUUF+n1x59SAd3R/+Vys0R8AAARKBy5XJJ0tgLLlSX7j0yPj5X0QMAEIEta1bpkhu/pAmXXC4zy/j4BDwAAGnm7rpo6g0aMGJUbDVwiB4AgDQzs1jDXSLgAQAIEgEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACFBkAW9mg83sj2b2ppmtNLOvJtvvNLMqM1uSfFwRVQ0AAOSqKO9F3yDpn939DTPrIWmRmc1NzvuJu/84wrEBAMhpkQW8u2+VtDU5fcDMVkkaGNV4AADgrzJyDt7Mhkk6W9L8ZNOtZrbMzGaYWe9M1AAAQC6JPODNrLukxyTd5u77Jf1S0khJk9S0h3/fcV43zczKzay8uro66jIBAAhKpAFvZoVqCvffuPvjkuTu29290d0Tkn4l6byWXuvu0929zN3L+vXrF2WZAAAEJ8qr6E3SA5JWuft/pLSXpiz2MUkroqoBAIBcFeVV9O+TdL2k5Wa2JNn2LUlTzWySJJf0tqSbI6wBAICcFOVV9H+WZC3MejaqMQEAQBPuZAcAQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAZBlvSKhmeXXcZaCTi+z74AEA6eWNCdW8sUOHFm5Tt/NK4y4HnRwBDwCdnCdch5dW68j6veoyprf63TxBls8BWJwYAQ8AnZQnXLXr9qph12EVD++prmf3j7skZBECHgA6GXdX4+4jajxYr6IhPdRlTO+4S0IWIuABoJPx+oTy+3RRwaklcZeCLEbAA0Ank1eUH3cJCABXaQAAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeaVW7YYMSR47EXQYA5DwCHmnlR45o0403qnH//rhLAYCcRsAjrYrHjNGRN1ep4lOfVv327XGXAwA5i4BHWllBgUomTFDt2rV6e+pU1W7YEHdJAJCTCHikXcnZkyRJDVu2quK6T+nw0qXxFgQAOYiAR9p1Pfvsd6Yb9+5VxWc/p4OvvBJjRQCQewh4pF3JxInHPPfDh1X5pS9r75NPxlMQAOQgAh5pl9+zp4pGjTy2saFBW2//pnY9MCOeogAgx8QW8GZ2mZmtNrN1ZnZ7XHUgGqmH6VPtuPdebf/hj+SJRIYrAoDcEkvAm1m+pPslXS5pnKSpZjYujloQjZJJLQe8JO3+7//Wln+5XV5Xl8GKACC3xLUHf56kde6+wd3rJM2WdFVMtSACJcfZgz9q/9NPq/KLX1Li0KEMVQQAuSWugB8oqTLl+eZk2zvMbJqZlZtZeXV1dUaLQ8cVDR+m/J49T7jMob/8RRWf/Zwadu/OUFUAkDs67UV27j7d3cvcvaxfv35xl4M2MrOT7sVL0pHly1Ux9TrVba7KQFUAkDviCvgqSYNTng9KtiEgrQl4SaqrqFDF1Kk6snp1xBUBQO6IK+AXShptZsPNrEjStZLmxFQLInL0jnat0VBdrYpPfVqHFiyIriAAyCGxBLy7N0i6VdLzklZJesTdV8ZRC6JTMn68lJ/f6uUTBw+q8sabtP+FFyKsCgByQ2zn4N39WXcf4+4j3f3uuOpAdPJKStTlPe9p02u8rk5VX71Ne2bPjqgqAMgNnfYiO4Shtefhj+GubXd+V9U/+7ncPf1FAUAOIOARqa5tOA/f3M7779e279wpb2xMX0EAkCMIeESqZNKkDr1+7yOPqOq225SorU1PQQCQIwh4RKqgtFQFAwZ0qI8Dc19U5RduVOP+/WmqCgDCR8AjUq294c3J1JSXq+LT16t++440VAUA4SPgEbmOnIdPVbtmjSqmTlXtho1p6Q8AQkbAI3Lp2IM/qn7LFlVcd50OL1uWtj4BIEQEPCLX5YwzZMXFaeuvce9eVdzwWR189dW09QkAoSHgETkrKlKX8WeltU8/fFiVX/yS9j31VFr7BYBQEPDIiK5pPEz/joYGbfmX27Vrxq/T3zcAZDkCHhmRzvPwze245x5tv+deeSIR2RgAkG0IeGRER294czK7Z8zQlttvl9fXRzoOAGQLAh4ZUdCnj4qGDo10jP1znlbll76sxKFDkY4DANmAgEfGRHmY/qhDr76qis99Xg179kQ+FgB0ZgQ8MiYTAS9JR5YtU8XU61S3uSoj4wFAZ0TAI2NK0nRHu9aoe/ttVUydqiOrV2dsTADoTAh4ZEzxqFHK6949Y+M1VFer4tPX69CCBRkbEwA6CwIeGWN5eZFfTd9c4sABVd54k/bPnZvRcQEgbgQ8MiqTh+mP8ro6VX31Nu2Z/XDGxwaAuBDwyKhI7mjXGomEtt15p6rvv1/uHk8NAJBBBDwyqsuECVJefG+7nT/7ubZ997vyxsbYagCATCDgkVH53bureMyYWGvYO/thVd32NSVqa2OtAwCiRMAj4+I4D9/cgblzVXnjTWrcvz/uUgAgEgQ8Mi628/DN1CxcqIrrP6P67TviLgUA0o6AR8Zl6o52rVG7erUqrrtOtRs3xl0KAKQVAY+MKxw0SPl9+8Zdxjvqq6pUcd2ndHj58rhLAYC0IeCRcWamrp3gPHyqxj17VHHDZ3Xw1T/HXQoApAUBj1iUTOo8h+mP8poaVX7xi9r39NNxlwIAHUbAIxad6Tz8MRoatOXr39DuBx+MuxIA6BACHrHocuY4WWFh3GW0qHjMGHUtK4u7DADoEAIescgrLlaXM8+Mu4xj5efr1C/eouGP/lZdxo2LuxoA6BACHrHpTIfpi0aN1LDZs9X/q1+VFRXFXQ4AdBgBj9h0hjvaKS9Pp950k4Y//rhKxp8VdzUAkDYFcReA3JXp74ZvrmjECJ3+g++rZOLEWOsAgCiwB4/YFPbvr8KBAzM/sJn6fOHzGv74Y4Q7gGCxB49YlZx9tuqrqjI2XtHQoSr9wQ/UdXLnOf8PAFFgDx6xyth5eDP1ueEGDX/yCcIdQE5gDx6xysQ3yxUOGaLTv383n20HkFMIeMSqeMwYWdeu8pqaSPrvff316v+125TXtWsk/QNAZ8UhesTKCgpUMmFC2vstHDRIQ2bO1Gl3fItwB5CTCHjELt3n4XtfN1UjnnpS3d57Xlr7BYBswiF6xK7r2WdrVxr6KTi9VKfffbe6XXBBGnoDgOxGwCN26fgseq9rrlH/b3xd+d27p6EiAMh+BDxil9+zp4pGjVTduvVtfm1BaalK//3f1f3C90VQGQBkL87Bo1Noz8flev79JzRizlOEOwC0IJKAN7N7zewtM1tmZk+YWa9k+zAzO2xmS5KP/4xifGSfkkmtD/iC/v01ePp/6fTvfU/5PXpEWBUAZK+o9uDnSjrL3SdIWiPpmynz1rv7pOTjlojGR5Zp7VfH9rz6ao14eo66T5kScUUAkN0iOQfv7i+kPJ0n6e+jGAfhKBo+TPk9e6px374W5+f366vSu+5Sjw9+MMOVAUB2ysQ5+M9Lei7l+XAzW2xmfzKzizIwPrKAmR13L/6Uj16pkU8/TbgDQBu0ew/ezF6UdFoLs+5w96eSy9whqUHSb5Lztkoa4u67zOwcSU+a2Znuvr+F/qdJmiZJQ4YMaW+ZyCIlZ5+tgy+//M7z/FNPVel371SPSy6JrygAyFLtDnh3P+FfXTP7rKSPSLrY3T35mlpJtcnpRWa2XtIYSeUt9D9d0nRJKisr8/bWieyReke7U664QgP+7V9V0Lt3fAUBQBaL5By8mV0m6RuS3u/uNSnt/STtdvdGMxshabSkDVHUgOxTMn68Cvr104A77tApl10adzkAkNWiutHNzyUVS5prZpI0L3nF/BRJd5lZvaSEpFvcfXdENSDL5JWUaMRzzym/e7e4SwGArBfVVfSjjtP+mKTHohgTYSDcASA9uJMdAAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABCgyALezO40syozW5J8XJEy75tmts7MVpvZpVHVAABAriqIuP+fuPuPUxvMbJykayWdKel0SS+a2Rh3b4y4FgAAckYch+ivkjTb3WvdfaOkdZLOi6EOAACCFXXA32pmy8xshpn1TrYNlFSZsszmZBsAAEiTDgW8mb1oZitaeFwl6ZeSRkqaJGmrpPva2Pc0Mys3s/Lq6uqOlAkAQM7p0Dl4d7+kNcuZ2a8kPZN8WiVpcMrsQcm25n1PlzRdksrKyrwjdQIAkGuivIq+NOXpxyStSE7PkXStmRWb2XBJoyUtiKoOAAByUZRX0d9jZpMkuaS3Jd0sSe6+0swekfSmpAZJX+YKegAA0iuygHf3608w725Jd0c1NgAAuY472QFAUiLB5T4IR9Q3ugGATm/bviMqyDed0qVQRXkWdzlAWhDwAHJSTV2DVlTtV9eifI3q311dCvPjLglIKwIeQE55c8t+rd1xQP17dNH5I/rIjD12hImABxC8w3WNenb5Vu08WKtzh/fRVZO4eSbCR8ADCNbqbQf0+OLNyjfTNWWDNaxvt7hLAjKGgAcQlCP1jXpm2VY9v3Kbzjq9p26eMlJ9uhXFXRaQcQQ8gCCs23FA/ztvkxZX7tUnzxmkn009mwvnkNMIeABZ60h9o55bsVWz5m9SwqWbLhqhb39knPL4qBtAwAPIPuurD2rW/E16cnGVzhnaW7dffobOGdon7rKAToWAB5AV6hoS7+ytL928Vx+fPEi/veUCjejXPe7SgE6JgAfQqW3ceUgPLdikRxdtlrvr+guG6RefmqxTuxfHXRrQqRHwADqd+saEnl+5TbPmb9LrG3ZpSJ+u+tolo/X35wxWSREXzgGtQcAD6DQ27arRrAWb9OiiSu08WKdJg3vpF9dN1qVnnsaFc0AbEfAAYtXQmNDcN7dr1oJN+vO6nZKki88YoJvfP0LnDuPCOaC9CHgAsajcXaPZCzfpkfLNqj5Qq6KCPF177mDdeNEIjeTCOaDDCHgAGdPQmNCLq3Y07a2vrVbCpV5dC/WVD43SZy4Ypn49uHAOSBcCHkDkqvYe1uwFm/RIeaW276+VJA3uU6IbLxyha8q4cA6IAgEPIBKNCdcf3tqhWfMr9Kc1TXvrkjRxUE9NmzJSl511mvK5cA6IDAEPIK227jus2Qsq9Uh5pbbuOyJJMpMuPqO/bpoyQuePODXmCoHcQMAD6LBEwvXymh2aNX+T/ri6Wo3J3fWigjx9bNJA3TRluEb17xFzlUBuIeABtNv2/Uf08MJKPbywUlV7D7/T3rOkUJ8+f4hu+Jth6t+jS4wVArmLgAfQJomE65W11Zo1f5P+8NYONRw9uS5pUO8SfeHC4fqHcweraxF/XoA48RsIoE2mv7pBP3zurWPaxg/sqZumjNDfjS/lwjmgkyDgAbRaTV2Dpr+yQVLThXMfGNNPN00Zob8Z2TfmygA0R8ADaLUHX6/QwSMN+uQ5g3TTlBEaM4AL54DOioAH0CqJhKsgz/Tqv3xQA07hwjmgsyPgAbRKXp7pxotGxF0GgFbKi7sAAACQfgQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQox219frT7gNp75eABwAgRhsO1+rR7bvT3i8BDwBAjLrn52lol+K090vAAwAQox4F+RpaUpT2fgl4AABi1C0/X0O7EPAAAASlR0Gehpak/xA996IHACBGxXl5GlCc/v1t9uABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAAQoko/JmdnDksYmn/aStNfdJ5nZMEmrJK1Ozpvn7rdEUQMAALkskoB39384Om1m90nalzJ7vbtPimJcAADQJNIb3ZiZSbpG0oeiHAcAABwr6nPwF0na7u5rU9qGm9liM/uTmV10vBea2TQzKzez8urq6ojLBAAgLO3egzezFyWd1sKsO9z9qeT0VEkPpczbKmmIu+8ys3MkPWlmZ7r7/uaduPt0SdMlqayszNtbZ5Q2v7VbvUu7qVvP9N9DGACAjmh3wLv7JSeab2YFkj4u6ZyU19RKqk1OLzKz9ZLGSCpvbx1xGji2t16ZvUalo3pqzLkt/V8HAIB4RHmI/hJJb7n75qMNZtbPzPKT0yMkjZa0IcIaImVmuvCTo/Xmn7fo99OX6/CBurhLAgBAUrQBf62OPTwvSVMkLTOzJZIelXSLu++OsIbI5Rfk6YpbJmjvjsN66K75Wr94R9wlAQAgc++Up7ePUVZW5uXlnfso/qF9tXrsR4t0YPcRjT53gKZcO0ZduhXGXRYAIEuZ2SJ3L2vv67mTXZp061msK/9xorp0K9Tahdv10F3z9fbynXGXBQDIUQR8GvU+rZv+7ssTVFCUp5p9dfrd/cv00oOrVHe4Ie7SAAA5hoBPs9NG9NSHbzxLlmeSpLde26qH7pqvyjez+lIDAECWIeAjMHxCX33gurHvPD+4p1ZzfrpEL89arboj7M0DAKJHwEdk3IWn67wrhx/TtvKVKj38vQWqWrMnpqoAALmCgI/QuX83XGdedPoxbft3HtGTP1msVx9Zo4a6xpgqAwCEjoCP2JSpYzV8Yt9jG11a9ofNevjuhdq2YV/LLwQAoAMI+Ijl5Zk+fOOZKh3Z813z9m6v0eP3LtJrj69TY30ihuoAAKEi4DOgoDBfV3xpgnqXdnvXPHdp8Qub9MgPFmpHxbu+cwcAgHYh4DOkS7dCXfmVierWq+Vvntu95ZAe+9EizZ+zQY2N7M0DADqGgM+gHn266MqvTFRx15a/xC+RcJU/+7Ye/WG5dm4+mOHqAAAhIeAz7NSB3XXFF8crv+D4//Q7Kw/qtz9YqPJnNyrB3jwAoB0I+BicPrq3/vbz42R2/GUSja75czbqsXsWafeWQ5krDgAQBAI+JiMn99eF14w56XI7Kg7oke8v1BsvVMgTnf+b/wAAnQMBH6MJHxykyZcNPelyjQ0Jvf74ej3+4ze0d3tNBioDAGQ7Aj5mF1w9Umecf1qrlt22YZ+WvFQZcUUAgBAQ8J3AB68/Q0POPPWky5X0KNT5V43IQEUAgGxHwHcCefl5umzaWeo/tMcJl3vfJ0apS7fCDFUFAMhmBHwnUVicr4/cOlE9+5e0OH/g2N4ae35phqsCAGQrAr4TKelRpI/+4ySVnFJ0THt+Qd4x3y8PAMDJEPCdzCl9S3TlrRNV2CX/nbbJlw5RrwFdY6wKAJBtCPhOqN+QHrr85vHKyzf1GtBV51w2LO6SAABZpuWboiN2g9/TRxff8B6VnFKk/EL+HwYAaBsCvhMbc17rPh8PAEBz7BoCABAgAh4AgAAR8AAABIiABwBEKuEJvVz5slbuWhl3KTmFgAcARKI+Ua856+foE3M+oa/84SsqMK7rziT+tQEAaVVTX6PH1z6umW/O1LZD2yRJBVagET35sqxMIuABAGmx58gezXprlh566yHtq913zLyhpwxVYT5flpVJBDwAoEO2HNyimStn6vG1j+tI45EWlxnde3SGqwIBDwBolzV71mjGihn6/cbfq9EbT7gsAZ95BDwAoNXcXW/seEMPLH9Ar1a92urXjeo1KsKq0BICHgBwUkc/6jZjxQwtrV7a5tezB595BDwA4LjqG+v1u42/069X/Fob9m1oVx8lBSUa2H1gmivDyRDwAIB3qamv0aNrHtWDbz6o7TXbO9TXqF6jlGfcdiXTCHgAwDt2H9mtWauaPuq2v25/Wvrk/Hs8CHgAgDYf2KyZK2fqyXVPHvejbu3F+fd4EPAAkMNW716tGStm6Pm3nz/pR93ai4CPBwEPADnG3VW+vVwPrHhAf6n6S+TjcYg+HgQ8AOSIhCf0x01/1IwVM7Rs57KMjNmnSx/1LembkbFwLAIeAAJX31ivZzY8o1+v/LU27tuY0bHZe48PAQ8AAXN33T3/bj229rFYxuf8e3z4YCIABMzM9J0LvqP73n+f+nftn/HxR/ci4OPSoYA3s0+a2UozS5hZWbN53zSzdWa22swuTWm/LNm2zsxu78j4AICTMzN9eNiHNefqOfrMuM8o3/IzNvao3hyij0tH9+BXSPq4pFdSG81snKRrJZ0p6TJJvzCzfDPLl3S/pMsljZM0NbksACBi3Qq76evnfl0Pf+RhTew3MSNjcg4+Ph0KeHdf5e6rW5h1laTZ7l7r7hslrZN0XvKxzt03uHudpNnJZQEAGTK2z1g9ePmD+u7ffFc9i3tGNs7A7gPVrbBbZP3jxKI6Bz9QUmXK883JtuO1AwAyKM/y9PHRH9fTVz+tj4/+eCRjcP49Xie9it7MXpR0Wguz7nD3p9Jf0jvjTpM0Lfm01sxWRDVWJ9BX0s64i4gQ65fdQl6/kNdNinn9VmiFfq6fRzlE6NtvbEdefNKAd/dL2tFvlaTBKc8HJdt0gvbm406XNF2SzKzc3ctaWi4ErF92Y/2yV8jrJrF+2c7Myjvy+qgO0c+RdK2ZFZvZcEmjJS2QtFDSaDMbbmZFaroQb05ENQAAkLM6dKMbM/uYpJ9J6ifpd2a2xN0vdfeVZvaIpDclNUj6snvTtxiY2a2SnpeUL2mGu6/s0BoAAIB36VDAu/sTkp44zry7Jd3dQvuzkp5t41DT215dVmH9shvrl71CXjeJ9ct2HVo/c/d0FQIAADoJblULAECAOl3A59Ltb83sYTNbkny8bWZLku3DzOxwyrz/jLnUdjGzO82sKmU9rkiZ1+K2zBZmdq+ZvWVmy8zsCTPrlWwPYttJ2ft7dTxmNtjM/mhmbyb/xnw12X7c92m2Sf4dWZ5cj/JkWx8zm2tma5M/e8ddZ1uZ2diU7bPEzPab2W3Zvu3MbIaZ7Uj9GPjxtpc1+Wny93GZmU0+6QDu3qkekt6jps/+vSypLKV9nKSlkoolDZe0Xk0X6uUnp0dIKkouMy7u9WjHet8n6dvJ6WGSVsRdUxrW6U5J/6eF9ha3Zdz1tnHdPiypIDn9I0k/CmzbBfF71WydSiVNTk73kLQm+V5s8X2ajQ9Jb0vq26ztHkm3J6dvP/pezdZH8r25TdLQbN92kqZImpz6N+N420vSFZKek2SSzpc0/2T9d7o9eM/B29+amUm6RtJDcdeSIcfbllnD3V9w94bk03lquqdDSLL+96o5d9/q7m8kpw9IWqXcuJPmVZJmJqdnSro6vlLS4mJJ6929Iu5COsrdX5G0u1nz8bbXVZIe9CbzJPUys9IT9d/pAv4EQr797UWStrv72pS24Wa22Mz+ZGYXxVVYGtyaPJw0I+XQYAjbLNXn1fQ/66NC2HahbaNjmNkwSWdLmp9saul9mo1c0gtmtsia7gYqSQPcfWtyepukAfGUljbX6tidoVC23VHH215t/p2MJeDN7EUzW9HCI6v3EFrSynWdqmPfsFslDXH3syX9k6RZZnZKJuturZOs3y8ljZQ0SU3rdF+ctbZVa7admd2hpns9/CbZlDXbLleZWXdJj0m6zd33K8vfp81c6O6T1fSNnV82sympM73pWG/WfnTKmm6Q9lFJv002hbTt3qWj26tDn4NvL4/p9rdxONm6mlmBmr5y95yU19RKqk1OLzKz9ZLGSOrQbQuj0NptaWa/kvRM8umJtmWn0Ypt91lJH5F0cfIXMau23UlkxTZqKzMrVFO4/8bdH5ckd9+eMj/1fZp13L0q+XOHmT2hplMt282s1N23Jg/p7oi1yI65XNIbR7dZSNsuxfG2V5t/J7PpEH2ot7+9RNJb7r75aIOZ9TOz/OT0CDWt64aY6mu3ZueHPibp6JWix9uWWcPMLpP0DUkfdfealPYgtp2y//fqXZLXujwgaZW7/0dK+/Hep1nFzLqZWY+j02q6EHSFmrbbDcnFbpAU2ZeEZcAxRztD2XbNHG97zZH0meTV9OdL2pdyKL9FsezBn4jl3u1vm59PkpqurLzLzOolJSTd4u7NL8TIBveY2SQ1HWJ6W9LNknSibZlFfq6mTwHMbcoNzXP3WxTItnP3hiz/vWrJ+yRdL2m5JT+SKulbkqa29D7NQgMkPZF8PxZImuXuvzezhZIeMbMvSKpQ0wW9WSf5n5a/1bHbp8W/MdnCzB6S9AFJfc1ss6TvSPqhWt5ez6rpSvp1kmokfe6k/SePLAIAgIBk0yF6AADQSgQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAATo/wNTVLaIJzcUngAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiw0lEQVR4nO3de5SU9Z3n8c+3q7qhobnTQCM0N1ECNgK2gCgmjsYLncTEnHg35rKDzom7kzPJJibmzGTcuDFmjJnMJDpkxdGcROMcNXFd1GhGzSZZoq0xBu+gEiFcRQUB+/rdP+ppUrTd0Jd66qnnV+/XOX2oeuryfIunmjdV/dTT5u4CAABhqUh6AAAAUHgEHgCAABF4AAACROABAAgQgQcAIEAEHgCAABUk8Ga22sy2m9m6vGVjzewhM3s5+nNMtNzM7Htmtt7MnjGzRYWYAQAA/EWhXsH/u6Qzuy27UtIv3X22pF9G5yXpLEmzo6+Vkm4s0AwAACBSkMC7+68k7eq2+GxJt0anb5X00bzlt3nOWkmjzayuEHMAAICcOH8GP9Hdt0Snt0qaGJ0+QtLredfbFC0DAAAFki3GStzdzaxfx8Q1s5XKvYWv4cOHHzdnzpxYZgMAoBQ9+eSTO929dqC3jzPw28yszt23RG/Bb4+Wb5Y0Ne96U6JlB3H3VZJWSVJjY6M3NzfHOCoAAKXFzDYO5vZxvkV/r6RLo9OXSvp53vJPRnvTL5X0dt5b+QAAoAAK8grezG6X9AFJ481sk6R/kHStpDvN7LOSNko6N7r6GkkrJK2XtE/SpwsxAwAA+IuCBN7dL+jlolN7uK5L+lwh1gsAAHrGkewAAAgQgQcAIEAEHgCAABF4AAACROABAAgQgQcAIEAEHgCAABF4AAACROABAAgQgQcAIEAEHgCAABF4AAACFOfvgy977W1tenntryUzZbJZVWQrlclmlTnwZ1YV2awylZU9LstmK2UV/B8MANB/BD5G2cpKjZwwSffd8E298+auAd2HWUUu/JWVufAf+Krs9p+G7tfJ/afh2A+epbrZRxf4kQEASh2Bj9kRR79PF1/7z7rvn7+lTc+t6/ft3TvV3taq9rbWft/WKiq0/MJL+307AED68f5vEQwfPUaf+No1Oq7po0Vd79S5x2j46DFFXScAoDQQ+CKpyGT0gU/+F33o81eqcmh1UdZ59LL3F2U9AIDSQ+CL7OgTTtJF13xHYydPiXU9FZmsjlpyYqzrAACULgKfgHFTpuqi//mdWAM8/diFGlpTE9v9AwBKG4FPSFX1MH34776iky/+TCwfhZuz7OSC3ycAID0IfMKO//A5+sTXvqFho0YX7D6zVUM06/ilBbs/AED6EPgSMHXefF187XdVd9ScgtzfzEXHq6pIO/IBAEoTgS8RI8aO13n/cK0WnNE06PuacyJvzwNAuSPwJSSTzerUz/yNzrriC8oOGTKg+6iqHqYZC48v8GQAgLQh8CVo7vJTdOE3rtfoSXX9vu2Rxy9VtrIyhqkAAGlC4EtUbf10XfzN72pW45J+3W7OiRzcBgBA4EvakGHDdfYXv6YTz7tEZoffVNUjRmpaw4L4BwMAlDwCX+LMTEvPOU/nfPUfNXTEyENe96ilJ6oikynSZACAUkbgU2L6/IW65NrvatKs2b1e52gObgMAiBD4FBk5foLO+8fr1HDqGe+5rGbsOE2ZMy+BqQAApYjAp0y2slKnr/yvOv3y/6ZsZdWB5UefcFIsh7wFAKQTRUiphlNO1/lXX6eRtRMlSXP41bAAgDwEPsUmzjxSF1/7XR17epMmHXlU0uMAAEoIgU+56poROu2zf5P0GACAEkPgAQAIEIEHACBABB4AgAAReAAAAkTgAQAIEIEHACBABB4AgAAReAAAAkTgAQAIEIEHACBABB4AgAAReAAAApSN887N7GhJP81bNFPS30saLemvJe2Iln/V3dfEOQsAAOUk1sC7+4uSFkiSmWUkbZZ0j6RPS7rB3f8pzvUDAFCuivkW/amSNrj7xiKuEwCAslTMwJ8v6fa881eY2TNmttrMxnS/spmtNLNmM2vesWNH94sBAMAhFCXwZlYl6SOS/iNadKOkWcq9fb9F0vXdb+Puq9y90d0ba2trizEmAADBKNYr+LMkPeXu2yTJ3be5e4e7d0r6oaTFRZoDAICyUKzAX6C8t+fNrC7vso9JWlekOQAAKAux7kUvSWY2XNIHJV2Wt/g6M1sgySW91u0yAAAwSLEH3t33ShrXbdklca8XAIByxpHsAAAIEIEHACBABB4AgAAReAAAAkTgAQAIEIEHACBABB4AgAAReAAAAkTgAQAIEIEHACBABB4AgAAReAAAAkTgAQAIEIEHACBABB4AgAAReAAAAkTgAQAIEIEHACBABB4AgAAReAAAAkTgAQAIEIEHACBABB4AgABlkx4A6K6j09XS3qGWtk61dnSqpa0zd769M/rKnW7tOt/W7Xx7x4HTkrRkxlgtn12r6qpMwo8MAIqHwOMgbR2debHsObKt7d2De+jIdl2efz9/Of3e++vo9EE9hqpMhU4+arxWNNTpg3MnasTQygL97QBAehD4EtI9dH2NbPdXsi0DjGxrx+DjmpSqTIWWz46iPm+iRhJ1AGWOwPfDbzfs1Jt7294b2a4A9/JKNj+6+bfJnY+u39EpT2dbE1OVqdBJUdRPJ+oAcBAC3w8PrNuq2/7fxqTHKGuVGdNJR45X0/zJ+uDciRpVTdQBoCcEvh8uXFJP4BNQmTGdeOR4NTXU6fS5kzRqGFEHgMMh8P0wZ9JIHTdtjJ7c+GbSowSvMmNaNmu8mubX6QyiDgD9RuD76aIl9QQ+JtkK07Ijx+tDDXU6Yx5RB4DBIPD9tKKhTv/jvuf05r62pEcJQlfUmxom6Yx5kzR6WFXSIwFAEAh8Pw2tzOjji6bof/361aRHSa1shemEWePUFL1SHzOcqANAoRH4AbhwSb1u/s2rfKytH7qivqKhTmcSdQCIHYEfgJm1NTph5jj9dsMbSY9S0jIVphNmRlE/ZpLGEnUAKBoCP0AXLZlG4HuQqTAtnTlWTQ2Tdca8iRpXMyTpkQCgLBH4ATp93kSNrxmine+0JD1K4jIVpiUzxqppfu7td6IOAMkj8ANUmanQuY1T9INHNyQ9SiIyFabF06OoHzNJ44k6AJQUAj8IFyyu102PbVBKfz9Lv1WYtHjGWDXNn6yziDoAlDQCPwhTxw7TyUfV6tEXdyQ9SmwqTDp++lh9aH6dzjymTrUjiDoApAGBH6SLlkwLLvBdUe96+33CiKFJjwQA6CcCP0h/NWeCJo8aqj+//W7SowxKhUmN08eqqaFOZzUQdQBIOwI/SJkK03nH1+uGh19KepR+qzCpcdpYrWiYpBUNdZowkqgDQCgIfAGcv3iq/uU/X1Z7Cva2M5Map43RioY6rWio00SiDgBBIvAFMHHkUJ36vgl68NltSY/SIzPpuPoxappfp7OOqdOkUUQdAEIXe+DN7DVJeyR1SGp390YzGyvpp5KmS3pN0rnunurfwXrhkmklFXgzaVH9GDVFr9SJOgCUl2K9gj/F3Xfmnb9S0i/d/VozuzI6/+UizRKLk2ePV/3YYfrTrn2JzWAmLZw6Wk3zJ2tFwyTVjapObBYAQLKSeov+bEkfiE7fKulRpTzwZqYLFtfrWw+8UOT1SgumjlZTQ52a5tcRdQCApOIE3iX9wsxc0r+5+ypJE919S3T5VkkTizBH7M5tnKIbHnpJrR2dsa4nP+orGuo0eTRRBwAcrBiBP8ndN5vZBEkPmdlBL3Hd3aP4H8TMVkpaKUn19fVFGHPwxtUM0RnHTNL//sOfY7n/A1GfX6cjiDoA4BBiD7y7b47+3G5m90haLGmbmdW5+xYzq5O0vYfbrZK0SpIaGxtL//NnkYuW1Bc08MdOHa2m6HPqU8YMK9j9AgDCFmvgzWy4pAp33xOdPl3S1ZLulXSppGujP38e5xzFtHTmOB05oUbrt78z4Ps4dsqoA59TnzqWqAMA+i/uV/ATJd1jZl3r+om7P2BmT0i608w+K2mjpHNjnqOoLlxcr6vve65ft5k/ZdSBn6kTdQDAYMUaeHd/RdKxPSx/Q9Kpca47SR8/boque/AFvdt26J3tGo4Ypab5dWoi6gCAAuNIdjEYVV2ppobJuuupTe+57JgjRqqpYbKaGupUP46oAwDiQeBjctHS+gOBnzd55IFX6tPGDU94MgBAOSDwMVlUP0bf+OgxOunI8Zo+nqgDAIqLwMfo4qXTkh4BAFCmKpIeAAAAFB6BBwAgQAQeAIAAEXgAAAJE4AEgxTq9U+6p+XUdKCL2ogeAFGrvbJfJVGEVig4HDhyEwANAirR2tMpkylZkCTsOicADQArsb98vk2lIZghhR58QeAAoYXvb9spkqs5WE3b0C4EHgBLj7trTtkcmU01lDWHHgBB4ACgR7q7drbslSSOrRhJ2DAqBB8pAy2tva8j0UUmPgV64u95qeUuSNGrIKFUYn2DG4PEsAgLXsadVO1c/q7bt+5IeBd24u3bu36k33n1Do4aM0pihY4g7CoZX8EDgdv9io4YtrFXlhGFJj4I8bR1terPlTY2vHk/UEQueVUDA2rbuVevWvRr94VlJj4JuKjOVmjBsAnFHbHhmAQHb/Z9/0rgL5siyfKsD5YbveiBQ7764S8MWTFB27NCkRwGQAAIPBMg7XR3vtKl67rikRwGQEAIPBKh9534NWzgh6TEAJIjAAwHKjq+WVXCQFKCcEXggQMQdAIEHACBABB4AgAAReAAAAkTgAQAIEIEHACBABB4AgAAReAAAAkTgAQAIEIEHACBABB4AgAAReABImfb29qRHQAoQeABImVdeeUVr165NegyUOAIPACkzdOhQPfDAA3rkkUfk7kmPgxJF4AEgZaqrqyVJjz32mNasWaPOzs6EJ0IpIvAAkDJdgZekJ554QnfffTc/l8d7EHgASJmhQ4cedH7dunW644471NramtBEKEUEHgBSJpvNqrKy8qBl69ev149+9CPt378/oalQagg8AKRQ/tv0XV5//XXdcsst2rNnTwITodQQeABIoZ4CL0nbt2/XzTffrF27dhV5IpQaAg8AKdRb4CXprbfe0urVq7V169YiToRSE1vgzWyqmT1iZs+Z2bNm9rfR8q+b2WYzezr6WhHXDAAQqkMFXpLeeecd3XLLLfrTn/5UpIlQauJ8Bd8u6QvuPlfSUkmfM7O50WU3uPuC6GtNjDMAQJAOF3hJamlp0W233aaXXnqpCBOh1MQWeHff4u5PRaf3SHpe0hFxrQ8AyklfAi/ljlt/xx136Jlnnol5IpSaovwM3symS1oo6XfRoivM7BkzW21mY4oxAwCEpPtn4Q+ls7NTd999tx5//PEYJ0KpiT3wZlYj6S5Jn3f33ZJulDRL0gJJWyRd38vtVppZs5k179ixI+4xASBV+voKPt+aNWv06KOPcvz6MhFr4M2sUrm4/9jd75Ykd9/m7h3u3inph5IW93Rbd1/l7o3u3lhbWxvnmACQOgMJvCQ9+uijuv/++zl+fRmIcy96k3SzpOfd/Tt5y+vyrvYxSevimgEAQjXQwJuZ9u/fr3379hV4IpSabIz3faKkSyT90cyejpZ9VdIFZrZAkkt6TdJlMc4AAEHqb+AzmYwWLlyoZcuWaezYsTFNhVISW+Dd/deSrIeL+FgcAAxSXwNfVVWlxsZGLV26VCNHjox5KpSSOF/BAwBicrjAV1dXa8mSJVq8eLGGDRtWpKlQSgg8AKRQVVWVzOw9e8SPGDFCy5Yt06JFizRkyJCEpkMpIPAAkEJmpurq6gM7y40ZM0YnnXSSjj32WGWz/NMOAg8AqVVdXa2amhotX75cc+fOVSaTSXoklBACDwAp9fGPf1x1dXXKfSoZOBiBB4CUmjx5ctIjoITx++ABAAgQgQcAIEAEHgCAABF4AAACROABAAgQgQcAIEAEHgCAABF4AAACROABAAgQgQcAIEAEHgCAABF4AAACROABAAgQgQcAIEAEHgCAABF4AAACROABAAgQgQcAIEAEHgCAABF4AAACROABAAgQgQcAIEAEHgCAABF4AAACROABAAgQgQcAIEAEHgCAABF4AAACROABAAgQgQcAIEDZpAcoR3v2PK99+19VZ2eramrmaETNnKRHAgAEhsAnYPfuP+iFF6+SZFq65MGkxwEABIi36BMwbtz7JUm1tadr+PBZCU8DAAgRgU/A0KF1qqmZo+nTLk96FABAoAh8Qo6cdaVGjpyf9BgAgEAR+ISMG7c86REAAAEj8AAABIjAAwAQIAIPAECACDwAAAFKLPBmdqaZvWhm683syqTmAAAgRIkE3swykr4v6SxJcyVdYGZzk5gFAIAQJfUKfrGk9e7+iru3SrpD0tkJzQIAQHCSCvwRkl7PO78pWnaAma00s2Yza96xY0dRhwMAIO1Kdic7d1/l7o3u3lhbW5v0OAAApEpSgd8saWre+SnRMgAAUABJBf4JSbPNbIaZVUk6X9K9Cc0CAEBwEvl98O7ebmZXSHpQUkbSand/NolZAAAIUSKBlyR3XyNpTVLrBwAgZCW7kx0AABg4Ag8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMD3kbsnPQIAAH1G4PvopX0tSY8AAECfEfg+aOns1LPv7E96DAAA+ozA98HPtr2lKUMqkx4DAIA+I/B9cNufd+qYEcOSHgMAgD4j8Ifx+9379E5Hp4Zl+KsCAKQH1TqM1Zt3aP6I6qTHAACgXwj8IbzR2q57t7+lY3l7HgCQMgT+EH6y5Q21dDqBBwCkDoHvRae7bv3zTmVMmlfDW/QAgHQh8L146I3d2vRum2YPG8oOdgCA1KFcvbhl005JYgc7AEAqEfgebNj3rh57c48kaT4/fwcApBCB78G/b96prl8ts4DAAwBSiMB3s7ejQz/dukuSlDFpLjvYAQBSiMB3c9fWN7W7vVOS2MEOAJBa1KubWzbvPHCaz78DANKKwOfpcNdfT6nVstE1MrEHPQAgvbJJD1BKMma6cPI4XTh5nDa/26pKs6RHAgBgQAh8L44YWpX0CAAADBhv0QMAEKBYAm9m3zazF8zsGTO7x8xGR8unm9l+M3s6+ropjvUDGKDHfyjd/2Vp7xtJTwJgkOJ6Bf+QpGPcfb6klyR9Je+yDe6+IPq6PKb1B6Ojo1Pv7m3T7jf2q3V/e9LjIGT/93ppzRel390kfW+B9Ni3pdZ9SU8FYIBiCby7/8Ldu2q0VtKUONZTDjKZCg0dXqkRY4bq3b1t8k4//I2AgTjhCunCO6UFF0sVGemRb0jfWyg1r5Y6+M8lkDbF+Bn8ZyTdn3d+hpn93sweM7PlRVh/EKzCNHJ8tayCPfsRk+wQ6agzpI9+X/rieumSn0lzVkiPfFP6wVLpuXuTnhBAP5j7wF4RmtnDkib1cNFV7v7z6DpXSWqUdI67u5kNkVTj7m+Y2XGSfiZpnrvv7uH+V0paKUn19fXHbdy4cUBzAhikzk7p9bW5wL+zVVp8mTTthKSnAoJnZk+6e+OAbz/QwB/2js0+JekySae6e48/yDOzRyV90d2bD3VfjY2N3tx8yKsAKAZ3afNTUkerNHmBVMnBoIC4DDbwsXwO3szOlPQlSe/Pj7uZ1Ura5e4dZjZT0mxJr8QxA4AYmElTjkt6CgB9ENeBbv5V0hBJD1nuaHBroz3mT5Z0tZm1SeqUdLm774ppBgAAylYsgXf3I3tZfpeku+JYJwAA+AuOZAcAQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIBiC7yZfd3MNpvZ09HXirzLvmJm683sRTM7I64ZAAAoV9mY7/8Gd/+n/AVmNlfS+ZLmSZos6WEzO8rdO2KeBQCAspHEW/RnS7rD3Vvc/VVJ6yUtTmAOAACCFXfgrzCzZ8xstZmNiZYdIen1vOtsipYBAIACGVTgzexhM1vXw9fZkm6UNEvSAklbJF3fz/teaWbNZta8Y8eOwYwJAEDZGdTP4N39tL5cz8x+KOm+6OxmSVPzLp4SLet+36skrZKkxsZGH8ycAACUmzj3oq/LO/sxSeui0/dKOt/MhpjZDEmzJT0e1xwAAJSjOPeiv87MFkhySa9JukyS3P1ZM7tT0nOS2iV9jj3oAQAorNgC7+6XHOKyayRdE9e6AQAodxzJDgCAABF4AAACROBRUK2vv662bduSHgMAyh6BR0G1vrZRW77yVXlnZ9KjAEBZI/AoqPYdO7T3t7/Vmz+5PelRAKCsEXgUVPvOnZKk7d/+tlpeeSXhaQCgfBF4FFT7ztxhhb2lRX/+71+St7UlPBEAlCcCj4LqiF7BS9K7zz6rnTfemOA0AFC+CDwKquOttw86v/Omf9P+p59OZhgAKGMEHgU15aYbNeXGH2jU2WerYsQIqbNTm7/8ZXXu3Zv0aABQVsy99H9RW2Njozc3Nyc9Bvqps7VVe3/zG+154EFlJ9Rqwhe+kPRIAJAaZvakuzcO9PZx/rIZlLmKqiqNOOUUjTjlFHlrq9xdZpb0WABQFgg8isKqqpIeAQDKCj+DBwAgQAQeAIAAEXgAAAJE4AEACBCBBwAgQAQeAIAAEXgAAAJE4AEACBCBBwAgQAQeAIAAEXgAAAJE4AEACBCBBwAgQAQeAIAAEXgAAAJE4AEACBCBBwAgQAQeAIAAEXgAAAJE4AEACBCBBwAgQAQeAIAAEXgAAAJE4AEACBCBBwAgQAQeAIAAEXgAAAJE4AEACBCBBwAgQAQeAIAAEXgAAAJE4AEACBCBBwAgQNk47tTMfirp6OjsaElvufsCM5su6XlJL0aXrXX3y+OYAQCAchZL4N39vK7TZna9pLfzLt7g7gviWC8AAMiJJfBdzMwknSvpr+JcDwAAOFjcP4NfLmmbu7+ct2yGmf3ezB4zs+W93dDMVppZs5k179ixI+YxAQAIy4BfwZvZw5Im9XDRVe7+8+j0BZJuz7tsi6R6d3/DzI6T9DMzm+fuu7vfibuvkrRKkhobG32gcwIAUI4GHHh3P+1Ql5tZVtI5ko7Lu02LpJbo9JNmtkHSUZKaBzoHAAB4rzjfoj9N0gvuvqlrgZnVmlkmOj1T0mxJr8Q4AwAAZSnOnezO18Fvz0vSyZKuNrM2SZ2SLnf3XTHOAABAWYot8O7+qR6W3SXprrjWCQAAcjiSHQAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAASLwAAAEiMADABAgAg8AQIAIPAAAARpU4M3sE2b2rJl1mlljt8u+YmbrzexFMzsjb/mZ0bL1ZnblYNYPAAB6NthX8OsknSPpV/kLzWyupPMlzZN0pqQfmFnGzDKSvi/pLElzJV0QXRcAABRQdjA3dvfnJcnMul90tqQ73L1F0qtmtl7S4uiy9e7+SnS7O6LrPjeYOQAAwMHi+hn8EZJezzu/KVrW23IAAFBAh30Fb2YPS5rUw0VXufvPCz/SgfWulLQyOttiZuviWlcJGC9pZ9JDxIjHl24hP76QH5vE40u7owdz48MG3t1PG8D9bpY0Ne/8lGiZDrG8+3pXSVolSWbW7O6NPV0vBDy+dOPxpVfIj03i8aWdmTUP5vZxvUV/r6TzzWyImc2QNFvS45KekDTbzGaYWZVyO+LdG9MMAACUrUHtZGdmH5P0L5JqJf0fM3va3c9w92fN7E7ldp5rl/Q5d++IbnOFpAclZSStdvdnB/UIAADAewx2L/p7JN3Ty2XXSLqmh+VrJK3p56pW9X+6VOHxpRuPL71CfmwSjy/tBvX4zN0LNQgAACgRHKoWAIAAlVzgy+nwt2b2UzN7Ovp6zcyejpZPN7P9eZfdlPCoA2JmXzezzXmPY0XeZT1uy7Qws2+b2Qtm9oyZ3WNmo6PlQWw7Kb3fV70xs6lm9oiZPRf9G/O30fJen6dpE/078sfocTRHy8aa2UNm9nL055ik5+wvMzs6b/s8bWa7zezzad92ZrbazLbnfwy8t+1lOd+Lvh+fMbNFh12Bu5fUl6T3KffZv0clNeYtnyvpD5KGSJohaYNyO+plotMzJVVF15mb9OMYwOO+XtLfR6enS1qX9EwFeExfl/TFHpb3uC2Tnrefj+10Sdno9LckfSuwbRfE91W3x1QnaVF0eoSkl6LnYo/P0zR+SXpN0vhuy66TdGV0+squ52pav6Ln5lZJ09K+7SSdLGlR/r8ZvW0vSSsk3S/JJC2V9LvD3X/JvYJ39+fd/cUeLjpw+Ft3f1VS1+FvFys6/K27t0rqOvxtaljuWL/nSro96VmKpLdtmRru/gt3b4/OrlXumA4hSf33VXfuvsXdn4pO75H0vMrjSJpnS7o1On2rpI8mN0pBnCppg7tvTHqQwXL3X0na1W1xb9vrbEm3ec5aSaPNrO5Q919ygT+EkA9/u1zSNnd/OW/ZDDP7vZk9ZmbLkxqsAK6I3k5anffWYAjbLN9nlPufdZcQtl1o2+ggZjZd0kJJv4sW9fQ8TSOX9Asze9JyRwOVpInuviU6vVXSxGRGK5jzdfCLoVC2XZfetle/vycTCbyZPWxm63r4SvUrhJ708bFeoIOfsFsk1bv7Qkl/J+knZjaymHP31WEe342SZklaoNxjuj7JWfurL9vOzK5S7lgPP44WpWbblSszq5F0l6TPu/tupfx52s1J7r5Iud/Y+TkzOzn/Qs+915vaj05Z7gBpH5H0H9GikLbdewx2ew3qc/AD5Qkd/jYJh3usZpZV7lfuHpd3mxZJLdHpJ81sg6SjJA3qsIVx6Ou2NLMfSrovOnuobVky+rDtPiXpQ5JOjb4RU7XtDiMV26i/zKxSubj/2N3vliR335Z3ef7zNHXcfXP053Yzu0e5H7VsM7M6d98SvaW7PdEhB+csSU91bbOQtl2e3rZXv78n0/QWfaiHvz1N0gvuvqlrgZnVmlkmOj1Tucf6SkLzDVi3nw99TFLXnqK9bcvUMLMzJX1J0kfcfV/e8iC2ndL/ffUe0b4uN0t63t2/k7e8t+dpqpjZcDMb0XVauR1B1ym33S6NrnappNh+SVgRHPRuZyjbrpvette9kj4Z7U2/VNLbeW/l9yiRV/CHYuV3+NvuP0+ScntWXm1mbZI6JV3u7t13xEiD68xsgXJvMb0m6TJJOtS2TJF/Ve5TAA/luqG17n65Atl27t6e8u+rnpwo6RJJf7ToI6mSvirpgp6epyk0UdI90fMxK+kn7v6AmT0h6U4z+6ykjcrt0Js60X9aPqiDt0+P/8akhZndLukDksab2SZJ/yDpWvW8vdYotyf9ekn7JH36sPcfvbMIAAACkqa36AEAQB8ReAAAAkTgAQAIEIEHACBABB4AgAAReAAAAkTgAQAIEIEHACBA/x+A820x8iCOAwAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfdElEQVR4nO3dfXBd5X3g8e9PkjHY5h1DHMAYKCSBlBhQ2WxCXlrAeWknNN3ZFCZJadpZJzthp53dnTZtOm22M5lN06bvbTpmQ0M6AUJCSbwpeYFs09BMoZiEGNtAAGNeHGPL8ht+kyzpt3/o2Fzbkt+kc4/uo+9nRqN7n3uvznPnSP76nHvuuZGZSJKksnQ1PQFJkjT5DLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQWalMBHxK0RsSEiVrSMnRYR90XEU9X3U6vxiIi/jIinI2J5RFwxGXOQJEmvmKwt+M8D7zxg7GPAdzLzIuA71XWAdwEXVV+Lgc9O0hwkSVJlUgKfmd8DNh0wfD1wW3X5NuAXW8a/kKMeBE6JiHmTMQ9JkjSqztfgz8rMddXll4CzqstnAy+03O/FakySJE2SnnYsJDMzIo7qnLgRsZjRXfjMnj37yte+9rW1zE2SpKnokUce2ZiZc4/18XUGfn1EzMvMddUu+A3V+Frg3Jb7nVON7SczlwBLAHp7e3PZsmU1TlWSpKklIp6byOPr3EW/FLipunwT8LWW8V+pjqZ/I7C1ZVe+JEmaBJOyBR8RdwBvB86IiBeBPwA+BdwVEb8OPAe8r7r7vcC7gaeBncCHJmMOkiTpFZMS+My8cZybrhnjvgl8dDKWK0mSxuaZ7CRJKpCBlySpQAZekqQCGXhJkgpk4CVJKpCBlySpQAZekqQCGXhJ01YODrLl7rvZdPvtTU9FmnRt+bAZSZpKRnbtYsuXv0L/rbcy9NJLzP/855uekjTpDLykaWN42zY2334Hm267jeHNmwHoOvlkZvVe2fDMpMln4CUVb2jjRjbd9gU233EHI9u373fbiW9/O9HjP4Uqj7/Vkoq1Z+1a+m/9e7Z85SvkwMCY95lzzc+1eVZSexh4ScUZWL2a/iW3sPXrX4ehoXHvFzNnMufqq9s4M6l9DLykogw88wzr//en2PnQQ4eMO8DsN72Jrlmz2jQzqb0MvKSizLzwQub/n1sY2bmTnQ8/zPYH/pUdDzzA4HPPHXTfE6896BOtpWIYeElF6po1izlvextz3vY2AAaff57tDzzAjgf+lR0PPUTu3s2ct7+92UlKNTLwkqaF4+bP57T3v5/T3v9+RgYHGXjiCXpOP73paUm18Ux2kqadruOO44TLLmt6GlKtDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBeur84RHxGuBLLUMXAL8PnAL8F6CvGv/dzLy3zrlIkjSd1Br4zHwSWAgQEd3AWuAe4EPAn2Xmn9S5fEmSpqt27qK/BngmM59r4zIlSZqW2hn4G4A7Wq7fHBHLI+LWiDj1wDtHxOKIWBYRy/r6+g68WZIkHUJbAh8RxwHvAb5cDX0WuJDR3ffrgM8c+JjMXJKZvZnZO3fu3HZMU5KkYrRrC/5dwA8ycz1AZq7PzOHMHAFuAa5q0zwkSZoW2hX4G2nZPR8R81puey+wok3zkCRpWqj1KHqAiJgNXAd8uGX40xGxEEhgzQG3SZKkCao98Jm5Azj9gLEP1r1cSZKmM89kJ0lSgQy8JEkFMvCSJBXIwEuSVCADL0lSgQy8JEkFMvCSJBXIwEuSVCADL0lSgQy8JEkFMvCSJBXIwEuSVCADL0lSgQy8JEkFMvCSJBXIwEuSVCADL0lSgQy8JEkFMvCSJBXIwEuSVCADL0lSgQy8JEkFMvCSJBXIwEuSVCADL0lSgQy8NI2MjAyRmU1PQ1IbGHhpGunq6ml6CpLaxMBL00xEND0FSW1g4CVJKpCBlySpQAZekqQCGXhJkgpk4CVNyJ4NO5uegqQxGHhJx2znY31suuvJpqchaQy+KVbSMdm1YiOb7niSrtkzmp6KpDG4BS/pqO1a1U//HU/ASDKyY49nx5OmIAMv6ajseryf/i8+DsNV1EeSkZ1DzU5K0kEMvKQjtuvJTfvHvTKyfbChGUkaj4GXdER2/3gz/f+wCoYO3h0/vH1PAzOSdCgGXtJh7X5qMxu/MHbcwS14aSoy8JIOaffTm+n/wioYGhn3PsMvuwUvTTUGXtK4dj+zhf7bVpF7xo87wIi76KUpx8BLGtPA6q3037bysHEHGHYXvTTlGHhJBxlYs5WNn19JDh4+7uAWvDQVGXhJ+xl4bhsb/34lOTh8xI9xC16aemo/VW1ErAFeBoaBoczsjYjTgC8BC4A1wPsyc3Pdc5F0aAPPb2PjrSvIgSOPO7gFL01F7dqC/9nMXJiZvdX1jwHfycyLgO9U1yU1aPCFl48p7uAWvDQVNbWL/nrgturybcAvNjQPScDgiy/T97kV5O6jjzsAQ8nIbk9XK00l7Qh8At+OiEciYnE1dlZmrqsuvwSc1YZ5SBrD4NrtVdwnFujhl92Kl6aSdnxc7NWZuTYizgTui4gnWm/MzIyIg06PVf1nYDHA/Pnz2zBNafoZ/Ml2Nn7uMXLXxLe+R7bvgbmTMClJk6L2LfjMXFt93wDcA1wFrI+IeQDV9w1jPG5JZvZmZu/cuf6rIU22PS/tYOPnHpu0T4LzdXhpaqk18BExOyJO3HsZWASsAJYCN1V3uwn4Wp3zkLS/Pet30HfLY4zsmLzXzT2SXppa6t5FfxZwT0TsXdbtmfnNiHgYuCsifh14DnhfzfOQVHkl7pMbZD9RTppaag18Zq4G3jDGeD9wTZ3LlnSwPRt2jsa9hhj7iXLS1OKZ7KRpYk9ffXEHP1FOmmoMvDQN7Nm4azTuNb6VzS14aWox8FLhhvp3sXHJcka21RtgX4OXphYDLxVsaNNu+pY8xnDNcQe34KWpxsBLhRravJu+JcsZ3jrQluXl4AgjR/EJdJLqZeClAg1tqeK+pT1x36vO1/glHR0DLxVmaMvA6G75ze2NO8DwJL+3XtKxM/BSQYa3DtB3y3KGN+1u/8K7mLTT3kqauHZ82IykNhjeNkDfLY8x3D8JcQ/oOqGHrlkz6Jo9g65ZPaPfZ8+ge9YMuma33DZ7Bt2zeogTeqjOWilpCjDwUgGGXx6k75bHGNq4a8zbY2b3fjEejfbeQPdU0W6J+awZRJexljqZgZcKsGtVP7MWnrnflnX3voj3EN2+GidNNwZeKsCc/zCv6SlImmL8b70kSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkNWBkZIStW7fW9vMNvCRJDfjud7/Ljh07avv5Bl6SpDb70Y9+xPe//33OPPPM2pZh4CVJaqPnn3+epUuXcuaZZ9LT01Pbcgy8JEltsnnzZu68806Gh4eZN29ercsy8JIktcHw8DBLly5l586dALUHvr59A5IkaZ/u7m5uuukm9uzZw8svv8wJJ5xQ6/IMvCRJbTRjxgxOO+202pfjLnpJkgpk4CXt8/A/Pcsj31xDjmTTU5E0QQZeEsNDI9z/+VUs/38vsmPrIDu3DTY9JUkT5Gvw0jQ3uHuIlQ/8hPMvO4Of/cBr6e7x//1SCWr7S46IcyPinyNiVUSsjIjfqMY/ERFrI+LR6uvddc1B0uHNmNnN5dfN58IrzjTuUkHq3IIfAv5HZv4gIk4EHomI+6rb/iwz/6TGZUs6QhHR9BQk1aC2wGfmOmBddfnliHgcOLuu5UmSpFe0ZX9cRCwALgceqoZujojlEXFrRJzajjlIkjSd1B74iJgD3A38ZmZuAz4LXAgsZHQL/zPjPG5xRCyLiGV9fX11T1OSpKLUGviImMFo3L+Ymf8IkJnrM3M4M0eAW4CrxnpsZi7JzN7M7J07d26d05QkqTh1HkUfwOeAxzPzT1vGW8+u/15gRV1zkCRpuqrzKPo3Ax8EHouIR6ux3wVujIiFQAJrgA/XOAdJkqalOo+i/1dgrPff3FvXMiVJ0ijPaiFJUoEMvCRJBTLwkiQVyMBLklQgAy9JUoEMvCRJBTLwkiQVyMBLklQgAy9JUoEMvCRJBTLwkiQVyMBLklQgAy9JUoEMvCRJBTLwkiQVyMBLklQgAy9JUoEMvCRJBTLwkiQVyMBLklQgAy9JUoEMvCRJBTLwkiQVyMBLU01m0zOQVAADL00lj30FhgebnoWkAhh4aarofwa+8dvQM7PpmUgqgIGXpoI9u+HLN0FXd9MzkVQIAy9NBd/+PXjpMTj+5KZnIqkQBl5q2sqvwsO3jF428JImiYGXmrTpWVj63165buAlTRIDLzVlaBC+8iEY2PbKmIGXNEkMvNSU+/8AfvLD/ccMvKRJ0tP0BKRp6Yl/ggf/9pXrp/8UXPEr8IYbm5uTpKIYeKndtjwPX/2vMGMWXPpeuPyDMP+NENH0zCQVxMBL7TS8B/7tb+Ha/wWv/09w/ElNz0hSoQy81E7RDe/6VNOzkDQNeJCd1E5d/slJag//tZEkqUAGXpKkAhl4SZIKZOAlSSqQgZekQmVm01NQgwy8JBVqza7BpqegBhl4SSrQruERlm/f2fQ01CADL0kFun1dPxfPOr7paahBBl6SCjM4MsJdL23itbMN/HTWWOAj4p0R8WREPB0RH2tqHpJUmq+8tJkFJ8wk/ACjaa2RwEdEN/A3wLuAS4AbI+KSJuYiSSUZGkn+6vn1XH3qnKanooY1tQV/FfB0Zq7OzEHgTuD6huYiScVY2reFZ3cNcvUpJzY9FTWsqcCfDbzQcv3FamyfiFgcEcsiYllfX19bJydJnWgkkz9fs56zZ85gwQnHNT0dNWzKHmSXmUsyszcze+fOndv0dCRpyvvmxq38eOdu3nzqHF9/V2OBXwuc23L9nGpMknQMstp6B7j6VHfPq7nAPwxcFBHnR8RxwA3A0obmIkkd7583vczy7bsAePMpHmAn6GlioZk5FBE3A98CuoFbM3NlE3ORpE6Xmfz5c6Nb7xecMJOzj/f1dzUUeIDMvBe4t6nlS1Ip/m3LDv596w4A3x6nfabsQXaSpCPz58+9tO/ym9w9r4qBl6QO9oOtO/je5u37rr/ZLXhVDLwkdbC9r70DvHb28cw9bkaDs9FUYuAlqUOt3L6Lb/dv23fd19/VysBLUof6i5atd8DT02o/Bl6SOtBTO3bzfzds2Xe9C/iPp8xubD6aegy8JHWgv3x+Pdly/adPPIGTZzT2zmdNQQZekjrMc7sG+Mf1m/cb8/S0OpCBl6QO8zfPb2A49x+72ve/6wAGXpI6yLqBQe5ct2m/sZ6Aq3z9XQcw8JLUQT77fB+Duf/m+5UnzWZ2d3dDM9JUZeAlqUNsHBziH36y8aBxz16nsRh4SeoQS17YwK6RPGjc979rLAZekjrAzuER/n7twVvvx3cFV548q4EZaaoz8JLUAWZ1d/EXr5vPyT37v9b+MyfPZmaX/5TrYP5WSFKHePfcU7j/Z17DlSe9ssXu7nmNx8BLUgc59/jj+OrlF3Hz/DMBP2BG4/O8hpLUYWZ0Bb934at5y6kn8oYTff1dYzPwktSh3naau+c1PnfRS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBagl8RPxxRDwREcsj4p6IOKUaXxARuyLi0err7+pYviRJ011dW/D3Aa/PzMuAHwO/03LbM5m5sPr6SE3LlyRpWqsl8Jn57cwcqq4+CJxTx3IkSdLY2vEa/K8B32i5fn5E/DAi/iUi3tKG5UuSNO30HOsDI+J+4FVj3PTxzPxadZ+PA0PAF6vb1gHzM7M/Iq4EvhoRl2bmtjF+/mJgMcD8+fOPdZqSJE1Lxxz4zLz2ULdHxK8CvwBck5lZPWYAGKguPxIRzwAXA8vG+PlLgCUAvb29eazzlCRpOqrrKPp3Ar8FvCczd7aMz42I7uryBcBFwOo65iBJ0nR2zFvwh/HXwEzgvogAeLA6Yv6twB9GxB5gBPhIZm6qaQ6SJE1btQQ+M39qnPG7gbvrWKYkSXqFZ7KTJKlABl6SpAIZeEmSCmTgJUkqkIGXJKlABl6SpAIZeEmSCmTgJUkqkIGXJKlABl6SpAIZeEmSCmTgJUkqkIGXJKlABl6SpAIZeEmSCmTgJUkqkIGXJKlABl6SpAIZeEmSCmTgJUkqkIGXJKlABl6SpAIZeEmSCmTgJUkqkIGXJKlABl6SpAIZeEmSCmTgJUkqkIGXJKlABl6SpAIZeEmSCmTgJUkqUE/TE5AkabrYvWeYrbv20BVBT1fQ1TX6vbvle0RMyrIMvCRJbXL8jG6On9HdlmW5i16SpAIZeEmSCmTgJUkqkIGXJKlABl6SpAIZeEmSCmTgJUkqkIGXJKlABl6SpAIZeEmSCmTgJUkqUG2Bj4hPRMTaiHi0+np3y22/ExFPR8STEfGOuuYgSdJ0VfeHzfxZZv5J60BEXALcAFwKvBq4PyIuzszhmuciSdK00cQu+uuBOzNzIDOfBZ4GrmpgHpIkFavuwN8cEcsj4taIOLUaOxt4oeU+L1ZjkiRpkkwo8BFxf0SsGOPreuCzwIXAQmAd8Jmj/NmLI2JZRCzr6+ubyDQlSZp2JvQafGZeeyT3i4hbgK9XV9cC57bcfE41duDPXgIsAejt7c2JzHMq2zqwlVX9qxgaGeLsOWczb848Tug5oelpSZI6XG0H2UXEvMxcV119L7CiurwUuD0i/pTRg+wuAv69rnlMJTv37OTxTY+zYuMKVm5cyVAO8brTXsd1513HgpMXND09SVJB6jyK/tMRsRBIYA3wYYDMXBkRdwGrgCHgoyUeQT8wPMCPN/2YFf2jMV/Zv5LVW1dz8akXs+i8RXz08o9y3knnNT1NSVKhagt8Zn7wELd9EvhkXctutz0je1i9ZfXolnn/SlZsXMFTW55iaGQIgNed9jp+/oKfZ9F5i5h/0vyGZytJmg7qfh98cUZyhDXb1uzbKl+xcQVPbHqCgeGB/e53yemXsOi8RSw6bxHnnnTuOD9NkqR6GPhDyEzWbl/Liv4VrNq4avR7/yp27Nkx5v0vPf1SFi1YxHXnXce5Jxp1SVJzDHyLDTs37NvNvncLfcvAlkM+5vWnv35f1M858Zz2TFSSpMMw8MCnH/4033r2W2zYteGI7v/TZ/w0i85bxHULruPsOZ6jR5I09Rh44IVtLxw27pedcdm+LfVXz3l1m2YmSdKxMfDA3Flzxxy/bO5l+w6UmzdnXptnJUnSsTPw7B/4hXMX7ttSf9XsVzU4K0kqx8jIMDu3bGHOaac3PZVpw8ADb5j7Bn77Z36ba8+71qhLUg2e/eEjnHTGXAPfRk18XOyU86ZXv4kPXPIB4y5JNVl+/zfonjGj6WlMKwZeklSrbRv7ePaHj9DdY+DbycBLkmr11EPf582//AF3z7eZr8FLkmq18B2/QHePuWk3t+AlSbUy7s0w8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFcjAS5JUIAMvSVKBDLwkSQUy8JIkFainjh8aEV8CXlNdPQXYkpkLI2IB8DjwZHXbg5n5kTrmIEnSdFZL4DPzl/dejojPAFtbbn4mMxfWsVxJkjSqlsDvFREBvA/4uTqXI0mS9lf3a/BvAdZn5lMtY+dHxA8j4l8i4i3jPTAiFkfEsohY1tfXV/M0JUkqyzFvwUfE/cCrxrjp45n5teryjcAdLbetA+ZnZn9EXAl8NSIuzcxtB/6QzFwCLAHo7e3NY52nJEnT0TEHPjOvPdTtEdED/BJwZctjBoCB6vIjEfEMcDGw7FjnIUmSDlbnLvprgScy88W9AxExNyK6q8sXABcBq2ucgyRJ01KdB9ndwP675wHeCvxhROwBRoCPZOamGucgSdK0VFvgM/NXxxi7G7i7rmVKkqRRnslOkqQCGXhJkgpk4CVJKpCBlySpQAZekqQCGXhJkgpk4CVJKpCBlySpQAZekqQCGXhJkgpk4CVJKpCBlySpQAZekqQCGXhJkgpk4CVJKpCBlySpQAZekqQCGXhJkgpk4CVJKpCBlySpQAZekqQCGXhJkgpk4CVJKpCBlySpQAZekqQCGXhJkgpk4CVJKpCBlySpQAZekqQCGXhJkgpk4CVJKpCBlySpQAZekqQCGXhJkgpk4CVJKpCBlySpQAZekqQCGXhJkgpk4CVJKpCBlySpQAZekqQCGXhJkgpk4CVJKpCBlySpQAZekqQCTSjwEfGfI2JlRIxERO8Bt/1ORDwdEU9GxDtaxt9ZjT0dER+byPIlSdLYJroFvwL4JeB7rYMRcQlwA3Ap8E7gbyOiOyK6gb8B3gVcAtxY3VeSJE2inok8ODMfB4iIA2+6HrgzMweAZyPiaeCq6ranM3N19bg7q/uumsg8JEnS/up6Df5s4IWW6y9WY+ONS5KkSXTYLfiIuB941Rg3fTwzvzb5U9q33MXA4urqQESsqGtZU8AZwMamJ1Ejn19nK/n5lfzcwOfX6V4zkQcfNvCZee0x/Ny1wLkt18+pxjjE+IHLXQIsAYiIZZnZO9b9SuDz62w+v85V8nMDn1+ni4hlE3l8XbvolwI3RMTMiDgfuAj4d+Bh4KKIOD8ijmP0QLylNc1BkqRpa0IH2UXEe4G/AuYC/xQRj2bmOzJzZUTcxejBc0PARzNzuHrMzcC3gG7g1sxcOaFnIEmSDjLRo+jvAe4Z57ZPAp8cY/xe4N6jXNSSo59dR/H5dTafX+cq+bmBz6/TTej5RWZO1kQkSdIU4alqJUkq0JQL/HQ6/W1EfCkiHq2+1kTEo9X4gojY1XLb3zU81WMSEZ+IiLUtz+PdLbeNuS47RUT8cUQ8ERHLI+KeiDilGi9i3UHn/l2NJyLOjYh/johV1b8xv1GNj/t72mmqf0ceq57HsmrstIi4LyKeqr6f2vQ8j1ZEvKZl/TwaEdsi4jc7fd1FxK0RsaH1beDjra8Y9ZfV3+PyiLjisAvIzCn1BbyO0ff+fRfobRm/BPgRMBM4H3iG0QP1uqvLFwDHVfe5pOnncQzP+zPA71eXFwArmp7TJDynTwD/c4zxMddl0/M9yue2COipLv8R8EeFrbsi/q4OeE7zgCuqyycCP65+F8f8Pe3EL2ANcMYBY58GPlZd/tje39VO/ap+N18Czuv0dQe8Fbii9d+M8dYX8G7gG0AAbwQeOtzPn3Jb8Jn5eGY+OcZN+05/m5nPAntPf3sV1elvM3MQ2Hv6244Ro+f6fR9wR9NzaZPx1mXHyMxvZ+ZQdfVBRs/pUJKO/7s6UGauy8wfVJdfBh5nepxJ83rgturybcAvNjeVSXEN8ExmPtf0RCYqM78HbDpgeLz1dT3whRz1IHBKRMw71M+fcoE/hJJPf/sWYH1mPtUydn5E/DAi/iUi3tLUxCbBzdXupFtbdg2WsM5a/Rqj/7Peq4R1V9o62k9ELAAuBx6qhsb6Pe1ECXw7Ih6J0bOBApyVmeuqyy8BZzUztUlzA/tvDJWy7vYab30d9d9kI4GPiPsjYsUYXx29hTCWI3yuN7L/L+w6YH5mXg78d+D2iDipnfM+Uod5fp8FLgQWMvqcPtPkXI/Wkay7iPg4o+d6+GI11DHrbrqKiDnA3cBvZuY2Ovz39ABXZ+YVjH5i50cj4q2tN+bovt6OfetUjJ4g7T3Al6uhktbdQSa6vib0PvhjlQ2d/rYJh3uuEdHD6EfuXtnymAFgoLr8SEQ8A1wMTOi0hXU40nUZEbcAX6+uHmpdThlHsO5+FfgF4JrqD7Gj1t1hdMQ6OloRMYPRuH8xM/8RIDPXt9ze+nvacTJzbfV9Q0Tcw+hLLesjYl5mrqt26W5odJIT8y7gB3vXWUnrrsV46+uo/yY7aRd9qae/vRZ4IjNf3DsQEXMjoru6fAGjz3V1Q/M7Zge8PvReYO+RouOty44REe8Efgt4T2bubBkvYt3R+X9XB6mOdfkc8Hhm/mnL+Hi/px0lImZHxIl7LzN6IOgKRtfbTdXdbgJq+5CwNthvb2cp6+4A462vpcCvVEfTvxHY2rIrf0yNbMEfSky/098e+HoSjB5Z+YcRsQcYAT6SmQceiNEJPh0RCxndxbQG+DDAodZlB/lrRt8FcN9oN3gwMz9CIesuM4c6/O9qLG8GPgg8FtVbUoHfBW4c6/e0A50F3FP9PvYAt2fmNyPiYeCuiPh14DlGD+jtONV/Wq5j//Uz5r8xnSIi7gDeDpwRES8CfwB8irHX172MHkn/NLAT+NBhf361Z1GSJBWkk3bRS5KkI2TgJUkqkIGXJKlABl6SpAIZeEmSCmTgJUkqkIGXJKlABl6SpAL9f1jGsjD8XLJFAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgoUlEQVR4nO3de3CdhXnn8d+jmy+6YMsWtpFxDASTQDMxoPWSDQESLkGeNJROSmGbFJI0JhOYNrvbaQjspJnOZjZJSzPTJk3WaWhpN+GSgAtNnAtk00QGjJHBGOO7jY1tZFu2fEGSbd2e/eO8do5lyZKt8+rVefT9zGg4533P5Tm8kr5+z3nPkbm7AABALCVZDwAAAAqPwAMAEBCBBwAgIAIPAEBABB4AgIAIPAAAARUk8Gb2kJntNbM1ectqzewZM9uU/HdqstzM7O/MbLOZrTazKwoxAwAA+K1C7cH/s6Sb+y27T9Iv3f1iSb9MzktSo6SLk69Fkr5doBkAAECiIIF3999Iauu3+BZJDyenH5b0e3nL/8VzlkuaYmazCjEHAADISfM1+Bnu3pKc3i1pRnK6XtKOvMvtTJYBAIACKRuNO3F3N7Mz+kxcM1uk3FP4qqysvPJd73pXKrMBAHCmDhw9IJerdmJtavexcuXKfe5ed7bXTzPwe8xslru3JE/B702W75J0ft7lZifLTuLuiyUtlqSGhgZvbm5OcVQAAM7Mkk1LdNPcm1RZXpnK7ZvZ9pFcP82n6J+WdGdy+k5JT+Ut/+PkaPqrJB3KeyofAICicOvFt6q7tzvrMQZVkD14M3tE0nWSppvZTkl/Kemrkh43s09L2i7ptuTiSyUtlLRZUqekTxZiBgAARtuUiVOyHmFQBQm8u98xyKrrB7isS7qnEPcLAAAGxifZAQAQEIEHACAgAg8AQEAEHgCAgAg8AAABEXgAAAIi8AAABETgAQAIiMADABAQgQcAICACDwBAQAQeAICACDwAAAEReAAAAiLwAAAEROABAAiIwAMAEBCBBwAgIAIPAEBABB4AgIAIPAAAARF4AAACIvAAAARE4AEACIjAAwAQEIEHACAgAg8AQEAEHgCAgAg8AAABEXgAAAIi8AAABETgAQAIiMADABAQgQcAICACDwBAQAQeAICACDwAAAEReAAAAiLwAAAEROABAAiIwAMAEBCBBwAgIAIPAEBABB4AgIAIPAAAARF4AAACKkvzxs3sEkmP5S26UNKXJE2R9BlJrcny+919aZqzAAAwnqQaeHffIGm+JJlZqaRdkpZI+qSkb7j736R5/wAAjFej+RT99ZK2uPv2UbxPAADGpdEM/O2SHsk7f6+ZrTazh8xsav8Lm9kiM2s2s+bW1tb+qwEAwGmMSuDNrELSRyX9MFn0bUkXKff0fYukB/tfx90Xu3uDuzfU1dWNxpgAAIQxWnvwjZJedvc9kuTue9y91937JH1X0oJRmgMAgHFhtAJ/h/KenjezWXnrbpW0ZpTmAABgXEj1KHpJMrNKSTdKujtv8dfNbL4kl7St3zoAADBCqQfe3TskTeu37BNp3y8AAOMZn2QHAEBABB4AgIAIPAAAARF4AAACIvAAAARE4AEACIjAAwAQEIEHACAgAg8AQEAEHgCAgAg8AAABEXgAAAIi8AAABETgAQAIiMADABAQgQcAICACDwBAQAQeAICACDwAAAEReAAAAiLwAAAEROABAAiIwAMAEBCBBwAgIAIPAEBABB4AgIAIPAAAARF4AAACIvAAAARE4AEACIjAAwAQUFnWA2BoPfv3y7u6VFJVpZLKSlkJ/y4DAJwegR+DvKtLR159VX2dnSqprlbFnDkqnzUr67EAAEWEwI8RXTt3qmPZc+p9+7DKamtVefXVKp8xI+uxAABFisBnpO/oUXW+9JLam5rUe+CgJr7rEtXcfLPK6+uzHg0AEACBHyXurq6tW9Xe1KSOpmXqbX9b1R/8kGr/6I9U8Y53ZD0eACAYAp+i3vZ2dbzwgjqalql9WZNKJk9WTWOjZjxwvyZceGHW4wEAAiPwBeR9fTq2fr3am5apo6lJnatWqaK+XtULG3X+d76jifPmZT0iAGCcIPAj1HPggDqee14dTU1qf+459e7bp/L6etUsbNSM+7+oCe9+t8ws6zEBAOMMgT9D3tOjI6tfU8eyJrUve05HX3tNclfZzJk65yMfUc3CRk18z3uIOgAgUwR+GLr37FHHsmW5p96ff159hw9Lksrq6jT14x9XTWOjJs1/Lx9AAwAYMwj8APq6unTk5ZdPHPF+bOPGE+tKa2s15Y7bVdPYqMlXXikrLc1wUgAABkbgE107dpwIeseLL8o7O0+sKz3nHFXfdJNqGm/W5AULZGX8bwMAjG3jtlR9nZ3JB83kjnjv2r79pPUl1dWqvuEG1SxsVOVVV8nKyzOaFACAMzduAu/u6tq8ORf0ZU3qbF4p7+o66TIlkyer6vrrVdPYqMqr36+SioqMpgUAYGRSD7yZbZP0tqReST3u3mBmtZIekzRX0jZJt7n7gULfd+/hw+p4YXnuiPemZerZvfvU+SZNUtV116qmsVFV11yjkokTCz0GAACjbrT24D/o7vvyzt8n6Zfu/lUzuy85/4VC3JF3d2v/976n9qZlOrJqldTbe8plrKJCVddeq5rGm1V13XUqmTy5EHcNAMCYkdVT9LdIui45/bCk/1CBAq+yMrX96/9V7/79Jy8vL1fV1VerZmGjqj74IZVWVRbk7gAAGItGI/Au6Rdm5pL+j7svljTD3VuS9bslFezvopqZJl0+X+3P/lIqK1Pl+96nmsZGVd9wvUpragp1NwAAjGmjEfir3X2XmZ0r6RkzW5+/0t09if9JzGyRpEWSNGfOnDO6w3NuuUVV11yj6htvVNnUqSMYHQCA4pR64N19V/LfvWa2RNICSXvMbJa7t5jZLEl7B7jeYkmLJamhoeGUfwCcTs2NN458cAAAiliqn61qZpVmVn38tKSbJK2R9LSkO5OL3SnpqTTnAABgvEl7D36GpCXJH14pk/QDd/+Zmb0k6XEz+7Sk7ZJuS3kOAADGlVQD7+5bJb13gOX7JV2f5n0DADCe8efPAAAIiMADABAQgQcAICACDwBAQAQeAICACDwAAAEReAAAAiLwAAAEROABAAiIwAMAEBCBBwAgIAIPAEBABB4AgIAIPAAAARF4AAACIvAAMAK7N2/U3m1bsx4DOEVZ1gMAQDHqOHhATT94WG+satZnvvVPWY8DnILAA8AZ6O3p1stLn9byJx9V15Ej+s+33qay8vKsxwJOQeABYJi2rFyhX//rP+pAy1uSpJLSUr33poUZTwUMjMADwBCOdXbo/z30Ha1t+tVJy9+54L+ounZ6RlMBp2funvUMQ2poaPDm5uasxwAwzvV0dan9QJva2/apvW2/zr3gnao9rz7rsRCUma1094azvT578AAwTGUVFZoyY6amzJiZ9SjAkHibHAAAARF4AAACIvAAAARE4AEACIjAAwAQEIEHACAgAg8AQEAEHgCAgAg8AAABEXgAAAIi8AAABETgAQAIiMADABAQgQcAICACDwBAQAQeAICACDwAAAEReAAAAiLwAAAEROABAAiIwAMAEBCBBwAgIAIPAEBAqQXezM43s1+Z2Voze93M/ixZ/mUz22Vmq5KvhWnNMCa4Zz0BAGAcSnMPvkfS/3D3SyVdJekeM7s0WfcNd5+ffC1NcYbsvfDNrCcAAIxDZWndsLu3SGpJTr9tZusk1ad1f2NWSVluL94s60kAAOPIqLwGb2ZzJV0u6cVk0b1mttrMHjKzqaMxQ2amzpU627KeAgAwzqQeeDOrkvSEpM+7+2FJ35Z0kaT5yu3hPzjI9RaZWbOZNbe2tqY9ZnpmXCYd3J71FACAcSbVwJtZuXJx/767PylJ7r7H3XvdvU/SdyUtGOi67r7Y3RvcvaGuri7NMdN1zvnS0UNZTwEAGGfSPIreJH1P0jp3/9u85bPyLnarpDVpzTAmmEkTqrOeAgAwzqR2kJ2k90v6hKTXzGxVsux+SXeY2XxJLmmbpLtTnGFsIPAAgFGW5lH0yyQNdOh47LfFDYTAAwBGGZ9kNxom1GQ9AQBgnCHwo6GiMusJAADjDIEfDXzIDQBglBF4AAACIvAAxp03Oo9pz7HurMcAUkXgAYwrGzqO6tHdbZoxoTzrUYBUEXgA48br7Ud012tb9Sezp2c9CpA6Ag9gXFh1uFMfe2WzPlVfp7oK9t4RH4EHEF7zoQ7d9upmnTuhXJ+sZ+8d40OaH1ULAJl74WC7Pr56qzp6+/TQ79SrrIS3rWJ8IPAAwvpN29u687U3dKSvT38wc6qunsrHRmP8IPAAQnp2/2H9yZo3dEVNpf7bO2boA7XEHeMLgQcQzs9aD+nR3fv1+Hsv0oIpVVmPA2SCwAMI5VB3j+ZMqtA/v+fCrEcBMkXgAYRyTnmZzinnVxvA2+QAAAiIwAMAEBCBBwAgIAIPAEBABB4AgIAIPAAAARF4AAACIvAAAARE4AEACIjAAwAQEIEHACAgAg8AQEAEHgCAgAg8AAABEXgAAAIi8AAABETgAQAIiMADABAQgQcAICACDwBAQAQeAICACDwAAAEReAAAAiLwAAAEROABAAiIwAMAEBCBBwAgIAIPAEBABB4AgIAIPAAAARF4AAACyizwZnazmW0ws81mdl9WcwAAEFEmgTezUknfktQo6VJJd5jZpVnMAgBARFntwS+QtNndt7p7l6RHJd2S0SwAAISTVeDrJe3IO78zWXaCmS0ys2Yza25tbR3V4QAAKHZj9iA7d1/s7g3u3lBXV5f1OAAAFJWsAr9L0vl552cnywAAQAFkFfiXJF1sZheYWYWk2yU9ndEsAACEU5bFnbp7j5ndK+nnkkolPeTur2cxCwAAEWUSeEly96WSlmZ1/wAARDZmD7IDAABnj8ADABAQgQcAICACDwBAQAQeAICACDwAAAEReAAAAiLwAAAEROABAAiIwAMAEBCBBwAgIAIPAEBABB4AgIAIPAAAARF4AAACIvAAAARE4AEACIjAAwAQEIEHACAgAg8AQEAEHgCAgAg8AAABEXgAAAIi8AAABETgAQAIiMADQBHqfHWvjr1xKOsxMIYReAAoIn2d3dr/6Hq1PbJBJVXlWY+DMaws6wEAAMNzdPMBHfjhRvUe6pJKTWW1E7MeCWMYgQeAMc67e3XoZ9vU/txbJ5aVTZsoK+VJWAyOwAPAGNa1q11tj21Qz97Ok5aXTZ+c0UQoFgQeAMYg73O9/ZudOvzMdqnXT1lffu6kDKZCMSHwADDG9LQdVdvjG9S17fCglymrYw8ep0fgAWCMcHd1rtyjg09vlXf1nvayZXXsweP0CDwAjAG97V068ORmHV27f1iXL2cPHkMg8ACQsSPr23TgRxvV1949rMuXVJWrZBK/vnF6fIcAQEb6unp16Cdb1fHi7jO6XvmsypQmQiQEHgAy0LXjbR14eov6OrtVPrtKJZNze+Ulk8uS/w5yflKZrIz3v2NoBB4AMlA+u0oz7pmf9RgIjH8GAkAGzCzrERAcgQcAICACDwBAQAQeAICAOMguQ2+82qoVP35D0+urNG12labV574m11RkPRoAoMgR+Iz0dPdq2Q836fC+o9q3o/2kdZNrKk4Ef3p9pabNrtLUmZUq5a0xAIBhIvAZWfXsDh3ed3TAdZ2Hu9S5tk071radWFZSYpo6a/KJvfxps6s0fXZub5+jcQEA/aUSeDP7a0m/K6lL0hZJn3T3g2Y2V9I6SRuSiy5398+mMcNY1n7gqFb+dNsZXaevz7V/V4f27+qQtOfE8olV5ZpWX6WLLq/TJVfNVMVE/s0GAEhvD/4ZSV909x4z+5qkL0r6QrJui7vPT+l+i8LzT25RT1ffiG6jZvpE1V8yVfXzpuq8i6eounZigaYDAESQSuDd/Rd5Z5dL+lga91OMWjYf1KaX9gx9wX5qpk/UefOmava8KTpv3lSCDgA4rdF4PvdTkh7LO3+Bmb0i6bCk/+nuTaMww5jQ1+dqenzTsC5bPW2i6udNye2hz5uimmn87WcAwPCddeDN7FlJMwdY9YC7P5Vc5gFJPZK+n6xrkTTH3feb2ZWS/s3MLnP3wwPc/iJJiyRpzpw5ZzvmmLLuubfU+ubbA66rqp2g2fOm6rx5U1U/b4pqphN0AMDZO+vAu/sNp1tvZndJ+oik693dk+sck3QsOb3SzLZImiepeYDbXyxpsSQ1NDT42c45Vhzr7Nbyp7aeOF81dULyGnpuL7162kSOhgcAFExaR9HfLOkvJF3r7p15y+sktbl7r5ldKOliSVsHuZlQ1j7XojmX1ap+Xu7AuJrpBB0AkJ60XoP/pqQJkp5JInb87XDXSPorM+uW1Cfps+7eNvjNxHH5jTFeZgAAFIe0jqJ/5yDLn5D0RBr3CQAAfovPPgUAICACDwBAQAQeAICACDwAAAEReAAAAiLwAAAEROABAAiIwAMAEBCBBwAgIAIPAEBABB4AgIAIPAAAARF4AAACIvAAAARE4AEACIjAAwAQEIEHACAgAg8AQEAEHgCAgAg8AAABEXgAAAIi8AAABETgAQAIiMADABAQgQcAICACDwBAQAQeAICACDwAAAEReAAAAiLwAAAEROABAAiIwAPAMLn3yb036zGAYSHwADBMHR2btGLF72r//qasRwGGROABYJgOHmxWe8cGrXr1Lr2y6i693b4+65GAQRF4ABimg4eaT5xua2vSihUf0dp1X9DRY7sznAoYGIEHgGE6ePClfktcLS0/0gsvXK8tWx5UT097JnMBAyHwADAMR4++pWPHWgZc19d3VNu2/4Oef+FD2rnz++rr6x7l6YBTEXgAGIaDB5uHvEx3935t2PglvbhioVpbn5W7j8JkwMAIPAAMw8FD/Z+eH1xn51atfu1uvfzKf9Xhw6tTnAoYHIEHgGEYzh78qddZoZeab9Wa1z+vI0d2pjAVMDgCDwBD6O4+pI6OjWd9/T17/l0vLL9Rmzb/b3V3HyrgZMDgCDwADOHQoZdHfBvuXXrzzX/U8y98UG/u+Cf19XUVYDJgcAQeAIZw6tvjzl5PzyFt2vS/tHz5h7Vnz084EA+pIfAAMIQjR3dowoSZqqiYrvLyWpWV1ai0tEolJZNkViGz0rO4zTe15vU/VfPKj53V6/vAUMqyHgAAxrr3/M7fD3mZ3J547o/R/ParT+49cvVJJy3vOfGHa9x75epVX1+XSkoq0n8wGDdSC7yZfVnSZyS1Jovud/elybovSvq0pF5Jf+ruP09rDgAYDWYmqfSs9uaBNKS9B/8Nd/+b/AVmdqmk2yVdJuk8Sc+a2TznbzACAFAwWbwGf4ukR939mLu/IWmzpAUZzAEAQFhpB/5eM1ttZg+Z2dRkWb2kHXmX2ZksAwAABTKiwJvZs2a2ZoCvWyR9W9JFkuZLapH04Bne9iIzazaz5tbW1qGvAAAAThjRa/DufsNwLmdm35X04+TsLknn562enSzrf9uLJS2WpIaGBt4oCgDAGUjtKXozm5V39lZJa5LTT0u63cwmmNkFki6WtCKtOQAAGI/SPIr+62Y2X5JL2ibpbkly99fN7HFJayX1SLqHI+gBACis1ALv7p84zbqvSPpKWvcNAMB4x0fVAgAQEIEHACAgAg8AQEAEHgCAgAg8AAABEXgAAAIi8AAABETgAQAIiMADABAQgQcAICACDwBAQAQeAICACDwAAAEReAAAAiLwAAAEROABAAiIwAMAEBCBBwAgIAIPAEBABB4AgIAIPAAAARF4AAACIvAAAARE4AEACIjAAwAQEIEHACAgAg8AQEAEHgCAgAg8AAABEXgAAAIi8AAABETgAQAIiMADABAQgQcAICACDwBAQAQeAICACDwAAAEReAAAAiLwAAAEROABAAiIwAMAEBCBBwAgI+6uo0ePpnLbBB4AgIyYmVpbW1O5bQIPAECG9u7dm8rtEngAADJ08OBBHTt2rOC3S+ABAMjQOeeco02bNhX8dlMJvJk9Zmarkq9tZrYqWT7XzI7krftOGvcPAECxmDZtmtavX1/w2y0r+C1Kcvc/PH7azB6UdChv9RZ3n5/G/QIAUGxqa2u1ceNG9fT0qKyscFlO9Sl6MzNJt0l6JM37AQCgWFVXV8vdtXXr1oLebtqvwX9A0h53z39x4QIze8XMfm1mHxjsima2yMyazaw5rbcQAACQtZKSEtXW1mrdunUFvd2zfi7AzJ6VNHOAVQ+4+1PJ6Tt08t57i6Q57r7fzK6U9G9mdpm7H+5/I+6+WNJiSWpoaPCznRMAgLFu2rRp2rBhg/r6+lRSUph977MOvLvfcLr1ZlYm6fclXZl3nWOSjiWnV5rZFknzJDWf7RwAxq+j3b2qKC1RSYllPQowIrW1tVq7dq3efPNNzZ07tyC3meZT9DdIWu/uO48vMLM6MytNTl8o6WJJhX3RAcC48ciKN4k7Qpg2bZokFfRp+jQDf7tOPbjuGkmrk7fN/UjSZ929LcUZAAS1pbVdP17dkvUYQEEcD/z69evlXphXpVN5m5wkuftdAyx7QtITad0ngPHB3fXAktc0s2Zi1qMABVFbWytJOnTokFpaWnTeeeeN+Db5JDsARefJl3dp+dY2za6dlPUoQEFUVlZqwoQJkgr3ND2BB1BUDnR06StLc78A59ROzngaoDDMrOCvwxN4AEXlqz9dr7aOLknS+VMJPOI4Hvh9+/YV5E/IEngARcPdVVc9QccPnGcPHpEcfx1eUkE+m57AAygaZqY///Aleuzu9+kd0ybrvCm8Bo84ju/BS4V5mp7AAyg6/2lurX7++WtUUcavMMSRH/i33nprxLfHTweAojSxvDTrEYCCqq2t1bnnnqtrr71WixYtGvHtpfY+eAAAMHyTJk3S5z73uYLdHnvwAAAEROABAAiIwAMAEBCBBwAgIAIPAEBABB4AgIAIPAAAARF4AAACIvAAAARE4AEACIjAAwAQEIEHACAgAg8AQEAEHgCAgAg8AAABEXgAAAIi8AAABETgAQAIiMADABAQgQcAICACDwBAQAQeAICACDwAAAEReAAAAiLwAAAEROABAAiIwAMAEBCBBwAgIAIPAEBABB4AgIAIPAAAARF4AAACIvAAAARE4AEACIjAAwAQEIEHACAgAg8AQEAjCryZ/YGZvW5mfWbW0G/dF81ss5ltMLMP5y2/OVm22czuG8n9AwCAgY10D36NpN+X9Jv8hWZ2qaTbJV0m6WZJ/2BmpWZWKulbkholXSrpjuSyAACggMpGcmV3XydJZtZ/1S2SHnX3Y5LeMLPNkhYk6za7+9bkeo8ml107kjkAAMDJ0noNvl7SjrzzO5Nlgy0HAAAFNOQevJk9K2nmAKsecPenCj/SiftdJGlRcvaYma1J677GgOmS9mU9RIp4fMUt8uOL/NgkHl+xu2QkVx4y8O5+w1nc7i5J5+edn50s02mW97/fxZIWS5KZNbt7w0CXi4DHV9x4fMUr8mOTeHzFzsyaR3L9tJ6if1rS7WY2wcwukHSxpBWSXpJ0sZldYGYVyh2I93RKMwAAMG6N6CA7M7tV0t9LqpP0EzNb5e4fdvfXzexx5Q6e65F0j7v3Jte5V9LPJZVKesjdXx/RIwAAAKcY6VH0SyQtGWTdVyR9ZYDlSyUtPcO7Wnzm0xUVHl9x4/EVr8iPTeLxFbsRPT5z90INAgAAxgg+qhYAgIDGXODH08ffmtljZrYq+dpmZquS5XPN7Ejeuu9kPOpZMbMvm9muvMexMG/dgNuyWJjZX5vZejNbbWZLzGxKsjzEtpOK9+dqMGZ2vpn9yszWJr9j/ixZPuj3abFJfo+8ljyO5mRZrZk9Y2abkv9OzXrOM2Vml+Rtn1VmdtjMPl/s287MHjKzvflvAx9se1nO3yU/j6vN7Ioh78Ddx9SXpHcr996//5DUkLf8UkmvSpog6QJJW5Q7UK80OX2hpIrkMpdm/TjO4nE/KOlLyem5ktZkPVMBHtOXJf35AMsH3JZZz3uGj+0mSWXJ6a9J+lqwbRfi56rfY5ol6YrkdLWkjcn34oDfp8X4JWmbpOn9ln1d0n3J6fuOf68W61fyvblb0juKfdtJukbSFfm/MwbbXpIWSvqpJJN0laQXh7r9MbcH7+7r3H3DAKtOfPytu78h6fjH3y5Q8vG37t4l6fjH3xYNy33W722SHsl6llEy2LYsGu7+C3fvSc4uV+4zHSIp+p+r/ty9xd1fTk6/LWmdxscnad4i6eHk9MOSfi+7UQrieklb3H171oOMlLv/RlJbv8WDba9bJP2L5yyXNMXMZp3u9sdc4E8j8sfffkDSHnfflLfsAjN7xcx+bWYfyGqwArg3eTrpobynBiNss3yfUu5f1sdF2HbRttFJzGyupMslvZgsGuj7tBi5pF+Y2UrLfRqoJM1w95bk9G5JM7IZrWBu18k7Q1G23XGDba8z/pnMJPBm9qyZrRngq6j3EAYyzMd6h07+hm2RNMfdL5f03yX9wMxqRnPu4Rri8X1b0kWS5iv3mB7MctYzNZxtZ2YPKPdZD99PFhXNthuvzKxK0hOSPu/uh1Xk36f9XO3uVyj3FzvvMbNr8ld67rneon3rlOU+IO2jkn6YLIq07U4x0u01ovfBny3P6ONvszDUYzWzMuX+5O6Vedc5JulYcnqlmW2RNE/SiD62MA3D3ZZm9l1JP07Onm5bjhnD2HZ3SfqIpOuTH8Si2nZDKIptdKbMrFy5uH/f3Z+UJHffk7c+//u06Lj7ruS/e81siXIvtewxs1nu3pI8pbs30yFHplHSy8e3WaRtl2ew7XXGP5PF9BR91I+/vUHSenffeXyBmdWZWWly+kLlHuvWjOY7a/1eH7pV0vEjRQfblkXDzG6W9BeSPurunXnLQ2w7Ff/P1SmSY12+J2mdu/9t3vLBvk+LiplVmln18dPKHQi6RrntdmdysTslpfZHwkbBSc92Rtl2/Qy2vZ6W9MfJ0fRXSTqU91T+gDLZgz8dG38ff9v/9SQpd2TlX5lZt6Q+SZ919/4HYhSDr5vZfOWeYtom6W5JOt22LCLfVO5dAM/kuqHl7v5ZBdl27t5T5D9XA3m/pE9Ies2St6RKul/SHQN9nxahGZKWJN+PZZJ+4O4/M7OXJD1uZp+WtF25A3qLTvKPlht18vYZ8HdMsTCzRyRdJ2m6me2U9JeSvqqBt9dS5Y6k3yypU9Inh7z95JlFAAAQSDE9RQ8AAIaJwAMAEBCBBwAgIAIPAEBABB4AgIAIPAAAARF4AAACIvAAAAT0/wEun9TIZThB+QAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAl00lEQVR4nO3deZwU9Z3/8fdnLmZgGM4ZQC4BOdSoqCOKislGvEgiMddP84vRZFfiL+pqYmLcmFXX/Zmo0Zi4JkaSuN5ElHjEGOPx8MBsUFERQUQQUcABR5Abhjk++0cX2jPOADPT1TX97dfz8egH3d/qrno31TPvqerqanN3AQCAsBQkHQAAAGQeBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAAQoIwVvZreY2ftmtiBtrK+ZPW5mS6J/+0TjZmY3mNlSM5tvZodkIgMAAPhYprbgb5V0YouxiyU96e6jJT0Z3ZakkySNji7TJN2UoQwAACCSkYJ392clrWsxPFXSbdH12yR9MW38dk+ZI6m3mQ3KRA4AAJAS53vwA9y9Jrq+WtKA6PpgSSvS7rcyGgMAABlSlI2FuLubWbvOiWtm05Taha8ePXocOm7cuFiyAfmoyZtUYBxjC3RlL7300gfuXtnRx8dZ8GvMbJC710S74N+PxldJGpp2vyHRWDPuPl3SdEmqrq72uXPnxhgVyB/vbnxXVd2rVFpUmnQUALtgZu905vFx/gn/kKQzoutnSHowbfyb0dH0R0jakLYrH0DMlm1YRrkDeSAjW/BmNkPSZyT1N7OVki6TdJWkmWb2z5LekfS16O6PSJoiaamkrZK+lYkMAHZva/1Wra9bn3QMAFmQkYJ399PamHRsK/d1SedkYrkA2ufhZQ/r8EGHJx0DQBZwlA2QR+bUzNHwiuFJxwCQBRQ8kCderX1VlWUdPiAXQI6h4IE8MXPxTB09+OikYwDIEgoeyAMb6jbo6RVP67CBhyUdBUCWUPBAHnhg6QM6sPJAPh4H5BEKHgicu+u+N+9j9zyQZyh4IHDPr35eyzcu16TBk5KOAiCLKHggcDMXz9SwnsM0rGJY0lEAZBEFDwSsdmutnnr3KU0awtY7kG8oeCBgs5bMUoM38P47kIcoeCBQjU2NmrVklkoLS/l4HJCHKHggUM+ufFart6xW9cBqdSvslnQcAFlGwQOBuufNe1RWVKbT9z096SgAEpCRb5MD0LWs3LRS72x4R3ecdIfG9h2bdBwACaDggQC9s/Ed3f25u9WntE/SUQAkhIIHAnTU4KOSjgAgYbwHDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQEVxztzMxkq6J21opKRLJfWWdJak2mj8x+7+SJxZAADIJ7EWvLsvljReksysUNIqSfdL+pak69392jiXDwBAvsrmLvpjJb3l7u9kcZkAAOSlbBb8qZJmpN0+18zmm9ktZtan5Z3NbJqZzTWzubW1tS0nAwCAXchKwZtZiaSTJd0bDd0kaZRSu+9rJF3X8jHuPt3dq929urKyMhsxAQAIRra24E+S9LK7r5Ekd1/j7o3u3iTpd5ImZCkHAAB5IVsFf5rSds+b2aC0aadIWpClHAAA5IVYj6KXJDPrIek4Sd9JG77GzMZLcknLW0wDAACdFHvBu/sWSf1ajJ0e93IBAMhnnMkOAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDyAM9dulD5dL7kknAbqEoqQDAEBGFJZId31V2rBS6rePVDk2dekf/dt3lFTIrzzkD17tAMJQUCBN+oF0/zRp9fzUpdn0YqnvSKlyjFQ5Lir+MVL/MVJxWTKZgRhR8ADCccBXpGeuktYt++S0pnrpg8Wpy6I/fzxuBVKvoZ/c4q8cK5X2yl52IMMoeADhKCiUJl0oPXjOnj/Gm6T176QuSx5rPq18YLSVP7b5HwA9B2Q2NxADCh5AWA48VXrmmlRhd9bm1anL2882Hy/tHZV9tLt/5/XewySzzi8XyAAKHkBYCouko78nPXxBfMvYvl5a8Xzqkq64h9R/n4/f39/5Xn/fkRzgh6zjFQcgPOP/rzT7OmnDiuwut36LVPNq6pKuoFjqNyra4h8bFf8Yqf9oDvBDbGIveDNbLmmTpEZJDe5ebWZ9Jd0jaW9JyyV9zd0/jDsLgDxRVCIddb70yA+STpLSVC/VvpG6LEobt4LUbv2WW/yVYzjAD51mHvNJIaKCr3b3D9LGrpG0zt2vMrOLJfVx9x+1NY/q6mqfO3durDkBBKahTvrVQdKmmqSTdEz5wLQD+9Le6y+vSjoZssTMXnL36o4+Pqld9FMlfSa6fpukpyW1WfAA0G5F3VJb8Y9enHSSjvnoAL9nmo+X9Un7DH+0u79yTOqjfhzghzTZKHiX9JiZuaSb3X26pAHuvvPP6tWS+MwJgMw79Exp9i+kLe8nnSRztn0orZiTuqQr7pF6T7/lFn+fERzgl6eysdaPdvdVZlYl6XEzeyN9ort7VP7NmNk0SdMkadiwYVmICSA4xWXSkedJj/970kniV79FqpmXuqQrLInO4NfiJD79RkvFpUkkRZbE/h58s4WZXS5ps6SzJH3G3WvMbJCkp919bFuP4z14AB22Y4v0ywOkrWuTTtK17DzAb+cR/elH95dWJJ0O6uLvwZtZD0kF7r4pun68pCskPSTpDElXRf8+GGcOAHmspIc08RzpySuSTtK1eFPq2/c+XC69+WjzaT0HpW3xR+/1Dz4k9X+JnBH318UOkPScmb0q6QVJf3H3R5Uq9uPMbImkydFtAIjHhGmpg9OwZzbVSMuell64WZo/M3VinyI+r59rYt2Cd/dlkg5qZXytpGPjXDYAfKRbT+mI70pPXZl0ktxghdK+n5cmnicNPazVu2xpaNRPlq5SVUmxqkqKNKCkWAO6pa4P7FasbgVxbz9idzi0EkB+OPw70v/cKNVtSDpJ11XcQzr4G9IR/0/qO2KXd+1RVKhlW+s0o2Zds/HB3Yp13/h9NKJ7tziTYg9Q8ADyQ2mvVMk/e03SSbqe8oHS4dOk6m+3662Mrw7sq+c3bPno9oiyEt07fh8NKS2JIyXaiX0oAPLHxO9KJT2TTtF1VO0nTf2NdMFrqa/ZbedxCidX9VZpQerkOmN7lOrBg0dT7l0IW/AA8kdZH2nCv0jPXZ90kmSN/CfpyHOlfSZ3ajYVRYU6vn8vLd9apxkHjVK/EiqlK2FtAMgvE8+Tnp+eOjFMPikolg74ijTxXGngpzI22/OHD9DQ0hJVFBVmbJ7IDAoeQH7p0U867NvS//xX0kmyo7SXdOi3UscfVOyV8dnvX87H57oqCh5A/jnyX6UXfi81bEs6SXx6D0t9NPDg06Vu5UmnQQIoeAD5p7wq9UU0z9+UdJLMG3xoajf8flOlAnab5zMKHkB+Oup8ae4tUmNd0kk6zwqkMSelvlhn+MSk06CLoOAB5KeKQdIhp0sv/j7pJB1XVCaNPy21xd5vVNJp0MVQ8ADy19Hfk16+XWrckXSS9ulRKR12lnTYv6QOGgRaQcEDyF+9hkjjvy69dGvSSfZM/zGpb8Y78FS+yx27RcEDyG9Hf1965U6pqSHpJG3be1Lq/fXRx0tmSadBjqDgAeS3PsNTW8Tz7kw6SXMFRdJ+X0wV+17jk06DHETBA8AxF0qvzpC8MekkUrcK6ZBvpr7RrdeQpNMgh1HwANB3ZOo0rvPvSS5DxRDpiLOlQ86QSiuSy4FgUPAAIEnH/FB67V7Jm7K73EEHpc6Pv/8pUiG/kpE5vJoAQJL6j06V7IJZWViYpQ6YO/JcacQxWVge8hEFDwA7HfNDacGfJHk88y/sJh34tdSBc5Vj41kGEKHgAWCnqn2lfb8gLXoos/Mt65s6Kc2Es1LnwQeygIIHgHSfvkha9GdlZCu+7yhp4nelg74ulXTv/PyAdqDgASDdwAOksSdJix/p+DyGTUydH37sFKmgIHPZgHag4AGgpU9f1P6Ct8LU7v0jz5OGVMeTC2gHCh4AWtrr4NRR7kse2/19S8qlg7+ROjFNn71jj5Y090aZ8T3zuYCCB4DWHHPRrgu+5yBpwjSp+ltSWZ/s5UqIe5Pq6larpKQfBZ8jKHgAaM3Qw6SR/yQte6r5eNX+qc+vf+orUlFJMtmybOvWt9XYVKee5eOSjoJ2oOABoC2f/tHHBT/qs6kD5/Y5NtlMWdTQsFlr181Wr4qD1L37iKTjoJ0oeABoy/CJ0rGXSmNOlAbsn3SarNu06XVVVZ4gMz4JkIsoeADYlUkXJp0gMX36TEg6AjqBP8sAAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGKreDNbKiZPWVmr5vZQjM7Pxq/3MxWmdm86DIlrgwAAOSrohjn3SDpQnd/2cx6SnrJzB6Ppl3v7tfGuGwAAPJabAXv7jWSaqLrm8xskaTBcS0PAAB8LCvvwZvZ3pIOlvR8NHSumc03s1vMrE82MgAAkE9iL3gzK5c0S9IF7r5R0k2SRkkar9QW/nVtPG6amc01s7m1tbVxxwQAICixFryZFStV7ne5+58kyd3XuHujuzdJ+p2kCa091t2nu3u1u1dXVlbGGRMAgODEeRS9SfqDpEXu/ou08UFpdztF0oK4MgAAkK/iPIr+KEmnS3rNzOZFYz+WdJqZjZfkkpZL+k6MGQAAyEtxHkX/nCRrZdIjcS0TAACkcCY7AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHclDDunVJRwDQxVHwQA5af+992vrKK0nHANCFJVbwZnaimS02s6VmdnFSOYBc1Lh+vVZfepl8x46kowDoohIpeDMrlPRrSSdJ2k/SaWa2XxJZgFzUuHGD6pYs0dpb/jvpKAC6qKS24CdIWuruy9x9h6Q/SpqaUBYg5zRt3ChJ+uA3v9GO5cuTDQOgS0qq4AdLWpF2e2U09hEzm2Zmc81sbm1tbVbDAV1d44ZUwfuOHaq57HK5e8KJAHQ1XfYgO3ef7u7V7l5dWVmZdBygS2ncsOGj61uff14b7n8guTAAuqSkCn6VpKFpt4dEYwD2QGO0i36n96++Wg1r1yaUBkBXlFTBvyhptJmNMLMSSadKeiihLEDOaUrbgpdSW/Rrrro6oTQAuqJECt7dGySdK+lvkhZJmunuC5PIAuQar69X09atnxjf+Oc/a/Ps5xJIBKArSuw9eHd/xN3HuPsod78yqRxArmnctKnNaasvv7zV8geQf7rsQXYAWufbtrU5rX7VKtXe+OsspgHQVVHwQI4pHjxYg678/1JB6z++6269VdsW8o4XkO8oeCAH9f7ylzX4l9fLios/ObGpKXUa24aG7AcD0GVQ8ECOqjj+eA2dfrOse/dPTNu+cKHW3XlnAqkAdBUUPJDDekycqOG3/rcKe/X6xLTaX92gHSs5vQSQryh4IMeVHXight95h4qqqpqN+7ZtWn3Ff3AaWyBPBVPwTU1NSUcAEtNt9GgNv/tuFQ8f1mx8y7OztfGRRxJKBSBJOV/wmzZt0vr165OOASSuZMhg7X3XXeo2blyz8TU//Zka+RkB8k7OFvzmzZv1xhtvqLGxUb1791ZBGx8ZAvJJUf/+Gn77bSo75JCPxhrXrtWaa69NMBWAJORcK27fvl1z5szRihUrNG7cOPXu3TvpSECXUlhRoWF/+L16HDPpo7EN983SludfSDAVgGzLmYKvr6/X3//+d82ePVsHHXSQ9t1336QjAV1WQVmZht54oyqmTPlobPVll6mpri7BVACyKScKfsuWLZoxY4aGDBmi4447TmVlZUlHAro8KynRXj+/Rr1PO1WStGP5cq29+eaEUwHIFsuFj9CMGzfOFy5cqMLCwqSjADnH3VV7ww1ae9NvpeJijfzTLHUbPTrpWAB2w8xecvfqjj4+J7bgy8vLKXegg8xMVeefr6qLfyTV16vm0svkfKwUCF5OFDyAzut35pka9NOfaturr2r9PfckHQdAzIqSDgAge3p/6RQVVvRUzaWXqfyzn1XxgAFJRwIQE7bggTzTc/JkDb7uWtVe/8ukowCIEVvwQB7qMXGiCsrLtfXll9U97aQ4AMJBwQN5quyAA9S4eXPSMQDEhF30QB4rLC9POgKAmFDwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEKJaCN7Ofm9kbZjbfzO43s97R+N5mts3M5kWX38axfAAA8l1cW/CPS/qUux8o6U1J/5Y27S13Hx9dzo5p+QAA5LVYCt7dH3P3hujmHElD4lgOAABoXTbeg/+2pL+m3R5hZq+Y2TNmNikLywcAIO8UdfSBZvaEpIGtTLrE3R+M7nOJpAZJd0XTaiQNc/e1ZnaopAfMbH9339jK/KdJmiZJw4YN62hMAADyUocL3t0n72q6mZ0p6fOSjnV3jx5TJ6kuuv6Smb0laYykua3Mf7qk6ZJUXV3tHc0JAEA+iuso+hMlXSTpZHffmjZeaWaF0fWRkkZLWhZHBgAA8lmHt+B340ZJ3SQ9bmaSNCc6Yv4YSVeYWb2kJklnu/u6mDIAAJC3Yil4d9+njfFZkmbFsUwAAPAxzmQHAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAAQotoI3s8vNbJWZzYsuU9Km/ZuZLTWzxWZ2QlwZAADIV0Uxz/96d782fcDM9pN0qqT9Je0l6QkzG+PujTFnAQAgbySxi36qpD+6e527vy1pqaQJCeQAACBYcRf8uWY238xuMbM+0dhgSSvS7rMyGgMAABnSqYI3syfMbEErl6mSbpI0StJ4STWSrmvnvKeZ2Vwzm1tbW9uZmAAA5J1OvQfv7pP35H5m9jtJD0c3V0kamjZ5SDTWct7TJU2XpOrqau9MTgAA8k2cR9EPSrt5iqQF0fWHJJ1qZt3MbISk0ZJeiCsHAAD5KM6j6K8xs/GSXNJySd+RJHdfaGYzJb0uqUHSORxBDwBAZsVW8O5++i6mXSnpyriWDQBAvuNMdgAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAGnWvbdSDTt2JB0D6DQKHgDSfPDuct11yff1wbvLk44CdAoFDwBpelUN1AfvLtedP/6eXv7rn+XuSUcCOoSCB4A0FVUDJEmN9fV66tabdf9Vl2vL+g8TTgW0HwUPAGlKe5SrW/ceH91+e95Luu2H52rZyy8mmApoPwoeANKY2Udb8Ttt27hB91/9H3rylptUv6MuoWRA+1DwANBCr8oBrY7P+9tfdOfFF+j95cuynAhoPwoeAFroNWBgm9PWrVqhuy/5vuY+fL+8qSmLqYD2oeABoIVeVa1vwe/U2NCgZ+74g2b97DJtXrc2S6mA9qHgAaCF3RX8Tu/Mf0W3XXSelrz4j5gTAe1HwQNAC72q2t5F39L2TRv10LVX6vHpN6p++/YYUwHtQ8EDQAttHWS3K/OffFR3XHy+1ixbGkMioP0oeABooaikRD369G334z6sWaW7f3KhXnjwPjU1NcaQDNhzFDwAtKI9u+nTNTU2avbdt+q+//yJNn5Qm+FUSNKOhtz61AQFDwCt2NMD7dqy4vXXdMdF52nxP57LUCIk4fX3NmrBqg16b/02FRVY0nHapSjpAADQFXW24CVp+5bNeviXV+nteZP12TOnqaSsewaSIU4NjU164e11Wrxmk/r2KNGRo/qrsme3pGN1CAUPAK3o6C761ix8+gmtWrRQU877gQaNHpux+SIzttc36pk3a/X04loVF5pO3H+gzjxyb5nl1hZ7SxQ8ALQiE1vw6davqdGMS3+oI7/ydU045asqKCjM6PzRPhu21uuJRWv02Our9d767Zo6fi9ddMJY9elRknS0jKHgAaAVmS54SfKmJv195p1aPv9lnXTOhbEsA22r2bBNjy1Mlfr8FRt0/P4Dddakkareu/2fmMgFFDwAtKK8bz8VFBapqbEh4/Ne9cbruv2i8zT5rHO071Gfzvj88bGl72/S3xau0d8WrtZrqzZo3MAKnTZhqG76xqGqKC1OOl6sKHgAaEVBQaEqKiu1fnVNLPPfsW2rHrnh53r7lbk69ttnN/sOemTO2s079OaaTdp/rwr959RP6aChvZOOlDUUPAC0oVfVwNgKfqdFs5/Sqjde15RzL9TgcfvFuqx8dPjIfjp8ZL+kYySCz8EDQBuy9R75xto1uufyi/X3mXepqZEz4CEzKHgAaEMmPyq3O+5NmjNrhv542UWx7zVAfqDgAaANSRzlXrNksW7/0b9q4TNPyt2zvnyEg4IHgDZkcws+Xf32bXr0N9frL7+6Rts3b04kA3IfBQ8AbUj6c+qL/zFbt190nla8/lqiOZCbKHgAaENpeU+VlJUlmmHT2lrNvOLHmj3jNjU21CeaBbmFggeANphZYrvpm3HXCw/cqxn/fpHWvbcq6TTIERQ8AOxC0rvp061ZtkR/+tml2rphfdJRkAM40Q0A7EJXKfiyil467OQva/xxU1RcWpp0HOQACh4AdiHpXfQUOzqKggeAXUiq4Mt6VqSK/fjPUezoEAoeAHYh27voKXZkSiwFb2b3SBob3ewtab27jzezvSUtkrQ4mjbH3c+OIwMAZEJFZVVWlrOz2A86fopKSpP9aB7CEEvBu/v/2XndzK6TtCFt8lvuPj6O5QJAphV3K1WP3n20Zf2Hscy/rGeFqr/wJY0/4XMUOzIq1l30ZmaSvibps3EuBwDiVFE1IOMFT7EjbnG/Bz9J0hp3X5I2NsLMXpG0UdJP3H12aw80s2mSpknSsGHDYo4JAG3rXTVQNW++kZF5UezIlg4XvJk9Iam1w0svcfcHo+unSZqRNq1G0jB3X2tmh0p6wMz2d/eNLWfi7tMlTZek6upqvlIJQGIycaAdxY5s63DBu/vkXU03syJJX5J0aNpj6iTVRddfMrO3JI2RNLejOQAgbhWdKPjSnhU6jGJHAuLcRT9Z0hvuvnLngJlVSlrn7o1mNlLSaEnLYswAAJ3WuwOfhafYkbQ4C/5UNd89L0nHSLrCzOolNUk6293XxZgBADqtPSe7odjRVcRW8O5+ZitjsyTNimuZABCH8n79VFBYqKbGxjbvU9qzQtWfP0UHn/A5lZR1z2I6oHWcyQ4AdqOgoFAV/au0fk3NJ6ZR7OiqKHgA2AMVVQOaFTzFjq6OggeAPdC7aqDelVRa3lPVX/gSxY4uj4IHgD0wYOQ+Orrymzr4xM9T7MgJFDwA7IEDJ5+YdASgXQqSDgAAADKPggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABCqrgvb5R3uRJxwAAIHFBFbwVF6pp846kYwAAkLigCl6SmrY3Jh0ByCs7tjckHQFAK4qSDpBpXtcod5eZJR0FyAsPXv+KrMA09vCB2ufQKpX1LEk6EgAFWPBF/UpVv2qzSob0TDoKELy6rfWqfXeT3KU1b2/UczOXaOj+fTVmwgCNOqRKhYXB7SQEckZwBV/QvViFHGcHZMV7S9bLJfUZ2F39h/ZU/6HlqhzWU5VDelLuQMKCK3hJKuxRnHQEIC8MHNlLZ11/jEpKg/xVAuQ0fioBdBjvtwNdF/vQAAAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgAB1quDN7KtmttDMmsysusW0fzOzpWa22MxOSBs/MRpbamYXd2b5AACgdZ3dgl8g6UuSnk0fNLP9JJ0qaX9JJ0r6jZkVmlmhpF9LOknSfpJOi+4LAAAyqFPfB+/uiyTJzFpOmirpj+5eJ+ltM1sqaUI0bam7L4se98fovq93JgcAAGgurvfgB0takXZ7ZTTW1jgAAMig3W7Bm9kTkga2MukSd38w85E+Wu40SdOim3VmtiCuZXUB/SV9kHSIGPH8clvIzy/k5ybx/HLd2M48eLcF7+6TOzDfVZKGpt0eEo1pF+Mtlztd0nRJMrO57l7d2v1CwPPLbTy/3BXyc5N4frnOzOZ25vFx7aJ/SNKpZtbNzEZIGi3pBUkvShptZiPMrESpA/EeiikDAAB5q1MH2ZnZKZL+S1KlpL+Y2Tx3P8HdF5rZTKUOnmuQdI67N0aPOVfS3yQVSrrF3Rd26hkAAIBP6OxR9PdLur+NaVdKurKV8UckPdLORU1vf7qcwvPLbTy/3BXyc5N4frmuU8/P3D1TQQAAQBfBqWoBAAhQlyv4fDr9rZndY2bzostyM5sXje9tZtvSpv024agdYmaXm9mqtOcxJW1aq+syV5jZz83sDTObb2b3m1nvaDyIdSfl7s9VW8xsqJk9ZWavR79jzo/G23yd5pro98hr0fOYG431NbPHzWxJ9G+fpHO2l5mNTVs/88xso5ldkOvrzsxuMbP30z8G3tb6spQbop/H+WZ2yG4X4O5d6iJpX6U++/e0pOq08f0kvSqpm6QRkt5S6kC9wuj6SEkl0X32S/p5dOB5Xyfp0uj63pIWJJ0pA8/pckk/aGW81XWZdN52PrfjJRVF16+WdHVg6y6In6sWz2mQpEOi6z0lvRm9Flt9nebiRdJySf1bjF0j6eLo+sU7X6u5eolem6slDc/1dSfpGEmHpP/OaGt9SZoi6a+STNIRkp7f3fy73Ba8uy9y98WtTPro9Lfu/raknae/naDo9LfuvkPSztPf5gxLnev3a5JmJJ0lS9palznD3R9z94bo5hylzukQkpz/uWrJ3Wvc/eXo+iZJi5QfZ9KcKum26Pptkr6YXJSMOFbSW+7+TtJBOsvdn5W0rsVwW+trqqTbPWWOpN5mNmhX8+9yBb8LIZ/+dpKkNe6+JG1shJm9YmbPmNmkpIJlwLnR7qRb0nYNhrDO0n1bqb+sdwph3YW2jpoxs70lHSzp+WiotddpLnJJj5nZS5Y6G6gkDXD3muj6akkDkomWMaeq+cZQKOtup7bWV7t/JhMpeDN7wswWtHLJ6S2E1uzhcz1NzV+wNZKGufvBkr4v6W4zq8hm7j21m+d3k6RRksYr9ZyuSzJre+3JujOzS5Q618Nd0VDOrLt8ZWblkmZJusDdNyrHX6ctHO3uhyj1jZ3nmNkx6RM9ta83Zz86ZakTpJ0s6d5oKKR19wmdXV+d+hx8R3lCp79Nwu6eq5kVKfWVu4emPaZOUl10/SUze0vSGEmdOm1hHPZ0XZrZ7yQ9HN3c1brsMvZg3Z0p6fOSjo1+EHNq3e1GTqyj9jKzYqXK/S53/5MkufuatOnpr9Oc4+6ron/fN7P7lXqrZY2ZDXL3mmiX7vuJhuyckyS9vHOdhbTu0rS1vtr9M5lLu+hDPf3tZElvuPvKnQNmVmlmhdH1kUo912UJ5euwFu8PnSJp55Giba3LnGFmJ0q6SNLJ7r41bTyIdafc/7n6hOhYlz9IWuTuv0gbb+t1mlPMrIeZ9dx5XakDQRcotd7OiO52hqTYviQsC5rt7Qxl3bXQ1vp6SNI3o6Ppj5C0IW1XfqsS2YLfFcu/09+2fD9JSh1ZeYWZ1UtqknS2u7c8ECMXXGNm45XaxbRc0nckaVfrMofcqNSnAB5P9YbmuPvZCmTduXtDjv9cteYoSadLes2ij6RK+rGk01p7neagAZLuj16PRZLudvdHzexFSTPN7J8lvaPUAb05J/qj5Tg1Xz+t/o7JFWY2Q9JnJPU3s5WSLpN0lVpfX48odST9UklbJX1rt/OP9iwCAICA5NIuegAAsIcoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAI0P8CcUWaq9Nb9z4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiFklEQVR4nO3de5gcdZ3v8c93rrnMEHKZ3BMSIUGDSIAR8CichYTl8nBEdhcIshiRY+RAXHk8ugfEC8dHXEUiHkXRoHHZlasiwhFUwGdX3PVwmcCQBMidJCRMJpOEJBMmTDI93/NHV0JnMpPJzHR1df36/XqeflL9q6qub6W659NV/etfm7sLAACEpSzpAgAAQP4R8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIDyEvBmtsjMtpjZspy2EWb2lJmtiv4dHrWbmX3fzFab2RIzOyUfNQAAgHfl6wz+nyWd36XtRkl/dPdpkv4Y3ZekCyRNi27zJN2VpxoAAEAkLwHv7s9I2t6l+WJJ90TT90j6WE77v3jWs5KONrNx+agDAABkxfkZ/Bh3b4qmN0saE01PkPRGznIbozYAAJAnFYXYiLu7mfVpTFwzm6fsJXwNHTr01Pe+972x1AYAQDFavHjxVnev6+/6cQZ8s5mNc/em6BL8lqh9k6RJOctNjNoO4u4LJS2UpPr6em9oaIixVAAAiouZrR/I+nFeon9M0txoeq6kR3PaPxH1pj9D0s6cS/kAACAP8nIGb2b3S/orSaPMbKOkr0n6lqSHzOwaSeslXRYt/oSkCyWtltQm6ep81AAAAN6Vl4B39yt6mDWrm2Vd0vX52C4AAOgeI9kBABAgAh4AgAAR8AAABIiAzxN3V0tre9JlAAAgiYDPGzPTsjd3Jl0GAACSCPi8Oq6uRp2dfRqwDwCAWBDweTRpxBAR7wCAYkDA51l5mSVdAgAABDwAACEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAGqSLoAAPHp6OjQmjVrtH37dlVVVam6uvrAv7nTVVVVqqysTLpcAHlEwAMBq6io0PHHH6/NmzersbFRS5cu1dtvv93tsmVlZYe8ARg8eLAuuOACDR8+vMCVAxgoc/eka+hVfX29NzQ0JF0GkHqZTEarV69WY2OjVq5cqUwm0+s6w4YN09y5czVixIgCVAhgPzNb7O71/V6fgAdKU1tbm5YuXarGxkY1NTUddtna2lp98pOf1MiRIwtUHQACHsCANTc3H7iEv3v37m6Xqamp0dy5c1VXV1fg6oDSRMADyJtMJqM1a9aosbFRK1asOOQS/tChQzV37lyNHj06oQqB0kHAA4hFW1ubli1bpsbGRr355psH2ocMGaK5c+dqzJgxCVYHhI+ABxC7LVu2qLGxUUuWLNHu3bs1ePBgfeITn9C4ceOSLg0IFgEPoGA6OzsP9MLfsGGDPv7xj2v8+PFJlwUEaaABz/fgARyxsrIyTZ8+XdOnT9eePXu0evVqjRw5UtXV1UmXBqALAh5AvwwePFgnnnhi0mUA6AFj0QMAECACHgCAAMV6id7Mjpf0YE7TeyR9VdLRkj4tqSVq/5K7PxFnLQAAlJJYA97dV0iaKUlmVi5pk6RHJF0t6Q53vz3O7QMAUKoKeYl+lqQ17r6+gNsEAKAkFTLg50i6P+f+fDNbYmaLzOyQ36I0s3lm1mBmDS0tLV1nAwCAwyhIwJtZlaSPSvpl1HSXpGOVvXzfJGlB13XcfaG717t7PT9uAQBA3xTqDP4CSS+6e7MkuXuzu2fcvVPS3ZJOK1AdAACUhEIF/BXKuTxvZrkDWF8iaVmB6gAAoCTEPpKdmQ2VdK6kz+Q032ZmMyW5pHVd5gEA0Ge7OjKqLS+TmSVdSlGIPeDd/W1JI7u0XRX3dgEApePpbbt0w2sbNH3oIC04fpKmDuH3ERjJDgCQWm2ZTt24cqP+fslabd3Xob/s2K2zX1iuO9c3q6Oz+H8tNU4EPAAglZa2tum8hhX6501bD2p/p9P1jbVNumDxSi1tbUuouuQR8ACAVMm46871zbpw8Sqtamvvcbmlu/fo/MUr9Y01b2pPprOAFRYHAh4AkBqb3tmrSxvX6Btrm7TPe78En3Hpzg1bdM4Ly/Wfb7UWoMLiQcADKCr79mbUuv0dbd3Yql3b9shL/HNUvOs3zW/pnBdW6C87dvd53df37NXfNq7RF5a/oZ37OmKorvgQ8ACKSmVVuWpHDNKoibXyTmn3jp4vwaI07OrIaP6r63Xtq+u1syMzoMf6RdM2nfX8cj3RsiM/xRUxAh5A0RpWN1i1IwYlXQYS9NyO3TrnheX6VfNbeXvM5r0d+tSydbpm2eva0r4vb49bbAh4AEDR2dfp+qe1TbrkpdXa+E48Ifx4y06d+fxy3de0TX4En+enDQEPACgqW/d26Kola/X99c2Ku+/7zo6MPr/8DV3auEbr9oT1cZCl4V1LfX29NzQ0JF0GAKCAOt3V2pHRzpzbro6MdnRktGvfwe07OzLaeaCtQ7s6MtrTxw6ag8tMX5w6TvMm1qmiLPnhbs1ssbvX93f92IeqBQCgP8rMNKyyQsMq+xdV72Q61ZrJaMe+nDcGOW8QdkRvBPa379yX0T2btupP21t1y3Hj9b6awXneo8Ii4AEAQRpUXqZB5WWqq6rs87ppuLrdGz6DBwCgixB+kY6ABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwkSfta2tS2pEXe0Zl0KQCAPCDgIUmqrBuiiuGDtOVHjdr51HplWvcmXRIAYAAIeBxQNalWo+aeoHdWbFfTt57X9gdXaO/G1qTLAgD0Q0XSBaC4lA+r1ujPfEDbf7VKbS9tUdtLW1Q15SjVfHi8Bs8YJSu3pEsEABwBAh6HsMpyjZhzvFrHDtGuP6zX3nW7tH3dLpUfXa3asyep5vRxSZcIAOgFl+jRLTPTUWdP1sirZsiqsk+TzI52tT6zMeHKAABHgoDHYQ0+YaRGXzdT5cOrJUmZnXvl7glXBQDoDQGPXlWOHarR189U1dSjpI5OdbZ1JF0SAKAXBDyOSHlNlequOVFDTxurzM72pMsBAPSCTnY4YlZRpqMvOU7q4BI9ABQ7Ah59YmZSJV+VA4BixyV6AAACRMADABAgAh4AgAAR8AAABCj2TnZmtk5Sq6SMpA53rzezEZIelDRF0jpJl7n7W3HXAgBAqSjUGfzZ7j7T3euj+zdK+qO7T5P0x+g+AADIk6Qu0V8s6Z5o+h5JH0uoDgAAglSIgHdJT5rZYjObF7WNcfemaHqzpDEFqAMAgJJRiIFuPuLum8xstKSnzGx57kx3dzM7ZGi06M3APEmaPHlyAcoEACAcsZ/Bu/um6N8tkh6RdJqkZjMbJ0nRv1u6WW+hu9e7e31dXV3cZQIAEJRYA97MhppZ7f5pSX8taZmkxyTNjRabK+nROOsAAKDUxH2JfoykR8xs/7buc/ffm9kLkh4ys2skrZd0Wcx1AABQUmINeHdfK+mkbtq3SZoV57YBAChljGQHAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHABQt90MGOsURIuABAEVrdcOz2rBsSdJlpBIBDwAoWptXrdDj379Nrdu3Jl1K6hDwAICi1fz6GrXt3KHf3vFtZTr2JV1OqhDwAICi5O5qXrtakvTmytf0zC9+nnBF6ULAAwCK0q6WLXpnd+uB+y/+7jEt/88/JVhRuhDwAICitOX1NYe0PfmTH2jbxg0JVJM+BDwAoCg1v776kLZ97e/osQXf1N49bQlUlC4EPACgKO3//L0rd9dbm5sKXE36xP178AAA9FluB7v9Bg2t0Ycu/bhOOvdClVcQX73hfwgAUHRat7VoT+suSVJZeblmnneRzvjbORpcU5twZelBwAMAis7+s/dj68/QWVderRHjJyRcUfoQ8ACAotOZyejSr3xTk9//gaRLSS0CHgBQdI7/0JlJl5B69KIHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABANq3762kS0CeEfAAUMLefnutliy9Ts89f5E6O/clXQ7yiB+bAYAS1N7erLWv/x81NT0s9w5JUvOWxzVu7MeSLQx5Q8ADQIlZu/Z7Wr/hp+rs3HNQ+4YNPyPgA8IlegAoMSNHna3q6jGHtO/e/aq2b/9LAhUhDgQ8AJSYYUedpNNP+78aP/7yQ+ZteOOnCVSEOBDwAFCCysuH6H3v/aY+cOKPVVk54kD7tm3PaPfbqxKsDPlCwANACaurO1enn/aERo44K2pxvbFhUaI1IT8IeAAocdXVdTrppEWaPu2rKiur1ubm36h979aky8IAEfAAAJmZJk2aqw9+8FENGXKsNm7816RLwgAR8ACAA2qGTtMH63+t8vIh6uxsT7ocDADfgwcAHKSsrEpTjvlM0mVggDiDBwAgQAQ8AAABIuABAAgQAQ8AQIBiC3gzm2Rm/2Zmr5rZK2b2uaj9FjPbZGaN0e3CuGoAAKBUxdmLvkPS/3T3F82sVtJiM3sqmneHu98e47YBAChpsQW8uzdJaoqmW83sNUkT4toeAAB4V0E+gzezKZJOlvRc1DTfzJaY2SIzG16IGgAAKCWxB7yZ1Uh6WNIN7r5L0l2SjpU0U9kz/AU9rDfPzBrMrKGlpSXuMgEACEqsAW9mlcqG+73u/mtJcvdmd8+4e6ekuyWd1t267r7Q3evdvb6uri7OMgEACE6cvehN0s8kvebu381pH5ez2CWSlsVVAwAApSrOXvQflnSVpKVm1hi1fUnSFWY2U5JLWieJAY8BAMizOHvR/4ck62bWE3FtEwAAZPFrcgAKprOtTW/e9CV1traqrLZWZbU1Kq+pVVlNjcpra1RWE7XV1qqspjbbVlubvVVVJV0+kCoEPICCKRsyRHWfna91V/69Onfu7NO6VlWlstpaldfUHPzmoLb20DcHQ2u6faNg1dXKdg8CwkfAAyio6uOO06S77tKGq6+Wt7cf8Xq+d68y27Yps21b/zdeWXngDULl6NEa/+1vqXIC428hTPzYDICCG3LKyZpwx3elsgL/Cdq3T5m33lJnW5tG33gj4Y6gEfAAElF7zjkae8vXCr7dqilTNOWB+zX4/ScUfNtAIRHwABIz/LLLNOqz8wu2vcEnn6xj7r9PVRMnFmybQFIIeACJGnXddTr68stj307tubM1+eeLVDGcn79AaSDgASTKzDT2q19RzexZsW1j+JVXasL3vqeyQYNi2wZQbAh4AImz8nJNuP12DT711Lw/9ugvfkFjvnyzrLw8748NFDMCHkBRKBs0SJN+9ENVTzsuPw9YWanx3/mORl5zDd99R0ki4AEUjfJhwzRp4UJVjB07oMcpq6nR5Lvv1rD/dlGeKgPSh4AHUFQqx43T5J/erbJhw/q1fsWYMTrm3ns19IzT81wZkC4EPICikx3t7key6uq+rTdtmqY8+IAGHT89psqA9CDgARSlIaecogkLbj/i0e6GnH66jrnvXlUO8PI+EAoCHkDRqp09W2O/1vtod0dddJEm3b1Q5bW1BagKSAcCHkBRG375ZRo1v+fR7kZ++r9r/G3f5udkgS74NTkARW/U9depY8sW7XjooXcbzTTmyzdrxJVXJlcYUMQ4gwdQ9A6MdjcrO9qdVVdr4g++T7gDh0HAA0gFq6jQhAW3q2bWLE3++c9VO3t20iUBRY1L9ABSo2zQIE364Z1JlwGkAmfwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBAiQW8mZ1vZivMbLWZ3ZhUHQAAhCiRgDezckk/lHSBpBmSrjCzGUnUAgBAiJI6gz9N0mp3X+vueyU9IOnihGoBACA4SQX8BElv5NzfGLUdYGbzzKzBzBpaWloKWhwAAGlXtJ3s3H2hu9e7e31dXV3S5QAAkCpJBfwmSZNy7k+M2gAAQB4kFfAvSJpmZlPNrErSHEmPJVQLAADBqUhio+7eYWbzJf1BUrmkRe7+ShK1AAAQokQCXpLc/QlJTyS1fQAAQla0newAAED/EfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAhQLAFvZt8xs+VmtsTMHjGzo6P2KWa2x8wao9uP49g+AAClLq4z+Kckvd/dPyBppaSbcuatcfeZ0e3amLYPAEBJiyXg3f1Jd++I7j4raWIc2wEAAN0rxGfwn5L0u5z7U83sJTP7k5mdWYDtAwBQcir6u6KZPS1pbDezbnb3R6NlbpbUIeneaF6TpMnuvs3MTpX0GzM7wd13dfP48yTNk6TJkyf3t0wAAEpSvwPe3Wcfbr6ZfVLSRZJmubtH67RLao+mF5vZGknTJTV08/gLJS2UpPr6eu9vnQAAlKK4etGfL+kfJX3U3dty2uvMrDyafo+kaZLWxlEDAAClrN9n8L24U1K1pKfMTJKejXrMnyXp62a2T1KnpGvdfXtMNQAAULJiCXh3P66H9oclPRzHNgEAwLsYyQ4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeBQld0+6BABINQIeRadxS6Oa3m5KugwASDUCHkXlnlfu0V/e/IvG14xPuhQASDUCHkVj0+5Nenzt4/r0iZ9OuhQASD0CHkXjzxv/rFs/cqsqyyuTLgUAUo+AR9GYMXKGpg2flnQZABAEAh5F48RRJyZdAgAEg4BH0TCzpEsAgGAQ8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQoNgC3sxuMbNNZtYY3S7MmXeTma02sxVmdl5cNQAAUKoqYn78O9z99twGM5shaY6kEySNl/S0mU1390zMtQAAUDKSuER/saQH3L3d3V+XtFrSaQnUAQBAsOIO+PlmtsTMFpnZ8KhtgqQ3cpbZGLUBAIA8GVDAm9nTZrasm9vFku6SdKykmZKaJC3o42PPM7MGM2toaWkZSJkAAJScAX0G7+6zj2Q5M7tb0m+ju5skTcqZPTFq6/rYCyUtlKT6+nofSJ0AAJSaOHvRj8u5e4mkZdH0Y5LmmFm1mU2VNE3S83HVAQBAKYqzF/1tZjZTkktaJ+kzkuTur5jZQ5JeldQh6Xp60AMAkF+xBby7X3WYebdKujWubQMAUOoYyQ4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAGnS2SlteC7pKpACBDwApEXrZukXl0j3XSZ1tCddDYocAQ8AabDySemu/yKt/XfpnR3Syt8nXRGKHAEPAMWso136/U3SfZdKbdvebX/5geRqQipUJF0AAKAHW1dJv7pa2rz00HmrnpTe3ioNHVX4upAKnMEDQLFxl176hfSTs7oPd0nq7JCW/rKwdSFVCHgAKCbv7JQevkZ69HppX9vhl228rzA1IZUIeAAoFm+8IP34I9Kyh49s+c1LpOZX4q0JqUXAA0DSOjPSnxdIi86Tdmzo27ov3x9PTUi9WALezB40s8bots7MGqP2KWa2J2fej+PYPgCkxq4m6V8/Jv3x65Jn+r7+koekTEfey0L6xdKL3t0v3z9tZgsk7cyZvcbdZ8axXQBIlRW/l37zP6Q92/v/GLubs9+NnzY7b2UhDLFeojczk3SZJK4hAcB+He3S7/6XdP/lAwv3/V6msx0OFfdn8GdKanb3VTltU83sJTP7k5md2dOKZjbPzBrMrKGlpSXmMgGggMoqpYkflEZOy8/jLX882/seyNHvgDezp81sWTe3i3MWu0IHn703SZrs7idL+ryk+8zsqO4e390Xunu9u9fX1dX1t0wAKD5lZdKJfydd/5x0yU+k4VMH9ngd70iv/CYvpSEc/f4M3t0P+4GPmVVI+htJp+as0y6pPZpebGZrJE2X1NDfOgAgtcrKpZPmSO//u2xv+Gdu63sv+v1evl86dW5+60OqxXmJfrak5e6+cX+DmdWZWXk0/R5J0yStjbEGACh+5RXSKVdJ8xdLF90hHTWh74+x4f9J2/lzinfFGfBzdGjnurMkLYm+NvcrSde6ex56mABAACqqpPpPSf/wknTBd6SasX1bnx+gQQ5z96Rr6FV9fb03NHAVH0CJ2bdHalgk/ccd0ttH0Nn46MnSP7yc/YwfqWdmi929vr/r8ywAgGJVOVj60PXS516WZv9vafCIwy+/Y0P2Uj0gAh4Ail/VUOkjN0g3LJHO+bI0aFjPy/KdeEQIeABIi+pa6awvSjcslf7rjVJ1N98yfuVRaW8vv0KHkkDAA0DaDBomnX1T9tL9mV+Qqmrenbe3NTvwDUoeAQ8AaTVkhDTrK9Lnlkgf/pxUMTjbzmV6iIAHgPQbOlI69+vZz+jPuE7a8Ky0682kq0LCCHgACEXNaOn8f5I++6LUvjvpapCwWH4uFgCQoKPGSRqXdBVIGGfwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAGFPBmdqmZvWJmnWZW32XeTWa22sxWmNl5Oe3nR22rzezGgWwfAAB0b6Bn8Msk/Y2kZ3IbzWyGpDmSTpB0vqQfmVm5mZVL+qGkCyTNkHRFtCwAAMijioGs7O6vSZKZdZ11saQH3L1d0utmtlrSadG81e6+NlrvgWjZVwdSBwAAOFhcn8FPkPRGzv2NUVtP7QAAII96PYM3s6clje1m1s3u/mj+Szqw3XmS5kV3281sWVzbKgKjJG1NuogYsX/pFvL+hbxvEvuXdscPZOVeA97dZ/fjcTdJmpRzf2LUpsO0d93uQkkLJcnMGty9vrvlQsD+pRv7l14h75vE/qWdmTUMZP24LtE/JmmOmVWb2VRJ0yQ9L+kFSdPMbKqZVSnbEe+xmGoAAKBkDaiTnZldIukHkuokPW5mje5+nru/YmYPKdt5rkPS9e6eidaZL+kPksolLXL3Vwa0BwAA4BAD7UX/iKRHeph3q6Rbu2l/QtITfdzUwr5XlyrsX7qxf+kV8r5J7F/aDWj/zN3zVQgAACgSDFULAECAii7gS2n4WzN70Mwao9s6M2uM2qeY2Z6ceT9OuNR+MbNbzGxTzn5cmDOv22OZFmb2HTNbbmZLzOwRMzs6ag/i2EnpfV31xMwmmdm/mdmr0d+Yz0XtPT5P0yb6O7I02o+GqG2EmT1lZquif4cnXWdfmdnxOcen0cx2mdkNaT92ZrbIzLbkfg28p+NlWd+PXo9LzOyUXjfg7kV1k/Q+Zb/79++S6nPaZ0h6WVK1pKmS1ijbUa88mn6PpKpomRlJ70c/9nuBpK9G01MkLUu6pjzs0y2SvtBNe7fHMul6+7hvfy2pIpr+tqRvB3bsgnhdddmncZJOiaZrJa2MnovdPk/TeJO0TtKoLm23Sboxmr5x/3M1rbfoublZ0jFpP3aSzpJ0Su7fjJ6Ol6QLJf1Okkk6Q9JzvT1+0Z3Bu/tr7r6im1kHhr9199cl7R/+9jRFw9+6+15J+4e/TQ3LjvV7maT7k66lQHo6lqnh7k+6e0d091llx3QISepfV125e5O7vxhNt0p6TaUxkubFku6Jpu+R9LHkSsmLWZLWuPv6pAsZKHd/RtL2Ls09Ha+LJf2LZz0r6WgzG3e4xy+6gD+MkIe/PVNSs7uvymmbamYvmdmfzOzMpArLg/nR5aRFOZcGQzhmuT6l7Dvr/UI4dqEdo4OY2RRJJ0t6Lmrq7nmaRi7pSTNbbNnRQCVpjLs3RdObJY1JprS8maODT4ZCOXb79XS8+vyaTCTgzexpM1vWzS3VZwjdOcJ9vUIHP2GbJE1295MlfV7SfWZ2VCHrPlK97N9dko6VNFPZfVqQZK19dSTHzsxuVnash3ujptQcu1JlZjWSHpZ0g7vvUsqfp118xN1PUfYXO683s7NyZ3r2Wm9qvzpl2QHSPirpl1FTSMfuEAM9XgP6Hnx/eULD3yaht301swplf3L31Jx12iW1R9OLzWyNpOmSBjRsYRyO9Fia2d2SfhvdPdyxLBpHcOw+KekiSbOiF2Kqjl0vUnGM+srMKpUN93vd/deS5O7NOfNzn6ep4+6bon+3mNkjyn7U0mxm49y9KbqkuyXRIgfmAkkv7j9mIR27HD0drz6/JtN0iT7U4W9nS1ru7hv3N5hZnZmVR9PvUXZf1yZUX791+XzoEkn7e4r2dCxTw8zOl/SPkj7q7m057UEcO6X/dXWIqK/LzyS95u7fzWnv6XmaKmY21Mxq908r2xF0mbLHbW602FxJsf1IWAEcdLUzlGPXRU/H6zFJn4h6058haWfOpfxuJXIGfzhWesPfdv08Scr2rPy6me2T1CnpWnfv2hEjDW4zs5nKXmJaJ+kzknS4Y5kidyr7LYCnsrmhZ939WgVy7Ny9I+Wvq+58WNJVkpZa9JVUSV+SdEV3z9MUGiPpkej5WCHpPnf/vZm9IOkhM7tG0nplO/SmTvSm5VwdfHy6/RuTFmZ2v6S/kjTKzDZK+pqkb6n74/WEsj3pV0tqk3R1r48fXVkEAAABSdMlegAAcIQIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAI0P8H6R9SnpJ7Jt4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAApzElEQVR4nO3deZhcdZ3v8fe3u9MhZA8ECGFJwAwQBAO0iCJrAqJ3RkAHhMvI4gJ64aoz6gyCo6DjHQfHmeuC+oQ7jKBhCbJDBAGVRUTsQIQAAZJAgJCETmL2vft3/6gKdpLupJeqOl2n3q/n6aerfqfqnE9xuvOhTp0+v0gpIUmS8qUu6wCSJKn0LHhJknLIgpckKYcseEmScsiClyQphyx4SZJyqCQFHxHXRsRbETGz3diIiHggIl4ufh9eHI+I+H5EzI6IZyLi8FJkkCRJf1Gqd/A/BU7ZauxS4KGU0jjgoeJ9gA8C44pfFwI/LlEGSZJUVJKCTyk9AizdavhU4Lri7euA09qNX58KngCGRcSoUuSQJEkF5fwMfveU0oLi7YXA7sXbo4HX2z3ujeKYJEkqkYZKbCSllCKiW9fEjYgLKRzCZ+DAgUcceOCBZckmSVJfNH369MUppZE9fX45C35RRIxKKS0oHoJ/qzg+H9i73eP2Ko5tIaU0GZgM0NTUlJqbm8sYVZKkviUi5vXm+eU8RH8XcF7x9nnAne3Gzy2eTX8UsLzdoXxJklQCJXkHHxE3AscDu0bEG8DXgW8DUyPik8A84Mziw6cBHwJmA2uAC0qRQZIk/UVJCj6ldHYniyZ28NgEXFyK7UqSpI55JTtJknLIgpckKYcseEmScsiClyQphyx4SZJyyIKXJCmHLHhJknLIgpckKYcseEmScsiClyQphyx4SZJyyIKXJCmHLHhJknLIgpckKYcseEmScsiClyQphyx4SZJyyIKXJCmHLHhJknLIgpckKYcseEmScsiClyQphyx4SZJyyIKXJCmHLHhJknLIgpckKYcseEmScsiClyQphyx4SZJyyIKXJCmHLHhJNeuGP7yWdQSpbCx4STVrxMB+WUeQysaCl1ST1m9q5aBRQ7KOIZWNBS+pJtVFsO8uA7OOIZWNBS+pJvWr958/5Zs/4ZIk5ZAFL0lSDlnwkiTlkAUvSVIOWfCSJOWQBS9JUg5Z8JIk5ZAFL0lSDlnwkiTlkAUvSVIOWfCSJOVQQzlXHhEHADe3G9oP+BowDPg00FIcvyylNK2cWSRJqiVlLfiU0ovABICIqAfmA7cDFwD/mVL693JuX5KkWlXJQ/QTgTkppXkV3KYkSTWpkgV/FnBju/uXRMQzEXFtRAzf+sERcWFENEdEc0tLy9aLJUnSdlSk4COiEfgwcEtx6MfA/hQO3y8Avrv1c1JKk1NKTSmlppEjR1YipiRJuVGpd/AfBJ5KKS0CSCktSim1ppTagGuAIyuUQ5KkmlCpgj+bdofnI2JUu2WnAzMrlEOSpJpQ1rPoASJiIHAScFG74asiYgKQgFe3WiZJknqp7AWfUloN7LLV2MfLvV1JkmqZV7KTJCmHarPgl8yBFW9mnUKSpLKpzYLfZX/43fdgzdKsk0iSVBa1WfAA7zoLpvwtrF+ZdRJJkkqudgt+z8Ng2L5w49mwcV3WaSRJKqnaLXiAif8Mrz0Bt5wPrZuyTiNJUsnUbMEvb1nLqhgNTRfAS7+EOz4LKWUdS5KkkqjZgh86cgCrlq3jyXXnsyAdDs9OhWlfyjqWJEklUbMFD7DH2KEccepBzN/tfG5b8i1mPTKb1gf+JetYkiT1Wk0XPEB9fR1Nn/ooE0dN4aW1x3Hd7Qfx5I9uYs2KDVlHkySpx2q+4AHoP4ihkz7Bh0dcydGDf8rMmY1cd+mjPPjfz/PWvBVZp5MkqdsiVcGJZU1NTam5ubm8G2ndCFcfCUvnsq5tIL9feR7Pr50EBHvsN5RDT9yL/Q8bSV29/08kSSq/iJieUmrq6fPLPtlM1ajvByd+FX7xCXaqW80JQ3/EAQMf5bfpShbOXc7CucsZNLw/7zxuNAe/fzQ7DeqXdWJJkjrlO/j2UoJrToA3n/7LWL+dWXnqbSxJ41gyfxVL5q9mectadttnMO88bjS7jB5U/lySpJrjO/hSioBJV8L1H/7L2MY1DL7nYww+/17GHHLI28Otm9pYtmgNq5evZ+DQ/hmElSSpc36gvLX9joP9J245tm45/OwjhVnoiuob6thl9CDLXZLUJ1nwHTnpSiC2HFv9Flx/Giyfn0UiSZK6xYLvyB6HwCFnbDu+/DX42WmweknFI0mS1B0WfGdO/CrUN247vvgl+PlHYJ1/Hy9J6rss+M4M3xeaPtnxsgUz4MazYOPaikaSJKmrLPjtOfbL0H9Ix8vm/Q6mnle4QI4kSX2MBb89A3eB932u8+Uv3w+3fwba2iqXSZKkLrDgd+S9F8Og3TtfPvMXMO2LlcsjSVIXWPA70rgzHH/p9h/TfC08eGVl8kiS1AUWfFccdi7sMm77j3nsP+B336tMHkmSdsCC74r6Bpj4zzt+3ANfg+k/LXscSZJ2xILvqvGnwuguXPP/nr+HmbeVP48kSdthwXfHSd/Y8WNSG9x2Ibz8YPnzSJLUCQu+O8YcDeNO3vHj2jbC1I/DvN+XP5MkSR2w4Ltr0hUQXfjPtnEN3PAxWPBM2SNJkrQ1C767dj8YDv1Y1x67fnnhuvWLZ5c3kyRJW7Hge+KEy6G+i/PAr24pzEC3/I2yRpIkqT0LvieG7Q1Hfrrrj1/+emEu+dWLyxZJkqT2LPieOuaLsNPQrj9+ycvws9Nh3fLyZVLJrdm4JusIktQjFnxP7TwCjv5C956z8Bm4wWlmq8n9r96fdQRJ6hELvjeO+iwM3rN7z3ntcbj5404zWyUefO1Blq1blnUMSeo2C743+g3Y8UQ0HZn9QOFiOE4z2+e1pTZum+2VCSVVHwu+tw77O9j1gO4/77nb4N6/L30elVRjXSNTX5xKa1tr1lEkqVss+N6qq4eJX+vZc6f/FB74eknjqLT61fdj/qr5PDb/sayjSFK3WPClcNBfw97v6dlzf/d/4bH/LGkclU5jXSMAN754Y8ZJJKl7LPhS6cpENJ158ApovrZkUVQ6jfWFgv/d/N8xb8W8jNNIUtdZ8KWyz1FwwId6/vx7vwjP/qJ0eVQSDXUNb9+++cWbM0wiSd1jwZfSxK9D1PfsuakNbv8MvPSr0mZSr2x+Bw9wx+w7WLvJaxhIqg4WfCntdiBMOLvnz2/bCFPPhXmPly6TemXzZ/AAKzesZNrcaRmmkaSus+BL7fjLoGFAz5+/aW1hmtk3Z5QsknquX32/Le7f9OJNpJQySiNJXVf2go+IVyPi2YiYERHNxbEREfFARLxc/D683DkqZuhoeM+FvVvH+hXw84/C4pdLk0k91v4dPMCspbOY0TIjmzCS1A2Vegd/QkppQkqpqXj/UuChlNI44KHi/fx4/z/ATsN6t441iwsz0C17vRSJ1EPtP4Pf7MZZ/smcpL4vq0P0pwLXFW9fB5yWUY7yGDAMjvmH3q9nxRtw/amwqqX361KPtD+LfrMH5j3A4rVO/Supb6tEwSfgVxExPSI2H7vePaW0oHh7IbB7BXJU1pEXwZC9er+epXPg504zm5WO3sFvatvErS/dmkEaSeq6ShT8+1NKhwMfBC6OiGPbL0yFM5a2OWspIi6MiOaIaG5pqcJ3sP12ghMuK826Fj4LU86EDc5NXmlbfwa/2dSXprKpbVOF00hS15W94FNK84vf3wJuB44EFkXEKIDi97c6eN7klFJTSqlp5MiR5Y5ZHu86G3YbX5p1vf4ETHWa2UrrV9evw/G31rzFb17/TYXTSFLXlbXgI2JgRAzefBs4GZgJ3AWcV3zYecCd5cyRmbq6wsVvSmX2g3Dbp51mtoI6OkS/2U2zbqpgEknqnnK/g98deCwi/gQ8CdybUroP+DZwUkS8DEwq3s+nA06BfY8u3fqeux3u+Xzp1qft2l7Bz1422yvbSeqztj1FuIRSSnOBd3UwvgSYWM5t9ymTroT/mlS69T11feHP8E7+ZunWqQ51dBY9wKiBo5h80mQG9OaiRpJURl7JrhL2fjcc+NelXefj34dHv1vadWobHZ1kt//Q/bn+g9czZuiYygeSpC6y4Ctl0hU9n4imMw99A/74/0q7Tm1h60P0h+56KD895afsMXCPjBJJUtdY8JWy6zg47O9Kv95pX3aa2TJqfxb9+/Z8H9ecfA3DenuVQkmqAAu+kk64DPrtXNp1pja4/SJ48b7SrlfAX97BnzLmFH544g/ZudT7T5LKxIKvpMF7wFGfLf162zbBLefBq4+Vft01rrGukY8d8DG+fcy3t5lZTpL6Mgu+0o7+AgwYUfr1bloHN5wFbz5d+nXXsFGDRnH5ey6nvq7E509IUplZ8JW20xA49kvlWfeGlYVpZlteLM/6a1BDXQMRkXUMSeo2Cz4L7/40DNunPOteswR+djose60865ckVQULPgsNjXDC5eVb/4r5xWlmt7nEvySpRljwWTnkTNj9kPKtf+ncwjv5tcvKtw1JUp9lwWelrg4mlXAimo4smgk3OM2sJNUiCz5L406CMceUdxuv/wFuPgc2bSjvdiRJfYoFn7WTrgTKfJb2nF/DbZ+CttbybkeS1GdY8FkbfQSMP7X823n+TrjbaWYlqVZY8H3BxK9BJ9OSltTTP4P7y3j2viSpz7Dg+4Jd9ofDz6vMtn7/Q3jkO5XZliQpMxZ8X3H8pdBvYGW29et/gSevqcy2JEmZsOD7ikG7wXsvrtz2pn0Z/nRz5bYnSaooC74vOfpzsPOuFdpYgjv/F8yaVqHtSZIqyYLvS/oPhmO/XLnttW2CX1wArzxauW1KkirCgu9rmj4Bw8dUbnub1sGNZ8P86ZXbpiSp7Cz4vqahEU7858puc8NK+PnfwluzKrtdSVLZWPB90Ts/CqPeVdltrl1amJzmz/Mqu11JUllY8H1RBEy6ovLbXflmYZrZlYsqv21JUklZ8H3V/ifCfsdXfrt/fqU4zeyfK79tSVLJWPB92aQKTETTkbeegylnwIbVld+2JKkkLPi+bM8J8M6PZLPtN/4IN/1Pp5mVpCplwfd1J/4z1PXLZttzfwu3fsJpZiWpClnwfd2IsdB0QXbbf+FuuOtzkFJ2GSRJ3WbBV4Pj/gkaB2e3/Rk/h/svy277kqRus+CrwcBd4X3/O9sMT/wIfvtv2WaQJHWZBV8t3ncJDNwt2wy//T/wxE+yzSBJ6hILvlo0DoTj/jHrFHDfpTDjxqxTSJJ2wIKvJkdcACP2zzhEgrsugVn3ZpxDkrQ9Fvx2tK7YwPpXltO6qo/8LXh9A5z41axTFKaZveUCmPtw1kkkSZ1oyDpAX1Y/pJENr69g0fdnwaY2GkbuTMPIAfQrfm/YbWcaRuxE1FXwanMHnw6P/wDefKpy2+xI6/rChXDOvQv2OiLbLJKkbUSqgr9vbmpqSs3NzZltv23dJpb/8hVWP7kQtv7PVR807jOYXc45iPpBjZUJ9MojcN3fVGZbOzJgOFzwS9jtoKyTSFKuRMT0lFJTT5/vIfouqNupgeGnj2PkRYfSMHLAFsv67bYzI844oHLlDjD2WNh/YuW2tz1r/1ycZvbVrJNIktqx4Luh/5ih7P75wxl84t5QHwx410hGfvZdNIzYqfJhTroSoo/svpULitPMLsw6iSSpqI80RPWIhjqGnjyGPb78bnY5+0DqGuuzCbLHIXDIGdlsuyN/frXwTn7N0qyTSJKw4HusYVj/rCMUzqiv7wM5Nnvr+cI0s+tXZZ1EkmqeBV/Nhu0D7/5k1im2NL+5OM3s+qyTSFJNs+Cr3bFfhv5Dsk6xpVcehl84zawkZcmCr3Y7j4CjP5d1im3NugfuvNhpZiUpIxZ8Hhx1MQzaI+sU2/rTjYVr10uSKq5sBR8Re0fEbyLi+Yh4LiI+Xxy/IiLmR8SM4teHypWhZjTuDMf/U9YpOvaHn8Bv/jXrFJJUc8r5Dn4T8MWU0njgKODiiBhfXPafKaUJxa9pZcxQOw47F3YZl3WKjj38bXjix1mnkKSaUraCTyktSCk9Vby9EngBGF2u7dW8+gaY+LWsU3Tuvq/A01OyTiFJNaMin8FHxBjgMOAPxaFLIuKZiLg2IoZXIkNNGP9h2OvdWafoRIK7/je8cHfWQSSpJpS94CNiEHAr8IWU0grgx8D+wARgAfDdTp53YUQ0R0RzS0tLuWPmx6Qrs07QudQKv/gkzP1t1kkkKffKWvAR0Y9CuU9JKd0GkFJalFJqTSm1AdcAR3b03JTS5JRSU0qpaeTIkeWMmS9jjoZxH8g6Reda18NN58Ab2c0OKEm1oJxn0QfwX8ALKaX/aDc+qt3DTgdmlitDzZp0Rd+ZiKYjG1bBzz8Ki57POokk5VY5W+Bo4OPAiVv9SdxVEfFsRDwDnAD8fRkz1Kbdx8OhZ2WdYvvWLStMTrN0btZJJCmXGsq14pTSY0B0sMg/i6uEEy+H526DTeuyTtK5VQvh+tPgE/fDkFE7fLgkqev68HFc9crQveDdn8o6xY4tm+c0s5JUBhZ8nh3zRdhpaNYpdqzlhcJn8utXZp1EknLDgs+znUfA+6vkFIc3n4Ibz4aNffgjBUmqIhZ83r3nszCkSi4g+Oqj8IsLoHVT1kkkqepZ8HnXbyc4vopmdHtxmtPMSlIJWPC1YMI5MPLArFN03TM3wS//MesUklTVLPhaUFfftyei6ciTk+HX38o6hSRVLQu+Vhz4P2Dvo7JO0T2PXAW/vzrrFJJUlSz4WnJSH56IpjP3Xw5P/zzrFJJUdSz4WrLPUXDAh7JO0U0J7vocPH9n1kEkqapY8LVm0hUQ9Vmn6J7UCrd+Cub8OuskklQ1LPhaM/IAmPA/s07Rfa0b4Ka/g9efzDqJJFUFC74WnXAZNAzIOkX3bVwNU86ARc+VbROvzfwTrZu80I6k6mfB16Ihe8J7Lso6Rc9snmZ2yZySr7p10yYe/K8f88rTzSVftyRVmgVfq97/9zBgeNYpembVIvjZabDizZKutr6hgb/5wj8x6/FHSrpeScqCBV+rBgyD9/9D1il6btlrhbnkVy8p6WpH7juW/Q5/N6uX/bmk65WkSrPga9l7LoKhe2edoucWvwhTSj/N7PhjTiAiSrpOSao0C76WNfSH47+SdYreefNpuOGskk8zu/PQYSVdnyRVmgVfQm1tbTz3XPnO8C6Ld50Nu43POkXvzHsMbjnPaWYlqR0LvoQ2bNjAbbfdxrx587KO0nV1dYWL31S7l+6DOz7rNLOSVGTBl9CGDRtobW3lpptuoqWlJes4XfdXH4B93591it57dipM+9I2w2ta2zIII0nZsuBLaP369QCsXbuWKVOmsGrVqowTdUM1TkTTkT/+P3jom1sMzVy5hvtalmcUSJKyYcGX0IYNG96+vWzZMm644YYtxvq0vZrgoL/JOkVpPPrv8PgP3r575LBB3PnWn/nXuQto8xC+pBphwZfQ1mX+5ptvcsstt9DWViWHiCd+Heoask5RGr/6Kjx1/dt3vzFuNNfPX8w5z8zlzxs9GU9S/lnwJbT5EH17L7/8Mvfee28GaXpg13Fw2N9lnaJ07v48PHcHACMb+/G1d+zJb5au5OTml3h25Zpss0lSmVnwJdTZ4fjp06fz6KOPVjhNDx3/Fei3c9YpSiO1wW2fhtkPAnD2qF2YfPAYDhk0gL+dMYebFyzNOKAklY8FX0Lb+7z9oYce4plnnqlgmh4avAcc9dmsU5RO6wa4+ePw2h8A+PBuw7j2kLE0v3c8EXD/4uV+Li8plyz4EuroEH17d955J6+88kqF0vTC0V+AnXfJOkXpbFwDN5wBC599e2hwQz1n7jGCD+w6lDovSysphyz4EtrRGfOb/0Z+0aJFFUrUQzsNgWO2/XvyqrZuedmmmZWkvsiCL6EdvYPf/JgpU6awYsWKCiTqhXd/Cobtk3WK0lrdAtefCsvnZ51EksrOgi+hrv7N+4oVK5gyZUqX/ocgMw2NcMJXs05RestfL8wlv3px1kkkqaws+BLqzkVtFi1axNSpU2ltbS1jol469EzY45CsU5RWw06Fs+t//8Osk0hSWeXkqiZ9Q3ffkc+ZM4e7776b0047rTyBeisCJl5RmHO9WvQfCsP2Lsxzv8X3fQrfB44svC5JyjkLvoR6clnaGTNmMHToUE444YQyJCqBcZNg7LHwyiNZJwECBu22VXnv0+7+XrDT0KxDSlKfYMGXUE+vO//www8zdOhQDj/88BInKpFJV8I1JwJl/nvxugYYsudf3m1vXeRDRkO/ncqbQZJywoIvod6cNHfPPfcwZMgQ3vGOd5QwUYmMPhzGnwrP39G79fTbufAuu7N34INHQV19SSJLUq2LVAVX8WpqakrNzc1Zx9ih119/nVWrVrFmzRrWrl3L2rVrt7jd/n5HJ9c1NjZywQUXMGrUqAzS78CSOXD1e6BtY+ePGTC8g8Pm7T4DH5iji+dIUplFxPSUUlNPn+87+BLae++9u/zYDRs2dPg/AgsXLuybBb/L/vDei2He4x2fvDZ0b+g/KOuUkqQiCz4jjY2NNDY2MmzYsKyjdN1JV2adQJLURf4dvCRJOWTBS5KUQxa8JEk5ZMFLkpRDFrwkSTlkwUuSlEMWvCRJOZRZwUfEKRHxYkTMjohLs8ohSVIeZVLwEVEPXA18EBgPnB0R47PIIklSHmX1Dv5IYHZKaW5KaQNwE3BqRlkkScqdrAp+NPB6u/tvFMfeFhEXRkRzRDS3tLRUNJwkSdWuz55kl1KanFJqSik1jRw5Mus4kiRVlawKfj7Qfuq1vYpjkiSpBLIq+D8C4yJibEQ0AmcBd2WURZKk3MlkutiU0qaIuAS4H6gHrk0pPZdFFkmS8iiz+eBTStOAaVltX5KkPOuzJ9lJkqSes+AlScohC16SpByy4CVJyiELXpKkHLLgJUnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHLLgJUnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHLLgJUnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHLLgJUnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHLLgJUnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHLLgJUnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHKqKgt+4YAFrn3026xiSJFWNqij4frvvzqqHH+G1Cy9kxX33k1pbs44kSVKfVhUFT10dIy+5mNFXXcW652Yy99RTWXLtf9O6cmXWySRJ6pOqo+CL6ocNY7cvfpF9//u/2fjmm8w5+QMs/JdvseG117KOJklSn1KWgo+I70TErIh4JiJuj4hhxfExEbE2ImYUv37Sk/U3jBzJHl+9nLG33Upav465/+Ovef1/XczqPzxZ0tchSVK1Ktc7+AeAd6aUDgVeAr7SbtmclNKE4tdnerORfqNGMeqb32S/e+6mbuBAXrvgAuZ+5CMsu/0O0oYNvVm1JElVrSwFn1L6VUppU/HuE8Be5djOZo377svo71zFfnfeQePovVhw2WW8PHEiLVdfzaalS8u5aUmS+qRKfAb/CeCX7e6PjYinI+LhiDimlBvqP24ce/3g+4z5xS3sdNBBLP7BD5l9wom8+dWvsu6ll0q5KUmS+rRIKfXsiREPAnt0sOjylNKdxcdcDjQBH0kppYjoDwxKKS2JiCOAO4CDU0orOlj/hcCFAPvss88R8+bN63bGNU89Rcv//R5rnix8Nj/wfe9l+LnnMui444iIbq9PkqRKiYjpKaWmHj+/pwW/wxVHnA9cBExMKa3p5DG/Bb6UUmre3rqamppSc/N2H7Jdqx9/nLe+9z3W/ekZABrHjmXEuR9n6GmnUTdgQI/XK0lSufTJgo+IU4D/AI5LKbW0Gx8JLE0ptUbEfsCjwCEppe1+UN7bgt9s5a9/Q8v3v8/6WbMAqBs6lOFnnsHwc86h3x4dHYyQJCkbfbXgZwP9gSXFoSdSSp+JiI8C3wA2Am3A11NKd+9ofaUqeICUEivvu4+WH/yQDXPnFgYbGhhy8smMOP88Bhx6aEm2I0lSb/TJgi+1Uhb8Zqm1leV33c3iq69m4xtvvD0+YMIERpx/HoNPOomory/pNiVJ6ioLvpfSxo0su/VWFv/4J2xatOjt8X577snwc85h2JlnUD94cFm2LUlSZ3pb8FV1qdpyiH79GH7WWez/q/vZ7dJ/on7ECAA2vvkmi3/0I1Y/8UTGCSVJ6r6GrAP0FXX9+7PL+ecz/IwzWPqzn7PqsUcZ9c1v0n/s2KyjSZLUbTV/iF6SpL7IQ/SSJGkbFrwkSTlkwUuSlEMWvCRJOWTBS5KUQxa8JEk5ZMFLkpRDFrwkSTlkwUuSlEMWvCRJOWTBS5KUQxa8JEk5ZMFLkpRDFrwkSTlkwUuSlEMWvCRJOWTBS5KUQxa8JEk5ZMFLkpRDFrwkSTlkwUuSlEMWvCRJOWTBS5KUQxa8JEk5ZMFLkpRDFrwkSTlkwUuSlEMWvCRJOWTBS5KUQxa8JEk5ZMFLkpRDFrwkSTlkwUuSlEMWvCRJOWTBS5KUQxa8JEk5ZMFLkpRDFrwkSTlkwUuSlEMWvCRJOWTBS5KUQ2Ur+Ii4IiLmR8SM4teH2i37SkTMjogXI+ID5cogSVKtaijz+v8zpfTv7QciYjxwFnAwsCfwYET8VUqptcxZJEmqGVkcoj8VuCmltD6l9AowGzgygxySJOVWuQv+koh4JiKujYjhxbHRwOvtHvNGcUySJJVIrwo+Ih6MiJkdfJ0K/BjYH5gALAC+2811XxgRzRHR3NLS0puYkiTVnF59Bp9SmtSVx0XENcA9xbvzgb3bLd6rOLb1uicDkwGamppSb3JKklRrynkW/ah2d08HZhZv3wWcFRH9I2IsMA54slw5JEmqReU8i/6qiJgAJOBV4CKAlNJzETEVeB7YBFzsGfSSJJVW2Qo+pfTx7Sz7FvCtcm1bkqRa55XsJEnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHLLgJUnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHLLgJUnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHLLgJUnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHLLgJUnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHLLgJUnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHLLgJUnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHLLgJUnKIQtekqQcsuAlScohC16SpBxqKMdKI+Jm4IDi3WHAspTShIgYA7wAvFhc9kRK6TPlyCBJUi0rS8GnlD62+XZEfBdY3m7xnJTShHJsV5IkFZSl4DeLiADOBE4s53YkSdKWyv0Z/DHAopTSy+3GxkbE0xHxcEQc09kTI+LCiGiOiOaWlpYyx5QkKV96/A4+Ih4E9uhg0eUppTuLt88Gbmy3bAGwT0ppSUQcAdwREQenlFZsvZKU0mRgMkBTU1PqaU5JkmpRjws+pTRpe8sjogH4CHBEu+esB9YXb0+PiDnAXwHNPc0hSZK2Vc5D9JOAWSmlNzYPRMTIiKgv3t4PGAfMLWMGSZJqUjlPsjuLLQ/PAxwLfCMiNgJtwGdSSkvLmEGSpJpUtoJPKZ3fwditwK3l2qYkSSrwSnaSJOWQBS9JUg5Z8JIk5ZAFL0lSDlnwkiTlkAUvSVIOWfCSJOWQBS9JUg5Z8JIk5ZAFL0lSDlnwkiTlkAUvSVIOWfCSJOWQBS9JUg5Z8JIk5ZAFL0lSDlnwkiTlkAUvSVIOWfCSJOWQBS9JUg5Z8JIk5ZAFL0lSDlnwkiTlkAUvSVIOWfCSSmLDhsVZR5DUjgUvqVdSauOVV35A8/QzSKk16ziSiix4Sb2UWLL0MdaufY0lSx7JOoykIgteUq9E1HPw+O9QXz+QN964Pus4kooseEm9NmDAPowbdzlLlj7CmjWvZh1HEha8pBLZc9SZ7LLLCbwxf0rWUSRhwUsqkYjgoAP/lcWLH6K1dU3WcaSaZ8FLKpn+/Ufyjv3/kYUL78w6ilTzLHhJJbXbbqewqXUVKaWso0g1zYKXVHJ7jvoY69bNzzqGVNMasg4gKX/69RtCQ8OgrGNINc138JLKIsJ/XqQs+RsoSVIOWfCSJOWQBS9JUg5Z8JIk5ZAFL0lSDlnwkiTlkAUvSVIOWfCSJOWQBS9JUg71quAj4oyIeC4i2iKiaatlX4mI2RHxYkR8oN34KcWx2RFxaW+2L0mSOtbbd/AzgY8Aj7QfjIjxwFnAwcApwI8ioj4i6oGrgQ8C44Gzi4+VJEkl1KvJZlJKLwBExNaLTgVuSimtB16JiNnAkcVls1NKc4vPu6n42Od7k0OSJG2pXJ/BjwZeb3f/jeJYZ+OSJKmEdvgOPiIeBPboYNHlKaU7Sx/p7e1eCFxYvLs+ImaWa1t9wK7A4qxDlJGvr7rl+fXl+bWBr6/aHdCbJ++w4FNKk3qw3vnA3u3u71UcYzvjW293MjAZICKaU0pNHT0uD3x91c3XV73y/NrA11ftIqK5N88v1yH6u4CzIqJ/RIwFxgFPAn8ExkXE2IhopHAi3l1lyiBJUs3q1Ul2EXE68ANgJHBvRMxIKX0gpfRcREylcPLcJuDilFJr8TmXAPcD9cC1KaXnevUKJEnSNnp7Fv3twO2dLPsW8K0OxqcB07q5qcndT1dVfH3VzddXvfL82sDXV+169foipVSqIJIkqY/wUrWSJOVQnyv4Wrr8bUTcHBEzil+vRsSM4viYiFjbbtlPMo7aIxFxRUTMb/c6PtRuWYf7slpExHciYlZEPBMRt0fEsOJ4LvYdVO/vVWciYu+I+E1EPF/8N+bzxfFOf06rTfHfkWeLr6O5ODYiIh6IiJeL34dnnbO7IuKAdvtnRkSsiIgvVPu+i4hrI+Kt9n8G3tn+ioLvF38fn4mIw3e4gZRSn/oCDqLwt3+/BZrajY8H/gT0B8YCcyicqFdfvL0f0Fh8zPisX0cPXvd3ga8Vb48BZmadqQSv6QrgSx2Md7gvs87bzdd2MtBQvP1vwL/lbN/l4vdqq9c0Cji8eHsw8FLxZ7HDn9Nq/AJeBXbdauwq4NLi7Us3/6xW61fxZ3MhsG+17zvgWODw9v9mdLa/gA8BvwQCOAr4w47W3+fewaeUXkgpvdjBorcvf5tSegXYfPnbIyle/jaltAHYfPnbqhGFa/2eCdyYdZYK6WxfVo2U0q9SSpuKd5+gcE2HPKn636utpZQWpJSeKt5eCbxAbVxJ81TguuLt64DTsotSEhOBOSmleVkH6a2U0iPA0q2GO9tfpwLXp4IngGERMWp76+9zBb8deb787THAopTSy+3GxkbE0xHxcEQck1WwErikeDjp2naHBvOwz9r7BIX/s94sD/sub/toCxExBjgM+ENxqKOf02qUgF9FxPQoXA0UYPeU0oLi7YXA7tlEK5mz2PLNUF723Wad7a9u/05mUvAR8WBEzOzgq6rfIXSki6/1bLb8gV0A7JNSOgz4B+CGiBhSydxdtYPX92Ngf2AChdf03SyzdldX9l1EXE7hWg9TikNVs+9qVUQMAm4FvpBSWkGV/5xu5f0ppcMpzNh5cUQc235hKhzrrdo/nYrCBdI+DNxSHMrTvttGb/dXr/4OvqdSRpe/zcKOXmtENFCYcveIds9ZD6wv3p4eEXOAvwJ6ddnCcujqvoyIa4B7ine3ty/7jC7su/OBvwYmFn8Rq2rf7UBV7KPuioh+FMp9SkrpNoCU0qJ2y9v/nFadlNL84ve3IuJ2Ch+1LIqIUSmlBcVDum9lGrJ3Pgg8tXmf5WnftdPZ/ur272Q1HaLP6+VvJwGzUkpvbB6IiJERUV+8vR+F1zo3o3w9ttXnQ6cDm88U7WxfVo2IOAX4R+DDKaU17cZzse+o/t+rbRTPdfkv4IWU0n+0G+/s57SqRMTAiBi8+TaFE0FnUthv5xUfdh5QtknCKmCLo5152Xdb6Wx/3QWcWzyb/ihgebtD+R3K5B389kTtXf5268+ToHBm5TciYiPQBnwmpbT1iRjV4KqImEDhENOrwEUA29uXVeSHFP4K4IFCb/BESukz5GTfpZQ2VfnvVUeOBj4OPBvFP0kFLgPO7ujntArtDtxe/HlsAG5IKd0XEX8EpkbEJ4F5FE7orTrF/2k5iS33T4f/xlSLiLgROB7YNSLeAL4OfJuO99c0CmfSzwbWABfscP3FI4uSJClHqukQvSRJ6iILXpKkHLLgJUnKIQtekqQcsuAlScohC16SpByy4CVJyiELXpKkHPr/eM4eI4EIP6kAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAd9UlEQVR4nO3dfZBdd33f8c9XlmzLtoz8IMvGYMyDIZimGFAE0wANNQRDU4x5ip0OcQhTQwMNTEtTAi2hoUwSAmGSEMiIxhMyITykxMFJHcJDE2g6ISATx/gBg21sIyFb8gO2sWVZ0v76x16ZtVg9792z97ev18yO7j3n7t7vnbOrt865Z4+qtRYAoC9Lhh4AAJh7Ag8AHRJ4AOiQwANAhwQeADok8ADQoTkJfFVdXFWbq+qqGcuOr6rPVdW3Rn8eN1peVfU7VXV9VV1ZVU+fixkAgB+Yqz34P0xyzm7L3prkC621M5J8YXQ/SV6U5IzRx0VJPjRHMwAAI3MS+Nbal5Lcudvic5N8ZHT7I0leOmP5H7VpX06ysqpOmYs5AIBp43wPfnVrbdPo9q1JVo9un5rkOzMet2G0DACYI0vn40laa62qDuiauFV1UaYP4efoo49+xo/8yI+MZTYAWIguv/zy21trqw7288cZ+Nuq6pTW2qbRIfjNo+Ubkzx6xuMeNVr2MK21dUnWJcmaNWva+vXrxzgqACwsVXXzoXz+OA/RX5rkwtHtC5N8esbynx2dTf+sJHfPOJQPAMyBOdmDr6qPJfmJJCdW1YYkv5Lk15N8sqpem+TmJK8aPfyyJC9Ocn2S+5O8Zi5mAAB+YE4C31q7YA+rzp7lsS3JG+bieQGA2bmSHQB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPDQualtO9Om2tBjAPNM4KFz2zd9P7f/4dWZun/70KMA80jgoXNtZ8u2b96V2z5wRR7cdN/Q4wDzROChd6PD8zvvfCBbPnhF7v+nzQMPBMwHgYfOLVt9dI59wWNy5JOOS5YuyZ0fuy7f+8sb03Z6Xx56tnToAYDxOuzYw3Ps2aclSdpUy447tubBm+/N1qtvz/IfPTFVNfCEwDgIPCwitaSybNVRWbbqqKFHAcbMIXoA6NBY9+Cr6klJPjFj0eOSvCPJyiT/LsmW0fK3tdYuG+csALCYjDXwrbXrkpyVJFV1WJKNSS5J8pok72+tvXeczw8Ai9V8HqI/O8kNrbWb5/E5AWBRms/An5/kYzPuv7Gqrqyqi6vquN0fXFUXVdX6qlq/ZcuW3VcDAHsxL4GvqsOTvCTJn44WfSjJ4zN9+H5Tkvft/jmttXWttTWttTWrVq2ajzEBoBvztQf/oiRfa63dliSttdtaaztba1NJPpxk7TzNAQCLwnwF/oLMODxfVafMWHdekqvmaQ4AWBTGfqGbqjo6yQuSvG7G4vdU1VlJWpKbdlsHAByisQe+tXZfkhN2W/bqcT8vACxmrmQHAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoENLhx4A9mXn1M7cdM9NueaOa3LNHdfk2juvzYVnXpjnnfa8oUcDWLAEngXpvu335be/9tu59o5rc91d12Xrjq0PW/+ap7xmoMkAJoPAsyAtX7o8n/n2Z3LXtrv2uB6APfMePAvSklqSHzv5x/a4/qhlR83jNACTR+BZsJ55yjP3uM4ePMDeCTwL1tqT1+5x3VFL7cED7I3As2A95tjHZPVRq2dd5xA9wN4JPAtWVe3xML1D9AB7J/AsaLMdpl9aS7NsybIBpgGYHALPgjZb4JcvXZ6qGmAagMkh8CxopxxzSk5bcdrDli1f5vA8wL4IPAve7u/DO4MeYN8EngVv7SkPP0zvBDuAfRN4FrwfW/3wK9oJPMC+CTwL3gnLT8gZx53x0H2/Aw+wbwLPRHjmyT94H9578AD7JvBMhJkn2jlED7BvAs9EeMbqZ2RJTX+7OkQPsG8Cz0RYcfiKPOWEpySxBw+wPwSeibHrqnbegwfYN4FnYuz6fXh78AD7JvBMjKed9LQsW7LMe/AA+0HgmRjLly7PU1c91R48wH4QeCbK2lPWeg8eYD8sHXoAOBDPPPmZ2T61fegxABY8e/BMlB898UdzwpEnDD0GwIIn8EyUZYcty+NXPn7oMQAWPIFn4lTV0CMALHgCDwAdGvtJdlV1U5J7k+xMsqO1tqaqjk/yiSSnJ7kpyataa3eNexYAWCzmaw/+ea21s1pra0b335rkC621M5J8YXQfAJgjQx2iPzfJR0a3P5LkpQPNAQBdmo/AtySfrarLq+qi0bLVrbVNo9u3Jlk9D3MAwKIxHxe6eXZrbWNVnZTkc1X1jZkrW2utqtrunzT6x8BFSXLaaafNw5gAc+8r3/t+1q48ZugxWITGvgffWts4+nNzkkuSrE1yW1WdkiSjPzfP8nnrWmtrWmtrVq1aNe4xAebc+rvvywVX3pjtUz+0DwNjN9bAV9XRVbVi1+0kP5nkqiSXJrlw9LALk3x6nHMAzLcb79+Wn/36jblv51Q2bntw6HFYhMZ9iH51kktGFyZZmuRPWmufqaqvJvlkVb02yc1JXjXmOQDmze0P7si/vfKG3Ll9Z5Lk5q0P5vTlRww8FYvNWAPfWrsxyVNnWX5HkrPH+dwAQ/m9W27Lt7f+YK/9pq3b8i+zYsCJWIxcyQ5gjp19wrEPu3/zVofomX8CDzDH/sXKY/LII5Y9dP/mB7YNOA2LlcADzLElVTlv9XEP3b9pq8Az/wQeYAxeMSPwN299MK35VTnml8ADjMGTj1meM48+Mkny/Z1TuWN0Rj3MF4EHGJOXn3z8Q7dvcZieeSbwAGNy3kkrU6PbNz3gTHrml8ADjMkjjzw8Pz66Dv3N9uCZZwIPMEavOHn6ZLub/C4882wyAn//HUNPAHBQ/vWqlTlySdmDZ95NRuDv2Zjce9vQUwAcsBVLD8sLT3xEbvYePPNsMgI/tTP5q18aegqAg/Ly1cdl07bt2bpzauhRWEQmI/BLj0iu+fPkus8MPQnAAXve8cfm+GWH5Tv24plHkxH44x+fLD8uuewtybbvDz0NwAFZtqRy7knHuWQt82oyAr/0iOSn/zj5/m3J//kfQ08DcMBesfq43GIPnnk0GYFPktOfnbzkd5OvrEs2Xj70NAAH5OnHHvXQRW9gPkxO4JPkqecnz31L8hdvSnbuGHoagP1WVVnziKOHHoNFZLICnyTPe1uy6snJ339g6EkADsiZRy8fegQWkckLfJKc+4Hk219K7vz20JMA7LdlSxykZ/5MZuCXHpG8/H/aiweAPZjMwCfJUccnz/qF5FufG3oSAFhwlg49wCE54fHJ1I7p340/4pihpwGABWOyA58kq56U7Nw+9BQAsKBM7iH6mQ5bNvQEALCg9BF4AOBhBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0aGyBr6pHV9XfVNU1VXV1Vb1ptPydVbWxqq4Yfbx4XDMAwGK1dIxfe0eS/9Ra+1pVrUhyeVV9brTu/a21947xuQFgURtb4Ftrm5JsGt2+t6quTXLquJ4PAPiBeXkPvqpOT/K0JP8wWvTGqrqyqi6uquPmYwYAWEzGHviqOibJp5K8ubV2T5IPJXl8krMyvYf/vj183kVVtb6q1m/ZsmXcYwJAV8Ya+Kpalum4f7S19mdJ0lq7rbW2s7U2leTDSdbO9rmttXWttTWttTWrVq0a55gA0J1xnkVfSf4gybWttd+asfyUGQ87L8lV45oBgOFt3bohmzd/Jtu33zP0KIvKOM+i//Ekr07y9aq6YrTsbUkuqKqzkrQkNyV53RhnAGBgVUty0knnDD3GojPOs+j/LknNsuqycT0nAAvPkUc+cugRFiVXsgOADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAAMNKmprLllpvSWht6lEMm8AAwUkuWZNnhR+Qv3v9rue7v/y5TUzuHHumgCTwAzLDy5FPyvAsvyv/75B/nD//jv891f/93Q490UAQeAHaz4oQTc/47fz1Llx2ev/3Iuok8ZC/wADCLox6xMq/8lV/LihNW5c7vbhh6nAMm8ACwB8uPWZFX/Nd3Zef27UOPcsAEHgD24vDlR+Wk0x839BgHTOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRosMBX1TlVdV1VXV9Vbx1qDgDo0SCBr6rDkvxekhclOTPJBVV15hCzAECPhtqDX5vk+tbaja21B5N8PMm5A80CAN0ZKvCnJvnOjPsbRsseUlUXVdX6qlq/ZcuWeR0OACbdgj3JrrW2rrW2prW2ZtWqVUOPAwATZajAb0zy6Bn3HzVaBgDMgaEC/9UkZ1TVY6vq8CTnJ7l0oFkAoDtLh3jS1tqOqnpjkr9OcliSi1trVw8xCwD0aJDAJ0lr7bIklw31/ADQswV7kh0AcPAEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQegP22fefU0COwnwQegP128x33Dz0C+0ngAdhv23bszIa7RH4SCDwA++1RK4/Kl755+9BjsB8EHoD99oijluVrt9w19BjsB4EH4IDccsf92eFkuwVP4AE4ICuOXJorvvO9ocdgHwQegANy6nHL86Vvbhl6DPZB4AE4IKeuXJ4vfsuJdgudwANwQJ5w0jG5dtM9ueu+B4cehb1YOvQAAEyWs5+8Ole84wWp1NCjsBcCD8ABO+pw+VjoxnKIvqp+s6q+UVVXVtUlVbVytPz0qtpaVVeMPn5/HM8PAIvduN6D/1ySf9Za++dJvpnkl2esu6G1dtbo4/Vjen4AWNTGEvjW2mdbaztGd7+c5FHjeB4AYHbzcRb9zyf5qxn3H1tV/1hVX6yq58zD8wPAonPQZ0lU1eeTnDzLqre31j49eszbk+xI8tHRuk1JTmut3VFVz0jy51X1lNbaPbN8/YuSXJQkp5122sGOCQCL0kEHvrX2/L2tr6qfS/JTSc5urbXR52xLsm10+/KquiHJE5Osn+Xrr0uyLknWrFnTDnZOYDi33nprTj55tv0AYNzGdRb9OUl+KclLWmv3z1i+qqoOG91+XJIzktw4jhmA4X3lK18ZegRYtMb1HvwHkqxI8rndfh3uuUmurKorkvyvJK9vrd05phmAAW3bti1f//rXs3PnzqFHgUVpLFcqaK09YQ/LP5XkU+N4TmBh+e53v5vt27fn1ltvzamnnjr0OLDouBY9MBYbNmxIkmzcuHHgSWBxEnhgLHaFXeBhGAIPjIXAw7AEHphzd999d+69994kye23354HHnhg4Ilg8RF4YM7tvtduLx7mn8ADc27XCXa7CDzMP4EH5tzuQb/rrrsGmgQWL4EH5tTU1FS++93vPnR/5cqVOfvsswecCBYngQfm1ObNm7N9+/YkyRFHHJGf+ZmfyTHHHDPwVLD4CDwwp3Ydnq+qvPKVr8xJJ5008ESwOAk8MKd2Bf5FL3pRnvCEWa9aDcwDgQfm1IYNG7J27dqsXbt26FFgURN4YM5s27YtK1euzDnnnDP0KLDoCTwwZx588MG8/OUvz5Il/mqBoY3lv4sFFqcVK1YMPQIw4p/ZANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADo0NgCX1XvrKqNVXXF6OPFM9b9clVdX1XXVdULxzUDACxWS8f89d/fWnvvzAVVdWaS85M8Jckjk3y+qp7YWts55lkAYNEY4hD9uUk+3lrb1lr7dpLrk6wdYA4A6Na4A//Gqrqyqi6uquNGy05N8p0Zj9kwWgYAzJFDCnxVfb6qrprl49wkH0ry+CRnJdmU5H0H+LUvqqr1VbV+y5YthzImACw6h/QefGvt+fvzuKr6cJK/HN3dmOTRM1Y/arRs96+9Lsm6JFmzZk07lDkBYLEZ51n0p8y4e16Sq0a3L01yflUdUVWPTXJGkq+Maw4AWIzGeRb9e6rqrCQtyU1JXpckrbWrq+qTSa5JsiPJG5xBDwBza2yBb629ei/r3p3k3eN6bgBY7FzJDgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeADokMADQIcEHgA6JPAA0CGBB4AOCTwAdEjgAaBDAg8AHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB1aOo4vWlWfSPKk0d2VSb7XWjurqk5Pcm2S60brvtxae/04ZgCAxWwsgW+t/fSu21X1viR3z1h9Q2vtrHE8LwAwbSyB36WqKsmrkvyrcT4PAPBw434P/jlJbmutfWvGssdW1T9W1Rer6jl7+sSquqiq1lfV+i1btox5TADoy0HvwVfV55OcPMuqt7fWPj26fUGSj81YtynJaa21O6rqGUn+vKqe0lq7Z/cv0lpbl2RdkqxZs6Yd7JwAsBgddOBba8/f2/qqWprkZUmeMeNztiXZNrp9eVXdkOSJSdYf7BwAwA8b5yH65yf5Rmttw64FVbWqqg4b3X5ckjOS3DjGGQBgURrnSXbn5+GH55PkuUl+taq2J5lK8vrW2p1jnAEAFqWxBb619nOzLPtUkk+N6zkBgGmuZAcAHRJ4AOiQwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8AHRI4AGgQwIPAB0SeAY3tXNq6BEAuiPwDO4737hr6BEAuiPwDO769bcNPQJAdwSeQe3cMZVvX3l7WmtDjwLQFYFnUPfcvjXb7tuRe27fOvQoAF0ReAb1vc3TYd9yy/cHngSgLwLPoO7efH+SZMt37h14EoC+CDyD2rUHf7vAA8wpgWdQD+3B3yLwAHNJ4BnU3Zu3ppZUnvaTjxl6FICuLB16ABavndunsmP7zvyb//DUPPrJxw89DkBXBJ7BbH9wZ17xX9bk2BOXDz0KQHcEnsEcefSyHHn0sqHHAOiS9+ABoEMCDwAdEngA6JDAA0CHBB4AOiTwANAhgQeADgk8zJOpbduy4447hh4DWCQEHubJkiOOyANXX53tt9029CjAIiDwMI+Ofvazc8e6D9uTB8ZO4GEe1ZIlOeG1P5+Nb3pzdt5999DjAB0TeJhnyx75yDzivJfmlosuys7v3zf0OECnBB4G8IiXvSxLVx6XDb/wC5l64IGhxwE6JPAwgKrKye/61Txw3XXZ8Iu/mPbgg0OPBHRG4GEgy046KSe/47/lvi/932x8y39O27Fj6JGAjhxS4KvqlVV1dVVNVdWa3db9clVdX1XXVdULZyw/Z7Ts+qp666E8P0y6Y1/84qx44Qtz72c/m01vf3va1NTQIwGdONQ9+KuSvCzJl2YurKozk5yf5ClJzknywao6rKoOS/J7SV6U5MwkF4weC4tSVeXkX3lHDjvhhNz96Utz67veldba0GMBHTikwLfWrm2tXTfLqnOTfLy1tq219u0k1ydZO/q4vrV2Y2vtwSQfHz0WFq2lxx+fU/77O5Mk3/vYx7P5N98r8sAhG9d78Kcm+c6M+xtGy/a0HBa1Fc9/fh5x7vS/de+8+OLc/sEPDjwRMOmW7usBVfX5JCfPsurtrbVPz/1IDz3vRUkuGt3dVlVXjeu5FoATk9w+9BBj5PUdqDe+cfpjYeh5+/X82hKvb9I96VA+eZ+Bb609/yC+7sYkj55x/1GjZdnL8t2fd12SdUlSVetba2tme1wPvL7J5vVNrp5fW+L1TbqqWn8onz+uQ/SXJjm/qo6oqscmOSPJV5J8NckZVfXYqjo80yfiXTqmGQBg0drnHvzeVNV5SX43yaok/7uqrmitvbC1dnVVfTLJNUl2JHlDa23n6HPemOSvkxyW5OLW2tWH9AoAgB9ySIFvrV2S5JI9rHt3knfPsvyyJJcd4FOtO/DpJorXN9m8vsnV82tLvL5Jd0ivr/w6DgD0x6VqAaBDCy7wi+nyt1X1iaq6YvRxU1VdMVp+elVtnbHu9wce9aBU1TurauOM1/HiGetm3ZaToqp+s6q+UVVXVtUlVbVytLyLbZdM7s/VnlTVo6vqb6rqmtHfMW8aLd/j9+mkGf098vXR61g/WnZ8VX2uqr41+vO4oec8UFX1pBnb54qquqeq3jzp266qLq6qzTN/DXxP26um/c7o5/HKqnr6Pp+gtbagPpI8OdO/+/e3SdbMWH5mkn9KckSSxya5IdMn6h02uv24JIePHnPm0K/jIF73+5K8Y3T79CRXDT3THLymdyZ5yyzLZ92WQ897gK/tJ5MsHd3+jSS/0dm26+LnarfXdEqSp49ur0jyzdH34qzfp5P4keSmJCfutuw9Sd46uv3WXd+rk/ox+t68NcljJn3bJXlukqfP/DtjT9sryYuT/FWSSvKsJP+wr6+/4Pbg2yK8/G1VVZJXJfnY0LPMkz1ty4nRWvtsa23Xf//25Uxf06EnE/9ztbvW2qbW2tdGt+9Ncm0Wx5U0z03ykdHtjyR56XCjzImzk9zQWrt56EEOVWvtS0nu3G3xnrbXuUn+qE37cpKVVXXK3r7+ggv8XvR8+dvnJLmttfatGcseW1X/WFVfrKrnDDXYHHjj6HDSxTMODfawzWb6+Uz/y3qXHrZdb9voYarq9CRPS/IPo0WzfZ9Oopbks1V1eU1fDTRJVrfWNo1u35pk9TCjzZnz8/CdoV623S572l4H/DM5SOCr6vNVddUsHxO9hzCb/XytF+Th37CbkpzWWntakv+Y5E+q6tj5nHt/7eP1fSjJ45OclenX9L4hZz1Q+7Ptqurtmb7Ww0dHiyZm2y1WVXVMkk8leXNr7Z5M+Pfpbp7dWnt6pv/HzjdU1XNnrmzTx3on9lenavoCaS9J8qejRT1tux9yqNvrkH4P/mC1gS5/O4R9vdaqWprp/3L3GTM+Z1uSbaPbl1fVDUmemOSQLls4Dvu7Lavqw0n+cnR3b9tywdiPbfdzSX4qydmjH8SJ2nb7MBHb6EBV1bJMx/2jrbU/S5LW2m0z1s/8Pp04rbWNoz83V9UlmX6r5baqOqW1tml0SHfzoEMemhcl+dqubdbTtpthT9vrgH8mJ+kQfa+Xv31+km+01jbsWlBVq6rqsNHtx2X6td440HwHbbf3h85LsutM0T1ty4lRVeck+aUkL2mt3T9jeRfbLpP/c/VDRue6/EGSa1trvzVj+Z6+TydKVR1dVSt23c70iaBXZXq7XTh62IVJxvafhM2Dhx3t7GXb7WZP2+vSJD87Opv+WUnunnEof1aD7MHvTS2+y9/u/n5SMn1m5a9W1fYkU0le31rb/USMSfCeqjor04eYbkryuiTZ27acIB/I9G8BfG66G/lya+316WTbtdZ2TPjP1Wx+PMmrk3y9Rr+SmuRtSS6Y7ft0Aq1Ocsno+3Fpkj9prX2mqr6a5JNV9dokN2f6hN6JM/pHywvy8O0z698xk6KqPpbkJ5KcWFUbkvxKkl/P7NvrskyfSX99kvuTvGafX390ZBEA6MgkHaIHAPaTwANAhwQeADok8ADQIYEHgA4JPAB0SOABoEMCDwAd+v8PnIYI4Nq6gAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAnk0lEQVR4nO3de5hV9X3v8c93rjBXBme4CoIICGgcdaRRgzExiZemXnISqycXzA19oj1Nmz6paZo0pzk5NTaaPm3SNPjUY3qexGiOtZrWRMCESC4MDooIKnIREeQyAnId5vo9f8wasxlmYC57zdrrt9+v55mHtX/r9l2uPfPx91trr23uLgAAEJaCpAsAAADZR8ADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABykrAm9n9ZrbHzNZltI01s6VmtjH6tyZqNzP7RzPbZGZrzeyCbNQAAAB+L1s9+AckXdWr7U5JT7n7TElPRa8l6WpJM6OfRZK+l6UaAABAJCsB7+5PS9rXq/k6ST+Ipn8g6fqM9n/zbisljTGzidmoAwAAdIvzGvx4d98ZTe+SND6anizp9YzltkdtAAAgS4pGYifu7mY2qGfimtkidQ/hq7y8/MKzzz47ltoAAMhFq1evftPd64a6fpwBv9vMJrr7zmgIfk/UvkPSlIzlTo/ajuPuiyUtlqSGhgZvamqKsVQkwd1lZkmXAQA5ycxeG876cQ7RPy5pYTS9UNJjGe2fiO6mf6ekAxlD+cgjr776atIlAECwstKDN7MHJV0uqdbMtkv6G0l3SXrYzD4t6TVJN0aLPyHpGkmbJB2V9Mls1ID02bp1q0aNGqVJkyYlXQoABCcrAe/uN/cz64o+lnVJt2djv0i36upqLVmyRAsXLmSoHgCyjCfZITHV1dXaunWrNmzYkHQpABAcAh6JGTNmjCRp6dKl6uzsTLYYAAgMAY/EVFdXS5L27t0rPiUBANlFwCMxxcXFKi8vlyQtX75cLS0tCVcEAOEg4JGonmH6lpYWPf3008kWAwABIeCRqJ5heklatWqV9u3r/ZUGAIChIOCRqJ4evCR1dnZq2bJlyRUDAAEh4JGozB68JL344ovatm1bQtUAQDhG5MtmgP5k9uB7PPnkk/rMZz7Dw2+QiI6uDnV5lzq6OtTpners6lSHd7d1dnV2t/Vqrymt0fjy8afeODCCCHgkqq+A37Fjh9atW6dzzz135AtC3isq6P6zWFJYknAlwPAwRI9E9R6i77Fs2TK1t7ePcDUAEA4CHokaNWqURo0adUL7gQMH1NjYmEBFABAGAh6J668Xv2LFCh0+fHiEqwGAMBDwSFxf1+ElqbW1VcuXLx/RWgAgFAQ8EtdfD16SVq9erebm5hGsBgDCQMAjcf314CXJ3bVkyZKRKwYAAkHAI3EnC3hJ2rhxozZv3jwyxQBAIAh4JO5kQ/Q9lixZoq6urhGoBgDCQMAjcafqwUvS7t27tWbNmthrAYBQEPBIXFlZmYqKTv1QxV/84hdqbW0dgYoAIP0IeCTOzAbUiz98+LB++9vfxl8QAASAgEdOGMh1eEn6zW9+o4MHD8ZcDQCkHwGPnDCQHrwkdXR06Kmnnoq3GAAIAAGPnDDQgJek559/Xjt37oyvGAAIAAGPnDDQIfoeTz75pNw9pmoAIP0IeOSEwfTgJWnr1q3asGFDPMUAQAAIeOSEwfbgJWnp0qXq7OyMoRoASD8CHjmhsrJSBQWDezvu3btXTU1NMVUEAOlGwCMnFBQUDKkXv3z5crW0tMRQEQCkGwGPnDGUgG9padGKFStiqAYA0o2AR84Y7I12PRobG7V///7sFgMAKUfAI2cMpQcvSZ2dnVq2bFmWqwGAdCPgkTOG2oOXpPXr12vbtm3ZKwYAUo6AR84Yag++x5IlS3j4DQBECHjkjOH04CVp+/btWr9+fXaKAYCUI+CRM6qqqoa9jaVLl6q9vT0L1QBAuhHwyBlFRUWqrKwc1jYOHDigxsbGLFUEAOlFwCOnDHeYXpJWrFihI0eODL8YAEgxAh45Zbg32klSa2urli9fPvxiACDFCHjklGz04CWpqalJzc3NWdkWAKQRAY+cko0evCS5u5YuXZqVbQFAGhHwyCnZ6sFL0tGjR/kiGgB5qyjpAoBM2Qj42bNn69JLL9WUKVNkZsMvCgBSiIBHThnqEH1hYaHq6+t18cUXq7a2NstVAUD6EPDIKSUlJSorK9PRo0cHtPzo0aN10UUXaf78+aqoqIi5OgBIDwIeOae6uvqUAV9TU6OLL75Y9fX1KikpGaHKACA9Yg14M5st6aGMpjMlfVXSGEmfldTzOaa/cvcn4qwF6TFmzBjt3Lmzz3mTJ0/WJZdcojlz5qiggHtEAaA/sQa8u2+QVC9JZlYoaYekRyV9UtK33f1bce4f6dTXdfjZs2frkksu0dSpU7lxDgAGYCSH6K+QtNndX+MPNE6m5076wsJCnXfeebr44otVV1eXbFEAkDIjGfA3SXow4/UdZvYJSU2SvuDu+zMXNrNFkhZJ0tSpU0esSCRv3LhxWrBggebPnz/sL58BgHxl7h7/TsxKJL0haZ677zaz8ZLelOSSvi5port/qr/1GxoavKmpKfY6AQDIFWa22t0bhrr+SN2ldLWkZ919tyS5+25373T3Lkn3SZo/QnUAAJAXRirgb1bG8LyZTcyYd4OkdSNUBwAAeSH2a/BmVi7p/ZJuzWi+28zq1T1Ev7XXPAAAMEyxB7y7H5F0Wq+2j8e9XwAA8hlPCgEAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAlQU9w7MbKukQ5I6JXW4e4OZjZX0kKRpkrZKutHd98ddCwAA+WKkevDvcfd6d2+IXt8p6Sl3nynpqeg1AADIkqSG6K+T9INo+geSrk+oDgAAgjQSAe+SlpjZajNbFLWNd/ed0fQuSeNHoA4AAPJG7NfgJb3L3XeY2ThJS83s5cyZ7u5m5r1Xiv5nYJEkTZ06dQTKBAAgHLH34N19R/TvHkmPSpovabeZTZSk6N89fay32N0b3L2hrq4u7jIBAAhKrAFvZuVmVtkzLekDktZJelzSwmixhZIei7MOAACS0OUnDFCPmLiH6MdLetTMevb1I3f/uZk9I+lhM/u0pNck3RhzHQAAjJgud92/403VFhfp+vE1idQQa8C7+xZJ5/XRvlfSFXHuGwCAJLxxrE2L1m/VsweP6vlL5yVWB0+yAwAgi3771mE1HTyqC6vKVVdSnFgdBDwAAFm0p61DknRlbVWidRDwAABkUXNbuyTpmroxidZBwAMAkEXNbR2aWVaqM8tKE62DgAcAIIua2zp0dW110mUQ8AAAZFNzW7uuIuABAAhLoZnOrypLugwCHgCAbOlyV0N1uaIHvCWKgAcAIEv2tnfo/acl+/G4HgQ8AABZ0tLZpXfVVCRdhqSR+bpYAADywtTRyX40LhM9eAAAAkTAAwAQIAIeAIAAEfBAirh70iUASAkCHkiR+1ZsUUtbZ9JlAEgBAh5IkYMtHfrjxb/TrgPHki4FQI4j4IEUWTCzVmu3H9C13/m1nn/9raTLAZDDCHggRS44o0blJYXac6hVN37/d/rp828kXRKAHEXAAylSXFigi2fUSpJaO7r0Jw8+p3uXvqKuLm6+A3A8Ah5ImXfPqj3u9T8+tVF3PPgsN98FpuvIkaRLQMoR8EDKLJhZd0LbEy/s0ke+/1vtPNCSQEWIw66/+zvt/MpX1bFvX9KlIKUIeCBlptWWa+rYE79ret2Og7ruO7/RGm6+C4IfbdFbP/mJNl95lfY+8IC8vT3pkpAyBDyQQgtm1vbZvudQq/7v714b4WoQh6621u5/Dx3Snru+qS3XXa/DK1YkXBXShIAHUuiyWScO0/f45KXTRq4QxMZb24573bZli17/7CJtu/VWtb76akJVIU0IeCCFLp5xmgoL7IT2+dPH6pzJ1QlUhGzz1tY+24/86mltufY67b7rm+o8fHiEq0KaEPBAClWNKtYFU8ec0P6pS6ePfDGIRX8BL0lqb9e+Bx7Q5iuv0v6f/ETe1TVyhSE1CHggpS7rdTf96TWj9f654xOqBtnW1dZ2ymU69+7Vrq98VVs//BEdXb16BKpCmhDwQEot6HUd/pZLpvU5bI90OmkPvpdjL76o1z76Me348z9X+86dMVaFNCHggZQ6d3K1xpQVS5LKSwp140VTEq4I2TSYgC+orFTl1Vep4vLLZaNGxVgV0qQo6QIADE1hgenSs2r1X2t36iMNU1Q1qjjpkpBFfooh+uIzpqry8stV8Z73qOzCC2XFnH8cj4AHUuzdM+v0xAs7dcsl05IuBVl2wjX4wkKVnX++Kt7THeqlZ56ZSF1IDwIeSLEFs2p1xdnjNa22POlSkGXe2qqCqipVvOtdqnjPe1Rx2QIVVvMRSAwcAQ+k2MTq0frrP5yTdBmIwZTF31fZBRfIivgzjaHhnQOkHL33MJXPn590CUg57qIHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABii3gzWyKmf3SzF40s/Vm9qdR+9fMbIeZrYl+romrBgAA8lWcz6LvkPQFd3/WzColrTazpdG8b7v7t2LcNwAAeS22gHf3nZJ2RtOHzOwlSZPj2h8AAPi9EbkGb2bTJJ0vqTFqusPM1prZ/WZWMxI1AACQT2IPeDOrkPSIpM+7+0FJ35M0Q1K9unv49/Sz3iIzazKzpubm5rjLBAAgKLEGvJkVqzvcf+ju/y5J7r7b3TvdvUvSfZL6/NJjd1/s7g3u3lBXVxdnmQAABCfOu+hN0r9Kesnd781on5ix2A2S1sVVAwAA+SrOu+gvlfRxSS+Y2Zqo7a8k3Wxm9ZJc0lZJt8ZYAwAAeSnOu+h/Lcn6mPVEXPsEAADdeJIdAAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMp19HeqaMH25IuA0COIeCBlHJ3vfp8sx78n43a+MzupMsBkGPi/D54ADF5a/dRrXj4FW1bv0+StHfH4YQrApBrCHggRdqOdWj1z7ZqzbLX1dXpb7cT8AB6I+CBFHB3bXxmt377yCYdOXDi9fa9bxxRV5eroMASqA5ALiLggRz35vZDWvHQRr2x8a1+l+ls79KBPUdVM6F85AoDkNMIeCBHHTvSrlWPb9G6p3fI/dTL791xhIAH8DYCHshBm5/do+U/2qBjh9sHvM7eHYd11oXjYqwKQJoQ8EAOOrO+TtXjyrTjlf1645W3tGPjfrUe6TjpOm9u50Y7AL9HwAM5yApMtadXqPb0Cp333inyLtfeN46cNPC5kx5AJgIeSIGBBP6hvcfU2tKh0tH8WgMg4IFU6ivw9+08knRZAHIIAQ8EwApMp02uSLoMADmEZ9EDABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AyBofyDcjYUQQ8ACArHHv0I43HlJHx6GkS8l7BDwAIGsKCopVXVWvVauu1e49P6NHnyACHgCQVRUVszVlykKtW3eHnl/7WbW0bE+6pLxEwAMAsu700xfqtLGXae/eX2pl41V67bXvq6urPemy8goBDwDIOjPTnDl3q7h4rLq6WrRp89165pnrdODAs0mXljcIeABALEpL6zRnzl1vvz58ZIOaVn9EL738ZbW3H0iwsvxAwAMAYlNXe4UmT/7ocW1vvPFj/W7l+7Vr1+PchBcjAh4AEKuZZ31JZWUzjmtrb9+r9S/+mdasuUVHj25NprDAEfAAgFgVFo7WOfO+LbPiE+bt2/9rNa66Wq+++k/q6mpNoLpwEfAAgNhVVs7TjBlf6HNeV1ebtrz6D2pc9Ufav79xhCsLFwEP5KqONonrkwjI1CmfVk3Nxf3OP3p0s5597r/rxRe/qLa2fSNYWZgIeCDXdLRK6/9DOrhdMku6GiBrzAo0d+63VFRUfdLldu56RCsbP6A33vh/3IQ3DAQ8kCu6OqXnfyw9doc09Z3S2DOTrgjIulGlEzTn7P99yuXa2/frpZf/Us8+91EdObJ5BCoLDwEPJM1deuVJ6V8WSK83Std9V6qckHRVQGzGjbtKkybeOKBl33qrUY2r/lCbt9yrzs5jMVcWlsQC3syuMrMNZrbJzO5Mqg4gUdsapf9zjfTQx6Q/uFX64LelopKkqwJiN3PmX2v06GkDWta9XVu3fleNq67W3n2/jrewgCQS8GZWKOm7kq6WNFfSzWY2N4lagETseUl68Gbp/g9I+7ZItzwhXbgw6aqAEVNUVB59dK5owOu0tGzTmjULtW7959Xa2hxjdWFIqgc/X9Imd9/i7m2SfizpuoRqAUZWR5v02O3ShiekKX8g3foracpFSVcFjLiqqnfozOmfH/R6u3f/VCsbP6DtO34k967sFxaIpAJ+sqTXM15vj9reZmaLzKzJzJqam/k/NQSkqET62CPSe78iLfxPrrcjr51xxiKNGTN/0Ot1dBzUhg1f0erVN+rw4Q0xVJZ+OXuTnbsvdvcGd2+oq6tLuhwgu0bXSJf9BdfbkffMCjVv7j0qKqoc0voHDj6nVc/8kTZuukudnUezXF26JRXwOyRNyXh9etQGAMgzo0ZN0tmz/9eQ13fv1LZt92ll41V6881fZrGydEsq4J+RNNPMpptZiaSbJD2eUC0AgISNH/9BTZhww7C2cezYDj2/9jNa+8LtOta6K0uVpVciAe/uHZLukPSkpJckPezu65OoBQCQG2bP+huNGjXl1AueQnPzz7Vy5ZV6/fUH5N6ZhcrSKbFr8O7+hLvPcvcZ7v6NpOoAAOSGoqJKnTPvXnV/knp4OjsP65WNX9czTR/SwYMvZKG69MnZm+wAAPmnuvoCTZt2R9a2d+jQOj3T9CG98srX1dFxOGvbTQMCHgCQU6ad8TlVV52fxS126fXtD2hl45Xas+fJvPkCGwIeAJBTCgqKNG/evSosrMjqdltbd+mFdZ/T2rWL1NIS/ge3CHgAQM4ZPXqqZs/6WizbfnPvL7Sy8Uq9tu0+dXW1x7KPXEDAAwBy0oQJ12v8uA/Gsu2urhZt2nSXnmm6Xp2drbHsI2kEPAAgJ5mZZs/+ukaVToptH62te1RQEOYTJYMIeHdX+64j8g6+dAAAQlJcXKW5c++RZLFsv6rqXJnFs+2kDfx7+nKYmcmKCtS8eK1UYCqdVqWSadUqnVqpgrLipMsDAAxDTc18TTvjNm197XtZ33Zl5TlZ32auCCLgJamodrTqPvsOvfVfW3Ro+XZ1f0GdVDS+TKXTqlQ6rVol06pUVDMq2UIBAIM2ffqfat++3+jgobVZ3W5V5blZ3V4uCSbgJcmKC1Rz/VkqnV6l/Y9skrd1qmP3UXXsPqojjd3PJS6sLlXJtKq3e/nF48tkBWEOzwBAKAoKijVv3r1a9cy1Wf3WOHrwKVN23jgVT6rQvh++rPZdR46b13mgVS3PN6vl+e7vmLdRhSo9o6o79M+oVsmUClnx8B+TCADIrrKy6Zo186t66eU7s7K9kpJalZZOyMq2clGQAS9JxXVlGnf7eXrrp1t0ZFX/3yrkxzp1bMN+Hduwv7uh0FQyuaL7Gv60KpWcUaXCcq7jA0AumDjxw3pz73I1N/982NuqrAz3Bjsp4ICXJCsuVM2HZqp0erX2P7pR3jaAu+w7XW3bDqlt2yEdfrq7qWjc6O5r+Gd0D+0Xjh0V9JsCAHKVmWnO2d/QwYNr1DrMr4StCnh4Xgo84HuUnT9OxZMrtPeHL6lj9+Cv3XTsaVHHnpa3RwIKKkuia/hVKjunVoXVpdkuGQDQj+LiMZo75+/13JpPSBr6c+Urq8K9wU4K5HPwA1E8rkzjbq9XWcP4YW+r61CbWl54Uwd+ukVHntuTheoAAIMxduwlmjr1M8PaRug9+LwJeEkqKCnU2A/PUs1HZsmKs3PonfuPZWU7AIDBmXHmn6myYt6Q1i0pGafS0uF3+HJZXgV8j/ILx2vcHfUqGlc27G11vhXmM4wBINcVFJRq3rx7VVAw+OebhN57l/I04CWpeHy5xt1Rr7ILxg1rOx304AEgMeXlZ2nmzC8Per3Qr79LeRzwUjRkf+Ns1Xx46EP2nftb5T70mzwAAMMzedLNqq29YlDr0IPPE+UN4zXu9noV1Y0e9Lre3qWuI+F+nzAA5Lruj879nUpKage8TshPsOtBwEeKJ5Rr3B3nq+z8wQ/Zcx0eAJJVUnKa5s65e0DLlpaMV2np8C7PpgEBn6GgtFA1N85SzX+bKRUN/D9Nx34CHgCSdtpp79aU02855XL5cP1dIuBPYGYqv2hC95B97cCG7PmoHADkhhkzvqjy8lknXSYfhuclAr5fJRPLNe5P6jX6vLpTLssQPQDkhsLCUp0z7x9UUFDS7zL5cIOdRMCfVEFpkcbeNFtjbjhLKur/2fN8VA4AckdFxWydNeMv+53PED0kdQ/ZV/zBRI37XL2KTuv7YQqdXIMHgJxy+ukLddrYy05oLy2doNJB3G2fZgT8AJVMqtC4Pzlfo99x4huDHjwA5BYz05w5d6u4eOxx7fly/V0i4AelYFSRxt58tsZcP0Mq/P2Qvbd2qqulI8HKAAC9lZbWae6cbx7XVlWZH8PzEgE/aGamindO0rjP1atw7O+H7OnFA0Duqa19ryZP/tjbryur6MHjFEomV2j8/zhfo885TRLX4QEgV808606VlZ0lKX/uoJcI+GEpGFWksR+dozHXzlDnobakywEA9KGwcLTOmfdtjR59xqAeZ5t2RUkXkHZmpopLJsk7upIuBQDQj8rKuTr3nH9KuowRRQ8+S2wQj7YFAIy8ysp5SZcwokglAAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIB4kh0AAAPQ0d6u5q1b1NHepo62NnW0t+m0yVM0dtLpSZfWJwIeAIAB6Ors0I/++gtvvx5dWaVb7vnnBCs6OYboAQAYgJJRo1VRM/bt1+/95K0qqx6TXEGnQMADADBANRMnS5LOuuidmn3JZQlXc3KxBLyZ/b2ZvWxma83sUTMbE7VPM7MWM1sT/fxLHPsHACAONZMma1R5ha749OdkZkmXc1Jx9eCXSjrH3d8h6RVJX8qYt9nd66Of22LaPwAAWVczcbIuX/jZ44bqc1UsN9m5+5KMlyslfTiO/QAAMJLOvuQylacg3KWRuQb/KUk/y3g93cyeM7NfmdmCEdg/AABZUTH2tJwfmu8x5B68mS2TNKGPWV9298eiZb4sqUPSD6N5OyVNdfe9ZnahpP8ws3nufrCP7S+StEiSpk6dOtQyAQDIS0MOeHd/38nmm9ktkj4o6Qp392idVkmt0fRqM9ssaZakpj62v1jSYklqaGjwodYJAEA+iusu+qskfVHSte5+NKO9zswKo+kzJc2UtCWOGgAAyGdxPcnuO5JKJS2NrlWsjO6Yv0zS35pZu6QuSbe5+76YagAAIG/FdRf9Wf20PyLpkTj2CQAAfo8n2QEAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAAYot4M3sa2a2w8zWRD/XZMz7kpltMrMNZnZlXDUAAJCvimLe/rfd/VuZDWY2V9JNkuZJmiRpmZnNcvfOmGsBACBvJDFEf52kH7t7q7u/KmmTpPkJ1AEAQLDiDvg7zGytmd1vZjVR22RJr2cssz1qAwAAWTKsgDezZWa2ro+f6yR9T9IMSfWSdkq6Z5DbXmRmTWbW1NzcPJwyAQDIO8O6Bu/u7xvIcmZ2n6T/jF7ukDQlY/bpUVvvbS+WtFiSGhoafDh1AgCQb+K8i35ixssbJK2Lph+XdJOZlZrZdEkzJa2Kqw4AAPJRnHfR321m9ZJc0lZJt0qSu683s4clvSipQ9Lt3EEPAEB2xRbw7v7xk8z7hqRvxLVvAADyHU+yAwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABCgojg2amYPSZodvRwj6S13rzezaZJekrQhmrfS3W+LowYAAPJZLAHv7n/cM21m90g6kDF7s7vXx7FfAADQLZaA72FmJulGSe+Ncz8AAOB4cV+DXyBpt7tvzGibbmbPmdmvzGxBfyua2SIzazKzpubm5pjLBAAgLEPuwZvZMkkT+pj1ZXd/LJq+WdKDGfN2Sprq7nvN7EJJ/2Fm89z9YO+NuPtiSYslqaGhwYdaJwAA+WjIAe/u7zvZfDMrkvQhSRdmrNMqqTWaXm1mmyXNktQ01DoAAMCJ4hyif5+kl919e0+DmdWZWWE0faakmZK2xFgDAAB5Kc6b7G7S8cPzknSZpL81s3ZJXZJuc/d9MdYAAEBeii3g3f2WPtoekfRIXPsEAADdeJIdAAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABCgYQW8mX3EzNabWZeZNfSa9yUz22RmG8zsyoz2q6K2TWZ253D2DwAA+jbcHvw6SR+S9HRmo5nNlXSTpHmSrpL0z2ZWaGaFkr4r6WpJcyXdHC0LAACyqGg4K7v7S5JkZr1nXSfpx+7eKulVM9skaX40b5O7b4nW+3G07IvDqQMAABwvrmvwkyW9nvF6e9TWXzsAAMiiU/bgzWyZpAl9zPqyuz+W/ZLe3u8iSYuil61mti6ufeWAWklvJl1EjDi+dAv5+EI+NonjS7vZw1n5lAHv7u8bwnZ3SJqS8fr0qE0nae+938WSFkuSmTW5e0Nfy4WA40s3ji+9Qj42ieNLOzNrGs76cQ3RPy7pJjMrNbPpkmZKWiXpGUkzzWy6mZWo+0a8x2OqAQCAvDWsm+zM7AZJ/ySpTtJ/mdkad7/S3deb2cPqvnmuQ9Lt7t4ZrXOHpCclFUq6393XD+sIAADACYZ7F/2jkh7tZ943JH2jj/YnJD0xyF0tHnx1qcLxpRvHl14hH5vE8aXdsI7P3D1bhQAAgBzBo2oBAAhQzgV8Pj3+1sweMrM10c9WM1sTtU8zs5aMef+ScKlDYmZfM7MdGcdxTca8Ps9lWpjZ35vZy2a21sweNbMxUXsQ505K7+9Vf8xsipn90sxejP7G/GnU3u/7NG2ivyMvRMfRFLWNNbOlZrYx+rcm6ToHy8xmZ5yfNWZ20Mw+n/ZzZ2b3m9mezI+B93e+rNs/Rr+Pa83sglPuwN1z6kfSHHV/9m+5pIaM9rmSnpdUKmm6pM3qvlGvMJo+U1JJtMzcpI9jCMd9j6SvRtPTJK1LuqYsHNPXJP1FH+19nsuk6x3ksX1AUlE0/U1J3wzs3AXxe9XrmCZKuiCarpT0SvRe7PN9msYfSVsl1fZqu1vSndH0nT3v1bT+RO/NXZLOSPu5k3SZpAsy/2b0d74kXSPpZ5JM0jslNZ5q+znXg3f3l9x9Qx+z3n78rbu/Kqnn8bfzFT3+1t3bJPU8/jY1rPtZvzdKejDpWkZIf+cyNdx9ibt3RC9XqvuZDiFJ/e9Vb+6+092fjaYPSXpJ+fEkzesk/SCa/oGk65MrJSuukLTZ3V9LupDhcvenJe3r1dzf+bpO0r95t5WSxpjZxJNtP+cC/iRCfvztAkm73X1jRtt0M3vOzH5lZguSKiwL7oiGk+7PGBoM4Zxl+pS6/8+6RwjnLrRzdBwzmybpfEmNUVNf79M0cklLzGy1dT8NVJLGu/vOaHqXpPHJlJY1N+n4zlAo565Hf+dr0L+TiQS8mS0zs3V9/KS6h9CXAR7rzTr+DbtT0lR3P1/Sn0v6kZlVjWTdA3WK4/uepBmS6tV9TPckWetgDeTcmdmX1f2shx9GTak5d/nKzCokPSLp8+5+UCl/n/byLne/QN3f2Hm7mV2WOdO7x3pT+9Ep635A2rWSfhI1hXTuTjDc8zWsz8EPlSf0+NsknOpYzaxI3V+5e2HGOq2SWqPp1Wa2WdIsScN6bGEcBnouzew+Sf8ZvTzZucwZAzh3t0j6oKQrol/EVJ27U0jFORosMytWd7j/0N3/XZLcfXfG/Mz3aeq4+47o3z1m9qi6L7XsNrOJ7r4zGtLdk2iRw3O1pGd7zllI5y5Df+dr0L+TaRqiD/Xxt++T9LK7b+9pMLM6MyuMps9U97FuSai+Iet1fegGST13ivZ3LlPDzK6S9EVJ17r70Yz2IM6d0v97dYLoXpd/lfSSu9+b0d7f+zRVzKzczCp7ptV9I+g6dZ+3hdFiCyXF9iVhI+C40c5Qzl0v/Z2vxyV9Irqb/p2SDmQM5fcpkR78yVj+Pf629/UkqfvOyr81s3ZJXZJuc/feN2Kkwd1mVq/uIaatkm6VpJOdyxT5jro/BbC0Oze00t1vUyDnzt07Uv571ZdLJX1c0gsWfSRV0l9Jurmv92kKjZf0aPR+LJL0I3f/uZk9I+lhM/u0pNfUfUNv6kT/0/J+HX9++vwbkxZm9qCkyyXVmtl2SX8j6S71fb6eUPed9JskHZX0yVNuPxpZBAAAAUnTED0AABggAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAvT/AREHcP8+HJz4AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmS0lEQVR4nO3deXhc9X3v8c9Xki3ZsmzJtrzgBRvHJjYQDFYdCAkpCXtaSNKWQvskJG2voZe0TdLelCa3lPYpTUKapG1CAibhlrRAWJ2QRCZgSpwVBxscx2b1imXL8kiyFkuylpnv/UNjMhaStR6dmd+8X88zj878zsyc7+HM+MPZfj9zdwEAgLAUxF0AAAAYewQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQoDEJeDO7x8wOm9n2jLbpZvaUmb2W/luRbjcz+w8z22lm28zs3LGoAQAA/MZY7cH/p6TL+7TdLOlpd18q6en0c0m6QtLS9GONpK+PUQ0AACBtTALe3X8sqbFP89WS7k1P3yvp/Rnt3/Jez0oqN7O5Y1EHAADoFeU5+NnuXpuePiRpdnp6nqT9Ga+rSbcBAIAxUjQeC3F3N7Nh9YlrZmvUewhfpaWlq9761rdGUhsAANloy5Yt9e5eOdL3RxnwdWY2191r04fgD6fbD0hakPG6+em2E7j7WklrJamqqso3b94cYakAAGQXM9s3mvdHeYj+cUnXp6evl/TdjPYPp6+mP09Sc8ahfAAAMAbGZA/ezB6Q9NuSZppZjaR/kPQ5SQ+Z2Z9K2ifpmvTLqyVdKWmnpHZJHx2LGgAAwG+MScC7+3UDzHpvP691STeNxXIBAED/6MkOAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHshDifqnlUp1x10GgAgR8ECecU/p1Vdu1cuv/H3cpQCIEAEP5JnGxp/qWOdB1dY+rH2v3x13OQAiQsADeeZg7cNvTO/cebsS9U/HWA2AqBDwQB7p6mpUIrEhoyWlHTs+odbWl2KrCUA0CHggjxyq+67cu05oSybbtG3bGnV21cdUFYAoEPBAHjl48KF+2491HtS2bTcomewc54oARIWAB/JEc8uv1Nb26oDzi4tnS0qOX0EAIlUUdwEAxsdAe++SafHiv9TiRX8hMxvXmgBEh4AH8kAy2aG6uu+/qb2wsFQrln9Bs2ZdFkNVAKJEwAN54PDhaiWTR09oKylZoLPfdpemTDk9pqoQgmPdSb3wepPaOnt08YrZcZeDDAQ8kAcOHnz4hOcV5efprLO+qgkTKmKqCLmqrbNHW/Yd0aY9Dfrlnkb9qqZZXT0pXXnWHAI+yxDwQODa2/eoqfm5N57Pn/chLV36f1VQwM8fg2vu6NZzexrfCPQdB1vUk/I3vc7E9RvZhl84ELjje+9mE3T6sls1b961MVeEbNbe1aMfvZLQL/c06tndDXq1rlX95DlyQKQBb2anS3owo+k0SbdIKpf0vyQl0u2fdvfqKGsB8lEq1aPaQ49pwoQZettZX1N5eVXcJSHLtXUmddP9z8uHG+rswGedSO+Dd/dX3H2lu6+UtEpSu6R16dlfPj6PcAei0dDwIxUXz9Lq3/oO4Y4hqSwr1vI5U+MuA2NgPDu6ea+kXe6+bxyXCeS1ZLJdq859SCUlp8RdCnLIu0+vHPZ72IHPPuMZ8NdKeiDj+cfMbJuZ3WNmb7qU18zWmNlmM9ucSCT6zgYwBHPmXKXCwpK4y0COefey4Qc8ss+4BLyZTZR0laTj9+p8XdISSSsl1Ur6Yt/3uPtad69y96rKSr5sADBeVp1aoSnFw7tEi14Qs8947cFfIel5d6+TJHevc/eku6ck3S1p9TjVAQAYxITCAp2/ZMaw3kO8Z5/xCvjrlHF43szmZsz7gKTt41QHAGAIOEyf+yK/D97MSiVdIumGjObbzWylJJe0t888AEDMhhvwHKHPPpEHvLu3SZrRp+1DUS8XADByC6ZP1mkzS7W7vi3uUjBCjAcPAOjXhcPYi2cHPvsQ8ACAfo3kfnhkDwIeANCv8xbPUHHR0GKC2+SyDwEPAOjXpImFWr14etxlYIQIeADAgIZ6NT3779mHgAcADGg4F9ohuxDwAIABLZtdplOmDWE8A3bhsw4BDwA4KfbicxMBDwA4qaEEvLELn3UIeADASb1z6UwVFRDguYaABwCc1NSSCVq5oPykr+E2+OxDwAMABjXY7XLke/Yh4AEAg+JCu9xDwAMABvW2+dM0o3TigPM5RJ99CHgAwKDMTO9cOjPuMjAMBDwAYEguXDrwYXpuk8s+BDwAYEguXFbJofgcQsADAIaksqxYK+ZO7XcewZ99CHgAwJBxNX3uIOABAEM20P3w7MFnHwI+YKlUSh0dHTp27FjcpQAIxKpTKzSluCjuMjAEbKUAbdmyRRs2bFBHR4eKi4v153/+5yopGcJwjwAwiAmFBTp/yQw99WJdnznswmcb9uADtHjxYnV0dEiSrrjiCpWXl8dbEICgDNZtLbIDe/ABmj59uubNm6eysjKdffbZcZcDIDD9BTzn4LMPAR+o1atXa8mSJTJ+dQDG2ILpk3VaZal2J9riLgUnwSH6QJ199tmaMmVK3GUACFTfXu3Ylcg+BDwAYNjefTrn4bMdAQ8AGLbzT5uh4qLfRAhnA7MPAQ8AGLaSCYVavXj6G88ZbCb7EPAAgBHhdrnsRsADAEYkM+A5RJ99CHgAwIgsnV2mU6bRS2a2IuABACN2fHQ5duCzDwEPABgxzsNnLwIeADBiFyydqaICo9fMLETAAwBGbGrJBK1cUB53GegHAQ8AGBUO02cnAh4AMCp0W5udCHgAwKicNW+aZk6ZGHcZ6IOABwCMipnpXUvZi882BDwAYNTeNn9a3CWgDwIeADBq3CaXfQh4AAACRMADABAgAh4AgAAVRb0AM9srqVVSUlKPu1eZ2XRJD0paJGmvpGvc/UjUtQAAkC/Gaw/+Indf6e5V6ec3S3ra3ZdKejr9HAAAjJG4DtFfLene9PS9kt4fUx0AAARpPALeJT1pZlvMbE26bba716anD0maPQ51AACQNyI/By/pne5+wMxmSXrKzF7OnOnubmbe903p/xlYI0kLFy4chzIBAAhH5Hvw7n4g/fewpHWSVkuqM7O5kpT+e7if96119yp3r6qspAtEAACGI9KAN7NSMys7Pi3pUknbJT0u6fr0y66X9N0o6wAAIN9EfYh+tqR16S4MiyTd7+5PmNlzkh4ysz+VtE/SNRHXAQBAXok04N19t6Sz+2lvkPTeKJcNAEA+oyc7AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBAkQW8mS0ws2fM7EUz22Fmf5Vuv9XMDpjZ1vTjyqhqAAAgXxVF+Nk9kv7a3Z83szJJW8zsqfS8L7v7v0a4bAAA8lpkAe/utZJq09OtZvaSpHlRLQ8AAPzGuJyDN7NFks6RtCnd9DEz22Zm95hZxXjUAABAPok84M1siqRHJX3c3VskfV3SEkkr1buH/8UB3rfGzDab2eZEIhF1mQAABCXSgDezCeoN9/vc/TFJcvc6d0+6e0rS3ZJW9/ded1/r7lXuXlVZWRllmQAABCfKq+hN0jclveTuX8pon5vxsg9I2h5VDQAA5Ksor6K/QNKHJP3azLam2z4t6TozWynJJe2VdEOENQAAkJeivIr+p5Ksn1nVUS0TAAD0oic7AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAI+Ij2JhJJH2+IuAwCQp4riLiAkyaYmde7eo8KpZZq4aJGsiP+8AIB4kECj5O5q3/RL9TTUa+KCBZp87jlxlwQAAAE/Ut11h9WyvlpKpjTlPRep9Ly3x10SAABvIOCHwXt6dHTjRrU+84wmLlio8mv+QEUVFXGXBQDAmxDwQ9D1+utqevgRdWz/taa9732ac8stKpg4Me6yAAAYEAE/gFRnp1qffFJNjzwqFZhmfOQjqvzkJ2RmcZcGAMCgCPg+jr3yipoeelgtTzyh0gveodk3/61Kli+PuywAAIaFgJeUPNqmlh/8QE0PP6yu119XxTV/oMWPPaoJs2fHXRoAACOS1wHf/vwLanrkEbU88YSKKio0/foPq/z3fk8FpaVxlwYAwKjkXcD3HDmi5u98V02PPqKunbtUcvbbdMq/3KaySy6RFRbGXR4AAGMiLwLe3dX2s5+r6ZFHdPTpp+XJpKa85yLN/ad/0uRzz427PAAAxlxsAW9ml0v6d0mFkr7h7p+LYjmeTOroxh+r6/V9mnTWmZp01pkqu/hiTTz11CgWBwBAVogl4M2sUNIdki6RVCPpOTN73N1fHPNlFRaq7D0XjfXHAgCQ1eIaTW61pJ3uvtvduyR9W9LVMdUCAEBw4gr4eZL2ZzyvSbe9wczWmNlmM9ucSCTGtTgAAHJd1o4H7+5r3b3K3asqKyvjLgcAgJwSV8AfkLQg4/n8dBsAABgDcQX8c5KWmtliM5so6VpJj8dUCwAAwYnlKnp37zGzj0n6oXpvk7vH3XfEUQsAACGK7T54d6+WVB3X8gEACFnWXmQHAABGjoAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeABZrTvl2tjYGncZQM4h4AFkpebuHn1lX51WP/ui/vBXu7Sp6WjcJQE5Jbbx4AGgP/s6OrV2f0IPHGpUezL1Rvs/76rV91YtjbEyILcQ8ACywnPNbbpz/2GtTzQr1d/8ljb9sL5Zl82cNu61AbmIgAcQm6S7qhPNunP/YW1paR/09Z/dXatLZkxVgdk4VAfkNgIewLhr60nq/tpG3V2T0OvHuob8vpfbjunhQ0f0h3OnR1gdEAYCHsC4OXisS9+oqdd/19arpae/A/GD+8LeWr1/drmKC7hGGDgZAh5A5H7d2q479yf0+OEmdbuP6rNqjnXr3gP1WrNg1hhVB4SJgAcQCXfXUw0tunN/Qj8f41vc/m1fnf5o7gxNKSoc088FQkLAAxhTHcmUHj7UqLU1Ce1s74xkGY3dSX1t/2F9avHcSD4fCAEBD2BMJLq6dU9Nve49WK/G7mTky7trf0IfnTdTlRMnRL4sIBcR8ABG5eW2Dt21P6HH6o6oMzW68+vD0ZZM6ct76/Qvy+aP2zKBXELAAxiRjY2tunP/Yf2osVXjF+sn+u+DDbphQaVOnVQcUwVA9iLgAQxZVyqldXVNumv/Yb3YdizuctTlrtv3HNIdK06NuxQg6xDwAAZ1pLtH3zrQoHsOJFTX1RN3OSdYV3dENy2cpRVTJsVdCpBVCHgAA9rT3qm7ahJ6sLZRHamRdUwTtZSk23bV6r6zT4u7FCCrEPAA3uTZpqO6a39CP6zvf+CXbPN0Y4t+0XRU55dPibsUIGsQ8AAk9Q788r3DTbpzf0JbWwcf+CXb3LbroL6/alncZQBZg4AH8lxrT1L3HWzQNw4kVHOsO+5yRmxzS7ueSDTr8kqGkwUkAh7IWzXHunR3TUL3H2xQazIXDsQP7rN7anXpTIaTBSQCHsg7L7S06879h/WDRJN64rqBPSKvtB3TQ4cade3cGXGXAsSOgAfyQMpdT9a36M79h/Vsc1vc5UTqC3sO6QOzKxhOFnmPgAcC1p5M6cFDjbp7f0K7O6IZ+CXbHOjs1n8eqNcNDCeLPEfAAwE63Nmtbx6o17cO1OtIT/QDv2Sbf08PJ1vGcLLIYwQ8EJCXjnbo6/sP6zt1TerywE6wD0Njd1Jfe/2w/vY0hpNF/iLggQA809CiO/cntPFIa9ylZI27ahL6k/kMJ4v8RcADOaozldKjdUd01/6EXsmCgV+yTXsypS/trdNnGU4WeYqAB3JMVyqlr71+WN88UK9Elg38km3++2CDbmQ4WeQp7iMBcszEggL98Skz9KnFc3TR9DJNpFOXAXW76/N7DsVdBhALAh7IQZUTJ+hDp8zUA2cv0fZ3nqmvrThVv1M5TZML+Un3ta7uiHYc7Yi7DGDccYgeyHFTiwr1wdkV+uDsCh1LpvTjI62qTjTryYZmNXbn3y1yfbl6B6K5/+wlcZcCjCsCHghISWGBLp05TZfOnKaku37RdFTrE816or5ZBzpzdyCZ0fqfxlb9/MhRvaOC4WSRPyI5nmdmXzCzl81sm5mtM7PydPsiM+sws63px51RLB+AVGimd1aU6bZl87XlHWfoiVXL9JcLZ2np5Py84Oy23QfjLgEYV1GdsHtK0pnu/jZJr0r6u4x5u9x9ZfpxY0TLB9DHyqmT9eklp+gnb1+un6x+qz592lytLJscd1njZktLu9YnmuIuAxg3kRyid/cnM54+K+n3o1gOgJFZWlqipaUl+stTZ+vAsS6tr2/W+kSznm0+qmTAHeB9dvchXTpzmgq58wB5YDwuuf0TSeszni82sxfMbKOZvWsclg/gJOaVTNSfza/Uo+e8Rb++4Ez921sX6NIZU1VSEF4IvtreO5wskA/MR9hftZltkDSnn1mfcffvpl/zGUlVkj7o7m5mxZKmuHuDma2S9B1JZ7h7Sz+fv0bSGklauHDhqn379o2oTgAj09aT1P80tmp9fbM2NDSrpScVd0ljYl7xBP38vOUMJ4usZ2Zb3L1qxO8facAP+sFmH5F0g6T3unv7AK/5kaS/cffNJ/usqqoq37z5pC8BEKGuVEo/PXJU6+t7r8jP9R70bl1yim5cyHCyyG6jDfiorqK/XNKnJF2VGe5mVmlmhenp0yQtlbQ7ihoAjJ2JBQV6z4yp+sLpC/Srd5yhx895S28XsCUT4y5tRP7j9Tq15OEwusgvUR2j+qqkMklP9bkd7kJJ28xsq6RHJN3o7pwQA3JIgZlWl0/RrW+Zp03nr9DTv3W6/nrRbK0oLYm7tCE7PpwsELLIDtGPJQ7RA7lhb0enqhO9V+RvbmlTNv/rMrmwQM++fblmFTOcLLJTVh6iB5CfFk0q1v9eOEvfW7VUv3rHGbp92XxdNL1ME7LwtrT2ZEpf2lcXdxlAZAh4AJGYVTxBH56XHhDngjN0x/KFel+WDYhz38EG7e3ojLsMIBLZ80sDEKxpE4r0e3Om65tnLtaOC87UvWct1jVzKlRRVBhrXd3u+vzu2lhrAKLCYDMAxtWkwgJdNnOaLps5TT0p17PNR1WdHhDnYAwD4nzncJNuWtiuM/Oo217kB/bgAcSmqKB3QJx/WTZfW85foepVS/UXC2fpLeM4II5Luo29eASIPXgAWcHMdO7UUp07tVSfWXKKXm07pupEk6rrm7WttSPSZT/T2KqfHWnVBRVlkS4HGE8EPICstKy0RMtK5+jji+ao5liXnqhvVnWiWZsiGhDntt21ql5FwCMcBDyArDc/PSDOn82vVENXj55s6A37Hx9pVWdqbNL++ZZ2VSeadGVl+Zh8HhA3Ah5ATpkxsUjXzZ2h6+bOUFtPUk83tmp9okkbGlrUmhzdgDif3V2ryxhOFoEg4AHkrNKiQl01q1xXzSpXVyqlnxw5qvXpK/Lru4c/IM5r7Z168FCj/mjujAiqBcYXXdUCCE7KXc81t6k60azq+mbtP9Y15PeeUjxBP3/7cpVkUYc8yE90VQsAfRSY6e3lU/SPS+fpufNXaEPVMn1y0WwtH8KAOAc7u3XPgfpxqBKIFnvwAPLKnvZOVdc3a32iSVta2vsdEKeiqFCbzl+hqTH3tIf8xh48AAzD4snFumnhLH1/1TJtfccZ+vyy+Xp3xYkD4hzpSeoOhpNFjmMPHgAkNXf36KmGFq2vb9b/NLRKkjadx3CyiM9o9+C5ih4A1Dsgzu/Pma7fnzNdHcmUNja26qW2YwQ8chYBDwB9TCos0OWV0+IuAxgVzsEDABAgAh4AgAAR8AAABIiABwAgQAT8eEulpFQy7ioAAIEj4MdbQYFU85x0rCXuSgAAASPg4zB/tfSLO6TGPXFXAgAIFAEfh4IC6YK/kqr/j7TnJ3FXAwAIEAEfl4mTpavvkB7/C2nz/4u7GgBAYAj4OJXNlq69T3ry76XqT0nJnrgrAgAEgq5q4zb7DOkT26WGXVJLjVSxKO6KAAABIOCzwaRyaf6quKsAAASEQ/QAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABD+SQ9pZmvfyzjWpvboq7FABZjtHkgByQSia17vP/qObEYf3uJ27W5GnlcZcEIMsR8EAO2P3CZhUUFuqP/vlfVVI6Je5yAOQAAh7IAZOnTtX7P3WLzCzuUgDkiMjOwZvZrWZ2wMy2ph9XZsz7OzPbaWavmNllUdUAhOKUZcsJdwDDEvUe/Jfd/V8zG8xshaRrJZ0h6RRJG8xsmbsnI64FAIC8EcdV9FdL+ra7d7r7Hkk7Ja2OoQ4AAIIVdcB/zMy2mdk9ZlaRbpsnaX/Ga2rSbQAAYIyMKuDNbIOZbe/ncbWkr0taImmlpFpJXxzmZ68xs81mtjmRSIymTAAA8s6ozsG7+8VDeZ2Z3S3p++mnByQtyJg9P93W97PXSlorSVVVVT6aOgEAyDdRXkU/N+PpByRtT08/LulaMys2s8WSlkr6ZVR1AACQj6K8iv52M1spySXtlXSDJLn7DjN7SNKLknok3cQV9AAAjK3IAt7dP3SSebdJui2qZQMAkO8YbAYAgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAGGcpT8VdAvIAAQ8A46h6d7X+68X/irsM5IGiuAsAgHyx88hO3fqLW1VohXrfae/TzEkz4y4JAWMPHgDGQVt3mz7xo0+oo6dDR7uP6isvfCXukhA4Ah4AIubuuuVnt2hvy9432ta9tk47GnbEVxSCR8ADQMTue+k+PbnvyRPaXK7Pbfqc3D2mqhA6zsEDQITqO+q16dAmXbTgIhUVFGlCwYQT/tYcrdGCsgVxl4kAEfAAEKGZk2bqK+/hfDvGH4foAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIByI+A97gIAAMgtORHwyebOuEsAACCn5EbAt3Wr46WGuMsAACBn5ETAS9KRR19T8mhX3GUAAJATciLgCyYXKXW0W0ce2yl3TsgDADCYnAj4oooSFS8t17EXG9S+uS7ucgAAyHqRBLyZPWhmW9OPvWa2Nd2+yMw6MubdOdTPnPHHyzVhTqmavrdLPQ0dUZQNAEAwIgl4d/9Dd1/p7islPSrpsYzZu47Pc/cbh/qZBSVFmvHRM1RQUqTGh16VJzlUDwDAQCI9RG9mJukaSQ+MxecVTSvWjI+eqe5DbWrduH8sPhIAgCBFfQ7+XZLq3P21jLbFZvaCmW00s3cN9EYzW2Nmm81scyKReKN94txSzfjj5Wp9Zr+6alojLB0AgNw14oA3sw1mtr2fx9UZL7tOJ+6910pa6O7nSPqkpPvNbGp/n+/ua929yt2rKisrT5hXsqxC5VctUeODryjVlRzpKgAAEKyikb7R3S8+2XwzK5L0QUmrMt7TKakzPb3FzHZJWiZp83CXX/pbc9Rz5Jia1+9RxdVvGe7bAQAIWpSH6C+W9LK71xxvMLNKMytMT58maamk3SNdwNRLTpV3JnXs1SOjLhYAgJBEGfDX6s0X110oaVv6trlHJN3o7o0jXYCZqeKDS9X+fJ2Sbd0jrxQAgMCM+BD9YNz9I/20Pare2+bGjBUVqPzqt6j1pwc09eKF6r1wHwCA/JYTPdkNpmBSkUqrZqtzZ1PcpQAAkBUi24Mfb0UVJVLKlWzrVmHphLjLAQAgVkHswR9XNGOSrCioVQIAYESCS8OC4sK4SwAAIHbBBTwAACDgAQAIEgEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABXFXQCA6G16fLe2PVOjGfNKNXPeFM2Yn37Mm6IJEwvjLg9ABAh4IGCplGvj/a/oxZ8elCTV7mxW7c5mFU8u0swFZZq9qExLzp2lWadOjblSAGONgAcC1dOd1FPffFG1u5u18IwZqlw4RZULy1S5oExTZ06KuzwAESPggUB1tvXowmuXqbS8OO5SAMSAgAcCRbAD+Y2r6AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABGhUAW9mf2BmO8wsZWZVfeb9nZntNLNXzOyyjPbL0207zezm0SwfAAD0b7R78NslfVDSjzMbzWyFpGslnSHpcklfM7NCMyuUdIekKyStkHRd+rUAAGAMjaqjG3d/SZLMrO+sqyV92907Je0xs52SVqfn7XT33en3fTv92hdHUwcAADhRVOfg50nan/G8Jt02UDsAABhDg+7Bm9kGSXP6mfUZd//u2Jf0xnLXSFqTftppZtujWlYWmCmpPu4iIsT65baQ1y/kdZNYv1x3+mjePGjAu/vFI/jcA5IWZDyfn27TSdr7LnetpLWSZGab3b2qv9eFgPXLbaxf7gp53STWL9eZ2ebRvD+qQ/SPS7rWzIrNbLGkpZJ+Kek5SUvNbLGZTVTvhXiPR1QDAAB5a1QX2ZnZByR9RVKlpB+Y2VZ3v8zdd5jZQ+q9eK5H0k3unky/52OSfiipUNI97r5jVGsAAADeZLRX0a+TtG6AebdJuq2f9mpJ1cNc1NrhV5dTWL/cxvrlrpDXTWL9ct2o1s/cfawKAQAAWYKuagEACFDWBXw+dX9rZg+a2db0Y6+ZbU23LzKzjox5d8Zc6oiY2a1mdiBjPa7MmNfvtswVZvYFM3vZzLaZ2TozK0+3B7HtpNz9XQ3EzBaY2TNm9mL635i/SrcP+D3NNel/R36dXo/N6bbpZvaUmb2W/lsRd53DZWanZ2yfrWbWYmYfz/VtZ2b3mNnhzNvAB9pe1us/0r/HbWZ27qALcPesekhart57/34kqSqjfYWkX0kqlrRY0i71XqhXmJ4+TdLE9GtWxL0eI1jvL0q6JT29SNL2uGsag3W6VdLf9NPe77aMu95hrtulkorS05+X9PnAtl0Qv6s+6zRX0rnp6TJJr6a/i/1+T3PxIWmvpJl92m6XdHN6+ubj39VcfaS/m4cknZrr207ShZLOzfw3Y6DtJelKSeslmaTzJG0a7POzbg/e3V9y91f6mfVG97fuvkfS8e5vVyvd/a27d0k63v1tzrDevn6vkfRA3LWMk4G2Zc5w9yfdvSf99Fn19ukQkpz/XfXl7rXu/nx6ulXSS8qPnjSvlnRvevpeSe+Pr5Qx8V5Ju9x9X9yFjJa7/1hSY5/mgbbX1ZK+5b2elVRuZnNP9vlZF/AnEXL3t++SVOfur2W0LTazF8xso5m9K67CxsDH0oeT7sk4NBjCNsv0J+r9P+vjQth2oW2jE5jZIknnSNqUburve5qLXNKTZrbFensDlaTZ7l6bnj4kaXY8pY2Za3XizlAo2+64gbbXsH+TsQS8mW0ws+39PHJ6D6E/Q1zX63TiF7ZW0kJ3P0fSJyXdb2ZTx7PuoRpk/b4uaYmklepdpy/GWetwDWXbmdln1NvXw33pppzZdvnKzKZIelTSx929RTn+Pe3jne5+rnpH7LzJzC7MnOm9x3pz9tYp6+0g7SpJD6ebQtp2bzLa7TWq++BHymPq/jYOg62rmRWpd8jdVRnv6ZTUmZ7eYma7JC2TNKpuC6Mw1G1pZndL+n766cm2ZdYYwrb7iKTfkfTe9A8xp7bdIHJiGw2XmU1Qb7jf5+6PSZK712XMz/ye5hx3P5D+e9jM1qn3VEudmc1199r0Id3DsRY5OldIev74Ngtp22UYaHsN+zeZS4foQ+3+9mJJL7t7zfEGM6s0s8L09GnqXdfdMdU3Yn3OD31A0vErRQfaljnDzC6X9ClJV7l7e0Z7ENtOuf+7epP0tS7flPSSu38po32g72lOMbNSMys7Pq3eC0G3q3e7XZ9+2fWSIhskbByccLQzlG3Xx0Db63FJH05fTX+epOaMQ/n9imUP/mQs/7q/7Xs+Seq9svKfzKxbUkrSje7e90KMXHC7ma1U7yGmvZJukKSTbcsc8lX13gXwVG9u6Fl3v1GBbDt378nx31V/LpD0IUm/tvQtqZI+Lem6/r6nOWi2pHXp72ORpPvd/Qkze07SQ2b2p5L2qfeC3pyT/p+WS3Ti9un335hcYWYPSPptSTPNrEbSP0j6nPrfXtXqvZJ+p6R2SR8d9PPTRxYBAEBAcukQPQAAGCICHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAAC9P8B0uHcN4hK91gAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkj0lEQVR4nO3deXRd5Xnv8d8jHUmWZMuybFmW5wGPJKnBKoEwNYUmDAkk9IYLrAYoWXVowk0ImRhuU25auhqCm4aGoU5Dm5AwOIADBJMAGchNbpwiEzAG22ATG+wYLNuSbSxZ1vDcP842HMuadfYZ3vP9rHWW9nnfPTx77SP9tPd5zz7m7gIAAGEpynYBAAAg/Qh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQGkJeDO7y8x2mtm6lLYaM3vSzF6Jfo6L2s3MbjWzTWa21syOT0cNAADgHek6g/8vSWf1aLtW0s/cfa6kn0XPJelsSXOjx1JJd6SpBgAAEElLwLv7ryTt6dF8vqTvRtPflfSRlPbvedJqSdVmVp+OOgAAQFKc78HXufuOaPoNSXXR9BRJr6fMty1qAwAAaZLIxEbc3c1sSPfENbOlSl7CV2Vl5ZIFCxbEUhsAALlozZo1u9y9drjLxxnwb5pZvbvviC7B74zat0ualjLf1KjtCO6+XNJySWpoaPDGxsYYSwUAILeY2daRLB/nJfpHJF0WTV8m6eGU9kuj0fQnStqbcikfAACkQVrO4M3sXkl/JmmCmW2T9PeS/lnSCjP7hKStki6MZl8l6RxJmyS1SvrrdNQAAADekZaAd/eL++g6o5d5XdKn07HdbNvdtlv/+uy/qtiKVTOqRuPLx6tmVM0Rj3GjxqnIuJ8QACCzMjLILlTjy8fr0kWX6sqnrtTO1p29zlNkRaouq1bNqBpNrJioG957g6ZXTc9wpQCAQsOp5QjNHTdXd599t2ZWzey1v9u7tefgHm1/a7v+auFfEe4AgIwg4NNg8ujJ+t7Z39O7xr+r1/7xo8brP8/6T5069dQMVwYAKFQEfJqMGzVO3/ngd3RS/UlHtM+smqnvn/N9HTv+2CxVBgAoRAR8GlWUVOi2M27T2TPPliQdN/E4ff+c72vqmKlZrgwAUGgYZJdmJcUl+tppX1PDpAadf8z5Kisuy3ZJAIBh2r9/vzZs2KD169frrLPO0sSJE7Nd0qAR8DEwM104/8KBZwQA5Jw9e/Zo/fr1Wr9+vbZt2/Z2+69//WtdcMEFWaxsaAh4AAAk7du3T6+88op27dqlRCKhuXPnauHChSouLlYikVBZWX5dkSXgAQCQVFVVpSVLlmS7jLRhkB0AAAEi4AEACBABDwBAgAh4AAACRMADABAgAh5AQdiz5zd6662N2S4DyBgCHkDw3F2bX12mZxov0B93PJDtcoCMIOABBK+jo1lFVir3Dq1f/2W99NIX1dXVmu2ygFgR8ACCV1paoyVL7tOppzyjdx17qyTp+bVL9daBV7JcGRAf7mQHpJm7q/tAq7pamtXV/M6js7lZXc0t6mppeae9pVmdzS1KTJigWSsfkpllu/yglZSMVV3duaqrO1fu3Wpt/YPcu2RWnO3SgLQj4IF+uLu8rU1dLS3vBPQR4dyzLTntHR1D2k7Xrl1qW7NGFQ0NMe0JejIrUmXlnGyXAcSGgEfB6m5v11s//7k69+zpJbjfee7t7Rmpp/n+FQQ8gLQh4FGwisrKlKibpF133Kn2l1/Odjna/5OfqPP665QYNy7bpQAIAIPsUNAqjj9Osx58QBO/+EVZeXlWa/GODu19aGVWawAQDgIeBc9KSjT+E1dozmM/1ug///Os1tK84n55d3dWawAQBgIeiJRMnqxpt9+mqbd9S4n6+qzU0LH1NbWuXp2VbeervTvf1M4tr/KPEdADAQ/0MOaMMzTnx4+q5oorpOLMf3yq+b77M77NfDZ2Yp12vb5V3/ns3+jBf/qKVj94n15/ca06DmVmcCSQq8zds13DgBoaGryxsTHbZaAAHdywQW/8/Y1qe/75zG20uFjH/PznKqmbmLltBuBAS7Oe/PZt2tyYvAJSVJzQxFmzNWX+Ik1ZsEhTFhyriqqxWa4SGDwzW+Puw/5oDQEPDMC7u9Xywwe0c9kyde/bl5Ft1n72M5rwt3+bkW2FZv2vf6mf/+e/6+Bb+4/qG1c/WZMPB/78Y1UzeUoWKgQGh4AHMqRz927tvPlm7X34kdi3laiv1zFPPSnLwlsEITjQ0qyn/uM2bXqm//EMFWOrNXneAk2Zv0gLTj5do2vGZ6hCYGAEPJBhB1av1hs3/h8d2rIl1u1MveN2jXn/+2PdRujW/+bp5Nn8/oGvvIyfOl2X/OMtKi2vyEBlwMBGGvAMsgOGqPLEEzXrkYc14TP/S1ZaGtt2Wu5fEdu6C8XCk0/X5bfcpmP+9KQB59297TU9duvXGY2PYBDwwDAUlZaq9lOf0uxHH1Hl+94XyzbeevppdWzfHsu6C0ll9Tid/4UbdO5nvqjyMVX9zvvqs8/oV/f8V2YKA2JGwAMjUDpjhqZ95z80edktKq6dkN6Vu6v5gQfSu84CtuDk03X5sts19739/0PW+OhDevHpn2WoKiA+BDwwQmamseeeqzmPPaZxl1wipfErX1seeGDI30yHvlWMrdZ511yvD1395X7P5p9c/m/avnF9BisD0o+AB9KkuKpKk77yd5q54n6VLVqYlnV2Ne3S/p//Ii3rwjvmn3SqLv+XOzTvvSf32t/V2alHlt2kfU07M1wZkD4EPJBm5e9+t2atWKG6669TUcXIR2S33H9fGqpCTxVVY/Xha67Th66+VuW93ACndW+LfnTzV9Vx8GAWqgNGjoAHYmCJhGouvVSzH1+lMR/4wIjWdeD//Tb2j+QVsvknnaLLl92ueSeeclRf02tbtOpbtygfPk4M9ETAAzEqqavT1Fu/qWn/fqdKpgz/rmnNK36YxqrQU0XVWH34c9fqw5+7VhVjq4/o2/TMav3m/ruzUxgwAgQ8kAGjTz9ds3/8qMYvXSolEkNefu9DD6m7nS9Pidu8E0/RZbfcpvknnXpE++9WrtD6X/8yO0UBw0TAAxlSVF6uidd8TrNXPqTyhiVDWrarpUX7n3gipsqQqqJqrD509Zf14WuuO+Js/ok7b9WOTRuzVxgwRAQ8kGFlc+dqxt13q/6mm1RcXT3o5Zrv52tkM2nee0/W5ctu1/z3nSZJ6uw4pIe//o/av3tXlisDBoeAB7LAzFT9lxdo9uOrNPYvLxjUMm2Na9T+yisxV4ZU5WOq9KHPfknnff56VYyt1oGWZv3o6/+gjnZG1iP3EfBAFiXGjdPkm27SjO/frdJj5gw4fzP3p8+KuSe8T5cvu10LTj5dO/+wWT+57RuMrEfOI+CBHFDR0KDZDz2k2muukY0a1ed8ex9+WN2trRmsDIeVj6nSuZ/5os77wg3avvEl/faBe7JdEtAvAh7IEVZaqglL/0azf/yoKk8/rdd5uvfv177HH89wZUg1909P0mXLblfLm29o42//b7bLAfpEwAM5pnTqVE27805N+eY3lZg48aj+5vsYbJdt5aPH6JyrPq+yytF6a8/ubJcD9CrWgDez+Wb2XMpjn5ldbWY3mtn2lPZz4qwDyDdmpqoPfkCzV61SzWWXSkXv/KoefOEFta17MYvV4bCZ7zlOo2vGZ7sMoFexBry7b3T3xe6+WNISSa2SVkbd3zjc5+6r4qwDyFfFoytVd911mvXADzXq3e9+u72Fj8wBGEAmL9GfIWmzu2/N4DaBIIxatEgz77tXdV/5OxWNHq29jz2mrv37s10WgByWyYC/SNK9Kc+vMrO1ZnaXmY3rObOZLTWzRjNrbGpqylyVQI6y4mLVXHKJ5jy+SmPe/37tffTRbJcEIIdZJj7LaWalkv4o6Vh3f9PM6iTtkuSS/kFSvbtf0dfyDQ0N3tjYGHudQD45tG27SqcO/wtsAOQ2M1vj7g3DXT5TZ/BnS3rW3d+UJHd/09273L1b0rclnZChOoBgEO4A+pOpgL9YKZfnzaw+pe+jktZlqA4AAArC0L+3cojMrFLSX0j6ZErzzWa2WMlL9Ft69AEAgBGKPeDd/YCk8T3aPh73dgEAKGTcyQ4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAAUpkuwAAAI5yYJe04zlpTL1UPUMqG53tivIOAQ8AyD3FpdLY6dL+HdIb66TuDqm4TEpEj+JSKTFKGlMnjZ0mFZdku+KcQ8ADAHLPqKrko3Ze3/O4S23N0p5XJSuWElHoF6f8LCrcd6IJeABAfjKTKmqSDxylcP+1AQAgYAQ8AAABIuABAAgQAQ8AQIAIeAAAAhT7KHoz2yJpv6QuSZ3u3mBmNZLulzRT0hZJF7p7c9y1AABQKDJ1Bv9+d1/s7g3R82sl/czd50r6WfQcAACkSbYu0Z8v6bvR9HclfSRLdQAAEKRMBLxLesLM1pjZ0qitzt13RNNvSKrLQB0AABSMTNzJ7hR3325mEyU9aWYbUjvd3c3Mey4U/TOwVJKmT5+egTIBAAhH7Gfw7r49+rlT0kpJJ0h608zqJSn6ubOX5Za7e4O7N9TW1sZdJpB3Nje9le0SAOSwWAPezCrNbMzhaUkfkLRO0iOSLotmu0zSw3HWAYRm/8EOjRnFV0kA6FvcfyHqJK00s8Pbusfdf2Jmz0haYWafkLRV0oUx1wEEpaW1Q1Oqy7NdBoAcFmvAu/urkv6kl/bdks6Ic9tA6IqKLNslAMhh3MkOyENGtgMYAAEP5CEj4QEMgIAH8lAxAQ9gAAQ8kId4+x3AQAh4IA8xwA7AQAh4IA8VcYkewAAIeCAPcQIPYCAEPJCHuEQPYCAEPJBn2g51qbKU29QC6B8BD+QZl6uYM3gAAyDggTzDADsAg0HAA3mGfAcwGAQ8kGc4gwcwGAQ8kGe4TS2AwSDggTzDR+QADAYBDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQLEFvJlNM7NfmNlLZvaimX02ar/RzLab2XPR45y4agAAoFAlYlx3p6TPu/uzZjZG0hozezLq+4a73xLjtgEAKGixBby775C0I5reb2brJU2Ja3sAAOAdGXkP3sxmSjpO0u+ipqvMbK2Z3WVm4zJRAwAAhST2gDez0ZIelHS1u++TdIekOZIWK3mGv6yP5ZaaWaOZNTY1NcVdJgAAQYk14M2sRMlw/4G7PyRJ7v6mu3e5e7ekb0s6obdl3X25uze4e0NtbW2cZQIAEJw4R9GbpO9IWu/u/5LSXp8y20clrYurBgAAClWco+hPlvRxSS+Y2XNR2/WSLjazxZJc0hZJn4yxBgAAClKco+h/Lcl66VoV1zYBAEASd7IDACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAEKCsBbyZnWVmG81sk5ldm606AAAIUVYC3syKJd0m6WxJiyRdbGaLslELAAAhytYZ/AmSNrn7q+5+SNJ9ks7PUi0AAAQnWwE/RdLrKc+3RW1vM7OlZtZoZo1NTU0ZLQ4AgHyXs4Ps3H25uze4e0NtbW22ywEAIK9kK+C3S5qW8nxq1AYAANIgWwH/jKS5ZjbLzEolXSTpkSzVAgBAcBLZ2Ki7d5rZVZJ+KqlY0l3u/mI2agEAIERZCXhJcvdVklZla/sAAIQsZwfZAQCA4SPgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAAClLUvmwGATPrprr1as/eA6spKVFdaokllJZpYmtCkshKVFnGug/AQ8AAKwknVo3X9y9u0vb3jqL5xieK3g7+uLBH9PPofgTL+EUAeIeABFISqRLG+uXC6PvbcZnmPvubOLjV3dmnDgYP9rqM6UazZFWVatWRefIUCacK/owAKxinjxuiT02qHvXxLZ5ee3deqvR2daawKiAcBD6CgXDe7XgsrR41oHVsPHkpTNUB8CHgABaWsqEi3LZqhsiIb9jq2tBHwyH0EPICCs2h0ub48q37Yy29ta09jNUA8CHgABenKabV6X/XoYS27lTN45AECHkBBKjLTrQunqyox9D+DWziDRx4g4AEUrKmjSvVPc6cOebktBwl45D4CHkBB+x+TanTexOohLbOjvUMd3T0/TQ/kFgIeQMH72rypmlRaMuj5u1x6nY/KIccR8AAK3riShL65cLqG8sE5RtIj1xHwACDp9JoxumLKhEHPv4UzeOQ4Ah4AIv97zmTNrSgb1LyMpEeuI+ABIFJenLzLXYkNfLH+NT4LjxxHwANAiveMqdAXZk4acD7O4JHrCHgA6OGqGRN1wtjKfufhC2eQ6wh4AOih2Ez/tnC6Rhf3/SeytatbTYc6MlgVMDQEPAD0YkZ5mb46d0q/8/CtcshlBDwA9OGS+vE6Z8LYPvv5LDxyGQEPAP34+vxpqi1N9NrHGTxyGQEPAP0YX5rQNxZM77WPkfTIZQQ8AAzgzPFVunTy+KPaX2MkPXIYAQ8Ag3DjMVM0u/zIu9xxBo9cRsADwCBUFBfpW4umK5Fyk7udhzrV2tWdvaKAfhDwADBIx1dV6uoZR97ljpH0yFUEPAAMwdUz6nR8VcXbz7cykh45ioAHgCFIFJm+tXCGKqK73G09yBk8chMBDwBDNLuiTDfOmSyJz8IjdxHwADAMl06ZoDPHVzGSHjmLgAeAYfrGgmk6wCh65CgCHgCGqba0RJ+dUadu92yXAhwlloA3s6+b2QYzW2tmK82sOmqfaWZtZvZc9Lgzju0DQKacMb5KRWYDzwhkWFxn8E9Kepe7v0fSy5KuS+nb7O6Lo8eVMW0fAICCFkvAu/sT7t4ZPV0taWoc2wEAAL3LxHvwV0h6POX5LDP7vZk9bWanZmD7AAAUnN6/5HgQzOwpSZN66brB3R+O5rlBUqekH0R9OyRNd/fdZrZE0o/M7Fh339fL+pdKWipJ06f3/lWNAACgd8MOeHc/s79+M7tc0ockneGeHGLq7u2S2qPpNWa2WdI8SY29rH+5pOWS1NDQwBBVAACGIK5R9GdJ+pKk89y9NaW91syKo+nZkuZKejWOGgAAKGTDPoMfwLcklUl60pIfH1kdjZg/TdJXzaxDUrekK919T0w1AABQsGIJeHc/po/2ByU9GMc2AQDAO7iTHQAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEgRl0d3dq5dV+2y0ABSmS7AAAISXe3q+m1/dq2YY+2b2zWjk171dnRrbOWvktzjp+Y7fJQQAh4ABgBd9eeHQe0bUOztm9s1vaXW3SorfOo+X55z0bVH1OtiqrSLFSJQkTAA8Awubv27WrTwbc6NH5ypWomVerY06bIuz16JM/o3V3dXa62/YcIeGQMAQ8Aw2RmGltbobG1FdkuBTgKg+wAAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIECxBbyZ3Whm283suehxTkrfdWa2ycw2mtkH46oBAIBCFfeNbr7h7rekNpjZIkkXSTpW0mRJT5nZPHfvirkWAAAKRjYu0Z8v6T53b3f3P0jaJOmELNQBAECw4g74q8xsrZndZWbjorYpkl5PmWdb1AYAANJkRAFvZk+Z2bpeHudLukPSHEmLJe2QtGyI615qZo1m1tjU1DSSMgEAKDgjeg/e3c8czHxm9m1JP46ebpc0LaV7atTWc93LJS2XpIaGBh9JnQAAFJo4R9HXpzz9qKR10fQjki4yszIzmyVprqT/jqsOAAAKUZyj6G82s8WSXNIWSZ+UJHd/0cxWSHpJUqekTzOCHgCA9Iot4N394/303STppri2DQBAoeNOdgAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAAClIhjpWZ2v6T50dNqSS3uvtjMZkpaL2lj1Lfa3a+MowYAAApZLAHv7v/z8LSZLZO0N6V7s7svjmO7AAAgKZaAP8zMTNKFkv48zu0AAIAjxf0e/KmS3nT3V1LaZpnZ783saTM7ta8FzWypmTWaWWNTU1PMZQIAEJZhn8Gb2VOSJvXSdYO7PxxNXyzp3pS+HZKmu/tuM1si6Udmdqy77+u5EndfLmm5JDU0NPhw6wQAoBANO+Dd/cz++s0sIekCSUtSlmmX1B5NrzGzzZLmSWocbh0AAOBocV6iP1PSBnffdrjBzGrNrDiani1prqRXY6wBAICCFOcgu4t05OV5STpN0lfNrENSt6Qr3X1PjDUAAFCQYgt4d7+8l7YHJT0Y1zYBAEASd7IDACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQIlsFwAAucC7Xe2bW9T6fJO6Wto14bJFspLibJcFDBsBD6Bgebfr0Gv71Pp8k9pe2KXutzre7mteuUnjPjZPZpbFCoHhI+ABFBR3V8cfDyRDfW3ybL03rc/uVMmU0Rpz8pQMVwikBwEPoCB07GxNhvrzTerc1TaoZfY+9qpKJlVq1JzqeIsDYkDAAwhW556Dal2bDPWOHQeGvoJuac896zXxquOUGDcq/QUCMSLgAQSlu7VDB36/U23PN+nQa/tHvr4Dndp990uqvfJPVFTKoDvkDz4mByAoVp5Q6bQxKp02RsVVpWlZZ8cfD6j5oVfk7mlZH5AJnMEDCIqZqWx6lcqmV2nsubN1aOu+5GX6HqPkh6rtuSa9NXm0xpw2NY3VAvEh4AEEy4pMZbPGqmzWWFV/eI7aX92rtrVNalu3S92tnUNe397H/6CS+kqNmjsuhmqB9CLgARQEKzKNOqZao46pVvX5c9S+eW/yzH7dbvnBQYa9S7vv2aC6qxYrMb483oKBESLgARQcKy7SqHnjNGreOPlHunVwU4vanm9S20u75e1d/S7rbdGgu08tZtAdchoBD6CgWaJI5QtqVL6gRt7RrYMv71Hr2l06+NJueUd3r8t0vNGq5h++rJpLFnCnO+SsEY2iN7OPmdmLZtZtZg09+q4zs01mttHMPpjSflbUtsnMrh3J9gEgnaykSOXHTtD4ixeo/u9OVM0lC1T+rvFS4ug/lW0v7NL+p7dloUpgcEZ6Br9O0gWS/j210cwWSbpI0rGSJkt6yszmRd23SfoLSdskPWNmj7j7SyOsAwDSqqi0WBXvqVXFe2rV3d6pg+v3qPX5Jh18uVnqSn5cbt9Pt6ikvlLl82uyXC1wtBEFvLuvl9TbJarzJd3n7u2S/mBmmySdEPVtcvdXo+Xui+Yl4AHkrKKyhCoWT1TF4onqbutU20u71ba2SQdfadGeezdo4lXHqWQCg+6QW+J6D36KpNUpz7dFbZL0eo/298ZUAwCkXVF5QpVL6lS5pE5dBzp08KXdOvDbP2rsWTP5elnklAED3syekjSpl64b3P3h9Jf09naXSloaPW03s3VxbSsHTJC0K9tFxIj9y28h71/I+yaxf/lu/kgWHjDg3f3MYax3u6RpKc+nRm3qp73ndpdLWi5JZtbo7g29zRcC9i+/sX/5K+R9k9i/fGdmjSNZPq570T8i6SIzKzOzWZLmSvpvSc9Immtms8ysVMmBeI/EVAMAAAVrRO/Bm9lHJf2bpFpJj5nZc+7+QXd/0cxWKDl4rlPSp929K1rmKkk/lVQs6S53f3FEewAAAI4y0lH0KyWt7KPvJkk39dK+StKqIW5q+dCryyvsX35j//JXyPsmsX/5bkT7Z3z9IQAA4eH74AEACFDOBXwh3f7WzO43s+eixxYzey5qn2lmbSl9d2a51GExsxvNbHvKfpyT0tfrscwXZvZ1M9tgZmvNbKWZVUftQRw7KX9/r/piZtPM7Bdm9lL0N+azUXufr9N8E/0deSHaj8aorcbMnjSzV6Kfefddt2Y2P+X4PGdm+8zs6nw/dmZ2l5ntTP0YeF/Hy5JujX4f15rZ8QNuwN1z6iFpoZKf/fulpIaU9kWSnpdUJmmWpM1KDtQrjqZnSyqN5lmU7f0Yxn4vk/SVaHqmpHXZrikN+3SjpC/00t7rscx2vUPctw9ISkTTX5P0tcCOXRC/Vz32qV7S8dH0GEkvR6/FXl+n+fiQtEXShB5tN0u6Npq+9vBrNV8f0WvzDUkz8v3YSTpN0vGpfzP6Ol6SzpH0uCSTdKKk3w20/pw7g3f39e6+sZeut29/6+5/kHT49rcnKLr9rbsfknT49rd5w5L3+r1Q0r3ZriVD+jqWecPdn3D3w18ivlrJezqEJO9/r3py9x3u/mw0vV/Ser1zh82QnS/pu9H0dyV9JHulpMUZkja7+9ZsFzJS7v4rSXt6NPd1vM6X9D1PWi2p2szq+1t/zgV8P6bo6NvcTumnPZ+cKulNd38lpW2Wmf3ezJ42s1OzVVgaXBVdTror5dJgCMcs1RVK/md9WAjHLrRjdAQzmynpOEm/i5p6e53mI5f0hJmtseTdQCWpzt13RNNvSKrLTmlpc5GOPBkK5dgd1tfxGvLvZFYC3syeMrN1vTzy+gyhN4Pc14t15At2h6Tp7n6cpGsk3WNmVZmse7AG2L87JM2RtFjJfVqWzVqHajDHzsxuUPJeDz+ImvLm2BUqMxst6UFJV7v7PuX567SHU9z9eElnS/q0mZ2W2unJa715+9EpS94g7TxJP4yaQjp2Rxnp8Yrry2b65Vm6/W02DLSvZpZQ8it3l6Qs0y6pPZpeY2abJc2TNKLbFsZhsMfSzL4t6cfR0/6OZc4YxLG7XNKHJJ0R/SLm1bEbQF4co6EysxIlw/0H7v6QJLn7myn9qa/TvOPu26OfO81spZJvtbxpZvXuviO6pLszq0WOzNmSnj18zEI6din6Ol5D/p3Mp0v0od7+9kxJG9x92+EGM6s1s+JoeraS+/pqluobth7vD31U0uGRon0dy7xhZmdJ+pKk89y9NaU9iGOn/P+9Oko01uU7kta7+7+ktPf1Os0rZlZpZmMOTys5EHSdksftsmi2yyTF9iVhGXDE1c5Qjl0PfR2vRyRdGo2mP1HS3pRL+b3Kyhl8f6zwbn/b8/0kKTmy8qtm1iGpW9KV7t5zIEY+uNnMFit5iWmLpE9KUn/HMo98S8lPATyZzA2tdvcrFcixc/fOPP+96s3Jkj4u6QWLPpIq6XpJF/f2Os1DdZJWRq/HhKR73P0nZvaMpBVm9glJW5Uc0Jt3on9a/kJHHp9e/8bkCzO7V9KfSZpgZtsk/b2kf1bvx2uVkiPpN0lqlfTXA64/urIIAAACkk+X6AEAwCAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQoP8P+tIBiKRbluEAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgsUlEQVR4nO3de5SddX3v8fc3M8kEkpAgBkgDKRdTufTUCHOgqwrLemmBVqmcdTiwxFrtOhFBq7auFmEt66mLVS8V16pt7YmrLGmP3CxFqQcpEBW0nIhBkPslQW4x5EJiQsh1Zr7nj9mDO5OZyWT2fvae/Zv3a6295tm/Z+/9+z48e/Lh93suE5mJJEkqy7R2FyBJkprPgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgrUlICPiKsjYn1EPFzX9pqIuCMinqr9PLTWHhHxtxGxKiIejIhTmlGDJEn6pWaN4L8GnDWs7TJgeWYuBpbXngOcDSyuPZYCX2lSDZIkqaYpAZ+ZdwObhjWfC1xTW74G+IO69n/OQSuAeRGxoBl1SJKkQVUegz8iM9fWll8EjqgtLwSer3vdC7U2SZLUJN2t6CQzMyIO6J64EbGUwSl8Zs2adeoJJ5xQSW2SJE1G991338bMnD/R91cZ8OsiYkFmrq1Nwa+vta8Bjq573VG1tr1k5jJgGUBvb2+uXLmywlIlSZpcIuLZRt5f5RT9LcD7asvvA75V1/6HtbPpfxPYUjeVL0mSmqApI/iIuA54C/DaiHgB+Evgs8CNEfHHwLPA+bWX3wqcA6wCtgPvb0YNkiTpl5oS8Jl54Sir3jbCaxO4tBn9SpKkkXknO0mSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKlB3uwuQpqr+/p289NJdrF9/K7Nnv55jjrmk3SVJKogBL7XYy9seZ8P629j40vcZGNhJMI1Xtq+mu3suRx31nnaXJ6kQBrzUYnNmn8Cc2Sdw3HEfa3cpkgrmMXhJkgpkwEuSVCADXpKkAhnwkiQVqNKT7CLi9cANdU3HAZ8C5gH/E9hQa788M2+tshZJkqaSSgM+M58AlgBERBewBrgZeD/wpcz8myr7lyRpqmrlZXJvA1Zn5rMR0cJupRbp2w2vrIdt62DbhsHlE98JBx3a7sokTUGtDPgLgOvqnn84Iv4QWAn8WWZurn9xRCwFlgIsWrSoZUVK4/LzB+DRb8Lz98K29YNhvnPL3q+Z1g3/5fx2VCdJRGZW30nEDODnwMmZuS4ijgA2Agl8BliQmR8Y7f29vb25cuXKyuuUDtjWtfDcPfDsPfDs/4P1jzL4tQYOPxkuuaet5UnqXBFxX2b2TvT9rRrBnw38JDPXAQz9BIiIrwLfblEdUnMdsgB+/b8NPgC2b4LnfwTP/ifMnNfW0iRNba0K+Aupm56PiAWZubb29N3Awy2qQ6rWwa+B1589+JCkNqo84CNiFvAO4IN1zZ+PiCUMzmU+M2ydJElqUOUBn5mvAIcNa3tv1f1KkjSVeSc7SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSxqkVf6CtWQx4SZLGacuGHe0uYdwMeEmSxunF1VvaXcK4GfCSJI3T2tVbOmaa3oCXJGmctm7cwfYtu9tdxrgY8JIkjdPuHX1s+vkr7S5jXAx4SZLGadeOPjatNeAlSSrK4Ah+W7vLGBcDXpKkcchMdm13BC9JUlH69gww0J9s+vkrHXEmvQEvSdI47N7eN/hzZz/bNu9qczX7Z8BLkjQOu2oBD3TENL0BL0nSOOzaURfwHXCpnAEvSdI47Nq+59VlR/CSJDWov7+fgYGBdpfB7p2O4CVJaqrbb7+93SW8epIdwOa1k/9MegNekjSpdXV18dhjj3Hvvfe2tY76Y/B7dvXz8qadbaxm/wx4SdKkN2/ePG677TZWr17dthrqz6KHyT9Nb8BLkia9efPmMTAwwDe+8Q02btzYlhrqR/Aw+U+0M+AlSZPe3LlzAdi5cyfXXnst27dvb3kNu4eN4Dc7gpckqTHz5s17dXnTpk3ccMMN9Pf3t7QGR/CSJDVZfcADPPvss3z7299uaQ27Rwj4HJi8Z9Ib8JKkSW94wAPcf//93HPPPS2rYfhJdn27B9j60uQ9k96AlyRNeocccggRsU/7HXfcwRNPPNGSGoZP0cPknqY34CVJk153dzezZ8/epz0zuemmm1i3bl3lNQw/yQ5g08+3Vd7vRBnwkqSOMNI0PcDu3bu59tpr2baturDt29NPf9++t8t1BC9JUoNGC3iALVu2cP3119PXt+8ouxmGH38fMplvdmPAS5I6wtC18KN54YUX+Na3vlVJ38PPoB+y+cXtDEzSM+kNeElSRxhrBD/koYce4u67725636ON4Pv3DLB1446m99cMBrwkqSOMJ+ABvvvd7/LII480te/RRvAweafpDXhJUkcYb8ADfPOb32T9+vVN63ukS+SGTNYT7Qx4SVJH2N8x+HonnHAChx12WNP6Hm2KHibvCL673QVIkjQe06dPZ9asWbzyytiBevrpp3PWWWeNeGOciXKKXpKkCu1vmv6tb30rZ599dlPDHcYewW9e9woD/fteI99uBrwkqWOMFvARwTvf+U7OPPPMSvod6xj8QF+yZcPkO5PegJckdYyRjsN3d3dz/vnnc+qpp1bW7+7te8ZcPxlPtDPgJUkdY/gIvqenh4suuogTTzyx0n7HGsHD5DwOX/lJdhHxDPAy0A/0ZWZvRLwGuAE4BngGOD8zN1ddiySps9UH/OzZs3nPe97DggULKu93rJPsYGqP4H87M5dkZm/t+WXA8sxcDCyvPZckaUxDAX/ooYfygQ98oCXhDmOfZAc0/aS+ZmjXZXLnAm+pLV8DfB/4izbVIknqEHPnzuXII4/koosuGvHPx1ZlpCn6w391DsefejivO/VwDjnsoJbVMl6tCPgEbo+IBP53Zi4DjsjMtbX1LwJHtKAOSVKH6+np4f3vfz89PT0t7Xfob8G/9ujZvK4W6nPnH9zSGg5UKwL+zZm5JiIOB+6IiMfrV2Zm1sJ/LxGxFFgKsGjRohaUKUnqBK0O94GB5JSzfpXXnXo4hx45q6V9N6LyY/CZuab2cz1wM3AasC4iFgDUfu5zw+DMXJaZvZnZO3/+/KrLlCRpRNOmBf/1947tqHCHigM+ImZFxJyhZeB3gIeBW4D31V72PqCaP+ArSdIUVfUU/RHAzbWzC7uBazPztoj4MXBjRPwx8CxwfsV1SJI0pVQa8Jn5NPCGEdpfAt5WZd+SJE1l3slOkqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvCSprbbu3NPuEopkwEuS2uqQmdPbXUKRDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEqC/iIODoivhcRj0bEIxHx0Vr7pyNiTUQ8UHucU1UNkiRNVd0VfnYf8GeZ+ZOImAPcFxF31NZ9KTP/psK+JUma0ioL+MxcC6ytLb8cEY8BC6vqT5Ik/VJLjsFHxDHAG4Ef1Zo+HBEPRsTVEXFoK2qQJGkqqTzgI2I2cBPwsczcCnwFOB5YwuAI/4ujvG9pRKyMiJUbNmyoukxJkopSacBHxHQGw/3rmflvAJm5LjP7M3MA+Cpw2kjvzcxlmdmbmb3z58+vskxJkopT5Vn0AfwT8FhmXlXXvqDuZe8GHq6qBkmSpqoqz6J/E/Be4KGIeKDWdjlwYUQsARJ4BvhghTVIkjQlVXkW/Q+BGGHVrVX1KUmSBnknO0mSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvDreS2ueb3cJkjTpGPDqWC+uepIb/9cnWfP4o+0uRZImne52FyAdqF+se5EfXncNT6z4IbPmHcpJZ7613SVJ0qRjwKuj3PV/rub+79xCf18fAKec/S66p09vc1WSNPk4Ra+Ocnzv6cw4eBYAMw46mDe845w2VyRJk5MBr45y1Akn854rr+K1i47hDe84m56DD253SZI0KTlFr44z9/AjuPAzX6B/z552lyJJk5YBr440Y+ZBMPOgdpchSZOWU/SSJBXIgJckqUAGvCRJBfIYfMFWbd/Jlj39HH9wD/Omu6slaSrxX/2CHTOzh7XT9vD4KzvZ0T9Az7RpzJwW9HRNo2daMHPaNA6f0c2MaU7kSFJpDPiCdU8Ljp45g6Nnzhj1NVv29LFzIOmZFvQY9JJUDAN+ipvr1L0kFckhmyRJBTLgJUkqUNsCPiLOiognImJVRFzWrjokSSpRWwI+IrqAvwfOBk4CLoyIk9pRiyRJJWrXCP40YFVmPp2Zu4HrgXPbVIskScVpV8AvBJ6ve/5Cre1VEbE0IlZGxMoNGza0tDhJkjrdpD3JLjOXZWZvZvbOnz+/3eVIktRR2hXwa4Cj654fVWuTJElN0K6A/zGwOCKOjYgZwAXALW2qRZKk4rTlNmaZ2RcRHwb+A+gCrs7MR9pRiyRJJWrbfUoz81bg1nb1L0lSySbtSXaSJGniDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBWokoCPiC9ExOMR8WBE3BwR82rtx0TEjoh4oPb4xyr6lyRpqqtqBH8H8OuZ+RvAk8An69atzswltcfFFfUvSdKUVknAZ+btmdlXe7oCOKqKfiRJ0shacQz+A8B36p4fGxH3R8RdEXFGC/qXJGnK6Z7oGyPiTuDIEVZdkZnfqr3mCqAP+Hpt3VpgUWa+FBGnAt+MiJMzc+sIn78UWAqwaNGiiZYpSdKUNOGAz8y3j7U+Iv4I+H3gbZmZtffsAnbVlu+LiNXArwErR/j8ZcAygN7e3pxonZIkTUVVnUV/FvDnwLsyc3td+/yI6KotHwcsBp6uogZJkqayCY/g9+PvgB7gjogAWFE7Y/5M4K8iYg8wAFycmZsqqkGSpCmrkoDPzNeN0n4TcFMVfUqSpF/yTnaSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQB0R8AM7drS7BEmSOkpHBHzfxo3tLkGSpI7SEQE/sHUru59/vt1lSJLUMSoL+Ij4dESsiYgHao9z6tZ9MiJWRcQTEfG74/m8TV+7pqpSJUkqTtUj+C9l5pLa41aAiDgJuAA4GTgL+IeI6BrrQ2YsWsTW73yHvs2bKy5XkqQytGOK/lzg+szclZk/A1YBp431hmlz5nD0smVsW768JQVKktTpqg74D0fEgxFxdUQcWmtbCNQfUH+h1jamg379ZA75vd+rokZJkorTUMBHxJ0R8fAIj3OBrwDHA0uAtcAXD/Czl0bEyohYuWHDhsFiDzqokXIlSZoyuht5c2a+fTyvi4ivAt+uPV0DHF23+qha2/DPXgYsA+jt7c1G6pQkaaqp8iz6BXVP3w08XFu+BbggInoi4lhgMXBvVXVIkjQVNTSC34/PR8QSIIFngA8CZOYjEXEj8CjQB1yamf0V1iFJ0pRTWcBn5nvHWHclcGVVfUuSNNV1xJ3sJEnSgTHgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8GvLTDT9tdwmSpBEY8GrIV376FZY/t7zdZUiShjHg1ZAZ02Zw2d2XOZKXpEnGgFdDZnbPZGf/Tj6y/CM8t/W5dpcjSaox4NWQmV0zAdi8azMfuvNDbNq5qc0VSZLAgFeDZnbPfHX5uZef4yPLP8LOvp1trEiSBAa8GlQf8AAPbnyQv7j7LxjIgTZVJEkCA14NOqjroH3avvv8d/nsvZ9tQzWSpCEGvBoyfAQ/5LrHr+NrD3+ttcVIkl5lwKshowU8wFX3XcVtP7uthdVIkoYY8GrI0Fn0I0mSK354BStfXNnCiiRJYMCrQQd173sMvt7ugd189Hsf5elfPN2iiiRJYMCrQWNN0Q/Zunsrlyy/hI07NragIkkSGPBq0HgCHmDNtjVcuvxStu/ZXnFFkiQw4NWgsY7BD/foS4/yibs+Qf9Af4UVSZLAgFeDxjuCH/KDNT/gMys+U1E1kqQhBrwaciAj+CE3PXUTyx5cVkE1kqQhBrwacqAj+CFfvv/L/Pvqf29yNZKkIQa8GrK/y+TG8ql7PsWKtSuaWI0kaYgBr4ZMdAQP0DfQx8e/93Ge3PxkEyuSJIEBrwb1dPUwLSb+Ndq2ZxuX3HkJL77yYhOrkiQZ8GpYT1dPQ+9ft30dlyy/hG27tzWpIkmSAa+GNXIcfshTm5/i49//OHsG9jShIkmSAa+GTeRSuZGsWLuCT9/z6aZ8liRNdQa8GtbIiXbD3bL6Fr58/5eb9nmSNFUZ8GpYMwMeYNmDy/jXJ/+1qZ8pSVONAa+GNWuKvt6VK67kBy/8oOmfK0lThQGvhjV7BA/Ql3184q5P8OhLjzb9syVpKjDg1bAqRvAA2/u2c+nyS1mzbU0lny9JJTPg1bAqRvBDNu7YyIfu/BBbdm2prA9JKlElAR8RN0TEA7XHMxHxQK39mIjYUbfuH6voX63VjOvgx/KzLT/jT777J+zu311pP5JUkkoCPjP/R2YuycwlwE3Av9WtXj20LjMvrqJ/tVaVI/ghP1n/E6744RVkZuV9SVIJKp2ij4gAzgeuq7IftVdVx+CHu+2Z27jqvqta0pckdbqqj8GfAazLzKfq2o6NiPsj4q6IOGO0N0bE0ohYGRErN2zYUHGZakQrRvBDvvbI17j2sWtb1p8kdaoJB3xE3BkRD4/wOLfuZRey9+h9LbAoM98I/ClwbUQcMtLnZ+ayzOzNzN758+dPtEy1QNXH4If73I8/x/Lnlre0T0nqNN0TfWNmvn2s9RHRDZwHnFr3nl3ArtryfRGxGvg1YOVE61D7tWqKfshADvCp//wUpx15GnNmzGlp35LUKaqcon878HhmvjDUEBHzI6KrtnwcsBh4usIa1AKtnKIHWDh7IV/9na8a7pI0hgmP4MfhAvY9ue5M4K8iYg8wAFycmZsqrEEt0MqAf/PCN/PZMz7L3J65LetTkjpRZQGfmX80QttNDF42p4K0Yop+Wkzj4t+4mA++4YNMC+/PJEn7U+UIXlNE1SP4uT1z+es3/zVnHDXqRReSpGEMeDWsyoA/8TUn8qXf/hILZy+srA9JKpEBr4ZVNUV/3uLzuPz0y+np6qnk8yWpZAa8Gtbs6+B7unq4/PTLOW/xeU39XEmaSgx4NayZU/QLZy/kqrdcxUmHndS0z5SkqciAV8OaFfBeAidJzWPAq2EHdTU2Re8lcJLUfAa8Gja9azrd0U1f9h3we70ETpKqYcCrKXq6e+jbc2AB7yVwklQd50PVFAd6qdx5i8/jX875F8NdkiriCF5NMd4T7bwETpJaw4BXU4xnBL9w9kK++JYvcvJhJ7egIkma2gx4NcX+RvBvWvgmPnfG57wETpJaxIBXU4wW8EFw8Rsu5uI3XOwlcJLUQga8mmKkgPcSOElqHwNeTTH8ZjdeAidJ7WXAqynqR/D+FThJaj8DXk0xs3uml8BJ0iRiwKspjp97PNecfY2XwEnSJGHAqykuOumidpcgSarjdUuSJBXIgJckqUAGfAP6Nu1sdwmSJI3IgJ+ggd39bPinh+jftrvdpUiStA8DfoL6f7GL/pd28tI/P0ru6W93OZIk7cWAn6D+LbsA2P3cy2y68UlyINtckSRJv2TAT1D/L3a9urzjoY3sfGpzG6uRJGlvBvwE9dUFfNfcHmYeP699xUiSNIwBP0FDU/QAc95yFNHtf0pJ0uRhKk3QUMBPmzOdWb1HtLkaSZL2ZsBP0NAx+DlnHEVM72pzNZIk7c2An4DMpP8Xu5h2cDezTl/Q7nIkSdqHAT8BuaOP3DPA7DcvZFqPo3dJ0uRjwE9A3y92ETO7mP1bv9LuUiRJGpEBPwH9W3Yx+7d+hWkz/Wu7kqTJyYCfgIEdfcx+08J2lyFJ0qgM+AmYufhQumZNb3cZkiSNyoCfgK45M9pdgiRJYzLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlADQV8RPz3iHgkIgYionfYuk9GxKqIeCIifreu/axa26qIuKyR/iVJ0sgaHcE/DJwH3F3fGBEnARcAJwNnAf8QEV0R0QX8PXA2cBJwYe21kiSpiRr6aymZ+RhARAxfdS5wfWbuAn4WEauA02rrVmXm07X3XV977aON1CFJkvZW1TH4hcDzdc9fqLWN1i5JkppovyP4iLgTOHKEVVdk5reaX9Kr/S4Fltae7oqIh6vqaxJ4LbCx3UVUyO3rbCVvX8nbBm5fp3t9I2/eb8Bn5tsn8LlrgKPrnh9Va2OM9uH9LgOWAUTEyszsHel1JXD7Opvb17lK3jZw+zpdRKxs5P1VTdHfAlwQET0RcSywGLgX+DGwOCKOjYgZDJ6Id0tFNUiSNGU1dJJdRLwb+DIwH/i/EfFAZv5uZj4SETcyePJcH3BpZvbX3vNh4D+ALuDqzHykoS2QJEn7aPQs+puBm0dZdyVw5QjttwK3HmBXyw68uo7i9nU2t69zlbxt4PZ1uoa2LzKzWYVIkqRJwlvVSpJUoEkX8FPp9rcRcUNEPFB7PBMRD9Taj4mIHXXr/rHNpU5IRHw6ItbUbcc5detG3JedIiK+EBGPR8SDEXFzRMyrtRex76Bzf69GExFHR8T3IuLR2r8xH621j/o97TS1f0ceqm3HylrbayLijoh4qvbz0HbXeaAi4vV1++eBiNgaER/r9H0XEVdHxPr6y8BH218x6G9rv48PRsQp++0gMyfVAziRwWv/vg/01rWfBPwU6AGOBVYzeKJeV235OGBG7TUntXs7JrDdXwQ+VVs+Bni43TU1YZs+DXxihPYR92W76z3AbfsdoLu2/Dngc4XtuyJ+r4Zt0wLglNryHODJ2ndxxO9pJz6AZ4DXDmv7PHBZbfmyoe9qpz5q380XgV/t9H0HnAmcUv9vxmj7CzgH+A4QwG8CP9rf50+6EXxmPpaZT4yw6tXb32bmz4Ch29+eRu32t5m5Gxi6/W3HiMF7/Z4PXNfuWlpktH3ZMTLz9szsqz1dweA9HUrS8b9Xw2Xm2sz8SW35ZeAxpsadNM8FrqktXwP8QftKaYq3Aasz89l2F9KozLwb2DSsebT9dS7wzzloBTAvIhaM9fmTLuDHUPLtb88A1mXmU3Vtx0bE/RFxV0Sc0a7CmuDDtemkq+umBkvYZ/U+wOD/WQ8pYd+Vto/2EhHHAG8EflRrGul72okSuD0i7ovBu4ECHJGZa2vLLwJHtKe0prmAvQdDpey7IaPtrwP+nWxLwEfEnRHx8AiPjh4hjGSc23ohe39h1wKLMvONwJ8C10bEIa2se7z2s31fAY4HljC4TV9sZ60Hajz7LiKuYPBeD1+vNXXMvpuqImI2cBPwsczcSod/T4d5c2aewuBf7Lw0Is6sX5mDc70de+lUDN4g7V3AN2pNJe27fTS6vxq6Dn6isk23v22H/W1rRHQz+Cd3T617zy5gV235vohYDfwa0NBtC6sw3n0ZEV8Fvl17Ota+nDTGse/+CPh94G21X8SO2nf70RH76EBFxHQGw/3rmflvAJm5rm59/fe042TmmtrP9RFxM4OHWtZFxILMXFub0l3f1iIbczbwk6F9VtK+qzPa/jrg38lOmqIv9fa3bwcez8wXhhoiYn5EdNWWj2NwW59uU30TNuz40LuBoTNFR9uXHSMizgL+HHhXZm6vay9i39H5v1f7qJ3r8k/AY5l5VV37aN/TjhIRsyJiztAygyeCPszgfntf7WXvAyr7I2EtsNdsZyn7bpjR9tctwB/Wzqb/TWBL3VT+iNoygh9LTL3b3w4/ngSDZ1b+VUTsAQaAizNz+IkYneDzEbGEwSmmZ4APAoy1LzvI3zF4FcAdg7nBisy8mEL2XWb2dfjv1UjeBLwXeChql6QClwMXjvQ97UBHADfXvo/dwLWZeVtE/Bi4MSL+GHiWwRN6O07tf1rewd77Z8R/YzpFRFwHvAV4bUS8APwl8FlG3l+3Mngm/SpgO/D+/X5+bWZRkiQVpJOm6CVJ0jgZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUoP8PghewPyQ75jwAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmDklEQVR4nO3dfXBcd33v8c9XK8mSJTm2JcW2/ICDEzs2kDixGihJHEKM42SSmKQFkjuXh5Y7JncIU9oynaTcWx566W1pgXt7Kek1bdowA3noDYEMBEpgCgRoaBwS/Bg7tuNYNrItP9uSraf93j907KyllVba3bNn96f3a2bHZ3/n7DnfM0fSx7/fOXuOubsAAEBYqpIuAAAAFB8BDwBAgAh4AAACRMADABAgAh4AgAAR8AAABKgoAW9mD5nZITPbnNE208yeMbNXon9nRO1mZn9rZjvNbKOZXV2MGgAAwOuK1YP/Z0lrhrXdL+lH7n6ZpB9F7yXpFkmXRa91kh4sUg0AACBSlIB3959KOjqsea2kh6PphyW9O6P9az7kOUnTzWxOMeoAAABD4jwHP8vdO6PpA5JmRdNzJXVkLLcvagMAAEVSXYqNuLub2YTuiWtm6zQ0hK+GhoYVl19+eSy1AQBQjl544YXD7t6a7+fjDPiDZjbH3TujIfhDUft+SfMzlpsXtV3A3ddLWi9J7e3tvmHDhhhLBQCgvJjZa4V8Ps4h+qckfTCa/qCkb2e0fyC6mv5tkk5kDOUDAIAiKEoP3swekfQOSS1mtk/SpyT9paTHzezDkl6T9N5o8acl3Sppp6QeSb9XjBoAAMDrihLw7n7PKLNuyrKsS/poMbYLAACy4052AAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAxjVy0df1sHug0mXASAPBDyAUX1r57e0+onVuveH9+r7r35fvYO9SZcEYJyqky4AQPnq6ulS2tP6+f6f6+f7f65ptdP0gWUf0Eeu/EjSpQHIgR48gFEdPnP4gvcn+06qu787oWoATAQBD2BUXWe6RrS96w3vSqASABNFwAPIyt1H9OBnN8zWm1venFBFACaCgAeQVXd/t84MnLmgbdWCVTKzhCoCMBEEPICshvfeJYbngUpCwAPIavj595b6Fi2/eHkyxQCYMAIeQFbDe/A3LbhJVcafDKBS8NsKIKuungt78AzPA5WFgAeQVWYPfsaUGVoxa0WC1QCYKAIeQFaZ5+DfueCdqq7ixpdAJSHgAWSVGfAMzwOVh4AHkNXhnqEh+qbaJl0z+5qEqwEwUQQ8gKzO9eBvnH+jalI1CVcDYKIIeAAj9A726mTfSUkMzwOVioAHMMK5K+inVk/Vb7f9dsLVAMgHAQ9ghHPfgb9h/g2akpqScDUA8kHAj1NPT482bNigf/qnf1J3N8/DRtjO9eAZngcqF19sHUNfX5927NihjRs3aufOnUqn05Kkrq4uNTQ0JFwdEJ+uM12qS9Xp2rZrky4FQJ4I+GEGBwe1e/dubdq0Sdu2bVN/f/+IZQ4fPqyFCxeWvjigRLp6unT9vOs1tWZq0qUAyBMBL8nd1dHRoU2bNmnLli3q6ekZc/nDh0c+RhMIyeEzh7VqwaqkywBQgEkd8IcOHdLGjRu1efNmHT9+fNyf6+rqyr0QUMFO9p3Uynkrky4DQAEmXcAfP35cmzdv1qZNm3Tw4MG81kEPHqFbPGOxGmsbky4DQAEmVcD39/fr4Ycf1rFjxwpaz4kTJ9TX16fa2toiVQaUl+Wty5MuAUCBJtXX5GpqanTnnXfKzApeF714hMrddUXrFUmXAaBAkyrgJWnBggW67rrrCl4PAY9QmRnD80AAJl3AS9I73vEOzZkzp6B1cKEdAKCcTcqAT6VSuuuuu1Rdnf8lCPTgAQDlbFIGvCS1trZq9erVeX+egAcAlLNJG/CS9Fu/9Vu69NJL8/rskSNHNDg4WOSKAAAojlgD3syWmNlLGa+TZvZxM/u0me3PaL81zjrGqE9r167V1KkTvx1nOp0u+Ot2AADEJdaAd/ft7r7c3ZdLWiGpR9KT0ewvnZvn7k/HWcdYmpqadPvtt+f1WYbpAQDlqpRD9DdJ2uXur5Vwm+OydOlSXXXVVRP+HFfSAwDKVSkD/m5Jj2S8v8/MNprZQ2Y2Y/jCZrbOzDaY2YZSBOmaNWs0Y8aIMsZEDx4AUK5KEvBmVivpDkn/EjU9KGmRpOWSOiV9Yfhn3H29u7e7e3tra2vsNU6ZMkV33XXXhO5yR8ADAMpVqXrwt0j6lbsflCR3P+jug+6elvRVSdeUqI4xzZ8/XytXjv8JWl1dXXL3GCsCACA/pQr4e5QxPG9mmbeRu1PS5hLVkdPKlSvV1tY2rmX7+vp06tSpmCsCAGDiYg94M2uQ9C5J38xo/ryZbTKzjZJulPSHcdcxXufucldTUzOu5RmmBwCUo9gD3t273b3Z3U9ktL3f3d/i7le4+x3u3hl3HRPR0tKim2++eVzLciU9AKAcTeo72Y1lxYoVWrx4cc7l6MEDAMoRAT8KM9Mdd9yR8y53BDwAoBwR8GNobGzU2rVrx1yGIXoAQDki4HNYsmSJVqxYMer806dP6+zZsyWsCACA3Aj4cbj55ps1c+bMUeczTA8AKDcE/DjU1taOeZc7hukBAOWGgB+nefPm6YYbbsg6jx48AKDcEPATcP3112vevHkj2gl4AEC5IeAnIJVK6c477xxxlzuG6AEA5YaAn6Dm5matWbPmgrZjx45pYGAgoYoAABiJgM/D1VdfrSVLlpx/7+46evRoghUBAHAhAj4P5+5y19DQcL6NYXoAQDkh4PPU0NBwwV3uuNAOAFBOCPgCLF68WO3t7ZIIeABAeSHgC7R69Wo1NzczRA8AKCsEfIHO3eXu2LFjSqfTSZcDAIAkAr4o5s6dq7e//e06ceJE0qUAACCJgC+a6667TtXV1UmXAQCAJAK+aFKplJqampIuAwAASQQ8AABBIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAhQddwbMLM9kk5JGpQ04O7tZjZT0mOSFkraI+m97n4s7loAAJgsStWDv9Hdl7t7e/T+fkk/cvfLJP0oeg8AAIokqSH6tZIejqYflvTuhOoAACBIpQh4l/QDM3vBzNZFbbPcvTOaPiBpVgnqAABg0oj9HLyk69x9v5ldLOkZM3s5c6a7u5n58A9F/xlYJ0kLFiwoQZkAAIQj9h68u++P/j0k6UlJ10g6aGZzJCn691CWz61393Z3b29tbY27TAAAghJrwJtZg5k1nZuWtFrSZklPSfpgtNgHJX07zjoAAJhs4h6inyXpSTM7t61vuPv3zex5SY+b2YclvSbpvTHXAQDApBJrwLv7bklXZmk/IummOLcNAMBkxp3sAAAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAxRbwZjbfzP7NzLaa2RYz+4Oo/dNmtt/MXopet8ZVAwAAk1V1jOsekPTH7v4rM2uS9IKZPRPN+5K7/02M2wYAYFKLLeDdvVNSZzR9ysy2SZob1/YAAMDrSnIO3swWSrpK0i+jpvvMbKOZPWRmM0pRAwAAk0nsAW9mjZKekPRxdz8p6UFJiyQt11AP/wujfG6dmW0wsw1dXV1xlwkAQFBiDXgzq9FQuH/d3b8pSe5+0N0H3T0t6auSrsn2WXdf7+7t7t7e2toaZ5kAAAQnzqvoTdI/Strm7l/MaJ+TsdidkjbHVQMAAJNVnFfRXyvp/ZI2mdlLUdufSrrHzJZLckl7JH0kxhoAAJiU4ryK/meSLMusp+PaJgAAGMKd7AAACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAPAMOm069+f3Kn0YDrpUoC8EfAAMMzJw2f0q3/dq2996UV1H+9NuhwgLwQ8AAxz7ECPJKlz5wk99hfPa//2YwlXBExcddIFAEC5aW5r0I3/+XJ1n+hVz4k+bfrxPrm75l0+M+nSgHEj4AFgmGkt9Vp2XX3SZQAFYYgeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIASC3gzW2Nm281sp5ndn1QdAACEKJGAN7OUpL+TdIukZZLuMbNlSdQCAECIkurBXyNpp7vvdvc+SY9KWptQLQAABCepgJ8rqSPj/b6o7TwzW2dmG8xsQ1dXV0mLAwCg0pXtRXbuvt7d2929vbW1NelyAACoKEkF/H5J8zPez4vaAABAESQV8M9LuszMLjGzWkl3S3oqoVoAAAhOdRIbdfcBM7tP0r9KSkl6yN23JFELAAAhSiTgJcndn5b0dFLbBwAgZGV7kR0AAMgfAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgMd56d4BpXv6ky4DAFAEBDzOq5pSrdO/7Ey6DABAERDwuIClqgh5AAgAAY8LTL2yVSe++6r6D/UkXQoAoAAEPC6QumiKauc16ug3XpYPpJMuBwCQJwIeI0xdfrH6D3Srr+NU0qUAAPJEwGOE+re0SClT72snky4FAJAnAh4jVNVXq27JTPUR8ABQsQh4ZDX1qlb17WWIHgAqFQGPrOovb5YPpDVw+EzSpQAA8kDAIyurqVL9m1s4Dw8AFYqAx6imLm9V314CHgAqEQGPUU1ZNF0DR88mXQYAIA8EPEZlVaaaWQ1Knx1IuhQAwAQR8BjT1CtbueENAFQgAh5jqp3fpHQ3j5AFgEpDwCOn1Iy6pEsAAEwQAY+cqpvr5O5JlwEAmIDqpAtA+Us11iZdAgBggujBAwCKhtG+8kEPHgBQNIODp9XT86pSqUY1NLwx6XImNXrwAICiqa5u0rRpVyidPqtXX/2yOjuf0OAgz7RIAj14AEDRNTUtU1PTMh079pw2bvqvqq+fr7a292la05uTLm3SIOABALGZMeNtmjHjberq+oG2bv2EqqxWbW3v0+zZd6i6uinp8oJGwAMAYtfaulotLTeps/NJvfrq/9YrO/+nZl18i9ra3qfp09uTLi9IBDwAoCTMUmpr+13Nnn279u37uva89hV1Hvimpk69VG1t79Gc2XeptnZm0mUGwyrhKw3t7e2+YcOGpMsAABTRwMApvbb3H9TR8ZAGB3tkVqvW1lVqa3ufZs64VmaWdImJMrMX3D3v4Q0CHgCQqL6+w3p1z5e1f/9jcu+TJNXVzVPbnN/VnLb3qG7K7IQrTAYBDwAIwpkzHdq9+3/pwMGnJKUlDQ3rz5y5UnPb3qfm5htVVTV5ziwT8ACAoJw6/bJ27fobHTnybxe019ZerDlzfkdz296r+voFCVVXOoUGPDe6AQCUlabGy7X8yn/Qiqsf00UXrTjf3td3SK+99qCe3/C7Ot39SoIVVgYCHgBQlqZPb1f7isd1xRXr1dCwWJLU0nKT3vrWp9XYcFnC1ZW/yXMyAwBQkVpbblJL8406efIlXXTR1UmXUzHowQMAyp5ZFeE+QQQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQoFgC3sz+2sxeNrONZvakmU2P2hea2Rkzeyl6/X0c2wcAYLKLqwf/jKQ3u/sVknZIeiBj3i53Xx697o1p+wAATGqxBLy7/8DdB6K3z0maF8d2AABAdqU4B//7kr6X8f4SM3vRzH5iZteXYPsAAEw6ed+q1sx+KCnbQ3o/6e7fjpb5pKQBSV+P5nVKWuDuR8xshaRvmdmb3P1klvWvk7ROkhYsCP+pQQAAFFPeAe/uq8aab2YfknSbpJs8eiatu/dK6o2mXzCzXZIWSxrxLFh3Xy9pvTT0uNh86wQAYDKK6yr6NZL+RNId7t6T0d5qZqlo+o2SLpO0O44aAACYzOJ6mtyXJU2R9IyZSdJz0RXzKyV91sz6JaUl3evuR2OqAQCASSuWgHf3S0dpf0LSE3FsEwAAvI472QEAECACHgCAABHwAEqu7+yZpEsAgkfAAyi5EwcPJF0CEDwCHkDJnTzcpcGB/qTLAIJGwAMoufqmJnW+sj3pMoCgEfAASq6ppVUdWzYlXQYQNAIeQMk1Tp+p/S9vSboMIGgEPICSs6oqndjXoeM//knSpQDBIuABJKK2f0Db/sdnNHj8eNKlAEEi4AEkovb4CR3qP6vOz3xG0QMnARQRAQ+g5Po7O1V75JiONNbr1Pe+r5Pf+W7SJQHBIeABlNzpZ59Vff+ATkyt06CZDnz2s+rv7Ey6LCAoBDyAkut+9lnV9Q0oXWU62lCn9KlT+s0DfypPp5MuDQgGAQ+gpLy/X92/+HfV9w9Iko421kuSep57Tke/9rUkSwOCQsADKKmeF19Uurv7fMAfiQJekrq++CWd3bEjqdKAoBDwAEqq+9lnJUk1g2mlBtM6MXWKBqpMkuR9fTrw3/+Mq+qBIiDgAZTU6Z8+e366vn9AbqajDUO9+Jp58zT7U38mM0uqPCAYBDyAojvR069f7j6i72z8zQXt/QcPqnf76w+Zqes7dx6+To033KBLnvh/qlu2rKS1AqGqTroAAJWrp29AOw6e1o4Dp7T94CntP3ZGZ/oHVVdTpTc0N+i2K+ZcsHz3z352wftz5+FPLFqoeQ9+RVZFnwMoFgIeQE59A2nt6jqtHQdP6Wh3n872p3W2f1CpKtP8mfVadHGj3rn0YrU0ThlzPZnD85I0NTX0J+ho9yn1nT2jKVMbYtsHYLIh4AGcl0679h8/o9O9AzrbP6gz/YPq7U8r7a626fVatXSWGqbk92fDBwbU/YtfnH9fd8UVWvCf3qPtj/yzPJ3Wvm2btWjFW4u1K8CkR8ADk1w67eodGOqR9w+mNeeiOlWnij9Ufuall5Q+dUqSNP2euzXrgQe0b8e28/M7tmwk4IEiIuCBSa6qylRfm1J9bSrW7Zz+6bOyujrN+cynddHatZKkppbW8/P3btkU6/aByYaAB1ASfR17tfCxR1W3ZMn5tqbmVslMclfXa6/qzOlTqm9sSrBKIBxcsgogdu6uOX/+5xeEuyRV19Ro6rSLzi2kfVvpxQPFQsADiJ2ZKdXYmHVeU/Prw/QdDNMDRUPAA0jUtMzz8Jt/nWAlQFgIeACJampuOT99ZN9e9Zw4nlwxQEAIeACJyrySXpI6OA8PFAUBDyBRmefgpaHvwwMoHAEPIFHThvXg+T48UBwEPIBEDR+iP/abfTp97GhC1QDhIOABJKph+gylqi+85xbD9EDhCHgAiTIzNc5svqCNgAcKR8ADSNzIC+04Dw8UioAHkLjh5+GPH+zUycNdCVUDhIGAB5C44VfSSwzTA4Ui4AEkLvNuducwTA8UhoAHkLjhQ/SS1LGVHjxQCAIeQOKGX2QnSSe7DunEoQMJVAOEgYAHkLhs5+AlaS/n4YG8EfAAEjdlaoNq66eOaOc8PJA/Ah5AWch+oR09eCBfBDyAspBtmP700SM61rk/gWqAyhdbwJvZp81sv5m9FL1uzZj3gJntNLPtZnZzXDUAqBzZLrSTGKYH8hV3D/5L7r48ej0tSWa2TNLdkt4kaY2kr5hZKuY6AJS5bF+Vk7jQDshXEkP0ayU96u697v6qpJ2SrkmgDgBlZLQr6fdtpQcP5CPugL/PzDaa2UNmNiNqmyupI2OZfVEbgEks20V2ktR9/JiO7OvIOg/A6AoKeDP7oZltzvJaK+lBSYskLZfUKekLE1z3OjPbYGYburp46AQQuqaWi0edt3fLr0tYCRCG6kI+7O6rxrOcmX1V0neit/slzc+YPS9qG77u9ZLWS1J7e7sXUieA8tfU3CyZST7y171jy0ZddfNtCVQFVK44r6Kfk/H2Tkmbo+mnJN1tZlPM7BJJl0n6j7jqAFAZUtU1arhoetZ5HVs3y7MEP4DRFdSDz+HzZrZckkvaI+kjkuTuW8zscUlbJQ1I+qi7D8ZYB4AK0dTSqu7jx0a0nz11Uof37lHrGy5JoCqgMsUW8O7+/jHmfU7S5+LaNoDK1NTcogM7d2Sd17FlIwEPTAB3sgNQNkb7qpwk7eWGN8CEEPAAysZod7OTpH3bNsnT6RJWA1Q2Ah5A2RjtbnaS1NvdrUN7dpewGqCyEfAAysa0MXrwEk+XAyaCgAdQNqa1jn6zG0nq4La1wLgR8ADKxtSLpmv5GDe02bdti9JpvlULjAcBD6CsvOMDH9acS5dkndd3pkcHd+8scUVAZSLgAZSVVHWNbvvD+1XfNC3rfJ4PD4wPAQ+g7ExradWtH/uEzEb+ieJCO2B8CHgAZWnhlVfrbb9z94j2/S9v1eDAQAIVAZWFgAdQtn77d+7WwiuvvqCtv/esDux6JaGKgMpBwAMoW1ZVpVs/9okRN8BhmB7IjYAHUNbqm6bp9j+8X6nq15+NRcADuRHwAMrenEuX6IYP/Jfz73+z42UNDvQnWBFQ/gh4ABXhqptv0+XX3iBJGujrVeeO7QlXBJQ3Ah5AxVi97mNqnrdAkrSXYXpgTAQ8gIpRU1en2//oAdXU1atjKwEPjIWAB1BRmufO1+qPfEydr2xXf19v0uUAZYuAB1BxLn/7Sl1x0xr9Zvu2pEsByhYBD6Ai3fD+D2ugry/pMoCyRcADqEip6motWnFN0mUAZYuABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQNVxrNTMHpO0JHo7XdJxd19uZgslbZO0PZr3nLvfG0cNAABMZrEEvLu/79y0mX1B0omM2bvcfXkc28Ukkh6UqlJJVwEAZSvWIXozM0nvlfRInNvBJNFzVHr+H6V/eJe05cmkqwGAshZLDz7D9ZIOuvsrGW2XmNmLkk5K+m/u/my2D5rZOknrJGnBggUxl4myNdAnvfID6dePDP072DfU/vb7kq0LAMpc3gFvZj+UNDvLrE+6+7ej6Xt0Ye+9U9ICdz9iZiskfcvM3uTuJ4evxN3XS1ovSe3t7Z5vnahA7tK+DdLGR6XNT0hnjo1cJjWl9HUBQAXJO+DdfdVY882sWtJdklZkfKZXUm80/YKZ7ZK0WNKGfOtAQI7tkTY+Lv36UenorrGXra4tSUkAUKniHKJfJelld993rsHMWiUddfdBM3ujpMsk7Y6xBpS7M8elrd+Sfv2YtPcX4/9cioAHgLHEGfB3a+TFdSslfdbM+iWlJd3r7kdjrAHlaLBf2vmjofPq278nDfZOfB0M0QPAmGILeHf/UJa2JyQ9Edc2Ucbcpd+8ODT8vvkJqedwYetjiB4AxhT3VfSY7I53SJui8+qHdxRvvfTgAWBMBDyK7+xJadtTQ6G+52eSYvgSBD14ABgTAY/i6toh/d+V0sCZeLdDDx4AxsTDZlBczYukKU3xb4er6AFgTAQ8iqsqJS29Pf7tMEQPAGMi4FF8y9bGvw2G6AFgTAQ8iu8N10r1M+PdBkP0ADAmAh7Fl6qWlt4W3/qraqQqfnQBYCz8lUQ84hymr2Z4HgByIeARj0tukOqmx7PuVE086wWAgBDwiEeqRlpya0zrpgcPALkQ8IhPXMP0fEUOAHIi4BGfRTdKtTHc9IYePADkRMAjPtVTpCW3xLNeAMCYCHjEa9kdxV8nF9kBQE4EPOJ16SqppqG462SIHgByIuARr5p6afHq4q6Ti+wAICcCHvFbWuRhenrwAJATAY/4XbZaqq4r3vq4yA4AciLgEb8pjUPn4ouFB80AQE4EPEpj2buLty4CHgByIuBRGotvLl4wc5EdAOREwKM06qZJi95ZnHVxkR0A5ETAo3SKdW96LrIDgJwIeJTOklukqurC18M5eADIiYBH6dTPGHpOfKHowQNATgQ8SqsYw/Tcix4AciLgUVqX3yZZqrB1cJEdAOREwKO0GpqlhdcVtg6G6AEgJwIepVfoI2S5yA4AciLgUXqX3y7J8v88PXgAyImAR+k1zZLe8Pb8P08PHgByIuCRjEKupifgASAnAh7JWHp7/p9liB4AciLgkYxpbdK8a/L7LD14AMiJgEdy8h2mpwcPADkR8EhOvl+XowcPADkR8EjO9AVS21UT/xw9eADIiYBHsvIZpqcHDwA5EfBI1tI8hukJeADIiYBHspoXSbPfMrHPMEQPADkR8Eje0gkO09ODB4CcCHgkb6Ln4enBA0BOBDyS17pYal06/uV5HjwA5ETAozyMuxdvUlUq1lIAIAQFBbyZvcfMtphZ2szah817wMx2mtl2M7s5o31N1LbTzO4vZPsIyHhvelM9RbICHjULAJNEoT34zZLukvTTzEYzWybpbklvkrRG0lfMLGVmKUl/J+kWScsk3RMti8nu4mVS86W5l2N4HgDGpaCAd/dt7r49y6y1kh519153f1XSTknXRK+d7r7b3fskPRotm5hPvbJf9+/Yp+92Hdfx/oEkS5nczMY3TF/NFfQAMB7VMa13rqTnMt7vi9okqWNY+1tjqmFcFtTX6pOv7Nc/7z+sKklvbqzXdTOadN2MRr11eoMaUpzvLZlla6VnvzD2MvTgAWBccga8mf1Q0uwssz7p7t8ufknnt7tO0rroba+ZbY5rW5k6JT1Tig1dqEXS4dJvtmSKuH9bpT8uu3PwHL/KFfK+SexfpVtSyIdzBry7r8pjvfslzc94Py9q0xjtw7e7XtJ6STKzDe7enm25ELB/lY39q1wh75vE/lU6M9tQyOfj+prcU5LuNrMpZnaJpMsk/Yek5yVdZmaXmFmthi7EeyqmGgAAmLQKOgdvZndK+j+SWiV918xecveb3X2LmT0uaaukAUkfdffB6DP3SfpXSSlJD7n7loL2AAAAjFBQwLv7k5KeHGXe5yR9Lkv705KenuCm1k+8uorC/lU29q9yhbxvEvtX6QraP3P3YhUCAADKBLeqBQAgQGUX8JPp9rdm9piZvRS99pjZS1H7QjM7kzHv7xMuNS9m9mkz25+xH7dmzMt6LCuFmf21mb1sZhvN7Ekzmx61B3HspMr9vRqNmc03s38zs63R35g/iNpH/TmtNNHfkU3RfmyI2maa2TNm9kr074yk65woM1uScXxeMrOTZvbxSj92ZvaQmR3K/Br4aMfLhvxt9Pu40cyuzrkBdy+rl6SlGvru348ltWe0L5P0a0lTJF0iaZeGLtRLRdNvlFQbLbMs6f3IY7+/IOnPoumFkjYnXVMR9unTkj6RpT3rsUy63gnu22pJ1dH0X0n6q8COXRC/V8P2aY6kq6PpJkk7op/FrD+nlfiStEdSy7C2z0u6P5q+/9zPaqW+op/NA5LeUOnHTtJKSVdn/s0Y7XhJulXS9ySZpLdJ+mWu9ZddD94DuP3tRJmZSXqvpEeSrqVERjuWFcPdf+Du5+5t/JyG7ukQkor/vRrO3Tvd/VfR9ClJ2/T6HTZDtlbSw9H0w5LenVwpRXGTpF3u/lrShRTK3X8q6eiw5tGO11pJX/Mhz0mabmZzxlp/2QX8GOZq5G1u547RXkmul3TQ3V/JaLvEzF40s5+Y2fVJFVYE90XDSQ9lDA2GcMwy/b6G/md9TgjHLrRjdAEzWyjpKkm/jJqy/ZxWIpf0AzN7wYbuBipJs9y9M5o+IGlWMqUVzd26sDMUyrE7Z7TjNeHfyUQC3sx+aGabs7wquoeQzTj39R5d+APbKWmBu18l6Y8kfcPMppWy7vHKsX8PSlokabmG9inHjebLy3iOnZl9UkP3evh61FQxx26yMrNGSU9I+ri7n1SF/5wOc527X62hJ3Z+1MxWZs70obHeiv3qlA3dIO0OSf8SNYV07EYo9HjF9bCZMXlCt79NQq59NbNqDT1yd0XGZ3ol9UbTL5jZLkmLJRV028I4jPdYmtlXJX0nejvWsSwb4zh2H5J0m6Sbol/Eijp2OVTEMZooM6vRULh/3d2/KUnufjBjfubPacVx9/3Rv4fM7EkNnWo5aGZz3L0zGtI9lGiRhblF0q/OHbOQjl2G0Y7XhH8nK2mIPtTb366S9LK77zvXYGatZpaKpt+ooX3dnVB9eRt2fuhOSeeuFB3tWFYMM1sj6U8k3eHuPRntQRw7Vf7v1QjRtS7/KGmbu38xo320n9OKYmYNZtZ0blpDF4Ju1tBx+2C02AclxfaQsBK4YLQzlGM3zGjH6ylJH4iupn+bpBMZQ/lZJdKDH4tNvtvfDj+fJA1dWflZM+uXlJZ0r7sPvxCjEnzezJZraIhpj6SPSNJYx7KCfFlD3wJ4Zig39Jy736tAjp27D1T471U210p6v6RNFn0lVdKfSron289pBZol6cno57Fa0jfc/ftm9rykx83sw5Je09AFvRUn+k/Lu3Th8cn6N6ZSmNkjkt4hqcXM9kn6lKS/VPbj9bSGrqTfKalH0u/lXH80sggAAAJSSUP0AABgnAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAjQ/wei1krPeXuZ5QAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAjf0lEQVR4nO3deZRU5bnv8d/TA3MzSYuIgEyimETUDjGDmhxNRK8R0aiQ3AQ9rhDPjUdzc89Sk6xrPFkr0QyaeE5yUUxENDiQKJEkqGAShyyD0sQJxIHZbqEZtRl7fO4ftcGi6Wborl27693fz1q1etf77uHZ7Or+sXe9tcvcXQAAICxFSRcAAAByj4AHACBABDwAAAEi4AEACBABDwBAgAh4AAAClJOAN7N7zWyjmS3NautvZgvN7J3oZ7+o3czsv8xshZm9Zman5aIGAADwoVydwd8naUKLtpsk/cXdR0v6S/Rcks6XNDp6TJM0PUc1AACASE4C3t2fk7S1RfNESbOi6VmSLs5qv98zFknqa2aDclEHAADIiPM9+IHuvj6a3iBpYDQ9WNK7WfNVRW0AACBHSvKxEXd3Mzuie+Ka2TRlLuGrZ8+ep5944omx1AYAQGe0ZMmSze5e3t7l4wz4GjMb5O7ro0vwG6P2aklDsuY7Lmrbj7vPkDRDkioqKryysjLGUgEA6FzMbG1Hlo/zEv08SVOj6amSHs9q/1o0mv4MSR9kXcoHAAA5kJMzeDN7SNJnJQ0wsypJ35d0m6Q5Zna1pLWSLo9mny/pAkkrJO2SdFUuagAAAB/KScC7+5Q2us5pZV6X9M1cbBcAALSOO9kBABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACFBJnCs3szGSHslqGiHpZkl9JX1d0qao/bvuPj/OWgAASJNYA97d35I0TpLMrFhStaS5kq6S9HN3/1mc2wcAIK3yeYn+HEkr3X1tHrcJAEAq5TPgJ0t6KOv5tWb2mpnda2b9Ws5sZtPMrNLMKjdt2tSyGwAAHEReAt7Muki6SNLvoqbpkkYqc/l+vaTbWy7j7jPcvcLdK8rLy/NRJgAAwcjXGfz5kv7p7jWS5O417t7k7s2S7pE0Pk91AACQCvkK+CnKujxvZoOy+iZJWpqnOgAASIVYR9FLkpn1lPR5Sd/Iav6JmY2T5JLWtOgDAAAdFHvAu/tOSUe1aPtq3NsFACDNuJMdAAABIuABAAgQAQ8AQIAI+ENYt26dnn322aTLAADgiMQ+yK5QNTU16dlnn9Xzzz8vd1dtba0uvPBCmVnSpQEAcEgEfCu2bt2qxx57TFVVVfvalixZooaGBl188cUqKuLCBwCgcyPgW3j55Zf1xBNPqL6+/oC+1157TQ0NDbr00ktVUsI/HQCg8+JUNLJ7927NmTNHjz/+eKvhvtfy5cv18MMPq6GhIY/VAQBwZAh4SatXr9b06dP1xhtvHNb8K1as0OzZs1VXVxdzZQAAtE+qA76pqUkLFizQ/fffr9ra2iNads2aNXrggQe0e/fumKoDAKD9UhvwmzZt0q9//Wu98MILcvd2raOqqkqzZs3Szp07c1wdAAAdk8qAX7x4sWbMmKH169d3eF0bNmzQzJkzj/gKAAAAcUpVwO/cuVMPPvig/vznP+d0kNzmzZs1c+ZMbdu2LWfrBACgI1IT8O+8846mT5+ut99+O5b1b9u2TTNnztTmzZtjWT8AAEci+IBvaGjQ/PnzNXv2bO3YsSPWbdXW1mrmzJmqqamJdTsAABxK0AFfU1Oje+65Ry+99FLetrlz507dd999qq6uzts2AQBoKdiA37Jli+bOnauNGzfmfdu7d+/W/fffr7Vr1+Z92wAASJK19yNi+VRRUeGVlZXtWnbPnj2qrq5WVVWVqqqqVF1drV27duW4wtaVlpbqiiuu0KhRo/KyPQBAOMxsibtXtHv50AO+NVu2bNkX9lVVVdqwYYOam5tztv5sxcXFuuyyy3TiiSfGsn4AQJgI+BxoaGjQ+vXr953lV1VV5fRz7UVFRZo0aZI++tGP5mydAICwdTTg+Uo0ZS6lDx06VEOHDt3Xtn379v0C/7333mv3Z+ebm5v12GOPqaGhQaeddlquygYAoE0EfBvKysp00kkn6aSTTpKUCemampr9Qn/Lli2HvT5317x581RfX68zzjgjrrIBAJBEwB+2oqIiDRo0SIMGDdLHP/5xSZnR8i0H8B3qy2eefPJJ1dfX66yzzspH2QCAlCLgO6B79+4aNWrUfqPkN2/evN8AvpqamgMG8P31r39VfX29zj333HyXDABICQI+xwYMGKABAwZo3LhxkjID+N577739Lu1v375df//739XQ0KAJEybIzJItGgAQHAI+ZqWlpRo2bJiGDRu2r622tnZf2L/66qv7/jMAAECuEPAJ6N27t8aOHauxY8cmXQoAIFDB3qoWAIA0C+YM3t21/p039cpTf9bO97fqzClX6phRJyRdFgAAiQgm4M1Mx55wko4ZeYLWvvay/vnkH9X/2ONU8cVLVFJamnR5AADkVTABv1dRcbGGn1qh4adWaM/OHdq0ZpUGjhilouLipEsDACBvggv4bN169tKg0WOSLgMAgLxjkB0AAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQoNi/Tc7M1kjaLqlJUqO7V5hZf0mPSDpe0hpJl7v7trhrAQAgLfJ1Bv85dx/n7hXR85sk/cXdR0v6S/QcAADkSFKX6CdKmhVNz5J0cUJ1AAAQpHwEvEtaYGZLzGxa1DbQ3ddH0xskDcxDHQAApEbs78FL+oy7V5vZ0ZIWmtmb2Z3u7mbmLReK/jMwTZKGDh2ahzIBAAhH7Gfw7l4d/dwoaa6k8ZJqzGyQJEU/N7ay3Ax3r3D3ivLy8rjLBAAgKLEGvJn1NLOyvdOSviBpqaR5kqZGs02V9HicdQAAkDZxX6IfKGmume3d1oPu/qSZLZY0x8yulrRW0uUx1wEAB+Weeacw+nsFFLxYA97dV0k6pZX2LZLOiXPbAHAkGl0qLSLcEQ7uZAcAkhr9gLG+QEEj4AGkXl1zszh5R2gIeACpt6upWV2L+HOIsPCKBpBq7s7leQSJgAeQapvqG9W/NB/3/ALyi4AHkGr17irmo3EIEAEPILV2NDapK6PrECgCHkBqbahvUHmX0qTLAGJBwANIJXdXQzOD6xAuAh5AKq3cXadh3bsmXQYQGwIeQCrtaGxWj2L+BCJcvLoBpM72xiZ1K2ZwHcJGwANInWU7dmtMj25JlwHEioAHkCp771zH18IidAQ8gFRZtmO3xvTk7B3hI+ABpEpNfSOffUcqEPAAUmN7Y5O6cec6pAQBDyA1Xnh/hz7Rp1fSZQB5QcADSAV31+6mZpVwBo+UIOBRcLy5OekSUIBe3b5bHynrnnQZQN4Q8Cg466ZeqbpVq5MuAwXmlLLuGsVn35EiBDwKzu7XX9fqSy7R1lmz5M6XheDw8Ll3pA0Bj8JTVCTfs0c1t96mdVOvVH1VddIVAUCnQ8Cj4GSfh+166SWtvugibXtkTmL1AEBnRMCj8LS41Nq8a5c2fP/7Wvf1aWqo2ZhQUQDQuRDwKDxFrb9sdz7/vFZddJE+mDcvzwUBQOdDwKPglF9/vYqPOqrVvuYPPtB7N9yoquuuV+PWrXmuDAA6DwIeBaf///yKRi1coPJvf1tFffq0Os/2BQu06osXqXbhwjxXBwCdAwGPglTUo4cGTPu6Rj29UAP+17+pqGfPA+Zp2rJF1f9+napvuEFNtbUJVAkAySHgUdCKy8pUft11Gvn0QvW/6ipZtwNvZFI7749a9cWLtOP5vydQIQAkg4BHEEr69dPAG2/QyKeeUr8vT5FK9/860MaaGr379a9r/c3fV/POnQlVCQD5Q8AjKKUDj9YxN9+skU88oT6TJknFxfv1vz9njlZNvFi7Fi9OqEIAyA8CHkHqctxgHXvrjzTij39U7wvO3++z8w1VVVo79UrV3HqbmuvqEqwSAOJDwCNoXUcM1+A77tDwuY+p1+c+92FHc7O2zpql1ZMu0e7XX0+uQACICQGPVOh24okaMv3/6fhHHlbPT31yX3v9qlVaM3mKNv7iF/KGhgQrBIDcIuCRKt1POUVD771XQ2fNUvdTT800NjVpy113a/XlV2jPW28lWyAA5AgBj1Tq+YnxOv6hBzXk7rvUbexYSVLd8uVa86XLtPmuu+VNTQlXCAAdQ8Aj1XqdfbaOf/T3GnznneoyaqS8oUGbfvELrf3yV1S3enXS5QFAuxHwSD0zU+/zvqAR8+bp2B/fptIhQ7T71Ve1etIl2nr//XL3pEsEgCNGwAMRKypSn4kTNfKJ+TrmP/9TxX37quZHt2rd1CtVX1WddHkAcEQIeKAFKylRvysu18inntTA79ykupUrtXriRG2bMyfp0gDgsBHwQBuKunZV/6lTNWrhAh01bZo23n6H1k2bpoaajUmXBgCHRMADh1DUo4cGfGOaRj29UN1OPllrpkzWB3/8U9JlAcBBEfDAYSouK9PR11+v4b//vfYsW6b3brxRjdu2JV0WALSqJOkCgEJT0r+/Bt50oxpqNmrb7AfV/aMfUa+zz066LADYT2xn8GY2xMz+ZmZvmNkyM7s+ar/FzKrN7JXocUFcNQBxKh14tMqv/aa6jBypnYsW8TW0ADqVOM/gGyX9H3f/p5mVSVpiZgujvp+7+89i3DaQN12OO05djjtOzbt2JV0KAOwTW8C7+3pJ66Pp7Wa2XNLguLYHJK2oR4+kSwCAffIyyM7Mjpd0qqQXo6Zrzew1M7vXzPrlowYAANIk9oA3s16SHpX0LXevlTRd0khJ45Q5w7+9jeWmmVmlmVVu2rQp7jIBAAhKrAFvZqXKhPtsd39Mkty9xt2b3L1Z0j2Sxre2rLvPcPcKd68oLy+Ps0wAAIIT5yh6k/QbScvd/Y6s9kFZs02StDSuGgAASKs4R9F/WtJXJb1uZq9Ebd+VNMXMxklySWskfSPGGgAASKU4R9H/XZK10jU/rm0CAIAMblULAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAR8OzQ1u55cukFbd9YnXQoAAK0i4NuhuMj0yZFH6d9+u0S/+tsK7apvTLokAAD2Q8C3U5/upfrll0/T7yrf1Wd/+owefHGdGpuaky4LAABJBHyHlJd11QNXf0JFZvru3Nf1hV88pyeXbpC7J10aACDlCPgOGtK/hx64erz69SjVqk07dc1vl+iS6S/oxVVbki4NAJBiBHwOjB5YpvuuGq+eXYolSS+ve19XzFikq+9brLc2bE+4OgBAGhHwOXLKkL66Z2qFupR8+E/6lzc3asKdz+k/fveqqt/fnWB1AIC0IeBz6FMjB+i/p5yqIvuwzV36/ZIqfe5nz+hH85fr/V18tA4AED8CPsfOO/kY/fjSjx3QXt/YrBnPrdKZP/mbpj+zUnsamhKoDgCQFgR8DC6rGKL/e+HYVvu272nUj598U5/96TN6ZDEfrQMAxIOAj8nVnxmu6/5lVJv9G2r36MZHX9eEO5/XgmV8tA4AkFsEfIz+9+dP0Nc+Oeyg86zYuEPTHliiL931D1Wu2ZqnygAAoSPgY2RmuuWLJ2viuGMPOe+Stdv0pbv+oVvnL1dTM2fzAICOKUm6gNAVFZl+dtkp2r6nUX99c+MB/UeXddWnRw2IHkdpUJ/uCVQJAAgNAZ8HpcVF+tWXT9PUe1/S8vW1OmPkUfr0yKP0mdEDNLK8l8zs0CsBAOAIEPB50r1Lse6/erxKikwlxbwzAgCIFwGfR91Ki5MuAQCQEpxKAgAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgBILeDObYGZvmdkKM7spqToAAAhRIgFvZsWSfiXpfEljJU0xs7FJ1AIAQIiSOoMfL2mFu69y93pJD0uamFAtAAAEJ6mAHyzp3aznVVHbPmY2zcwqzaxy06ZNeS0OAIBC12kH2bn7DHevcPeK8vLypMsBAKCgJBXw1ZKGZD0/LmoDAAA5kFTAL5Y02syGm1kXSZMlzUuoFgAAglOSxEbdvdHMrpX0lKRiSfe6+7IkagEAIESJBLwkuft8SfOT2j4AACHrtIPsAABA+xHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJUknQBQCFqbm7U9u2vy6xEvXt/NOlyAOAAnMED7VBUVKI+fU5V9+5DtWvXWjU3NyZdEgDshzN4oANKS/uotLRP0mUAwAE4gwcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAhQLAFvZj81szfN7DUzm2tmfaP2481st5m9Ej3uimP7AACkXVxn8AslfcTdPybpbUnfyepb6e7josc1MW0fAIBUiyXg3X2BuzdGTxdJOi6O7QAAgNbl4z34f5X0RNbz4Wb2spk9a2Zn5mH7AACkTkl7FzSzpyUd00rX99z98Wie70lqlDQ76lsvaai7bzGz0yX9wcxOdvfaVtY/TdI0SRo6dGh7ywQAIJXaHfDufu7B+s3sSkkXSjrH3T1apk5SXTS9xMxWSjpBUmUr658haYYkVVRUeHvrBAAgjeIaRT9B0g2SLnL3XVnt5WZWHE2PkDRa0qo4agAAIM3afQZ/CL+U1FXSQjOTpEXRiPmzJP3AzBokNUu6xt23xlQDAACpFUvAu/uoNtoflfRoHNsEAAAf4k52AAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAUnOY9jUmX0OkR8ACAgtP0fl3SJXR6BDwAoKA0bt4tFVvSZXR6BDwAoKDseWebSst7JF1Gp0fAAwAKhrureWdD0mUUBAIeAFAwmnc1qteZg5MuoyDE8n3wAADEobhnadIlFAzO4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgADFFvBmdouZVZvZK9Hjgqy+75jZCjN7y8zOi6sGAADSqiTm9f/c3X+W3WBmYyVNlnSypGMlPW1mJ7h7U8y1AACQGklcop8o6WF3r3P31ZJWSBqfQB0AAAQr7oC/1sxeM7N7zaxf1DZY0rtZ81RFbQAAIEc6FPBm9rSZLW3lMVHSdEkjJY2TtF7S7Ue47mlmVmlmlZs2bepImQAApE6H3oN393MPZz4zu0fSn6Kn1ZKGZHUfF7W1XPcMSTMkqaKiwjtSJwAAaRPnKPpBWU8nSVoaTc+TNNnMuprZcEmjJb0UVx0AAKRRnKPof2Jm4yS5pDWSviFJ7r7MzOZIekNSo6RvMoIeAIDcii3g3f2rB+n7oaQfxrVtAADSjjvZAQAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAAMV5L3oAQK7VbZfefUmqXiKddJF09IlJV4ROioAHgM5sx0Zp3T+ktf/I/NzwutS9r3T5A4Q7DoqAB4DOwl3atjoK8xekdYukLSv2n2fgR6TJD0r9hiVTIwoGAQ8ASWlukmqWZoJ8bRToOza0Pf+JF0qT7pa69spfjShYBDwA5EvDnsx753vPzt99SaqrPbxlz75JOvtGqYix0Tg8BDwAxGnl36RVz2TeP3/vZamp/siWL+0hXTxdOvniOKpDwAh4AIhLY5304BVSU137lu8zJPN++6CP5bYupAIBDwBx2bC0/eE+5Azpit9KvcpzWxNSg4AHgLhUV7ZvuVO/Kv2PO6SSLrmtB6lCwANAXKqOMOCtWJpwqzR+mmQWT01IDQIeAOJStfjw5+3WV7rsPmnk5+KqBilDwANAHHZuydy05nAMGCNNeUg6amS8NSFVCHgAiEP1ksObb/R50qX3SN36xFsPUoeAB4A4HM7l+U9/SzrnZqmoOPZykD4EPADE4WAj6Iu7ShN/KX3s8vzVg9Qh4AEg15qb275EXzZImjxbGnx6fmtC6hDwAJBrW1ZIez44sH3w6dIVs6Xeg/JfE1KHgAeAXGvt8vzHJktfvFMq7Zb/epBKBDwA5Np+N7gx6fM/kD7179y8BnlFwANAru0dQd+1t3Tpb6QTvpBsPUglAh4Acql+l1SzTOo/QprysFQ+JumKkFIEPADk0vpXpeFnSZfNlLr3S7oapBgBDwC51PtY6Su/l4r584pk8QoEgFzqNyzpCgBJUlHSBQAAgNwj4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAhTLl82Y2SOS9n4Jcl9J77v7ODM7XtJySW9FfYvc/Zo4agAAIM1iCXh3v2LvtJndLumDrO6V7j4uju0CAICMWL8u1sxM0uWS/iXO7QAAgP3F/R78mZJq3P2drLbhZvaymT1rZme2taCZTTOzSjOr3LRpU8xlAgAQlnafwZvZ05KOaaXre+7+eDQ9RdJDWX3rJQ119y1mdrqkP5jZye5e23Il7j5D0gxJqqio8PbWCQBAGrU74N393IP1m1mJpEsknZ61TJ2kumh6iZmtlHSCpMr21gEAAA4U5yX6cyW96e5VexvMrNzMiqPpEZJGS1oVYw0AAKRSnIPsJmv/y/OSdJakH5hZg6RmSde4+9YYawAAIJViC3h3v7KVtkclPRrXNgEAQAZ3sgMAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8ASK26prqkS4hNSdIFAADQHm+9uEHbt+zRgCG9VD60TD37dD3idVRvr9aIviNiqC55HQp4M7tM0i2STpI03t0rs/q+I+lqSU2SrnP3p6L2CZLulFQs6dfufltHagAApNMJHx+o5x55Wy/OWyVJ6t67i8qH9NKAIWUqH1Km8qG91HtAd5lZm+t4d/u7BHwblkq6RNLd2Y1mNlbSZEknSzpW0tNmdkLU/StJn5dUJWmxmc1z9zc6WAcAIGWsyHT2lDEq699N//jDSu2urde6ZVu1btnWffN06VasAUPKMmf5Q8o0YEiZ+g/qoaLizDvU2+q2JVV+7DoU8O6+XFJr/zuaKOlhd6+TtNrMVkgaH/WtcPdV0XIPR/MS8ACAdjntvGHq2ber/vrAcjU3+n599Xua9N477+u9d97f11ZcUqTh4wboM5eNVu8uvfNcbf7E9R78YEmLsp5XRW2S9G6L9k/EVAMAICXGfOIY9ezTRU/cvVT1uxvbnG/wmH465ZwhOv4jR8mKTH339M1fkXl2yIA3s6clHdNK1/fc/fHcl7Rvu9MkTYue1pnZ0ri21QkMkLQ56SJixP4VtpD3L+R9k9i/QjemIwsfMuDd/dx2rLda0pCs58dFbTpIe8vtzpA0Q5LMrNLdK9pRR0Fg/wob+1e4Qt43if0rdGZWeei52hbX5+DnSZpsZl3NbLik0ZJekrRY0mgzG25mXZQZiDcvphoAAEitjn5MbpKk/5ZULunPZvaKu5/n7svMbI4yg+caJX3T3ZuiZa6V9JQyH5O7192XdWgPAADAATo6in6upLlt9P1Q0g9baZ8vaf4RbmrGkVdXUNi/wsb+Fa6Q901i/wpdh/bP3P3QcwEAgILCvegBAAhQpwt4M7vMzJaZWbOZVbTo+46ZrTCzt8zsvKz2CVHbCjO7Kf9Vt4+ZPWJmr0SPNWb2StR+vJntzuq7K+FS28XMbjGz6qz9uCCrr9VjWSjM7Kdm9qaZvWZmc82sb9QexLGTCvf3qi1mNsTM/mZmb0R/Y66P2tt8nRaa6O/I69F+VEZt/c1soZm9E/3sl3SdR8rMxmQdn1fMrNbMvlXox87M7jWzjdkfA2/reFnGf0W/j6+Z2WmH3IC7d6qHMve1HyPpGUkVWe1jJb0qqauk4ZJWKjNQrziaHiGpSzTP2KT3ox37fbukm6Pp4yUtTbqmHOzTLZL+o5X2Vo9l0vUe4b59QVJJNP1jST8O7NgF8XvVYp8GSTotmi6T9Hb0Wmz1dVqID0lrJA1o0fYTSTdF0zftfa0W6iN6bW6QNKzQj52ksySdlv03o63jJekCSU9IMklnSHrxUOvvdGfw7r7c3d9qpWvf7W/dfbWkvbe/Ha/o9rfuXi9p7+1vC4Zl7vV7uaSHkq4lT9o6lgXD3Re4+97bZS1S5p4OISn436uW3H29u/8zmt4uabk+vMNmyCZKmhVNz5J0cXKl5MQ5kla6+9qkC+kod39O0tYWzW0dr4mS7veMRZL6mtmgg62/0wX8QQzWgbe5HXyQ9kJypqQad38nq224mb1sZs+a2ZlJFZYD10aXk+7NujQYwjHL9q/K/M96rxCOXWjHaD9mdrykUyW9GDW19jotRC5pgZktsczdQCVpoLuvj6Y3SBqYTGk5M1n7nwyFcuz2aut4HfHvZCIBb2ZPm9nSVh4FfYbQmsPc1yna/wW7XtJQdz9V0rclPWhmnfIbEQ6xf9MljZQ0Tpl9uj3JWo/U4Rw7M/ueMvd6mB01FcyxSysz6yXpUUnfcvdaFfjrtIXPuPtpks6X9E0zOyu70zPXegv2o1OWuUHaRZJ+FzWFdOwO0NHjFdeXzRyUJ3T72yQcal/NrESZr9w9PWuZOkl10fQSM1sp6QRJHbptYRwO91ia2T2S/hQ9Pdix7DQO49hdKelCSedEv4gFdewOoSCO0ZEys1Jlwn22uz8mSe5ek9Wf/TotOO5eHf3caGZzlXmrpcbMBrn7+uiS7sZEi+yY8yX9c+8xC+nYZWnreB3x72QhXaIP9fa350p6092r9jaYWbmZFUfTI5TZ11UJ1dduLd4fmiRp70jRto5lwTCzCZJukHSRu+/Kag/i2Knwf68OEI11+Y2k5e5+R1Z7W6/TgmJmPc2sbO+0MgNBlypz3KZGs02VFNuXhOXBflc7Qzl2LbR1vOZJ+lo0mv4MSR9kXcpvVSJn8Adj6bv9bcv3k6TMyMofmFmDpGZJ17h7y4EYheAnZjZOmUtMayR9Q5IOdiwLyC+V+RTAwkxuaJG7X6NAjp27Nxb471VrPi3pq5Jet+gjqZK+K2lKa6/TAjRQ0tzo9Vgi6UF3f9LMFkuaY2ZXS1qrzIDeghP9p+Xz2v/4tPo3plCY2UOSPitpgJlVSfq+pNvU+vGar8xI+hWSdkm66pDrj64sAgCAgBTSJXoAAHCYCHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACND/B3X43AGPk1dlAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAtcklEQVR4nO3deXxV9Z3/8fcnuSEkQBKWkACyL6IsskRwYQuLo6KitiKKdan9UTvt1E7b6U/rr1Pro06trctUMR060uUxrV3G2trWLtqZjnVrResoCghRUBAhhCUhgazf3x+54CXc7Pfcc+83r+fjkUfO/Z57z/kcTsI753u+5xxzzgkAAPglI+wCAABA4hHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhxIS8Ga23sz2mtnGmLZBZvakmW2Nfh8YbTcz+5aZbTOzV81sViJqAAAAH0jUEfz3JJ3fqu0WSX90zk2U9Mfoa0m6QNLE6NcaSWUJqgEAAEQlJOCdc09L2t+qeYWk70envy/p0pj2H7gWL0gqMLNhiagDAAC0CPIcfJFzbnd0+n1JRdHpEZLejXnfzmgbAABIkEgyVuKcc2bWpXvimtkatXThq1+/frMnT54cSG0AgPj21u5VxZGKsMtIOzmRHBVkFyivT54iGd2P2Zdeemmfc66wu58PMuD3mNkw59zuaBf83mj7LkkjY953SrTtBM65dZLWSVJJSYnbsGFDgKUCAOK57Znb9Hj542GXkZbMTCXDS7R87HItGbVEuVm5Xf38jp6sP8iAf1zSdZLuin7/ZUz7p8zsx5LmSjoU05UPoJPqjzYqMytDmZlc7Yrg3H7O7dp3ZJ+ee++5sEtJO42uUc/uelbP7npWOZEclY4s1UXjLtLZw8/u0ZF9Z1kiniZnZo9IWiRpiKQ9kr4s6ReSfipplKQdklY65/abmUl6UC2j7msl3eCca/fwnCN44AON9U2q3FWjgqIcZedmhV0OeoGahhpd/7vrtXn/5rBL8cKgvoN0/pjztXzcck0vnN7m+8zsJedcSXfXk5CADxoBD7R4541KmUwjTx8UdinoZSpqK7T6idXaXUOHayKNGjBKy8ct1/JxyzU6b/QJ8wh4oBc4Ul2vjU/v0qlzi5U3JCfsctBLlR8s17W/vVZV9VVhl+KlaUOmafm45Tp/zPkanDOYgAd6g+ZmJ5NkGRZ2KejlNry/QR9/8uOqb64PuxRvRSyiucPn6t+W/VuPAp7ROUAayMgwwh0poaS4RHfOv1Mmfh6DcmxwXk8R8ACALjl/zPn6XMnnwi4DHSDgAQBddt2U63TNadeEXQbaQcADALrln878Jy0bvSzsMtAGAh4A0C0ZlqGvzf+aZg6dGXYpiIOABwB0W3Zmth5Y/IDG5I0JuxS0QsADAHokPztf3172bQ3uOzjsUhCDgAcA9NiI/iO0dula5Ua69kAVBIeABwAkxJTBU/TNhd9UxJLyJHJ0gIAHACTM/FPm60tnfynsMiACHgCQYJdPvFw3nXFT2GX0egQ8ACDhPjnjk7p0wqVhl9GrEfAAgEB8+ewv69zh54ZdRq9FwAMAAhHJiOjeRffqtEGnhV1Kr0TAAwACk5uVq4eWPqTh/YaHXUqvQ8ADAAI1JGeIypaVKa9PXtil9CoEPAAgcOPyx+mBxQ+oT0afsEvpNQh4AEBSzCqapa/N/5pMFnYpvQIBDwBImvPGnKfPl3w+7DJ6BQIeAJBU1065Vtecdk3YZXiPgAcAJN0XzvyCzht9XthleI2ABwAknZnpa/O/pllDZ4VdircIeABAKPpk9tG3Fn9L4/LHhV2Klwh4AEBo8rPzVba0TIU5hWGX4h0CHgAQquH9h2vtkrXKjeSGXYpXCHgAQOhOG3ya7l10ryIWCbsUbxDwAICUcO6Ic/XPZ/9z2GV4g4AHAKSMyyZepr8/4+/DLsMLBDwAIKV8YsYndPnEy8MuI+0R8ACAlPOls76keSPmhV1GWiPgAQApJ5IR0T0L79Hpg08Pu5S0RcADAFJSblau1i5ZqxH9R4RdSloi4AEAKWtIzhCVLS1TfnZ+2KWkHQIeAJDSxuaP1QOLH1B2ZnbYpaQVAh4AkPJmDp2pu+bfpQwjtjqLfykAQFpYOnqpvnDmF8IuI20Q8ACAtLH6tNW69vRrwy4jLRDwAIC08vmSz+v8MeeHXUbKI+ABAGnFzHTnvDs1u2h22KWkNAIeAJB2+mT20b+W/qvG548Pu5SURcADANJSfna+ypaWqTCnMOxSUhIBDwBIW8P6D9NDSx9Sv6x+YZeScgh4AEBamzxosu5ddK8iGZGwS0kpBDwAIO2dM/wc3X727WGXkVICDXgzO9XMXon5qjKzz5jZ7Wa2K6b9wiDrAAD4b8WEFfrkjE+GXUbKCDTgnXNbnHMznHMzJM2WVCvpsejs+47Nc849EWQdAIDe4aYzbtKHJn4o7DJSQjK76JdIKnfO7UjiOgEAvcyXzvqSFpyyIOwyQpfMgF8l6ZGY158ys1fNbL2ZDWz9ZjNbY2YbzGxDRUVF8qoEAKS1zIxMfWPBNzRl8JSwSwlVUgLezPpIukTSz6JNZZLGS5ohabeke1p/xjm3zjlX4pwrKSzkGkcAQOflZuVq7ZK1OqX/KWGXEppkHcFfIOll59weSXLO7XHONTnnmiV9R9KcJNUBAOglBucMVtnSMhVkF4RdSiiSFfBXKaZ73syGxcy7TNLGJNUBAOhFxuSP0QOLH1DfzL5hl5J0gQe8mfWTtEzSz2Oa7zaz18zsVUmlkv4x6DoAAL3TjKEzdNf8u5RhvevWL4FvrXOuxjk32Dl3KKbtI865ac656c65S5xzu4OuAwDQey0ZvUT/98z/G3YZSdW7/pwBAPRaV592ta6fcn3YZSQNAQ8A6DU+O/uzumDMBWGXkRQEPACg1zAz3TnvTp1ZfGbYpQSOgAcA9CpZmVm6v/R+TSiYEHYpgSLgAQC9Tl6fPJUtLdPQnKFhlxIYAh4A0CsV9yvWQ0sfUv+s/mGXEggCHgDQa5066FTdu+heRTIiYZeScAQ8AKBXO3v42brjnDvCLiPhCHgAQK938fiL9Q8z/yHsMhKKgAcAQNKa6Wt0xaQrwi4jYQh4AACibpt7mxaesjDsMhKCgAcAICozI1PfWPgNTR08NexSeoyABwAgRk4kRw8ueVAjB4wMu5QeIeABAGhlcM5glS0t08DsgWGX0m0EPAAAcYzOG60Hljygvpl9wy6lWwh4AADacEbhGfr6gq8rw9IvLtOvYgAAkmjxqMW6dc6tYZfRZQQ8AAAdWDV5lW6YekPYZXQJAQ8AQCf846x/1IVjLwy7jE4j4AEA6AQz01fP/armFM8Ju5ROIeABAOikrMws3V96vyYUTAi7lA4R8AAAdMGAPgNUtrRMQ3OHhl1Kuwh4AAC6qLhfscqWlql/Vv+wS2kTAQ8AQDdMGjhJ95fer0hGJOxS4iLgAQDoprnD5uqOc+6QycIu5SQEPAAAPXDx+Iv16VmfDruMkxDwAAD00MemfUxXnnpl2GWcgIAHACABbp1zqxaNXBR2GccR8AAAJEBmRqbuXnC3pg+ZHnYpkgh4AAASJieSoweWPKBRA0aFXQoBDwBAIg3qO0hlS8s0qO+gUOsg4AEASLBReaP04OIHlRPJCa0GAh4AgABMK5ymuxfcrUzLDGX9BDwAAAFZNHKRvjj3i6Gsm4AHACBAK09dqRun3pj09RLwAAAE7OZZN+uicRcldZ0EPAAAATMz3XHuHZo7bG7S1knAAwCQBFkZWbp/0f2aNHBSUtZHwAMAkCT9+/TXQ0seUlFuUeDrIuABAEiion5FKltapgFZAwJdDwEPAECSTRw4UfeX3q+sjKzA1kHAAwAQgjnD5uir535VJgtk+QQ8AAAhuXDchbp51s2BLJuABwAgRDdOu1GrTl2V8OUS8AAAhOzWubdq8cjFCV1m4AFvZtvN7DUze8XMNkTbBpnZk2a2Nfp9YNB1AACQqjIsQ19f8HVNL5yeuGUmbEntK3XOzXDOlURf3yLpj865iZL+GH0NAECv1TfSVw8uflCj80YnZHlhddGvkPT96PT3JV0aUh0AAKSMgX0HqmxpmQb1HdTjZSUj4J2kP5jZS2a2JtpW5JzbHZ1+X1Lwt/QBACANjBwwUmuXrO3xciIJqKUj85xzu8xsqKQnzWxz7EznnDMz1/pD0T8G1kjSqFGjklAmAACpYeqQqT1eRuBH8M65XdHveyU9JmmOpD1mNkySot/3xvncOudciXOupLCwMOgyAQDwSqABb2b9zGzAsWlJ50naKOlxSddF33adpF8GWQcAAL1N0F30RZIeM7Nj6/qRc+53ZvaipJ+a2Y2SdkhaGXAdAAD0KoEGvHPuLUlnxGmvlLQkyHUDANCbcSc7AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDgQW8mY00s/82szfM7HUzuznafruZ7TKzV6JfFwZVAwAAvVUkwGU3Svqcc+5lMxsg6SUzezI67z7n3DcDXDcAAL1aYAHvnNstaXd0utrMNkkaEdT6AADAB5JyDt7MxkiaKekv0aZPmdmrZrbezAYmowYAAHqTwAPezPpLelTSZ5xzVZLKJI2XNEMtR/j3tPG5NWa2wcw2VFRUBF0mAABeCTTgzSxLLeH+Q+fczyXJObfHOdfknGuW9B1Jc+J91jm3zjlX4pwrKSwsDLJMAAC8E+QoepP0sKRNzrl7Y9qHxbztMkkbg6oBAIDeKshR9OdK+oik18zslWjbFyVdZWYzJDlJ2yV9PMAaAADolYIcRf+MJIsz64mg1gkAAFpwJzsAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4A0Gs0VVfr4M8fU+O+fWGXEjgCHgDgNeecal54Qbv+6QvatqhUGQP6KzJkSNhlBS4SdgEAAATBNTVp37e/rUOP/UINO3dKZhr2tX9R3rJlYZeWFAQ8AMBb+x5cKzknSSr64hdVcOml4RaURHTRAwC8ZJmZysjLkyQV3vxpDfrINSFXlFwcwQMAvBUpKFD/D31IQz7xibBLSToCHgDgrcH/52Mq+PCHwy4jFHTRAwC81VvDXSLgAQDwEgEPAICHCHgAADxEwAMA4KHQAt7MzjezLWa2zcxuCasOAAB8FErAm1mmpLWSLpB0uqSrzOz0MGoBAMBHYR3Bz5G0zTn3lnOuXtKPJa0IqRYAALwTVsCPkPRuzOud0bbjzGyNmW0wsw0VFRVJLQ4AgHSXsoPsnHPrnHMlzrmSwsLCsMsBACCthBXwuySNjHl9SrQNAAAkQFgB/6KkiWY21sz6SFol6fGQagEAwDuhPGzGOddoZp+S9HtJmZLWO+deD6MWAAB8FNrT5JxzT0h6Iqz1AwDgs5QdZAcAALqPgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABpAXnmsIuAUgrkbALAIC2ONekI0d2qrb2LWVm5mrgwLlhlwSkjUAC3sy+IeliSfWSyiXd4Jw7aGZjJG2StCX61hecczcFUQOA9GeWqdzc0crNHR12KUDaCaqL/klJU51z0yW9KenWmHnlzrkZ0S/CHQCAAAQS8M65PzjnGqMvX5B0ShDrAQAA8SVjkN1HJf025vVYM/ubmf2Pmc1PwvoBAOh1un0O3syeklQcZ9ZtzrlfRt9zm6RGST+MztstaZRzrtLMZkv6hZlNcc5VxVn+GklrJGnUqFHdLRMAgF6p2wHvnFva3nwzu17SRZKWOOdc9DN1kuqi0y+ZWbmkSZI2xFn+OknrJKmkpMR1t04AAHqjQLrozex8SV+QdIlzrjamvdDMMqPT4yRNlPRWEDUAANCbBXUd/IOSsiU9aWbSB5fDLZB0h5k1SGqWdJNzbn9ANQAA0GsFEvDOuQlttD8q6dEg1gkAAD7ArWoBAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEAXnui4qAq6xvDLiPpCHgAgNecpKUbtuiFg4fDLiWpCHgAgNcWDBygivoGXf63bbp3+/tqci7skpKCgAcAeG1AJFNz8/urWdLdb7+vK18p1566hrDLChwBDwDw3pLBecennzl4WItf3KKn91eHWFHwCHgAgPcWDx4gSRqUlakriwfpnlNHqiS/X8hVBSsSdgEAAATt1Ny++tWsiZqVl6tMs7DLSQoCHgDgPTPTmZ4fsbdGFz0AAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAyFwTU6N+46EXQYAjxHwQJI553Tgsa2qfa0i7FIAeIyAB5Ks6vc7VLthjxr3HQ27FAAeI+CBJKp+Zpeq//SuJKmxki56AMEh4IEkqf3bXh369VvHXxPwAIJEwANJcHTLfu3/2ZsntDVXN6i5rimkigD4joAHAlb3TpUq/2OT1OxOmsdRPICgEPBAgBr21qrye6/LNTTHnd9YyUA7AMEg4IGANB6q076HN6q5trHt93AEDyAggQW8md1uZrvM7JXo14Ux8241s21mtsXM/i6oGoCwNNc2aN/DG9V0qK7d9zVxBA8gIJGAl3+fc+6bsQ1mdrqkVZKmSBou6Skzm+ScY7QRvNBc36R933tdjXtrO3wvR/AAghJGF/0KST92ztU5596WtE3SnBDqABLONTVr/w83qf6d6k69n9vVAghK0AH/KTN71czWm9nAaNsISe/GvGdntA1Ia67Z6cCjW3V0y4FOf6apql7N9XReAUi8HgW8mT1lZhvjfK2QVCZpvKQZknZLuqeLy15jZhvMbENFBffsRuo79Lu3Vfvy3i5/rmk/5+EBJF6PzsE755Z25n1m9h1Jv46+3CVpZMzsU6JtrZe9TtI6SSopKTn5AmIghVQ/vVOHnz7px7hTGiuPKKu4X4IrAtDbBTmKfljMy8skbYxOPy5plZllm9lYSRMl/TWoOoCg1by0R4eeeLvbn+daeABBCHIU/d1mNkOSk7Rd0sclyTn3upn9VNIbkholfZIR9EhXRzZV6sCjb3b8xnYwkh5AEAILeOfcR9qZd6ekO4NaN5AMdTuqtP9Hm6X4N6nrNEbSAwgCd7IDuqFhT432tXML2q6gix5AEAh4oIsaDx7Vvoc3yh1p+xa0XdF0qC4hfygAQCwCHuiCpproLWir6hO3UCc1HuAoHkBiEfBAJzXXRW9BW5H4c+achweQaAQ80AmusVmV//GGGt7t3C1ou4rz8AASjYAHOuCanfb/7E3VbT0Y2Dq4VA5AohHwQDucczr0m7d05H+DvV0yAQ8g0Qh4oB3Vf9qpw8++F+g6MnIjyuiXFeg6APQ+QT8PHkhbNS++r6rfb0/Y8iw7U1nF/ZRVlKtIUa6yilqmM/pnycwSth4AkAh4IK4jr+/TgZ9v7dZnLSvjhADPKspVpLifMvP6EOQAkoaAB1qpe+uQKh/Z3PIUhfZETFmFHwR41tBcZRX3U2ZBtiyDIAcQLgIeiFG/u0b7fvC61BiT7hmmyJAcZRXnHg/xSFGuIoNyZJkEOYDURMADUY0Hj+rg49uUPa6gJcyjXeyRITmyCONRAaQXAh6IyszP1tCPnxF2GQCQEByWAFEMgAPgEwIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8gJTQ2NQs51zYZQDeIOABpIQn39ijLz/+uhqbmsMuBfACAQ8gJfx52z794PkduvH7G1R9tCHsclJKc3OzDh8+HHYZSDMEPICU8MzWfZKk/3mzQh8ue147D9SGXFG4mpqaVF5ert/85je677779Pvf/z7skpBmImEXAAA7Kmv0zv4PAn3LnmpduvY5PXxdic4YWRBeYUlWX1+v8vJybdq0SW+++aaOHj16fF5NTU2IlSEdEfAAQvfn6NF7rH2H63Tluud138oZumDasBCqSo7a2lq9+eab2rx5s7Zt26bGxsa476OLHl1FwAMI3TNxAl6SjjY06xM/fFm3XDBZH18wTmaW5MqCUVVVpc2bN2vTpk3avn17p64e4AgeXUXAAwhVU7PTc+XxA/6Yu367WW9X1Oirl01VVmZ6Dh3at2+fNm3apM2bN2vXrl1d/nxtba2am5uVkZGe24/kI+ABhOrVnQdVdTR+t3Ssn2x4V+8eqFXZ6tnKz81KQmU945zTe++9d/xIfd++9v+I6czyamtr1b9//wRVCN8R8ABC1Vb3fDzPlVfq8rJn9d3r52jU4NwAq+qepqYmvfPOO8eP1KuqqhK6/JqaGgIenUbAAwhVvAF27SmvqNGlDz2r71w7W7NHDwqoqs5raGhQeXm5Nm/erC1btujIkSOBrYvz8OgKAj4kVRV79ZOv3Kr8oUUtX4VFyi8qjr4uVm5+gTcDioC2HK5r1MvvHOjy5/bX1Ouq7/xF3/jwdK2YMSKAytp35MgRbd26VZs2bdK2bdvU0JCcG/Mwkh5dEUjAm9lPJJ0afVkg6aBzboaZjZG0SdKW6LwXnHM3BVFDqmtsaFBVxR5VVezRu6+fPD/SJ/t4+OcVFqmgqFh5x/4QGFqs7NzU654Euuovb1Wqsbl795+vb2zWzT9+Rdv31erTSyYE/gdxdXW1Nm/erM2bN+vtt99Wc3Pyb6nLETy6IpCAd85deWzazO6RdChmdrlzbkYQ600nzU3tDypqrK9T5c53VLnznbjz+w7Ii4Z90fGj/g/+IBiqzEjqD0ICuto9H899T72p7ZU1uutD05QdyUxAVR+orKw8Pkhu586dCV12dxDw6IpAu+it5U/qlZIWB7medNTc1NSjzx+trtLR6irteWvryTPNNGDQkPg9AEOL1L9gkIxLbZAC/ry1IiHLeexvu7TzQK3+7SMlGtSvT7eX45zT+++/f3yQ3N69exNSX6LQRY+uCPoc/HxJe5xzsSk01sz+JqlK0v9zzv053gfNbI2kNZI0atSogMtMvuY27laVEM6purJC1ZUV2rlp40mzM7OylFcY59x/tPu/L6N0kQS7Dx1ReUXijkhf3H5Alz30rNZff6bGF3b+Z7i5uVnvvPPO8SP1Q4cOdfyhkHAEj67odsCb2VOSiuPMus0598vo9FWSHomZt1vSKOdcpZnNlvQLM5vinDvpWhLn3DpJ6ySppKTEu4dEN/XwCL5H625o0IH3durAe/G7HLP79VN+YUvo5w0tUsHQD6bzC4sU6dP9IyTgmER0z7e2o7JWlz/0nL59zWydPX5wh+//r//6L23YsEG1tenxYBsCHl3R7YB3zi1tb76ZRSRdLml2zGfqJNVFp18ys3JJkyRt6G4d6aqjc/Bhqqup0d6acu3dXh53fv+Bg5QXc84/9vx//0GDlZGR2POg8FNXrn/vikNHGnTt+r/oXy6bpitKRrb73smTJ+v5558PpI4g0EWPrgiyi36ppM3OueOHiWZWKGm/c67JzMZJmijprQBrSFnNjeEdwffU4QP7dfjAfr235Y2T5mVkRpRXWKjC0WM1Z8UVKh4/MYQKkeqam52e3RZMwEtSQ5PTP/3nq9peWaPPLTtVGRnxR9gPHz5cV1xxhR555JFO3Q8+bDU1NXLOcQktOiXIkVardGL3vCQtkPSqmb0i6T8l3eSc2x9gDSkrlY/ge2L4pMk66/JVuuDvP0u4o01v7K5SZU194OtZ+9/l+ocf/01HG9r+g3rSpElavnx54LUkQlNTk+rq6sIuA2kisCN459z1cdoelfRoUOtMJ2Geg0+0fgMHacrCJZq6aKkGDkv+TUeQfp4J8Oi9td+8ulu7DhzRd64tUeGA7LjvKSkp0cGDB/XMM88kra7uOnz4sPr27Rt2GUgD3MkuJOl+BJ+Rmanxs+dq6uJlGjN9ljIyOe+Ozgvq/HtbXnn34PER9pOKBsR9z+LFi3Xo0CG99tprSa2tq2pqajRkyJCwy0AaIOBDEuhlcgEafMooTVt8nk6bX6rcvPywy0EaOtrQpL9uT/6ZuZ0HjuhDDz2ntatnacGkwpPmZ2RkaMWKFaqqqtKOHTuSXl9nMZIenUXAh6SnN7pJpj45uZp87gJNLV2m4vGTGOCDHvnr2/tV35j827xKUnVdo2743ou6Y8UUrZ47+qT5kUhEq1at0sMPP9zjx7sGhZH06CwCPiRNadBFP/L0aZpaukwT556jrGzO+SExknn+PZ6mZqfbHtuotytq9MULTztphH1OTo6uueYa/fu//3tKhilH8OgsAj4kqXqZXP9BgzVl4VJNWbREA4uHh10OPBTEDW66wkxadlqRlp1epLY6owoKCnT11Vfru9/9btKeFNdZBDw6i4APSSoNssvIjGhCyVxNLV2m0WfM5EY1CExFdZ027T7pxpVJkdsnUytLRuqGc8do9OB+Hb5/+PDhWrlypX70ox+l1DXyBDw6i4APSSqcgx8yaoymlS7T5HmLGDCHpHiuPPlH7yMKcnTdOaN15ZmjlJ/TtacsTpw4UcuXL9evf/3rgKrrulQ8bYDURMCHpCmkUfTZuf00+dyFmlq6TEXjgn+GNhDr6TeTF/AzRhboY/PH6vwpxYpkdv+eXiUlJTp06JD+/Oe4z8VKOo7g0VkEfEiSfQQ/aup0TV20TBPmnM2AOYTCOadntiXm8bBtyTDpgqnD9NF5YzV79MCELXfx4sU6ePBgSlwjT8Cjswj4kCTjHPyAwYWasqjlDnP5Q+M9+A9Inm17D2tPVTC3WR2QHdGVZ47UdeeM0chBuQlfvplpxYoVqq6u1vbt2xO+/K6oq6tTQ0ODsrK6droBvQ8BH5KgjuAzIxGNP/NsTStdplHTzmDAHFJGEKPnRw7K0Q3njNXKM0eqf3aw/51FIhFdeeWVWr9+vSoqgu2J6EhNTY0KCgpCrQGpj4APSaLPwReOHquppefptHkLlTMgL6HLBhIhkde/nzlmoG6cN1bLTi9WZhtPigtCTk6OVq9eHfo18gQ8OoOAD0kijuCz+/XTafMWaeqiZRo6djwD5pCy6hub9cJblT1aRiTDtHz6MN04b6ymn1KQmMK6oaCgQKtXr9b69etDu0aekfToDAI+JD05Bz9q2oyWO8ydebYiffoksCogGC+/c0C19d37ozY/J0tXzRml684ZrWH5OQmurHuGDRsW6jXyDLRDZxDwIenqnewGDCnU1EVLNWXhUuUPLQqoKiAY3Xl63Ngh/fTRc8foQ7NPUW6f1PuvauLEibrooov0q1/9KunrJuDRGan3W9NLdOZe9JlZWZpw5tmaVnqeRk2dLsvo/rW8QJj+3IXz72ePG6wb543V4slDT7pPfKqZPXu2Dh06pKeffjqp66WLHp1BwIekvXPwQ8eO19TSZZp87kLl9I//7GogXRysrderOw+2+56sTNMlZ4zQR+eN0ZTh6XVXxdLSUh08eFCvvvpq0tbJETw6g4APSevnwfft11+nzS/V1NJlGjpmXEhVAYn3XHml2jpNPTA3S9ecNVofOWu0hual5w2YzEyXXHKJqqqqknaNPAGPziDgQ9Lc1CSZaXR0wNyEkrMYMAcvxbv+fcLQ/rpx3lhdNnOE+mal/70akn2NPF306AwCPiRTFi3Vous+prwhQ8MuBQhU7O1p508cohvnjdWCiYUpf369q2KfI19dXR3oujiCR2cQ8CEZP3tO2CUAgdtRWaM9VXW6smSkPjpvrE4t9ntMSX5+/vHnyNfX1we2ntraWjU1NSkzM/17PxAchmUDCEwkM0PP3bJYX//wdO/D/Zhj18gHfeOp2traQJeP9EfAAwjMiIIcDemfHXYZSTdhwgRdfPHFga6Dbnp0hIAHgADMmjVLCxYsCGz5BDw6QsADQEBKS0t1xhlnBLJsRtKjIwQ8AATEzHTxxRdr7NixCV82R/DoCAEPAAE6do380KGJvSSWgEdHCHgACFjfvn21evVqDUjgvazookdHCHgASIL8/HytHrpFfbISc/sRjuDREQIeAJKkuO4trZyWo4wEPBmSgEdHCHgASJaq9zThwJ8Sco08XfToCAEPAMlwtEqqq5J2PK+Zp0/QwoULe7S4mpoaubYe0weIgAeA5Kh6r+V7c4P09tNatGhRj66Rb25u1tGjRxNUHHxEwANAMlTt+mB665PHr5EfN25ctxdJNz3aQ8ADQDIcO4KXpG1PSc4pEolo5cqVKioq6tYiGWiH9hDwAJAMsQF/6F2pYrOklmvkr776ag0Y0PWn7RHwaA8BDwDJENtFL0lbnzw+mZ+fr9WrV6tPn67dCYcuerSHgAeAZGgd8NuePOFlcXGxrrzyyi5dI88RPNpDwANAMsR20UvSjueluuoTmsaPH9+la+QJeLSHgAeAZGh9BB+9XK61mTNnatGiRZ1aJF30aA8BDwBBqzssHT10cvvWJ09uk7Rw4ULNmDGjw8VyBI/2EPAAELTq3fHbo5fLtdbZa+QJeLSHgAeAoLXunj/m0LtSxZa4szIzMzu8Rp4uerSHgAeAoB1qI+Clk0bTxzr2HPm8vLy48xsaGlRfX9/T6uApAh4AgtZ6BH2sNs7DH5OXl6fVq1crOzs77ny66dGWHgW8mV1hZq+bWbOZlbSad6uZbTOzLWb2dzHt50fbtpnZLT1ZPwCkhba66CXpnedbBuG1o6ioqM1r5OmmR1t6egS/UdLlkk641sPMTpe0StIUSedLesjMMs0sU9JaSRdIOl3SVdH3AoC/2juCb6qPe7lca+PGjdMll1xyUjtH8GhLjwLeObfJORdvhMgKST92ztU5596WtE3SnOjXNufcW865ekk/jr4XAPzVXsBL7Z6HjzVjxgyVlpae0EbAoy1BnYMfIendmNc7o21ttQOAv9rropekrfEvl4tnwYIFmjlz5vHXdNGjLZGO3mBmT0kqjjPrNufcLxNf0vH1rpG0Jvqyzsw2BrWuFDBE0r6wiwgQ25fefN6+FNm2jdJnu3e89ZWvfKW92SmyfYHxfftO7cmHOwx459zSbix3l6SRMa9PibapnfbW610naZ0kmdkG51xJvPf5gO1Lb2xf+vJ52yS2L92Z2YaefD6oLvrHJa0ys2wzGytpoqS/SnpR0kQzG2tmfdQyEO/xgGoAAKDX6vAIvj1mdpmkByQVSvqNmb3inPs759zrZvZTSW9IapT0SedcU/Qzn5L0e0mZktY7517v0RYAAICT9CjgnXOPSXqsjXl3SrozTvsTkp7o4qrWdb26tML2pTe2L335vG0S25fuerR95jo5chMAAKQPblULAICHUi7ge9Ptb83sJ2b2SvRru5m9Em0fY2ZHYuZ9O+RSu8XMbjezXTHbcWHMvLj7Ml2Y2TfMbLOZvWpmj5lZQbTdi30npe/vVVvMbKSZ/beZvRH9P+bmaHubP6fpJvr/yGvR7dgQbRtkZk+a2dbo94Fh19lVZnZqzP55xcyqzOwz6b7vzGy9me2NvQy8rf1lLb4V/X181cxmdbgC51xKfUk6TS3X/v1JUklM++mS/ldStqSxksrVMlAvMzo9TlKf6HtOD3s7urHd90j65+j0GEkbw64pAdt0u6TPx2mPuy/DrreL23aepEh0+uuSvu7ZvvPi96rVNg2TNCs6PUDSm9Gfxbg/p+n4JWm7pCGt2u6WdEt0+pZjP6vp+hX92Xxf0uh033eSFkiaFft/Rlv7S9KFkn4rySSdJekvHS0/5Y7gXS+8/a2ZmaSVkh4Ju5YkaWtfpg3n3B+cc43Rly+o5Z4OPkn736vWnHO7nXMvR6erJW1S77iT5gpJ349Of1/SpeGVkhBLJJU753aEXUhPOeeelrS/VXNb+2uFpB+4Fi9IKjCzYe0tP+UCvh0+3/52vqQ9zrmtMW1jzexvZvY/ZjY/rMIS4FPR7qT1MV2DPuyzWB9Vy1/Wx/iw73zbRycwszGSZkr6S7Qp3s9pOnKS/mBmL1nL3UAlqcg5tzs6/b6konBKS5hVOvFgyJd9d0xb+6vLv5OhBLyZPWVmG+N8pfURQjyd3NardOIP7G5Jo5xzMyV9VtKPzCwvmXV3VgfbVyZpvKQZatmme8Kstas6s+/M7Da13Ovhh9GmtNl3vZWZ9Zf0qKTPOOeqlOY/p63Mc87NUssTOz9pZgtiZ7qWvt60vXTKWm6Qdomkn0WbfNp3J+np/urRdfDd5UK6/W0YOtpWM4uo5ZG7s2M+UyepLjr9kpmVS5okqUe3LQxCZ/elmX1H0q+jL9vblymjE/vuekkXSVoS/UVMq33XgbTYR11lZllqCfcfOud+LknOuT0x82N/TtOOc25X9PteM3tMLada9pjZMOfc7miX7t5Qi+yZCyS9fGyf+bTvYrS1v7r8O5lOXfS+3v52qaTNzrmdxxrMrNDMMqPT49SyrW+FVF+3tTo/dJmkYyNF29qXacPMzpf0BUmXOOdqY9q92HdK/9+rk0THujwsaZNz7t6Y9rZ+TtOKmfUzswHHptUyEHSjWvbbddG3XScpsIeEJcEJvZ2+7LtW2tpfj0u6Njqa/ixJh2K68uMK5Qi+Pdb7bn/b+nyS1DKy8g4za5DULOkm51zrgRjp4G4zm6GWLqbtkj4uSe3tyzTyoFquAniyJTf0gnPuJnmy75xzjWn+exXPuZI+Iuk1i16SKumLkq6K93OahookPRb9eYxI+pFz7ndm9qKkn5rZjZJ2qGVAb9qJ/tGyTCfun7j/x6QLM3tE0iJJQ8xsp6QvS7pL8ffXE2oZSb9NUq2kGzpcfrRnEQAAeCSduugBAEAnEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4KH/DzEy50W5R1pBAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAsYklEQVR4nO3deZwcdZ3/8fen58zM5CYJQyb3RUICkYwcqyDXckQwRAVh5VBZo7virruw/gAfPxAQF1F01fXYhMXFVTlUEFxZ5BAkChESBASSkDBJICHJZCZ3Jpnzs39MBzqTmczV1dX97dfz8ehHuqu6qj6d6pn3fL/1rSpzdwEAgLAk4i4AAACkHwEPAECACHgAAAJEwAMAECACHgCAABHwAAAEKC0Bb2Z3mlmtmb2SMm2YmT1mZquS/w5NTjcz+46ZrTazl83s2HTUAAAA3pWuFvx/STq7w7RrJD3h7lMkPZF8LUnnSJqSfCyQ9IM01QAAAJLSEvDu/rSkrR0mz5N0V/L5XZLOT5n+Y2+3RNIQM6tMRx0AAKBdlMfgR7n7xuTzTZJGJZ+PlvRWyvvWJ6cBAIA0KczERtzdzaxX18Q1swVq78JXeXn5nCOPPDKS2gAAyEbLli2rc/cRfV0+yoDfbGaV7r4x2QVfm5y+QdKYlPdVJacdwN0XSlooSdXV1b506dIISwUAILuY2br+LB9lF/1Dki5PPr9c0oMp0y9LjqY/QdKOlK58AACQBmlpwZvZ3ZJOkXSYma2XdIOkWyXdZ2ZXSFon6cLk2x+WNFfSakkNkj6ZjhoAAMC70hLw7n5xF7NO7+S9Lulz6dguAADoHFeyAwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECAorwfPAAAmVXzlLRvpzTmeGngqLiriRUBDwAIR3GF9ON57c+HjpfGnCCNOU4ae4I0YrqUyJ+OawIeABCO0XOkUbOkzX+Rtq1tf7x8T/u8ksFSVXV72I85vv29JRVxVhspAh4AEA4zqfqT0m/++eB5jTukN55of0iSFUiHzzywlT+4KrP1RsjcPe4aulVdXe1Lly6NuwwAQC7Yt1O6/UipeU/vlx1U9W7YjzleGjVTKoinLWxmy9y9uq/L04IHAISldJB09AXSsv/q/bI710uvrpdevb/9dVG5VDWnPezHnCCNea9UOjit5UaFgAcAhGfOJ/sW8B0175HWPN3+kCSZNHJ6e+CPTXbtD53QfmggyxDwAIDwHDFbOuI90tt/TvOKXap9rf2x7Eftk8pHSmOPf7eVX3mMVFic5u32HgEPAAhT9aekhz7fiwVMKihOPoqSj+TzRMrzjvMThe3zN70ibVkplQxqb9mPf79UflhkH687BDwAIEyzLpCGT+kQ1slAfifIU54nCuKuOK0IeABAmIoGSONOjLuK2OTPJX0AAMgjBDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwANAltrXsk97mvfI3eMuBTmoMO4CAACde2P7G7roNxfJZKooqlB5cbkumX6JLj/q8rhLQw6INODNbJqke1MmTZR0vaQhkj4taUty+nXu/nCUtQBArpkxfIaqKqq0fvd67WrepV3NuzSybGTcZSFHRNpF7+4r3X22u8+WNEdSg6QHkrO/tX8e4Q4ABzMznTPhnAOmzTxsZkzVINdk8hj86ZLecPd1GdwmAOS0s8af9c7zISVDVFVRFWM1yCWZDPiLJN2d8vpKM3vZzO40s6Ed32xmC8xsqZkt3bJlS8fZAJAXpg6dqomDJ0pqb72bWcwVIVdkJODNrFjShyT9PDnpB5ImSZotaaOk2zsu4+4L3b3a3atHjBiRiTIBIOuYmc6ecLYkadZhs2KuBrkkUy34cyS94O6bJcndN7t7q7u3SVok6bgM1QEAOefs8e0Bz/F39EamAv5ipXTPm1llyrz5kl7JUB0AkHMmDJ6gI4cdScCjVyI/D97MyiX9taTPpEy+zcxmS3JJazvMAwB0cMWsKzSsdFjcZSCHRB7w7r5H0vAO0y6NersAEJKzxp3V/ZuAFFyqFgByAKPn0VsEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADAILk7nL3uMuIDQEPAAiSmUkueVt+Bn1h3AUAABAVS5iklJC3ZPDnAVrwAIDgWcIODvvAEfAAgLxhlhL0gR+jp4seAJB39nfTdwz5kLrvacEDAPKWmb3z2C+UVj0BDwCAdFDI53rQR95Fb2ZrJe2S1Cqpxd2rzWyYpHsljZe0VtKF7r4t6loAAOhOavd9LstUC/5Ud5/t7tXJ19dIesLdp0h6IvkaAICskevH4+Pqop8n6a7k87sknR9THQAABCkTAe+SHjWzZWa2IDltlLtvTD7fJGlUBuoAACBvZOI0ufe7+wYzGynpMTNbkTrT3d3MDjrQkfxjYIEkjR07NgNlAgAQjshb8O6+IflvraQHJB0nabOZVUpS8t/aTpZb6O7V7l49YsSIqMsEACAokQa8mZWb2cD9zyWdKekVSQ9Jujz5tsslPRhlHQAA5Juou+hHSXogORKxUNLP3P0RM3te0n1mdoWkdZIujLgOAADySqQB7+41ko7pZHq9pNOj3DYAAPmMK9kBABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHAKCH/rJ+h9bU7Ym7jB4pjLsAAACymbvryZW1Wvh0jfY1t+n+v/uruEvqkcgC3szGSPqxpFGSXNJCd/+2mX1Z0qclbUm+9Tp3fziqOgAA6IvGllb96s8bdMfiNVpVu1sFCdNDV75PiYTFXVqPRNmCb5F0lbu/YGYDJS0zs8eS877l7t+IcNsAAPTJ9oYm/WTJOt317Dpt2dX4zvTLTxyvo44YHGNlvRNZwLv7Rkkbk893mdlySaOj2h4AAP3x1tYG3bG4Rj9ftl4NTa0HzKscXKqrzpwaU2V9k5Fj8GY2XtJ7JP1J0vskXWlml0laqvZW/rZM1AEAQEcvvbVdC5+u0SOvblJrm3f6nhvOm6HyktwathZ5tWZWIemXkr7g7jvN7AeSblb7cfmbJd0u6VOdLLdA0gJJGjt2bNRlAgDyiLvr8eW1WvR0jZ5bu/WQ7z39yJE6e2ZlhipLn0gD3syK1B7uP3X3+yXJ3TenzF8k6X86W9bdF0paKEnV1dWd/0kFAEAv7Gtu1f0vbNAdf6hRzZbuT3cbUFSgG+cdlYHK0i/KUfQm6T8lLXf3b6ZMr0wen5ek+ZJeiaoGAAAkadueJv33knX68bNrVbe7qcfL/eMZU1Q1tCzCyqITZQv+fZIulfQXM3sxOe06SReb2Wy1d9GvlfSZCGsAAOSxdfV7dMfiNfrFsvXa29za/QIppo0aqL99/4SIKotelKPo/yCps5MFOecdABCpF97cpoW/r9Gjr21SF+PmDslMumX+TBUW5O4FX3NrSCAAAF1oa3M9tnyzFj1do6Xr+ndy1seqx6h6/LA0VRYPAh4AkNP2NbfqF8vW684/rFFNGq4TP7y8WNecc2QaKosXAQ8AyElb9zTprmfW6idL1ql+T88HznXnurnTNaSsOG3riwsBDwDIKWvq9mjR4hrd/8J67WtuS+u6T5g4TB+ZU5XWdcaFgAcA5ISla7dq4dM1enz55j4NnOtOcUFCt8yflf4Vx4SABwBkrbY2129f3aRFi2v0wpvbI93WZz4wUZNGVES6jUwi4AEAWWdvU6t+vuwt/ecf1mhdfUPk2xs3vEyfO3Vy5NvJJAI+h7i7WpubVVic+4M/AKAzdbsb9eNn1uq/l6zTtobmjG335nkzVVpUkLHtZQIBn0vc9cpTj2vise/VoMNGxF1Nv7S6q8A6uw4SgHz0xpbdumNxje5/YYMaW9I7cK475x5dqZOn5vbv1M4Q8DnEEgnNPnOuVj67WC1NjRp2RO6O9NzX1qaWNtfgIr6CQD77U029Fi2u0RMrauUx3FZsYGmhrj9vRuY3nAH8ds1B0048SeteflEtTU0aOX5i3OX0SXlBgZbv3aviREIDcvhSkAB6r7XN9cgrm7RwcY1eemt7rLX8y1nTNHJgaaw1RIWAz1Hjjp6tzTWrtemNVTp80pS4y+mTI8tL9Wj9Tp05fJCM7nogeA1NLbrv+bd05x/X6s2t0Q+c684xVYN1yfHj4i4jMgR8Dhs1cbK2bXpbG1etVOWUaXGX02tmpupB5fr1lh360MghcZcDICK1u/bprmfW6qd/elPbMzhw7lAKEqZb5s9SIhFu44KAz3FDDz9Ce0q36e3XV+iIqbl37eThxYUaUligZ7fv1olDwjn/FIC0unaXFj5do1+9+LaaMjxwrjuXnzheM0cPjruMSBHwASgfMlRFJSU5G/InDxuo9fvSdx1pAPF69o32gXNProxn4Fx3KgeX6qozp8ZdRuQI+EAUDyjTqImTtblmtUZOmJRzx7SrSjm3H8h1u/Y16+N3/Ekvr98RdymHdP25M1ReEn78MXw5IAWFhRo1cbK2blivttbWuMsBkGdW1e7O+nA/7ciROmdWZdxlZAQBH6DhVWO0Z/s2tbZkx2AWAPlhzZb+34s9SgOKCnTjh46Ku4yMIeADNXD4YWre10jIA8iYNXXZHfD/cPoUjRlWFncZGUPAB6y0okLe5mpro7seQPSyOeCnjRqovz1pQtxlZFT4owzyXGFxsTwbh7ECCE5Nlga8mXTL/JkqyrOrZubXp81TuTaiHkDucXetq8/OgL9wzhhVjx8WdxkZR8ADAPpt0859amjKvsOBw8qLde3c3Ls+SDoQ8ACAfsvWEfTXzZ2uIWX5eZ0NAh4A0G/ZePz9hInD9NE5uXtb7f4i4AEA/ZZtI+iLCxL6yvmz4i4jVgQ8AKDfsi3gF5w8UZNH5vcNrAh4AEC/ZVPAjxtepitPmxx3GbEj4AEA/dLS2qa3tjbEXcY7bpo3U6VFBXGXETsCHgDQL29ubVBLW3ZcUOuDR1fqA1NHxF1GViDgAQD9ki3d8wNLC3XDuTPiLiNrEPBAzPbu3Rt3CUC/ZEvAX33mNI0cVBp3GVmDgAdi9vrrr+vhhx9WW1tb3KUAfZIN58AfUzVYl54wLu4ysgoBD8SstLRUzz33nO6++241NjbGXQ7Qa3Ffxa4gYbpl/iwlEtx3IxUBD8SspKREkrRq1Srdeeed2rFjR8wVAb0Tdxf9ZSeO08zRg2OtIRsR8EDM9ge8JG3evFmLFi3S22+/HWNFQM81NLVo8659sW3/8EGluurMabFtP5sR8EDMUgNeknbv3q0f/ehHWrFiRUwVAT23pm6PPMYz5K4/b4YqSgrjKyCLEfBAzDoGvCQ1Nzfrnnvu0bPPPiuP87cn0I04u+dPnTZCc2dVxrb9bEfAAzHrLOD3++1vf6uHH35Yra3Zd59tQIpvgF1pUUI3zZsZy7ZzBQEPxKywsFCFhV13MT7//PO6++67tW9ffMc5ga7E1YL/h9OnaMywsli2nSsIeCALHKoVL0mrV69mhD2yUhznwE8dVaFPnzQx49vNNQQ8kAW6C3hJqq2t1aJFi7Rhw4YMVAT0TKZb8GbSLfNnqaiA+OoO/0NAFigt7dnlNfePsF++fHnEFQHd27qnSTv2Nmd0mxfMqdJ7xw/L6DZzFQEPZIGetOD3a2lp0b333qtnnnmGEfaI1Zq63Rnd3rDyYl17zvSMbjOXEfBAFuhNwO/36KOP6vHHH4+gGqBnajI8gv7ac47U0PLijG4zlxHwQBboS8BLYmQ9YpXJ4+/HTximC6rHZGx7IYgt4M3sbDNbaWarzeyauOoAskFfA37KlClprgTouUwFfHFBQrfM55z33ool4M2sQNL3JJ0jaYaki81sRhy1ANmgp4PsUiUSCU2YMCGCaoCeyVTAf/rkCZo8cmBGthWSuFrwx0la7e417t4k6R5J82KqBYhdX1rwY8eO7XPLH+gvd9fa+ugDfuywMn3+NHqq+iKugB8t6a2U1+uT095hZgvMbKmZLd2yZUtGiwMyrS9BTfc84vT2jn3a19wW+XZuPn+mSosKIt9OiLJ2kJ27L3T3anevHjFiRNzlAJHqS8BPnjw5gkqAnsnENeg/eHSlPjCV3/99FVfAb5CUOhyyKjkNyEu9DfiBAwdq5MiREVUDdC/qc+AHlhTqhnMZmtUfcQX885KmmNkEMyuWdJGkh2KqBYhdbwfZTZ48WWYWUTVA96K+Bv1VZ07VyEG9H3yKd3V9C6sIuXuLmV0p6beSCiTd6e6vxlELkA1624Ln+DviFuUI+qOrBuuyE8dHtv58EUvAS5K7Pyzp4bi2D2ST3gS8mWniRO6khXhFFfAFCdNX589SIkEPVX9l7SA7IJ/0JuDHjBnTp/PmgXRpbm3T+m17I1n3pSeM08zRgyNZd74h4IEs0JuAp3secVtX36DWtvTf6GjUoBJdfda0tK83XxHwQBZIJBIqLu7ZTTQ4PQ5xi6p7/obzjlJFSWxHjoNDwANZoiet+IqKCh1++OEZqAboWhSnyJ06bYTmzqpM+3rzGQEPZImeBDynxyEbpLsFX1qU0E3zuJlMuhHwQJboacADcUv3feA/f9oUjRlWltZ1goAHskZ3Ac/pccgW6WzBTxlZoQUn872OAgEPZInuTn2rqqpSWRmtHMRrT2OLanc1pmVdZtIt82epqIAoigL/q0CW6K4FT/c8skE6W+8fPbZKx00Ylrb14UAEPJAlCHjkgnRdg35YebGumzs9LetC5wh4IEscKuDLyspUWckpRIhfum4Te805R2poec+u/YC+IeCBLHGogJ88ebISCX5cEb90nAN/3IRhurB6TPdvRL/wGwPIEocaZEf3PLJFf4/BFxWYvjqfc94zgYAHssShWvCTJk3KYCVA1/ob8J8+aaImjxyYpmpwKAQ8kCW6CvjRo0ervLw8w9UAB6vb3aid+1r6vPzYYWX6h9O5WVKmEPBAlugq4OmeR7bob+v9xnlHqbSoIE3VoDsEPJAlCHhku/6MoP/grEqdOm1kGqtBdwh4IEt0NshuwIABGj16dAzVAAfr6znwA0sKdf15M9JcDbpDwANZorMW/KRJkzg9Dlmjr6fIXXXmVI0adOhLMSP9+M0BZImioqKDptE9j2zSl2Pws0YP1mUnjk9/MegWAQ9kiUQicVArnoBHtmhrc62rb+jVMgmTvjp/lhIJi6gqHAoBD2SR1ICvrKxURUVFjNUA79qwfa8aW9p6tcxlJ47XrKrBEVWE7hDwQBZJHWhH6x3ZpLfd86MGleiqM6dGVA16goAHskhqC56ARzbpbcBff+5RGlh68LgSZA4BD2SR/QFfUlKiqqqqmKsB3tWbgD9l2gh98Gjufhg3Ah7IIvsDftKkSSoo4IpfyB49PQe+tCihm+dxM5lsQMADWWR/wNM9j2zT03PgP3/aFI0ZVhZxNegJAh7IIvsH2RHwyCZNLW3asG1vt++bMrJCC06emIGK0BMEPJBFSkpKNGrUKA0aNCjuUoB3rKvfozY/9HvMpK+cP1NFBcRKtmBPAFmkpKSE1juyTk+Ov3/k2CodP3F4BqpBTxXGXQCAd+1vwQPZpLsR9EPLinTd3OkZqgY9RQseyCKDBw/W2LFj4y4DOEB3t4m99pzpGlZenKFq0FMEPJBFxo0bx+lxyDqHasEfN36YLqjmmg3ZiIAHsgjhjmzU1TH4ogLTLfNnyoybyWQjjsEDPdTSsktbt/5RZgkNH36KEgm6JBG+XfuaVbe7sdN5f3vSRE0ZNTDDFaGnCHjgEBoa1qiu/inV1f1Ou3ev0JTJ1+jwwz9MiwV5o6vu+THDBugfT5+S4WrQGwQ8kKKtrUnbtz//Tqjv3btWkjR82Mk67r0PqbSU62sjv3QV8DfNm6nSIg4pZTMCHnmvsalO9XVPqa7+SW3d+ge1tr57Sc6CggpNnfIlVVZeQKsdeammkxH0c2cdrlOnjYyhGvQGAY+8496mXbteVV39k6qve1I7d73c6fuGDv0rTT/yVg0YMDrDFQLZo2MLvqKkUDecd1RM1aA3CHjkhZaW3dq67Y+qq3tS9fVPqalpS5fvLSgo0+TJ12r0ERfTakfe6xjwV505VaMGlcZUDXqDgEewGhrWvtNK37b9Obk3d7vMkCHHa8b0WzVgABebASRpbUrAzxo9WJedOD6+YtArBDyC0T5Abqnq659SXf3v1NCwpsfLJhKlmjzpi6qqulRmXB4CkKTaXfu0q7FFkpQw6Zb5M1WQoFcrVxDwyGmNTXWqr39K9XVPqX7r4gMGyPXU4MFzNGP6bSorG5/+AoEclnqJ2ktPGKejq4bEVwx6jYBHTnl3gNxTqq9/Ujt3viypm/tYdiGRKNakiVdrzJhPyIzTfYCO9h9/HzmwRFefNS3matBbBDyy3v4Bcu2nsj2lpqbafq9z0KDZmjH9NpWXT0pDhUCY9gf89efN0MDSopirQW9FEvBm9nVJ50lqkvSGpE+6+3YzGy9puaSVybcucffPRlEDwrFly2NavuL/yb213+syK9bEiV/Q2DFXKJHg71vgUGrq9ugDU0fo3KOPiLsU9EFUo4kekzTT3Y+W9Lqka1PmveHus5MPwh3dqqycr1mzfqBEoqRf6xk4cKaOe++DGj/uM4Q70AObduzTzfNmxl0G+iiSgHf3R929JflyiSTuJYh+GXHY6XrP7B+rsHBQr5c1K9LECf+k6jm/UEXF1AiqA8LT1uY675hKjR1eFncp6KNMnA/0KUn/m/J6gpn92cx+b2YnZWD7CMSQIdWac+w9Kike1eNlKiqm673VD2jChCuVSHAMEeipptY2feKvJsRdBvqhz/2UZva4pMM7mfUld38w+Z4vSWqR9NPkvI2Sxrp7vZnNkfQrMzvK3Xd2sv4FkhZI0tixXHQE7SoqpmnOnPv04kufOOR57mYFGj/u7zV+/N9zW1egD7iRTO4z976dYtTtis0+Iekzkk5394Yu3vOUpKvdfemh1lVdXe1Llx7yLcgzTU31evGlK7Rr118OmldePlUzpt+mQYNmxVAZAKSHmS1z9+q+Lh9JF72ZnS3pi5I+lBruZjbCkiccm9lESVMk1URRA8JWXDxcx77nJxo29H0pUxMaN+7vdNx7f0W4A8h7UQ0l/ndJJZIeS96sY//pcCdLusnMmiW1Sfqsu2+NqAYErrCwQsccc4defe1q7d69QjNmfF2DBx0Td1kAkBUiCXh3n9zF9F9K+mUU20R+SiSKNfOof1NbW7MKCvp3Gh0AhIS7aiDnmSUIdwDogIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECAIgt4M/uymW0wsxeTj7kp8641s9VmttLMzoqqBgAA8lVhxOv/lrt/I3WCmc2QdJGkoyQdIelxM5vq7q0R1wIAQN6Io4t+nqR73L3R3ddIWi3puBjqAAAgWFEH/JVm9rKZ3WlmQ5PTRkt6K+U965PTAABAmvQr4M3scTN7pZPHPEk/kDRJ0mxJGyXd3st1LzCzpWa2dMuWLf0pEwCAvNOvY/DufkZP3mdmiyT9T/LlBkljUmZXJad1XPdCSQslqbq62vtTJwAA+SbKUfSVKS/nS3ol+fwhSReZWYmZTZA0RdJzUdUBAEA+inIU/W1mNluSS1or6TOS5O6vmtl9kl6T1CLpc4ygBwAgvSILeHe/9BDzbpF0S1TbBgAg33ElOwAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABKoxipWZ2r6RpyZdDJG1399lmNl7Sckkrk/OWuPtno6gBAIB8FknAu/vH9j83s9sl7UiZ/Ya7z45iuwAAoF0kAb+fmZmkCyWdFuV2AADAgaI+Bn+SpM3uvipl2gQz+7OZ/d7MTupqQTNbYGZLzWzpli1bIi4TAICw9LkFb2aPSzq8k1lfcvcHk88vlnR3yryNksa6e72ZzZH0KzM7yt13dlyJuy+UtFCSqqurva91AgCQj/oc8O5+xqHmm1mhpA9LmpOyTKOkxuTzZWb2hqSpkpb2tQ4AAHCwKLvoz5C0wt3X759gZiPMrCD5fKKkKZJqIqwBAIC8FOUgu4t0YPe8JJ0s6SYza5bUJumz7r41whoAAMhLkQW8u3+ik2m/lPTLqLYJAADacSU7AAACRMADABAgAh4HcXdt+OIXteV731NLXV3c5QAA+iDSK9khN+165BHtfOjXkqT6H/6HBs2dq6GXXaoBRx0Vc2UAgJ6iBY8DtO7erc1f/dd3Xntzs3Y8+KDWfuSjWvvxS7TzkUfkLS0xVggA6Ala8DhA3Xf/XS1dXBp477Jl2rBsmQoPP1xD/+ZvNOSCj6pw6NAMVwgA6Ala8HjHvhUrtPUnP+n2fS2bNmnLN7+p1aeepo3//3rtW/l6BqoDAPQGAQ9Jkre1adOXb5RaW3u+zL592v7zn2vNvHla94lPatcTT8h7sTwAIDp00UOStOP++7X3xRf7vHzDkiVqWLJERWPGaOjH/0ZDPvxhFQwalL4CAQC9Qgseatm2TbVf/0Za1tX81luqvfVrWnXKqdp0081qrFmTlvUCAHqHgIdqb79drTt2pHWd3tCgbT/7mWrmztWbn16g3YsXy9va0roNAEDX6KLPcw0v/Fk7fhHt7QH2LF6sPYsXq3jCBA295OMacv75SpSXR7pNAMh3tODzmLe0aNONN2Zse01r1mjzzV/Rqg+cos3/equa3norY9sGgHxDwOexrT/5iRpXrsz4dtt279bWu+7SG2eepbf+/nPas2SJ3D3jdQBAyOiiz1PNmzer7jvfjbcId+3+3e+0+3e/U8mUKRp66SUafN55SgwYEG9dABAAWvB5avOtt6qtoSHuMt7RuGqVNl1/g1afcqpqb79dzRs3xl0SAOQ0Aj4P7f7DH7Xrfx+Ju4xOte7YofpFd2j1GX+t9V/4JzUsW0b3PQD0AQGfZ9oaG7Xp5pviLqN7ra3a9cgjWvfxS7T2Ix/V9gd+pbamprirAoCcQcDnmfo77lDzujfjLqNX9r32mjZee61Wn3qatnznu2qurY27JKRR3frdcZcABImAzyNNb76p+v9YGHcZfdZaX6+6739fq08/Qxv+5Yva+/LLcZeEfqrfsFvbN2fPWBAgJAR8nnB3bbr5K/IQurmbm7Xz17/W2gs/prUfu0g7fvMbeXNz3FWhD/7y1HqVDSqOuwwgSAR8ntj16GPas3hx3GWk3d6XXtLbV12t1aefobof/lAtW7fGXRJ6qHFvi1Y+t1llgwl4IAoEfB5o3b1Hm7/61bjLiFRLba22/Nu3tfqUU/X2dV/SvhUr4i4J3VjxzEa1NLbSggciQsDngbrvf18tmzfHXUZGeFOTdtx/v9acP1/rLr1MOx99VN7SEndZ6ETtmztVVFKg4lKutwVEgZ+swO17/XVtveuuuMuIRcPzz6vh+edVdMQR7feo/+hHVTB4cNxlIamkrIjWOxAhWvAB87Y2bbrxJqm1Ne5SYtX89tuq/fo3tOqUU7Xxy19W4+rVcZcESSVlhRx/ByJEwAdsx68e1N5ly+IuI2v43r3afs+9qjn3PL35qSu068knuUd9jErLilQ2qCTuMoBg0UUfqNbt21X79a/HXUbW2vPMM9rzzDMqGjdWwz5+iQZ/eL4KKiriLiuvlJQVqpwWPBAZAj5Qtd/6N7Vu2xZ3GfEqKFDBkCEdHoMPmlY4ZIjaduwg4DOspLyILnogQgR8gPa+9JK233df3GWkVaKsrJOwTnkMPXhaoqJCZhZ36ehCSVkhXfRAhAj4wHhLizbeeKOUrXdg69iqHtyxRX1wC7tgyBAlimnphYZBdkC0CPjAbLv7HjW+tjwj26JVjf4oLS+St2XpH6JAAAj4gDTX1mrLt7/d+wULCjppSdOqRrRKygr5Yw+IEAEfkNqv3SZva1PhEZXvDB47ZAs7tVWd4IxJZFZhUYEKCvneAVEh4ANS+a9f1Wha1cghtOCB6PDnc0DoMgcA7EfAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAEKB+BbyZXWBmr5pZm5lVd5h3rZmtNrOVZnZWyvSzk9NWm9k1/dk+AADoXH9b8K9I+rCkp1MnmtkMSRdJOkrS2ZK+b2YFZlYg6XuSzpE0Q9LFyfcCAIA06tfNZtx9udTpDSPmSbrH3RslrTGz1ZKOS85b7e41yeXuSb73tf7UAQAADhTVMfjRkt5Keb0+Oa2r6QAAII26bcGb2eOSDu9k1pfc/cH0l/TOdhdIWpB82Whmr0S1rSxwmKS6uIuIEJ8vt4X8+UL+bBKfL9dN68/C3Qa8u5/Rh/VukDQm5XVVcpoOMb3jdhdKWihJZrbU3as7e18I+Hy5jc+Xu0L+bBKfL9eZ2dL+LB9VF/1Dki4ysxIzmyBpiqTnJD0vaYqZTTCzYrUPxHsoohoAAMhb/RpkZ2bzJX1X0ghJvzGzF939LHd/1czuU/vguRZJn3P31uQyV0r6raQCSXe6+6v9+gQAAOAg/R1F/4CkB7qYd4ukWzqZ/rCkh3u5qYW9ry6n8PlyG58vd4X82SQ+X67r1+czd09XIQAAIEtwqVoAAAKUdQGfT5e/NbN7zezF5GOtmb2YnD7ezPamzPthzKX2iZl92cw2pHyOuSnzOt2XucLMvm5mK8zsZTN7wMyGJKcHse+k3P256oqZjTGzJ83steTvmH9MTu/ye5prkr9H/pL8HEuT04aZ2WNmtir579C46+wtM5uWsn9eNLOdZvaFXN93ZnanmdWmngbe1f6ydt9J/jy+bGbHdrsBd8+qh6Tpaj/37ylJ1SnTZ0h6SVKJpAmS3lD7QL2C5POJkoqT75kR9+fow+e+XdL1yefjJb0Sd01p+ExflnR1J9M73Zdx19vLz3ampMLk869J+lpg+y6In6sOn6lS0rHJ5wMlvZ78Lnb6Pc3Fh6S1kg7rMO02Sdckn1+z/7uaq4/kd3OTpHG5vu8knSzp2NTfGV3tL0lzJf2vJJN0gqQ/dbf+rGvBu/tyd1/Zyax3Ln/r7msk7b/87XFKXv7W3Zsk7b/8bc6w9mv9Xijp7rhryZCu9mXOcPdH3b0l+XKJ2q/pEJKc/7nqyN03uvsLyee7JC1XflxJc56ku5LP75J0fnylpMXpkt5w93VxF9Jf7v60pK0dJne1v+ZJ+rG3WyJpiJlVHmr9WRfwhxDy5W9PkrTZ3VelTJtgZn82s9+b2UlxFZYGVya7k+5M6RoMYZ+l+pTa/7LeL4R9F9o+OoCZjZf0Hkl/Sk7q7Huai1zSo2a2zNqvBipJo9x9Y/L5Jkmj4iktbS7SgY2hUPbdfl3tr17/TMYS8Gb2uJm90skjp1sInenhZ71YB35hN0oa6+7vkfTPkn5mZoMyWXdPdfP5fiBpkqTZav9Mt8dZa2/1ZN+Z2ZfUfq2HnyYn5cy+y1dmViHpl5K+4O47lePf0w7e7+7Hqv2OnZ8zs5NTZ3p7X2/Onjpl7RdI+5CknycnhbTvDtLf/dWv8+D7ymO6/G0cuvusZlao9lvuzklZplFSY/L5MjN7Q9JUSf26bGEUerovzWyRpP9JvjzUvswaPdh3n5B0rqTTkz+IObXvupET+6i3zKxI7eH+U3e/X5LcfXPK/NTvac5x9w3Jf2vN7AG1H2rZbGaV7r4x2aVbG2uR/XOOpBf277OQ9l2KrvZXr38mc6mLPtTL354haYW7r98/wcxGmFlB8vlEtX/Wmpjq67MOx4fmS9o/UrSrfZkzzOxsSV+U9CF3b0iZHsS+U+7/XB0kOdblPyUtd/dvpkzv6nuaU8ys3MwG7n+u9oGgr6h9v12efNvlkiK7SVgGHNDbGcq+66Cr/fWQpMuSo+lPkLQjpSu/U7G04A/F8u/ytx2PJ0ntIytvMrNmSW2SPuvuHQdi5ILbzGy22ruY1kr6jCQdal/mkH9X+1kAj7Xnhpa4+2cVyL5z95Yc/7nqzPskXSrpL5Y8JVXSdZIu7ux7moNGSXog+X0slPQzd3/EzJ6XdJ+ZXSFpndoH9Oac5B8tf60D90+nv2NyhZndLekUSYeZ2XpJN0i6VZ3vr4fVPpJ+taQGSZ/sdv3JnkUAABCQXOqiBwAAPUTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECA/g/LUCBAVU3c0QAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAhSUlEQVR4nO3de5RddX338fc3mSQQiAmQEFOI5dIAcg0wIq1IVagCXpD24bZ8FFs1+hRWa22fLq1toVa7WivaWi9d4SkWq4IXQNBSSkJbqbWgE0mTQAIJkEBCyI1LGHJjMt/nj9mBk2Fym5kze85v3q+1zpp9fvucvb977TP5ZO/z+/0mMhNJklSWUXUXIEmSBp8BL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFWhQAj4iro+ItRGxqKHt4IiYExFLq58HVe0REV+MiGURsSAiThuMGiRJ0ssG6wr+H4HzerV9HLg7M2cAd1fPAc4HZlSPWcBXB6kGSZJUGZSAz8x7gKd7NV8I3FAt3wC8u6H969njXmBSREwbjDokSVKPZn4HPzUzV1fLTwFTq+XDgCcaXreyapMkSYOkbSh2kpkZEfs0J25EzKLnFj4HHHDA6ccdd1xTapMkaTiaN2/e+syc0t/3NzPg10TEtMxcXd2CX1u1rwKmN7zu8KptJ5k5G5gN0N7enh0dHU0sVZKk4SUiVgzk/c28RX87cEW1fAVwW0P7+6re9GcCzzXcypckSYNgUK7gI+JG4E3A5IhYCVwN/CXwnYj4ALACuKR6+R3ABcAyYBPwm4NRgyRJetmgBHxmXr6LVef08doErhyM/UqSpL45k50kSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyIAfITKz7hIkSUPIgB8hcsv2ukuQJA0hA36E6N70Yt0lSJKGkAE/QnRv6qq7BEnSEDLgR4DMpHuzAS9JI4kBPwLk5i7GvPqAusuQJA2htroLUPONGj+m7hIkSUPMK3hJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JTbaqc1XdJWgEamrAR8SxETG/4bExIj4aEddExKqG9guaWYck1WlL1xa+tuhrdZehEaapAZ+ZD2XmzMycCZwObAJurVZ/Yce6zLyjmXVIUp2OnnQ09z11HzcuubHuUjSCDOUt+nOARzJzxRDuU5KGhfe+9r38xX1/wfeXfb/uUjRCDGXAXwY0/vf1qohYEBHXR8RBvV8cEbMioiMiOtatWzd0VUpSE/zKL/wKR008iqt/cjV3Lr+z7nI0AgxJwEfEWOBdwHerpq8CRwMzgdXAtb3fk5mzM7M9M9unTJkyFGVKUtNEBO957Xvozm4+cc8n+NETP6q7JBVuqK7gzwd+nplrADJzTWZuz8xu4DrgjCGqQ5Jq886j38nEcRPpyi4+9h8f497V99Zdkgo2VAF/OQ235yNiWsO6i4BFQ1SHJNVm/7b9ufiYiwHY1r2N3/m33+H+tffXXJVK1fSAj4gDgF8Dbmlo/mxELIyIBcCbgd9rdh2SNBxceuyltEUbAJu7NvPbc3+bBzY8UHNVKlHTAz4zX8jMQzLzuYa292bmSZl5cma+KzNXN7sOSRoOXn3Aq/n0WZ/m4P0OBqDzxU4+POfDLH1mac2VqTTOZCdJQ+ztR72d2999O5ceeylB8NzW55g1ZxYrNjqKWIPHgJekGkwcN5E/PvOPufHtN3LiISeyfvN6PnjXB3my88m6S1MhDHhJqtEJk0/gGxd8gz8580/Y9OImPnTXh1i3ybk/NHAGvCTVbPSo0Vxy7CX84KIfcNrU05g1ZxbPbHmm7rLU4gx4SRomDt7vYP78DX/On/7yn3Jtx7Vs3Lax7pLUwtrqLkCStLNTDz2VkyafxJKnl3DCIScQEXWXpBZkwEvSMNQ2qo0TJ59YdxlqYd6ilySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBWozIDf8lzdFUiSVKvyAn7tErj2OLjzj+CF9XVXI0lSLcoL+Ls/BS9ugnu/DH9zMvzbp2Hzs3VXJUnSkCor4B+/Dx7655efv/gC3PPX8LenwH9+Hra9UF9tkiQNoXICPhPmXtP3ui3Pwt1/Bn87E+6bDV1bh7AwSZKGXjkBv/QuePwnu3/NC2vhX/4v/N3pcP83YHvX0NQmSdIQa3rAR8TyiFgYEfMjoqNqOzgi5kTE0urnQQPaSfd2mPtne//6556A266Er5wJi26B7u4B7V6SpOFmqK7g35yZMzOzvXr+ceDuzJwB3F0977+F34W1D+z7+zYshe/9Jsw+Gx6+q+c2vyRJBajrFv2FwA3V8g3Au/u9pa6t8G+fGVg1Ty2Eb10M178Nlv94YNuSJO21LZ2ddZdQrKEI+ATuioh5ETGrapuamaur5aeAqf3eesf18NzjAyyx8sR98I9vh6+/G1bNG5xtSpL6tGHVEzz1yMN1l1GsoQj4szLzNOB84MqIOLtxZWYmPf8J2ElEzIqIjojoWLduXd9b3rKxZxjcYHv03+G6t8BN74G1iwd/+5I0wm3bvIm5132Z6SecVHcpxWp6wGfmqurnWuBW4AxgTURMA6h+ru3jfbMzsz0z26dMmdL3xv/7S7BpQ7NKhyU/hK/8MtwyC55+tHn7kaQRJDO58yt/w9SjZzC6bUzd5RSrqQEfEQdExIQdy8BbgUXA7cAV1cuuAG7b5413roWffGmQKt2dhAXfhi+9Dn7wUdj45BDsU5LK9dPbvsfSn/6Ek97y1rpLKVpbk7c/Fbg1Inbs61uZeWdE/Az4TkR8AFgBXLLPW77ncz0z1Q2V7i6Y9zX4nxvhdR+Esz4GBxwydPuXpAKsWDCf/7rpnzjsuOM55LDpdZdTtKYGfGY+CpzSR/sG4Jx+b/jpx3o619Wha0vPVwPz/hF++cqex34T66lFklrMIdNfw+HHn8gJv9r/CNDeiWyBsd/t7e3Z0dHxcsPNH4KF36mvoEb7HwRv+CicMQvGjq+7Gkka9rq7t5Pd3X7/vgcRMa9h/ph91npT1T61sGdim+Fi8zMw92r44kz46XXQta3uiiRpWBs1arThPgRaL+Dn/hl9jKqrX+cauOMP4Eunw/xv9UyfK0lSTVor4Jf/GJbNqbuK3Xv2cfj+/+kZXvfA953nXpJUi9YJ+EyYc3XdVey99Q/Bd6+A694ES+c6z70kaUi1TsAv+SGs6tjz64ab1f8D3/wN+Nr5sGIPf85WkqRB0iIBn3D3p+ouYmAe/++ekP/Gb8CT99ddjSSpcK0R8JuehvWF/EGCZXPhlg/DlufqrkSSVLDWCPjnn6q7gsEz/Uz4rTudHEeS1FStEfDbCxlb/tp3wvu+D+MPrrsSSVLhWiPgS/C6D8HFN8CY/euuRJI0AjT7j80I4Nxreqaz7fmjO5IkNZ0B30yj2uDCr8Apl9ZdiSRphDHgm2XsBLj063D0W+quRJI0AhnwzXDgVHjP92DayXVXIkkaoQz4wTb5mJ5wP+gX665EkjSCGfCDafqZcPmNDoOTJNXOgB8sx70DfuP/OQxOkjQsOA5+MLzuQ3DJ1w13SdKw4RX8QDnGXZI0DBnw/eUYd0nSMGbA94dj3CVJw5wBv68c4y5JagEG/L5wjLskqUUY8HvLMe6SpBZiwO8Nx7hLklqM4+D3xDHukqQW5BX87jjGXZLUogz4vjjGXZLU4gz43hzjLkkqgAHfyDHukqRCGPA7OMZdklQQAx4c4y5JKo4B7xh3SVKBRvY4eMe4S5IKNXKv4B3jLkkq2MgLeMe4S5JGgJEV8GMPhEv/yTHukqTijZyAP3AqvOe7MO2UuiuRJKnpRkbAHzID/vfNjnGXJI0Y5Qf89NfD5Tc5xl2SNKKUHfCOcZckjVDljoN/3Qcd4y5JGrHKvII/52o46/cc4y5JGrHKCvhRbXDhl+GUy+quRJKkWjXtFn1ETI+If4+IByPigYj43ar9mohYFRHzq8cFg7LDsQf2DIMz3CVJauoVfBfw+5n584iYAMyLiDnVui9k5ucGbU+OcZckaSdNC/jMXA2srpafj4jFwGGDviPHuEuS9ApD0os+Io4ATgXuq5quiogFEXF9RBzU7w1Pfz184C7DXZKkXpoe8BFxIHAz8NHM3Ah8FTgamEnPFf61u3jfrIjoiIiOdZvylS847h3wvtucwEaSpD40NeAjYgw94f7NzLwFIDPXZOb2zOwGrgPO6Ou9mTk7M9szs/2gUW1s3jDm5ZWOcZckabea2Ys+gH8AFmfm5xvapzW87CJg0Z621bbfdka1JZ2rx7FlxlXkeZ+FUaMHv2hJkgrRzF70bwDeCyyMiPlV2x8Bl0fETCCB5cCH92Zj4w6Cce//InnSJXStX0/bpEnE2LGDX7UkSQVoZi/6HwN9TSV3xz5vLEb3DIM7+i0EMObQQwdaniRJRWuNuegnz4Cj31J3FZIktYzWCHg700mStE9aI+AlSdI+MeAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKVFvAR8R5EfFQRCyLiI/XVYckSSWqJeAjYjTwZeB84Hjg8og4vo5aJEkqUV1X8GcAyzLz0czcBtwEXFhTLZIkFaeugD8MeKLh+cqq7SURMSsiOiKiY926dUNanCRJrW7YdrLLzNmZ2Z6Z7VOmTKm7HEmSWkpdAb8KmN7w/PCqTZIkDYK6Av5nwIyIODIixgKXAbfXVIskScVpq2OnmdkVEVcB/wqMBq7PzAfqqEWSpBLVEvAAmXkHcEdd+5ckqWTDtpOdJEnqPwNekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFakrAR8RfR8SSiFgQEbdGxKSq/YiI2BwR86vH3zdj/5IkjXTNuoKfA5yYmScDDwOfaFj3SGbOrB4fadL+R4TM7Wza9Bhr1t7B9u1b6i5HkjSMtDVjo5l5V8PTe4H/1Yz9jCRdXZ10di6hs3MJz3curpYfort7M21tr+LsN/687hIl9bL2+S1MOXAcEVF3KRqBmhLwvfwW8O2G50dGxP3ARuCPM/M/h6CGlpGZbNnyRE+IP7+EzheW0Pn8EjZveXyX7znwwNf6D4g0DH23YyVXvvmX6i5DI1S/Az4i5gKv7mPVJzPztuo1nwS6gG9W61YDr8nMDRFxOvD9iDghMzf2sf1ZwCyA17zmNf0tc1jbvn0TnZ0P09m5mOc7l9DZuZjOzofYvr1zn7YzYcIJTapQUn+tfGYT/7VsvQGv2vQ74DPz3N2tj4j3A+8AzsnMrN6zFdhaLc+LiEeAY4COPrY/G5gN0N7env2tczjITLZuXd3r9vpiNm1aDgz80CYcePyAtyFpcP3t3KVMfdV+dZehEawpt+gj4jzgD4FfzcxNDe1TgKczc3tEHAXMAB5tRg112b59Ky9sWtpze71z8UuB3tX1XNP2OWGCAS8NJ4+tf4Fb7l/FlW86uu5SNII16zv4LwHjgDnVd8P3Vj3mzwY+FREvAt3ARzLz6SbV0FSZybZt6xpur++4Kn+UzO1DVseoUWMZP/6oIdufpD37wpyH2d6dHH7Q+LpL0QjWrF70fX7plJk3Azc3Y59DqavreTo7H2LbixsIggPGH8kB449i6qFvhwiCHR3eqp+vaAuoOsXt1L5T2y5e1+s1o0aNY9SoMU08Wkn7YslTG/nBgicBOPzg/WuuRiPZUPSiL05b2wQmTWqvuwxJw9Dn73qYrLrWTPcKXjVyqlpJGiQLVj7LXQ+uAWD0qGDaRDvZqT4GvCQNks/d9fBLy9Mm7kfbaP+JVX389EnSIPjZ8qe55+F1Lz339rzqZsBL0iD43L8+tNPzww+yg53qZcBL0gD9eOl67nts5xG/0w/2Cl71MuAlaYA+d9dDr2ib7hA51cyAl6QBmPvgGuY/8exOba8/8mBef+Qh9RQkVRwHL0n9lJlcO+flnvMnHz6RP3jrsZx9zJQaq5J6GPCS1E//vHA1i1dvZMahB/L7bz2G806cVndJ0ksMeEnqh+3dyc3zVnLtxadw0amHMWpU7PlN0hAy4CWpH17c3s3s97UzxslsNEwZ8JLUD/uNGV13CdJu+V9PSZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoGaFvARcU1ErIqI+dXjgoZ1n4iIZRHxUES8rVk1SJI0UrU1eftfyMzPNTZExPHAZcAJwC8AcyPimMzc3uRaJEkaMeq4RX8hcFNmbs3Mx4BlwBk11CFJUrGaHfBXRcSCiLg+Ig6q2g4Dnmh4zcqqTZIkDZIBBXxEzI2IRX08LgS+ChwNzARWA9fu47ZnRURHRHSsW7duIGVKkjTiDOg7+Mw8d29eFxHXAT+snq4CpjesPrxq673t2cBsgPb29hxInZIkjTTN7EU/reHpRcCiavl24LKIGBcRRwIzgJ82qw5JkkaiZvai/2xEzAQSWA58GCAzH4iI7wAPAl3AlfaglyRpcDUt4DPzvbtZ9xngM83atyRJI50z2UmSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSeolM+suYcAMeEmSennh2W11lzBgBrwkSb08u3ZTy1/FG/CSJPUyanTw9JMv1F3GgBjwkiT1MunQ8SxfuL7uMgbEgJckqZf9J4xh9bLn6i5jQAx4SZJ6iQi2vPAimztbt7OdAS9JUh8mTtmfxxdtqLuMfjPgJUnqw6Sp43lsgQEvSVJRJh06nice3MD2ru66S+kXA16SpD5MmjqebVu28+SyZ+supV8MeEmS+jDx0P0BWNGit+kNeEmS+jB2vzbGTxzLYwvXt+Ssdga8JEm7MOnQ8Wxct5ln12yqu5R9ZsBLkrQLk6aOB2B5C96mN+AlSdqFSYdWAd+C09Ya8JIk7cKkqT0d7VY/8hxbXnix5mr2jQEvSdIu7LhFn93J4w+21m16A16SpF141eT9iehZbrXv4Q14SZJ2YXTbKCZM7rlN//gDG+je3jqz2hnwkiTtxo6Odls3dfHUo63zJ2QNeEmSdmNHRzugpf74jAEvSSpSZg7KDHQ7ruABVrTQcDkDXpJUpIggdvSQG4AdPekBnnlqE8+ubY1Z7Qx4SZJ2ozHgAVYsbI3b9Aa8JEm7ceCkcYwe83Jctsqsdga8JEm7EaOCSYe+3NHuyYefZevmrhor2jsGvCRJe9DY0a67O3niwadrrGbvGPCSJO3BxF7fw7fCbXoDXpKkPWi8ggdYsWgD3d0DH4LXTAa8JEl70Lsn/ZbOF1nz2Maaqtk7BrwkSXvQOJvdDsP9Nr0BL0nSHux3wBjGjW/bqW35ghEY8BHx7YiYXz2WR8T8qv2IiNjcsO7vm7F/SZIGU0S84jb900++wMb1m2uqaM/a9vySfZeZl+5YjohrgcY/v/NIZs5sxn4lSWqWSYeOf8X37ssXbuDkNx9eU0W719Rb9NEzCfAlwI3N3I8kSc3W1/fww/mPzzT7O/g3Amsyc2lD25ERcX9E/Cgi3rirN0bErIjoiIiOdevWNblMSZJ2b2KvoXIAKx9+hm1bhuesdv0O+IiYGxGL+nhc2PCyy9n56n018JrMPBX4GPCtiHhVX9vPzNmZ2Z6Z7VOmTOlvmZIkDYre38EDdHclKxc/U0M1e9bv7+Az89zdrY+INuDXgdMb3rMV2Fotz4uIR4BjgI7+1iFJ0lCYOOWVt+ihZ7jcUacOvwvRZt6iPxdYkpkrdzRExJSIGF0tHwXMAB5tYg2SJA2Ksfu1ccCkca9oX75oAzkMZ7VrZsBfxis7150NLKiGzX0P+EhmDv8Z+yVJou+Odps3bmPtiudrqGb3mjJMDiAz399H283Azc3apyRJzTTp0PGseujZV7QvX7ieqUf22aWsNs5kJ0nSXuqrox3Apue3DXEle9a0K3hJkkrT+6/KAZz85sN5w8Uzaqhm9wx4SZL2UuMVfAScdckMTn7z9Bor2jUDXpKkvTRh8n7EqKBtzCje+sETOOKkyXWXtEsGvCRJe2n06FH8woxJnHXxLzH58Al1l7NbBrwkSfvgnVedwugxw7+P+vCvUJKkYaQVwh0MeEmSimTAS5JUIANekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUy4CVJKpABL0lSgQx4SZIKZMBLklQgA16SpAIZ8JIkFciAlySpQAa8JEkFMuAlSSqQAS9JUoEMeEmSCmTAS5JUIANekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgpkwEuSVCADXpKkAhnwkiQVyICXJKlABrwkSQUaUMBHxMUR8UBEdEdEe691n4iIZRHxUES8raH9vKptWUR8fCD7lyRJfRvoFfwi4NeBexobI+J44DLgBOA84CsRMToiRgNfBs4Hjgcur14rSZIGUdtA3pyZiwEioveqC4GbMnMr8FhELAPOqNYty8xHq/fdVL32wYHUIUmSdtas7+APA55oeL6yattVuyRJGkR7vIKPiLnAq/tY9cnMvG3wS3ppv7OAWdXTrRGxqFn7GgYmA+vrLqKJPL7WVvLxlXxs4PG1umMH8uY9BnxmntuP7a4Cpjc8P7xqYzftvfc7G5gNEBEdmdne1+tK4PG1No+vdZV8bODxtbqI6BjI+5t1i/524LKIGBcRRwIzgJ8CPwNmRMSRETGWno54tzepBkmSRqwBdbKLiIuAvwOmAP8cEfMz822Z+UBEfIeeznNdwJWZub16z1XAvwKjgesz84EBHYEkSXqFgfaivxW4dRfrPgN8po/2O4A79nFXs/e9upbi8bU2j691lXxs4PG1ugEdX2TmYBUiSZKGCaeqlSSpQMMu4EfS9LcR8e2ImF89lkfE/Kr9iIjY3LDu72sutV8i4pqIWNVwHBc0rOvzXLaKiPjriFgSEQsi4taImFS1F3HuoHV/r3YlIqZHxL9HxIPVvzG/W7Xv8nPaaqp/RxZWx9FRtR0cEXMiYmn186C669xXEXFsw/mZHxEbI+KjrX7uIuL6iFjbOAx8V+crenyx+n1cEBGn7XEHmTmsHsBr6Rn79x9Ae0P78cD/AOOAI4FH6OmoN7paPgoYW73m+LqPox/HfS3wp9XyEcCiumsahGO6BviDPtr7PJd117uPx/ZWoK1a/ivgrwo7d0X8XvU6pmnAadXyBODh6rPY5+e0FR/AcmByr7bPAh+vlj++47Paqo/qs/kU8Iutfu6As4HTGv/N2NX5Ai4A/gUI4Ezgvj1tf9hdwWfm4sx8qI9VL01/m5mPATumvz2DavrbzNwG7Jj+tmVEz1y/lwA31l3LENnVuWwZmXlXZnZVT++lZ06HkrT871Vvmbk6M39eLT8PLGZkzKR5IXBDtXwD8O76ShkU5wCPZOaKugsZqMy8B3i6V/OuzteFwNezx73ApIiYtrvtD7uA342Sp799I7AmM5c2tB0ZEfdHxI8i4o11FTYIrqpuJ13fcGuwhHPW6Lfo+Z/1DiWcu9LO0U4i4gjgVOC+qqmvz2krSuCuiJgXPbOBAkzNzNXV8lPA1HpKGzSXsfPFUCnnboddna99/p2sJeAjYm5ELOrj0dJXCH3Zy2O9nJ0/sKuB12TmqcDHgG9FxKuGsu69tYfj+ypwNDCTnmO6ts5a99XenLuI+CQ9cz18s2pqmXM3UkXEgcDNwEczcyMt/jnt5azMPI2ev9h5ZUSc3bgye+71tuzQqeiZIO1dwHerppLO3SsM9HwNaBx8f2VN09/WYU/HGhFt9PzJ3dMb3rMV2Fotz4uIR4BjgAFNW9gMe3suI+I64IfV092dy2FjL87d+4F3AOdUv4gtde72oCXO0b6KiDH0hPs3M/MWgMxc07C+8XPacjJzVfVzbUTcSs9XLWsiYlpmrq5u6a6ttciBOR/4+Y5zVtK5a7Cr87XPv5OtdIu+1OlvzwWWZObKHQ0RMSUiRlfLR9FzrI/WVF+/9fp+6CJgR0/RXZ3LlhER5wF/CLwrMzc1tBdx7mj936tXqPq6/AOwODM/39C+q89pS4mIAyJiwo5lejqCLqLnvF1RvewKoGl/JGwI7HS3s5Rz18uuztftwPuq3vRnAs813MrvUy1X8LsTI2/6297fJ0FPz8pPRcSLQDfwkczs3RGjFXw2ImbSc4tpOfBhgN2dyxbyJXpGAczpyQ3uzcyPUMi5y8yuFv+96ssbgPcCC6Makgr8EXB5X5/TFjQVuLX6PLYB38rMOyPiZ8B3IuIDwAp6OvS2nOo/Lb/Gzuenz39jWkVE3Ai8CZgcESuBq4G/pO/zdQc9PemXAZuA39zj9qs7i5IkqSCtdItekiTtJQNekqQCGfCSJBXIgJckqUAGvCRJBTLgJUkqkAEvSVKBDHhJkgr0/wF5+9rGDt/11QAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkD0lEQVR4nO3deXgc9Z3n8c+31ZItS5ZtWfIJxkC4Lwe0hElCnuxAEiADDiwBvIDJacjATA4yhGMDJDPMJCTAPDPJkHFmyJLdQCAhLAyBJECySSBLggwMGJvDJz5lW75lW5bU3/2jS6YtJFlHV5fq1+/X8/Sj6l9d33qqpY+q6lfV5u4CAABhySRdAAAAKD4CHgCAABHwAAAEiIAHACBABDwAAAEi4AEACFBRAt7M7jGzDWa2sKCt3syeNLM3o58TonYzs38ysyVm9rKZnVyMGgAAwNuKdQT/PyWd1aPteklPu/sRkp6O3kvS2ZKOiF7zJN1dpBoAAECkKAHv7r+TtLlH82xJ90bD90r6WEH7Dz3vOUnjzWxqMeoAAAB5cV6Dn+zu66Lh9ZImR8PTJa0qmG511AYAAIokW4qVuLub2aCeiWtm85Q/ha+amppTjj766FhqAwBgJFqwYMEmd28c6vxxBnyLmU1193XRKfgNUfsaSQcXTHdQ1LYfd58vab4kNTU1eXNzc4ylAgAwspjZyuHMH+cp+kclXRENXyHpkYL2uVFv+tMkbSs4lQ8AAIqgKEfwZna/pA9KajCz1ZJukfQNSQ+a2aclrZR0UTT545LOkbRE0i5JnyxGDQAA4G1FCXh3n9PHqDN6mdYlXV2M9QIAgN7xJDsAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAAcrGuXAzO0rSAwVNh0m6WdJ4SZ+VtDFqv9HdH4+zFgAAykmsAe/ur0uaJUlmViFpjaSHJX1S0l3u/u041w8AQLkq5Sn6MyQtdfeVJVwnAABlqZQBf4mk+wveX2NmL5vZPWY2oefEZjbPzJrNrHnjxo09RwMAgH6UJODNrErSeZJ+EjXdLelw5U/fr5N0R8953H2+uze5e1NjY2MpygQAIBilOoI/W9IL7t4iSe7e4u5d7p6T9H1Jp5aoDgAAykKpAn6OCk7Pm9nUgnHnS1pYojoAACgLsfailyQzq5H0IUlXFjTfbmazJLmkFT3GAQCAYYo94N29TdLEHm2Xx71eAADKGU+yAwAgQAQ8AATIu3JJl4CEEfAAEJjc3i55e1fSZSBhBDwABKZjfZsyYyqTLgMJI+ABICBdO/bm709C2SPgASAguxduUtWMsUmXgRGAgAeAQHS0tMlGZ2VmSZeCEYCAB4BA7Hx2rcac0JB0GRghCHgACMCepVtVMWGULMufdeTxSQCAlPOca/tTK1X7nqkHnhhlg4AHgJTb/Z8bVTmlhlvjsB8CHgBSzDty2vbkSo193/SkS8EIQ8ADQIrt/MNaVU6tUbahOulSMMIQ8ACQUl1tHdr+m7c09nSO3vFOBDwApNSOX7+lysYxqjqkLulSMAIR8ACQQp2tu7XzuXWqPX06D7ZBrwh4AEihbb9YoYq6KlUfx4Nt0DsCHgBSpn3ldu1+ZZNq3z9dVsHRO3pHwANAiri7tj2+XDY6q5qmKUmXgxGMgAeAFNnzaqv2rtyuujMOVmZURdLlYATLJl0AAGBgvDOntuYWNc47UaMOG5d0ORjhCHgASIncnk5NvPRoWSVH7jgwAh4AUqKitirpEpAiXIMHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAEKBs3CswsxWSdkjqktTp7k1mVi/pAUkzJa2QdJG7b4m7FgAAykWpjuD/q7vPcvem6P31kp529yMkPR29BwAARZLUKfrZku6Nhu+V9LGE6gAAIEilCHiX9CszW2Bm86K2ye6+LhpeL2lyCeoAAKBsxH4NXtL73X2NmU2S9KSZvVY40t3dzLznTNE/A/MkacaMGSUoEwCAcMR+BO/ua6KfGyQ9LOlUSS1mNlWSop8beplvvrs3uXtTY2Nj3GUCABCUWAPezGrMbGz3sKQPS1oo6VFJV0STXSHpkTjrAACg3MR9in6ypIfNrHtd97n7L8zseUkPmtmnJa2UdFHMdQAAUFZiDXh3XybppF7aWyWdEee6AQAoZzzJDgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIUGwBb2YHm9lvzGyRmb1qZp+P2m81szVm9lL0OieuGgAgCc9s2aGfrt+s1Xv2Jl0Kylg2xmV3SrrW3V8ws7GSFpjZk9G4u9z92zGuGwASs6WjS9csfkuSdNDoSp02rlanja/VaeNrdHj1KJlZwhWiHMQW8O6+TtK6aHiHmS2WND2u9QHASHF8bfW+4dV7OvTTPVv005YtkqSGyqxOG1+TD/xxNTqmtloVBD5iEOcR/D5mNlPSuyX9UdL7JF1jZnMlNSt/lL+lFHUAQCkcUl2lmoqM2rpy7xi3qaNTj23cpsc2bpMk1WUzOnVcPuz/bHytThhbraoM3aMwfObu8a7ArFbSbyXd5u4/M7PJkjZJckl/K2mqu3+ql/nmSZonSTNmzDhl5cqVsdYJAMV07oI39fz2tkHPV50xnVJXs++U/sl1NRpTQeCXIzNb4O5NQ50/1iN4M6uU9JCkH7n7zyTJ3VsKxn9f0mO9zevu8yXNl6SmpqZ4/wsBgCI7bmz1kAJ+d871zNadembrTklSpZlOGlsdBX6tTh1Xo7psRbHLRYDi7EVvkv5d0mJ3v7OgfWrBZOdLWhhXDQCQlONqRxdlOR3uat6+S995a4Mue3mZvrOy5cAzAYr3CP59ki6X9IqZvRS13ShpjpnNUv4U/QpJV8ZYAwAk4riCjnbFYpIumzax6MtFmOLsRf+M8p/Hnh6Pa50AMFIcXVOtjKR3drMbuj+vr9OM6lFFXCJCRs8NAIjBmIqMDh9T3DC+YjpH7xg4Ah4AYlLM0/TTR1XqjIl1RVsewkfAA0BMihnwl06byANxMCgEPADE5PgiBXyFSZdO5fQ8BoeAB4CYFOsI/qyGcZo8qrIoy0L5IOABICaTRlWqsWr4NytdMa2hCNWg3BDwABCj4Z6mP7S6Su+fUFukalBOCHgAiNGxwwz4y6c1KEPnOgwBAQ8AMRrOEfyojOniKfVFrAblhIAHgBgNp6PduY3jNbEI1/BRngh4AIjRYdWjNDoztFPsc3nuPIaBgAeAGGUzpqNrBn8Uf3TNaP2XcTUxVIRyQcADQMyGch1+7rSJMjrXYRgIeACI2bGD/G746kxGF9K5DsNEwANAzAZ7BH/B5PGqy1bEVA3KBQEPADEb7L3wc6fz5DoMHwEPADGrzVZoZnXVgKadNXaMTho7JuaKUA4IeAAogYHeDz93OrfGoTgIeAAogYFch6/LZjR70vj4i0FZIOABoAQGcgT/8cn1qqmgcx2Kg4AHgBIYSMBfzul5FBEBDwAlMG1UpSb0c+vbaeNqhvTEO6AvBDwAlICZ9Xu7HLfGodgIeAAokb462tVXVuijjeNKXA1CR8ADQIkcN7b3gJ8zdaJGZfhzjOLiEwUAJdJXR7vL+VpYxICAB4ASOWLMKFX2+Ia4D04Yq5nVoxKqCCEj4AGgRKoyGR1Vs/83y/HkOsSFgAeAEir86tgpVZX68EQ61yEeBDwAlFBhT/pLp9Urm7F+pgaGjoAHgBLq7miXkXTpVE7PIz4EPACUUHfAf7ihTtNGD+wrZIGhIOABoITGV2Y1fVSl5k7jyXWIFwEPACV2TuM4fbB+bNJlIHAEPACU2JdnTlHG6FyHeBHwAFBi4yqzSZeAMkDAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAACUW8GZ2lpm9bmZLzOz6pOoAACBEiQS8mVVI+q6ksyUdK2mOmR2bRC0AAIQoqSP4UyUtcfdl7r5X0o8lzU6oFgAAgpNUwE+XtKrg/eqobR8zm2dmzWbWvHHjxpIWBwBA2o3YTnbuPt/dm9y9qbGxMelyAABIlaQCfo2kgwveHxS1AQCAIkgq4J+XdISZHWpmVZIukfRoQrUAABCcbBIrdfdOM7tG0i8lVUi6x91fTaIWAAD6smvXcnV27lBd3YlJlzJoiV2Dd/fH3f1Idz/c3W9Lqg4AAPqyY8ciLVp8nXK5vUmXMmgjtpMdAABJ29n2htra3tTy5f+cdCmDRsADANCHtp2vS5JWvjVf23csTLiawSHgAQDow862NyRJ7p1avPgryuU6Eq5o4Ah4AAB60dW1W7t3v/1Mtp07X9OKFf+SYEWDQ8ADANCLtrY3JeX2va+unqGGxjOSK2iQErlNDgCAkW7nzjf2DU9qPFvHHPMPymbHJljR4BDwAAD0oq3tDWUyVXrXu27QwQfNTbqcQSPgAQDoRVdut045+UHV1Z2QdClDQsADANCLI4+4RZlMemOSTnYAAPQizeEuEfAAAASJgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAApRNugAAg5fLuZZtatObLTs0urJCE2qqNGFMpcaPqVLd6KzMLOkSASSMgAdSKJMxvWtSrWbUj9GClVv05KL1emZJq15ZvVVmpvHVlRo/plITxlRp/Jh8+Of/CXj7H4Hutu7pKis4oQeExNw96RoOqKmpyZubm5MuAxjxtu3q0B+WbtIzS/Kvla27BjTfuOpKnXPCVF14ynSdckh9zFUCGAgzW+DuTUOdnyN4ICDjxlTq7BOm6uwTpkqSVm3elQ/7NzfpD0s3acuujn3THt5YozOOmaw/P3qSmg6ZoCxH8EBQCHggYAfXj9GcU2dozqkzlMu5Xl27XYvXb9d7Dq3XIRNrki4PQIwIeKBMZDKmEw4apxMOGpd0KQBKgHNyAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABCgWALezL5lZq+Z2ctm9rCZjY/aZ5rZbjN7KXp9L471AwBQ7uI6gn9S0vHufqKkNyTdUDBuqbvPil5XxbR+AADKWiwB7+6/cvfO6O1zkg6KYz0AAKB3pbgG/ylJTxS8P9TMXjSz35rZ6SVYPwAAZWfIz6I3s6ckTell1E3u/kg0zU2SOiX9KBq3TtIMd281s1Mk/R8zO87dt/ey/HmS5knSjBkzhlomAABlacgB7+5n9jfezD4h6S8kneHRl867e7uk9mh4gZktlXSkpHd82bu7z5c0X8p/H/xQ6wQAoBzF1Yv+LEnXSTrP3XcVtDeaWUU0fJikIyQti6MGAADKWVxfF/sdSaMkPWlmkvRc1GP+A5K+bmYdknKSrnL3zTHVAABA2Yol4N39XX20PyTpoTjWCQAA3saT7AAACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAwQrVt3aJcrivpMpBSBDwAjEBv/ukPuvfLV6uzvT3pUpBScT3oBgAwBO27dunXP/ieFv3u15KkXFcu4YqQVgQ8AIwQby18Wb+4+y7t2LRxXxun6DFUBDwAJKxz7179/v579cITj0q+/3dr5boIeAwNAQ8ACWpZtkRPfPdOta5+q9fxua7OEleEUBDwAJCAXK5Lf3z4QT330AP9hjjX4DFUBDwAlNiWdWv0xHfu1Lolrx9wWk7RY6gIeAAosXGTp+jca2/Qzs2t2rlls3ZublVb9HPnvp+tam9rk9PJDkNEwANAiWUyFRpb36Cx9Q39TtfRvkcV2coSVYXQEPAAMEJVjhqddAlIMZ5kBwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABCi2gDezW81sjZm9FL3OKRh3g5ktMbPXzewjcdUAAEC5ysa8/Lvc/duFDWZ2rKRLJB0naZqkp8zsSHfvirkWAADKRhKn6GdL+rG7t7v7cklLJJ2aQB0AAAQr7oC/xsxeNrN7zGxC1DZd0qqCaVZHbQAAoEiGFfBm9pSZLezlNVvS3ZIOlzRL0jpJdwxy2fPMrNnMmjdu3DicMgEAKDvDugbv7mcOZDoz+76kx6K3ayQdXDD6oKit57LnS5ovSU1NTT6cOgEAKDdx9qKfWvD2fEkLo+FHJV1iZqPM7FBJR0j6U1x1AABQjuLsRX+7mc2S5JJWSLpSktz9VTN7UNIiSZ2SrqYHPQAAxRVbwLv75f2Mu03SbXGtGwCAcseT7AAACBABDwBAgAh4AAAClKqA9xx3ywEAMBCpCfjNa9u0d09n0mUAAMrRupelBy6THvuitGFx0tUMSNxfNlMUnXtz2rK+TfXTapIuBQBQjqaeKJ1+rbR3lzTpmKSrGZBUBLznXIefPCnpMgAA5Wzau5OuYFBScYq+cnRF0iUAAJAqqQh4AAAwOAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcCtHvhq2pftjzpMgAkiIAHArTr+ee1/IILtPm+++TuSZcDIAEEPBCgjnVr5Xv2qOXrf6tV865Ux4YNSZcEoMQIeCBAHWvX7htu+/3vtfzc87T9F79MsCIApUbAAwEqDHhJ6tq2TWu+8AWt/cpX1LVjR0JVASglAh4IUOeatb22b3vkUS2bPVttf/xTiSsCUGqxBLyZPWBmL0WvFWb2UtQ+08x2F4z7XhzrB8pZrq1NXdu29Tm+c+06vfWJT6jlm7cr195ewsoAlFI2joW6+8Xdw2Z2h6TCvzZL3X1WHOsFIHWsW3fgidy1+Qc/UNuzz2rat27X6KOOir8wACUV6yl6MzNJF0m6P871AHhbz+vv/Wl/4w0tv/Djav23f5N3dcVYFYBSi/sa/OmSWtz9zYK2Q83sRTP7rZmd3teMZjbPzJrNrHnjxo0xlwmEYzABn5+hQxu+fYdWXnGF9q5eE09RAEpuyAFvZk+Z2cJeXrMLJpuj/Y/e10ma4e7vlvQlSfeZWV1vy3f3+e7e5O5NjY2NQy0TKDsdfXSwO5DdzQu0fPZsbf3ZwzwcBwjAkK/Bu/uZ/Y03s6ykCySdUjBPu6T2aHiBmS2VdKSk5qHWAWB/A7oG34dcW5vW3Xijdv7m15ryta8pW19fxMoAlFIsnewiZ0p6zd1XdzeYWaOkze7eZWaHSTpC0rIYawDKzqBP0fdix5NPadeLL2nV1efq2Zl7NGH0BE2vna7ptdM1rXaaptRMUWWmsgjVAohLnAF/id7Zue4Dkr5uZh2ScpKucvfNMdYAlJ1iBLwkdW3apGlf+4E+e/FFGvPFi9SqNm3YvUEvbnhRrbtbZTJVVlSqMhO9Kio1qXqSptVO0+SayfwDACTM0nCtrampyZubOYsPHIh3dOi1k2ZJuVxRl1t5yAxN/+Y3VT1rVp/T5Dynre1btXHXRrXubpVM+4V/9/DoitFqHNOobCbO4wsg/cxsgbs3DXV+fsOAgHS0bCh6uEtSx8q3tOK/X6qGq65Uw+c+J6t859F5xjKqH12v+tH9X7fvzHVqa/tWZSyjbCa7L/grrEL5O2sBFAOPqgUC0rE2xtvccjlt+pe7teKSOWpfNvSuM9lMVg3VDaofXa+6qjpVZ6uVzWQJd6DICHggIMW6/t6fPa++quXnX6DN//tH3E4HjGAEPBCQUgS8JHl7u1r+7u+06jOfVUdLS0nWCWBwCHggIKUK+G5tzz6rZefN1vYnnijpegEcGAEPBKRz7dAfclNoy/jxA542t22b1nzxS1rzN9epa/v2oqwfwPAR8EBAinEEnzPTKyecMOj5tv/Hf2jZebPV9txzw64BwPAR8EAg3H1Yj6ntlnFXbdvOIc3buX693vrEJ9XyD9/gu+aBhBHwQCC6WlvlRQrVg1atPvBE/dh8771aceGF2rNoUVHqATB4BDwQiGIcvXdr2LRp2Mtof3OJll98iTbN/z7fNQ8kgIAHAjHUr4ntTaZY97d3dGjjnXdq5eVztXfVquIsE8CAEPBAIEp9i9xg7H7hBS2f/TFtfeghHo4DlAgBDwRiJAe8JOV27dK6m/6HVl/zV+psbU26HCB4BDwQiJEe8N12Pv20lp03Wzt+/ZukSwGCRsADgShmJ7u4dbW2avVf/qXWffVm5draki4HCBIBDwQiLUfwhbb+5Cda9rHzteuFF5MuBQgOAQ8EoGtnm3LbtiVdxpB0rFqllZddpg3/+I/yvXuTLgcIBgEPBCDW74EvhVxOrd/71/x3zS9dmnQ1QBAIeCAAnSm6/t6fPYsWafkF/02bf/i/5Llc0uUAqUbAAwFI4/X3vnh7u1r+/u+16jOfUcf69UmXA6QWAQ8EIKSA79b2h/+nZefN1raf/zzpUoBUIuCBABTzMbUjSW77dq299stac+2X1ZXSToRAUgh4IABpugd+KLb//OfacNddSZcBpEo26QIADF+Ip+i7ZadM0eSbbtTYM89MuhQgVQh4IOV87151btiQdBnFV1Gh+rlz1XjN1crU1CRdDZA6BDyQch0tLVJg39BWfdJJmvK1WzX66KOTLgVILQIeSLmQOthlxo3TpGu/pPEXXijL0EUIGA4CHki5UDrYjZs9W5Ou+xtlJ05MuhQgCAQ8kHJpf0xt1WGHacott6jmPacmXQoQFAIeSLm09qC3UaPU8LnPaeKnPimrqkq6HCA4BDyQcmkM+JoPnK4pX/2qqg4+OOlSgGAR8EDKda5NzzX47KRJmnzTTRr74Q/JzJIuBwgaAQ+kmOdy6ehkl8mo/vLL1PBXf62KWu5pB0qBgAdSrKu1Vb53b9Jl9Gv0iSdq6q23aPSxxyZdClBWCHggxUby9ffM2LH5e9o//nFZRUXS5QBlh4AHUmyknp6vO+9cTb7uOmUbGpIuBShbBDyQYiPtKXZVM2dqyq23qOa005IuBSh7BDyQYiPlFL1VVWniVVdq4mc+owz3tAMjAgEPpNhICPia971PU27+qqoOOSTpUgAUIOCBFEsy4LONjZp84w0ae9ZZ3NMOjEAEPJBiiXSyy2Q04dJL1fj5v1ZFbW3p1w9gQAh4IKW6du5Ubvv2kq5z9PHHa8qtt6r6+ONKul4Ag0fAAylVyh70mdpaNX7pi5pw8cXc0w6kBAEPpFSpvia27qMf1aSvXKfKSZNKsj4AxUHAAykV9/X3qkMO0ZRbblbNe98b63oAxCMznJnN7ONm9qqZ5cysqce4G8xsiZm9bmYfKWg/K2pbYmbXD2f9QDnrjKkHvVVWquGaa3Too48Q7kCKDfcIfqGkCyT9a2GjmR0r6RJJx0maJukpMzsyGv1dSR+StFrS82b2qLsvGmYdQNmJ4xa5mvf+mabcfLOqZs4s+rIBlNawAt7dF0vq7R7Y2ZJ+7O7tkpab2RJJp0bjlrj7smi+H0fTEvDAIBWzk11FY4MmX3+96s45h3vagUDEdQ1+uqTnCt6vjtokaVWP9vfEVAMQtKJcgzfThDlz1PiFz6uirm74ywMwYhww4M3sKUlTehl1k7s/UvyS9q13nqR50dt2M1sY17pGgAZJm5IuIkZs30h2y835V9/SvX39C3nbJLYv7Y4azswHDHh3P3MIy10j6eCC9wdFbeqnved650uaL0lm1uzuTb1NFwK2L93YvvQKedskti/tzKx5OPMPqxd9Px6VdImZjTKzQyUdIelPkp6XdISZHWpmVcp3xHs0phoAAChbw7oGb2bnS/pnSY2Sfm5mL7n7R9z9VTN7UPnOc52Srnb3rmieayT9UlKFpHvc/dVhbQEAAHiH4faif1jSw32Mu03Sbb20Py7p8UGuav7gq0sVti/d2L70CnnbJLYv7Ya1febuxSoEAACMEHFdgwcAAAkacQFfTo+/NbMHzOyl6LXCzF6K2mea2e6Ccd9LuNQhMbNbzWxNwXacUzCu132ZFmb2LTN7zcxeNrOHzWx81B7EvpPS+3vVFzM72Mx+Y2aLor8xn4/a+/ycpk30d+SVaDuao7Z6M3vSzN6Mfk5Ius7BMrOjCvbPS2a23cy+kPZ9Z2b3mNmGwtvA+9pflvdP0e/jy2Z28gFX4O4j6iXpGOXv/fu/kpoK2o+V9J+SRkk6VNJS5TvqVUTDh0mqiqY5NuntGMJ23yHp5mh4pqSFSddUhG26VdKXe2nvdV8mXe8gt+3DkrLR8DclfTOwfRfE71WPbZoq6eRoeKykN6LPYq+f0zS+JK2Q1NCj7XZJ10fD13d/VtP6ij6b6yUdkvZ9J+kDkk4u/JvR1/6SdI6kJySZpNMk/fFAyx9xR/DuvtjdX+9l1L7H37r7ckndj789VdHjb919r6Tux9+mhuWfDXqRpPuTrqVE+tqXqeHuv3L3zujtc8o/0yEkqf+96snd17n7C9HwDkmL9fYTNkM2W9K90fC9kj6WXClFcYakpe6+MulChsvdfydpc4/mvvbXbEk/9LznJI03s6n9LX/EBXw/puudj7md3k97mpwuqcXd3yxoO9TMXjSz35rZ6UkVVgTXRKeT7ik4NRjCPiv0KeX/s+4Wwr4LbR/tx8xmSnq3pD9GTb19TtPIJf3KzBZY/mmgkjTZ3bufa7xe0uRkSiuaS7T/wVAo+65bX/tr0L+TiQS8mT1lZgt7eaX6CKE3A9zWOdr/A7tO0gx3f7ekL0m6z8xG5IPCD7B9d0s6XNIs5bfpjiRrHayB7Dszu0n5Zz38KGpKzb4rV2ZWK+khSV9w9+1K+ee0h/e7+8mSzpZ0tZl9oHCk58/1pvbWKcs/IO08ST+JmkLad+8w3P0V15fN9MsTevxtEg60rWaWVf4rd08pmKddUns0vMDMlko6UtKwHlsYh4HuSzP7vqTHorf97csRYwD77hOS/kLSGdEvYqr23QGkYh8NlplVKh/uP3L3n0mSu7cUjC/8nKaOu6+Jfm4ws4eVv9TSYmZT3X1ddEp3Q6JFDs/Zkl7o3mch7bsCfe2vQf9OpukUfaiPvz1T0mvuvrq7wcwazawiGj5M+W1dllB9Q9bj+tD5krp7iva1L1PDzM6SdJ2k89x9V0F7EPtO6f+9eoeor8u/S1rs7ncWtPf1OU0VM6sxs7Hdw8p3BF2o/H67IprsCkmxfUlYCex3tjOUfddDX/vrUUlzo970p0naVnAqv1eJHMH3x8rv8bc9rydJ+Z6VXzezDkk5SVe5e8+OGGlwu5nNUv4U0wpJV0pSf/syRb6j/F0AT+ZzQ8+5+1UKZN+5e2fKf6968z5Jl0t6xaJbUiXdKGlOb5/TFJos6eHo85iVdJ+7/8LMnpf0oJl9WtJK5Tv0pk70T8uHtP/+6fVvTFqY2f2SPiipwcxWS7pF0jfU+/56XPme9Esk7ZL0yQMuPzqzCAAAApKmU/QAAGCACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACND/B0Xne7ENI3NiAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAtF0lEQVR4nO3deXTU533v8c8XLWCzG4QwNhgv4AVwsK0a74FgbOP6BpyTuHZ6U6dNS5yT3Nve9t6epDltcnNOcpO0jtsmgI0TasRm4wWDMQFjO17AbGI1IBYhxCpWgQTapXnuHxqIAAm0zTwzz7xf58xh5vnN8pnzG/H5bfMbc84JAACEpZPvAAAAoONR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIA6pODNbLqZHTWzLY3GrjKzZWa2K/pv7+i4mdl/mlmBmW02szs7IgMAAPijjlqDf0XSYxeMfV/SB865IZI+iN6WpPGShkQvkyRN7aAMAAAgqkMK3jn3iaSSC4YnSJoRvT5D0sRG47muwSpJvczs6o7IAQAAGsRyH3y2c644ev2wpOzo9Wsk7W90vwPRMQAA0EHS4/EizjlnZq06J66ZTVLDJnx17dr1rltuuSUm2QAAbRCpkypKpIrjUl31pe+bcaV01fVSWmZ8sgVi3bp1x51zWW19fCwL/oiZXe2cK45ugj8aHT8oaWCj+10bHTuPc26apGmSlJOT4/Ly8mIYFQDQIgfypLW/lbbOl+qqJGVEL834wtelJ16QMrrEK2EwzGxvex4fy4JfKOlZST+P/rug0fj3zOxVSaMklTbalA8ASDQ1FdLnr0t5v5OKN7XsMZ0ypEd/Jo2aFNtsaFaHFLyZzZU0WlJfMzsg6UdqKPZ5ZvYtSXslPRW9+2JJj0sqkFQh6S87IgMAIAa2vyu9/R2pqrTlj+naT3pqhnTdfbHLhcvqkIJ3zj3TzKSxTdzXSfpuR7wuACDGNsxqXblfkyP92Uypx4DYZUKLxOUgOwBAEqqrlgo/bvn973xWevzfpHQOpksEFDwAoGlFy6Xa8svfLy1TGv9LKYc9romEggcANG3Xe5e/T/cB0lO50sA/iX0etAoFDwBo2uUKftB9DQfTdesXnzxoFQoeAHCx4wVSSWHz0++e1PA1uLRLfAceXlHwAICLNbf2nt6l4cQ1I78e3zxoNQoeAHCxXUsvHus5sOErcAPuiH8etBoFDwA4X/UZae9n548NflD62gypax8/mdBqFDwA4HyFH0n1NX+8fe/3pHE/kTqleYuE1qPgAQDnO7t5PuNK6cu/lkZ81W8etAkFDwA43673pd6DpT+bLfUf7jsN2oiCBwD8UfFmqd+t0ld/J13R23catAMFDwD4oyuvkv78DalTJ99J0E4UPADgj3pe6zsBOgiLaAAABIiCBwAgQBQ8AAABouBxSc453xEAAG1AweOSVu8p8R0BANAGFDyadaa6Th/kH/EdAwDQBhQ8mrVq9wkdKq3yHQMA0AYUPJq1vOC4jp+u9h0DANAGnOgGzVpRcFz1HGQHAEmJgkeTjpZVadfRM+rehY8IACQjNtGjScsLjkuSTlfVqaq23nMaAEBrUfBo0tmCl6Rj7IcHgKRDwaNJnxWcOHf92BkKHgCSDQWPixQcPaPDZX/8ehxr8ACQfCh4XGRFo83zEgUPAMmIgsdFllPwAJD0KHicpz7itKrwxHlj7IMHgORDweM8ZZW1uueGProyM+3cGGvwAJB8OIsJztO7a6Ze/oscVdfVa3VhiT7cflQnK2p8xwIAtBIFjyZ1Tk/TQ0Oz9NDQLN9RAABtwCZ6AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAAQopj82Y2Y3S3qt0dANkv5FUi9JfyPpWHT8n5xzi2OZBQCAVBLTgnfO7ZA0UpLMLE3SQUnzJf2lpBecc/8Wy9cHACBVxXMT/VhJu51ze+P4mgAApKR4FvzTkuY2uv09M9tsZtPNrPeFdzazSWaWZ2Z5x44du3AyAAC4hLgUvJllSvqypNejQ1Ml3aiGzffFkp6/8DHOuWnOuRznXE5WVlY8YgIAEIx4rcGPl7TeOXdEkpxzR5xz9c65iKSXJd0dpxwAAKSEeBX8M2q0ed7Mrm407UlJW+KUAwCAlBDTo+glycy6Shon6duNhn9pZiMlOUlFF0wDAADtFPOCd86VS+pzwdg3Yv26AACkMs5kBwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgASQVV1+v8s8+U82+fb6jAAmNggeQFGr27dPRF/5d+5/7jtL69FHmoEG+IwEJjYIHkLAiVVUqXbhQe//iWe0e/7hcba2unfwbdbn5Zt/RgISX7jsAADRn/3e+o4qVq5QxYIAG/dd0db37bt+RgKRBwQNISNW7dqli5Sr1nPBlZf/zPyutWzffkYCkQsEDSEili97VNf/+7+rx2KO+owBJKeYFb2ZFkk5LqpdU55zLMbOrJL0mabCkIklPOedOxjoLgOTR52/+mrV2oB3idZDdGOfcSOdcTvT29yV94JwbIumD6G0AOIdyB9rH11H0EyTNiF6fIWmipxwAAAQpHgXvJL1nZuvMbFJ0LNs5Vxy9flhSdhxyAACQMuJxkN0DzrmDZtZP0jIz2954onPOmZm78EHRhYFJkjSIE1oAANAqMV+Dd84djP57VNJ8SXdLOmJmV0tS9N+jTTxumnMuxzmXk5WVFeuYAAAEJaYFb2Zdzaz72euSHpG0RdJCSc9G7/aspAWxzAEAQKqJ9Sb6bEnzzezsa81xzi0xs7WS5pnZtyTtlfRUjHMAAJBSYlrwzrlCSV9oYvyEpLGxfG0AAFIZPzYDAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4OHV8ePH9fnnn8s55zsKAAQl3XcApK6TJ08qNzdXZWVl2rJli5544gl1797ddywACAIFDy9KS0s1Y8YMlZWVSZJ27NihvXv3avz48br99ttlZp4TAkByYxM94u706dOaMWOGTp06dd54VVWV5s+frzlz5pwrfgBA21DwiKvy8nLl5uaqpKSk2fvs2rVLkydP1oYNG9g3DwBtRMEjbiorKzVz5kwdO3bssvetrq7WggULNHv2bJWWlsYhHQCEhYJHXFRVVWnWrFk6fPhwqx5XUFCgKVOmaN26dazNA0ArUPCIuZqaGs2ZM0cHDx5s0+Orq6v1zjvvaObMmRfttwcANI2CR0zV1tZq7ty52rdvX7ufq7CwUFOmTFFeXh5r8wBwGRQ8Yqaurk7z5s3Tnj17Ouw5a2pqtGjRIuXm5urkyZMd9rwAEBoKHjFRX1+vN954Q7t27YrJ8+/Zs0dTpkzRmjVrFIlEYvIaAJDMKHh0uEgkovnz52v79u0xfZ3a2lotXrxYM2bMuOTX7gAgFVHw6FCRSEQLFy7Uli1b4vaae/fu1dSpU7Vq1SrW5gEgioJHh3HOafHixdq4cWPcX7u2tlZLlizRK6+8ohMnTsT99QEg0cSs4M1soJn9wcy2mdlWM/vb6PiPzeygmW2MXh6PVQbEj3NOS5cuVV5entcc+/bt09SpU7Vy5UrW5gGktFj+2EydpH9wzq03s+6S1pnZsui0F5xz/xbD10acffjhh1q1apXvGJIajt5funSptm7dqokTJ6pv376+IwFA3MVsDd45V+ycWx+9flpSvqRrYvV68Ofjjz/Wp59+6jvGRQ4cOKAXX3xRK1asYG0eQMqJyz54Mxss6Q5Jq6ND3zOzzWY23cx6xyMDYuOzzz7TH/7wB98xmlVXV6dly5bpd7/7XYvOgQ8AoYh5wZtZN0lvSvo751yZpKmSbpQ0UlKxpOebedwkM8szszz+Y05Ma9as0Xvvvec7RoscPHhQL774oj799FPV19f7jgMAMWexPOWnmWVIWiRpqXPuV01MHyxpkXNu+KWeJycnx/k+eAvnW79+vRYuXOg7RpsMGDBAEyZMUHZ2tu8oANAsM1vnnMtp6+NjeRS9SfqdpPzG5W5mVze625OS4veFaXSIzZs3J225S9KhQ4f00ksv6ZNPPmFtHkCwYnkU/f2SviHpczPbGB37J0nPmNlISU5SkaRvxzADOti2bds0f/583zHaLRKJ6MMPP9S2bds0ceJE9e/f33ckAOhQMd1E31HYRJ8Ydu7cqVdffTW4I9I7deqkhx56SA888IDS02O5zAsALZewm+gRlt27d+u1114LrtylhrX5jz76SC+//LKKi4t9xwGADkHB47KKioo0d+7c4PdXHzlyRC+//LI+/PBD1dXV+Y4DAO1CweOS9u/frzlz5qRM4UUiEX3yySeaNm2aDh065DsOALQZBY9mHTp0SLNmzVJNTY3vKHF39OhRvfzyy/rggw9SZuEGQFgoeDTpyJEjmjlzpqqrq31H8cY5p08//VQvvfSSDh486DsOALQKBY+LHD9+XLm5uaqsrPQdJSEcO3ZMv/3tb7Vs2TLV1tb6jgMALULB4zwlJSWaMWOGysvLfUdJKM45rVixQi+99JL279/vOw4AXBYFj3NOnTqlGTNm6PTp076jJKzjx49r+vTpWrp0KWvzABIaBQ9JUllZmXJzc1VaWuo7SsJzzmnlypV68cUXtW/fPt9xAKBJFDxUXl6u3NxclZSU+I6SVE6cOKHp06dryZIlKflNAwCJjYJPcRUVFcrNzdXx48d9R0laq1at0tSpU1VUVOQ7CgCcQ8GnsKqqKs2aNUtHjhzxHSXpnTx5Uq+88ooWL17M2jyAhEDBp6jq6mrNnj2bs7V1sDVr1mjKlCnas2eP7ygAUhwFn4Jqa2s1d+5cvu4VI2e/jbBo0aKUPlEQAL8o+BRTV1en1157jf3FcZCXl6cpU6aosLDQdxQAKYiCTyH19fV6/fXXVVBQ4DtKyigtLVVubq7eeecdVVVV+Y4DIIVQ8CkiEonorbfe0o4dO3xHSUnr1q3TlClTWLgCEDcUfAqIRCJasGCBtm7d6jtKSisrK9OsWbO0YMEC1uYBxBwFHzjnnN59911t2rTJdxREbdiwQZMnT9bOnTt9RwEQMAo+YM45LVmyROvWrfMdBRc4ffq05syZo/nz5/OrfQBigoIPlHNOH3zwgVavXu07Ci5h06ZNmjx5MsdGAOhwFHygPv74Yy1fvtx3DLTAmTNnNHfuXL311luqqKjwHQdAICj4AK1YsUIfffSR7xhopc2bN2vy5MnKz8/3HQVAACj4wKxevVrLli3zHQNtVF5ertdee01vvPGGysvLfccBkMQo+ICsW7dOv//9733HQAfYsmWLpkyZwlcbAbQZBR+ITZs26Z133vEdAx2ovLxcr7/+uubNm6czZ874jgMgyaT7DoD227p1q95++23fMRAj27ZtU1FRkR5//HENGzZMZuY7EoAkwBp8ktuxY4fefPNNOed8R0EMVVRU6I033mBtHkCLsQafxAoKCjRv3jxFIhHfURAn+fn5Kioq0vjx4zVixAjW5gE0izX4JFVUVKRXX31V9fX1vqMgziorK/XWW2/p1Vdf1enTp33HAZCgWINPQvv379fs2bNVV1fnOwo82rFjh/bu3avx48fr9ttvZ20ewHlYg08yhw4d0qxZs1RbW+s7ChJAVVWV5s+frzlz5qisrMx3HAAJhIJPIocPH9bMmTNVXV3tOwoSzK5duzR58mRt2LCBAy4BSKLgk8axY8eUm5vLL4+hWdXV1VqwYIFmz56t0tJS33EAeEbBJ4GSkhLl5ubyQyRokYKCAk2ZMkXr1q1jbR5IYRR8gjt16pRmzJjB0dJolerqar3zzjuaOXOmTp065TsOAA8o+ARWVlamGTNmsLkVbVZYWKgpU6YoLy+PtXkgxVDwCerMmTPKzc3VyZMnfUdBkqupqdGiRYv4PAEpxpJhqT4nJ8fl5eX5jhFXBw8e1MGDB1VRUXHuUllZed5tviqH1srIyNC4ceOUk5OjTp1YvgcSmZmtc87ltPnxFHzyqq2tbbL4m1sgYKEAZ1133XWaMGGCrrrqKt9RADSDgkersFCAszIyMjR27FjdfffdrM0DCai9Bc+palNMRkaGevbsqZ49e7b4MbW1ta1aIGChIDnU1tZqyZIl2rZtmyZMmKA+ffr4jgSgA7EGj5hgoSC5pKena+zYsRo1ahRr80CCYA0eCSkjI0MZGRnq0aNHix/DQoE/dXV1Wrp0qbZu3aqJEyeqb9++viMBaCfW4JHUmlsouNSCQk1Nje/YCS09PV1jxozRvffey9o84BFr8EhpHbmlgIWCBnV1dVq2bJm2bdumiRMnKisry3ckAG3gbQ3ezB6T9B+S0iT91jn38+buyxo8fGtqoeByuxNCWChIS0vT6NGjdd999yktLc13HCClJOUavJmlSZosaZykA5LWmtlC59w2H3mAy2nLloK6urpWbSVIxIWC+vp6ffDBB8rPz9eECROUnZ3tOxKAFvK1if5uSQXOuUJJMrNXJU2QRMEjGOnp6erRo0e7FgpactBhPBYKDh06pJdeekmjR4/W/fffz9o8kAR8Ffw1kvY3un1A0qjGdzCzSZImSdKgQYPilwzwKJEXCiKRiD788MNz++b79+/f6ucAED8Je5Cdc26apGlSwz54z3GAhNXehYKWfjXx7ELB4cOHNW3aND300EN64IEHlJ6esP+NACnN11/mQUkDG92+NjoGIA46aqGguLhYAwcOvPyDAcSdr4JfK2mImV2vhmJ/WtLXPWUB0AJtWSgA4I+XgnfO1ZnZ9yQtVcPX5KY757b6yAIAQIi87Txzzi2WtNjX6wMAEDLOQwkAQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBAwAQIAoeAIAAUfAAAASIggcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABCgmBW9m/2pm281ss5nNN7Ne0fHBZlZpZhujlxdj8foAAKS6WK3BL5M03Dl3u6Sdkn7QaNpu59zI6OW5GL0+AAApLSYF75x7zzlXF725StK1sXgdAADQtHjsg/8rSb9vdPt6M9tgZh+b2YNxeH0AAFJOelsfaGbvS+rfxKQfOucWRO/zQ0l1kmZHpxVLGuScO2Fmd0l628yGOefKmnj+SZImSdKgQYPaGhMAEEPO1aum5oQyM/vKjOO2E0mbC9459/ClppvZNyU9IWmsc85FH1MtqTp6fZ2Z7ZY0VFJeE88/TdI0ScrJyXFtzQkA6HjOOZWVbZBZurp3HyEz8x0JF2hzwV+KmT0m6R8lfdE5V9FoPEtSiXOu3sxukDREUmEsMgAAYqPs9BadPLlS2f3+VF26DPAdB82IScFL+o2kzpKWRZfqVkWPmH9I0k/MrFZSRNJzzrmSGGUAAHSgysr92rvvZfXofrsGDfxr1toTXEwK3jl3UzPjb0p6MxavCQCIjdrak9pTNEVVlfs1dOiP1KXL1b4joQU4IgIA0KT6+ioVFb2oNWsnqFu3mzVixFTKPYnEahM9ACBJOVev4uL5Ktzzgrp1u1V33TVPXTo39aUpJDIKHgAgqeHI+BMnPlLB7l+quvqwhg75Z/Xv/yT72pMUBQ8AjZSfOqmqM6flIhFdde1AdeqU5jtSXJSVbVZBwS908tQq9e3zJd0x8hV17pztOxbagYIHgEb2fr5Rv//N85Kkr3z/x7r+jhzPiWKrsnKfdu9+XkeOLlJ6ek/ddtvz6p89gbX2AHCQHQA0MmTUfep8ZVdJUv7yj/yGiaGamhLt2PkTrVz1iI4cXaS+fR/WPaOW6Or+Eyn3QLAGDwCNZGR21i33P6RNy36vgrWrVFtVpYwuXXzH6jD19ZXav/+/VLT3JdXXn1F6ei/dPPRHys7+bxR7YFiDB4ALDB/ziCSptrpKBXmrPKfpGM7V69CheVq5cqx2Fz6v+vozyuo7TveMWqL+/b9MuQeINXgAuED/G4coa9BgHdtXpPzlH+nWB0b7jtRmDUfG/0EFu3+p8vJdkqSMjN4aOvRHyu73BMUeMNbgAaAJw8eMkyTt3bxBFWWlntO0TWnZJq3f8HVt2vw358o9K+sxjRq1RP3ZJB88Ch4AmnDrg2OUlp6uSH29dq5c7jtOq1RU7NXnW/6H8vK+olOn1kiSMjKu0vDhv9btIyarc2ZfzwkRDxQ8ADThiu49dGPOPZKS52j6mpoT2rHz/2rV6kd09Ojic+P9+j2ue0YtUXa/xz2mQ7yxDx4AmjF8zDjtXLVch3bmq/ToYfXsl7inaz1ydLHy83+g+voz58YyMq7SzTf/RNn9xntMBl9YgweAZgy+/Q5175MlSdq+4hPPaZpXWbn/onLP7vdEdK2dck9VFDwANMM6ddKwL35JUuJupneuXtu2/Z9z5Z6R0Ucjhk/R8OH/oczMPp7TwScKHgAuYfiYcZKZThzYp6NFhb7jXGTfvt/qVOlaSVJ29pd1z6gl6tfvUc+pkAgoeAC4hJ79+mvgbSMkJd5a/OnT+dpd+IIyM/vq9hFTNXzYC8rMvMp3LCQICh4ALmNE9Dvx2z/7RC4S8ZymQSRSrW3b/kHZ/f5U94xaqqysR3xHQoKh4AHgMoaMul+du3bVmRPHdSB/i+84kqQDB2brhhv+XsOGPa+MjF6+4yABUfAAcBnpmZm65b4vSkqMzfTO1WvAgK8pK+th31GQwCh4AGiBs6eu3bl6hepqa71mMUtTenp3rxmQ+Ch4AGiBsz9AU11erj0b1vqOA1wWBQ8ALTT8Sw0Hsm1f/rHnJMDlUfAA0EK3PjhGaRkZKly/VtUVFb7jAJdEwQNAC13RrbtuzLlHdbU12rV6he84wCVR8ADQCiNGNxy5nghH0wOXQsEDQCtcd/sd6t43S/u3fq4zJ0t8xwGaRcEDQCs0/ADNWDkX0Y7PEvcX5gAKHgBaafjohyUzNtMjoVHwANBKPfv116BhI3SksEAlhw74jgM0iYIHgDYYPqbhO/GsxSNRUfAA0AZD7r5Pnbt25aQ3SFgUPAC0QXpmpm65f7ROHSlW8a4dvuMAF6HgAaCNzv5OPJvpkYgoeABoo+wbblLWdddrx8pPFYnU+44DnIeCB4B2GD5mnCpKT2nf5o2+owDnoeABoB3O/gANm+mRaCh4IMm5iPMdIaWd/QGaXWtXqba6yncc4BwKHkhS9fURffLaTlVX1vmOkvJGjBmn2qpK7c5b7TsKcA4FDySh8tJqLfjVBhUXnFKXrhm+46S860aMVPe+WcpfwXfikTgoeCDJFO8u1byfrVXx7lJdM6S37zjQ2R+geVhFG9er8nSZ7ziAJAoeSCpbPj6gt3+1XhWlNZKka27u5TcQzhk++mFFIvXauWq57yiAJAoeSAp1tfX6IDdfH8/dqUh9w0F1ZtKAIb38BsM5Pftla9Cw2zmaHgmDggcS3OmSKr31r+u1/bPi88b7XNtNna9k/3siGf6lR3RwR77Kjh31HQWg4IFEtn97ieb9bK2O7Tt90bRrhrL/PdEM+ZN71eXKrhxsh4QQs4I3sx+b2UEz2xi9PN5o2g/MrMDMdpjZo7HKACSz9e/t1Tv/uUlVZ2qbnH7N0F7xDYTLSs/M1C0PfFHb2UyPBBDrNfgXnHMjo5fFkmRmt0l6WtIwSY9JmmJmaTHOASSN2up6LX15i1a+tbvZk9iw/z1xDR89Tsf379WxvXt8R0GK87GJfoKkV51z1c65PZIKJN3tIQeQcE4drdAbv8hTwbpL78PtO7A7+98TVPYNNylr8A0cbAfvYl3w3zOzzWY23czO7jC8RtL+Rvc5EB0DUlrR5uN6/f/lqeRQ+WXvO4DN8wlt+Ohx2v7ZJ3KO0wjDn3YVvJm9b2ZbmrhMkDRV0o2SRkoqlvR8K597kpnlmVnesWPH2hMTSGjOOa15p1DvTt2smhaedpYD7BLbrQ+OVkXpKR3M3+o7ClJYense7Jx7uCX3M7OXJS2K3jwoaWCjyddGxy587mmSpklSTk4Oi8EIUnVlnd6fvlVFn59o8WPY/574rujWXTfl3KP85R/p2tuG+46DFBXLo+ivbnTzSUlbotcXSnrazDqb2fWShkhaE6scQKI6ceiMXv/Z2laVuxTd/35Fu5bNEQfDv/SIdq5eofq6pr8FAcRaLP+X+KWZjZTkJBVJ+rYkOee2mtk8Sdsk1Un6rnOuPoY5gISzK++IPpy5XXXVrf/os/89OVw3/AvKvOIK7dm4XjfljPIdBykoZgXvnPvGJab9VNJPY/XaQKKKRJxWzt+tjcv2tfk52P+eHBp+gGas8pd/RMHDC85kB8RR2bFKHdp5ss2Pt07G/vckMnz0OO1Zv1Y1lRW+oyAFUfBAHPXKvlJf/X6Oxj57q67smdnqx/e9thv735NIj6x+unroLdq1ZqXvKEhBFDwQZ2amW+69Wn/+f+/RXY9dp7SMlv8Zcnra5DN8zDhOegMvKHjAk8wu6bpn4o36+o9G6cY7+7XoMex/Tz5D/uReHS0qVPmptu+aAdqCggc869H3Cj02abie/Ic71Hdgt2bvZ51MV7P/PemkZ2bq5nsf1I7PPvEdBSmGggcSxIAhvfXUD/5EY75xi67ocfH+efa/Jy8208MHCh5IINbJdNv9A/Tff3KP7nx0kNLS//gnes3NbJ5PVtnX36hIfUQniy86aScQMxQ8kIAyu6Tr3idv0jM/GqUbRmZJ4gC7ZDd8zMPKX/6x7xhIIRQ8kMB6Zl2h8c+N0IT/dYcG3NTLdxy0w60PjNGuNZ/5joEUQsEDSeDam3srk/3vSa1Lt27qc+0gHS7Y6TsKUgQFDwBxMmLMIxxsh7ih4AEgTgaN+IKKC3YoEuH3tRB7FDwAxImZafAX7tK+LZt9R0EKoOABII6Gj3lY21dwND1ij4IHgDjq0befaiorVFtT7TsKAkfBA0CcDR11vwrXrfEdA4Gj4AEgzm66+z7t2bjOdwwELqUKvvhMse8IAKD0jAx16dZdVWfO+I6CgKVUwZdUl6iitsJ3DADQbQ+O0c5Vy33HQMBSquCH9RmmOlfnOwYAqN/gG3Ti4H7fMRCwlCp4SeqR2cN3BACQJPW++hqVHT/mOwYClXIFDwCJ4pb7H1LB2lW+YyBQFDwAeNKlazfV8X14xAgFDwAeZd9wk47vK/IdAwGi4AHAo0HDv6BDO7f7joEAUfAA4JGZKS0jQ84531EQGAoeADwbOGwEa/HocBQ8AHjWo28/VZSe9B0DgaHgASABZF5xperrOBEXOg4FDwAJ4JpbhulI4S7fMRAQCh4AEkB6RobvCAgMBQ8ACeKK7j1UU1XpOwYCQcEDQILoffU1Os256dFBKHgASCBpGZm+IyAQFDwAJJAre/ZUTWWF7xgIAAUPAAkks8sVfF0OHYKCB4AEk85menQACh4AEkx6585ykYjvGEhy6b4DAADOZ2aSme8YSHKswQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgGLyPXgze03SzdGbvSSdcs6NNLPBkvIl7YhOW+Wcey4WGQAASGUxKXjn3J+dvW5mz0sqbTR5t3NuZCxeFwAANIjpmezMzCQ9JelLsXwdAABwvljvg39Q0hHn3K5GY9eb2QYz+9jMHmzugWY2yczyzCzv2LFjMY4JAEBY2rwGb2bvS+rfxKQfOucWRK8/I2luo2nFkgY5506Y2V2S3jazYc65sgufxDk3TdI0ScrJyXFtzQkAQCpqc8E75x6+1HQzS5f0FUl3NXpMtaTq6PV1ZrZb0lBJeW3NAQAALhbLTfQPS9runDtwdsDMsswsLXr9BklDJBXGMAMAACkplgfZPa3zN89L0kOSfmJmtZIikp5zzpXEMAMAACkpZgXvnPtmE2NvSnozVq8JAAAacCY7AAACRMEDABAgCh4AgABR8AAABIiCR0KIOM5lBAAdiYJHQthRXuU7AgAEhYJHQlh+8ozvCAAQFAoeCWFHeZWO1dT6jgEAwaDgkRC6pXfSkuOlvmMAQDAoeCSEXulpWnyMggeAjkLBIyH0ykjXpydPq7S2zncUAAgCBY+E0Cs9TXVOWnaizHcUAAgCBY+E0DM9TZL0LpvpAaBDUPBICD0zGgr+DyVlKq+v95wGAJIfBY+E0D8zQw/27qY7e3TV9jOc9AYA2itmvwcPtMaALpl6feRNvmMAQDBYgwcAIEAUPAAAAaLgAQAIEAUPAECAKHgAAAJEwQMAECAKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAACRMEDABAgCh4AgABR8AAABIiCBwAgQBQ8AAABouABAAgQBQ8AQIAoeAAAAkTBJxFXF/EdAQCQJNJ9B8Dl1Z+p0am3C1R7pEJ9vnGbMvpd6TsSACDBUfAJrmLzMZ1asFuR8lpJ0tHJG9X7q0N15Yi+npMBABIZBZ+g6strdertAlV+fvy8cVddr5LZ+ar54rXq+ehgWSfzlBAAkMgo+ARUueW4Tr5doMiZ2mbvc+bjA6o9cFpXPXOL0rplxjEdACAZcJBdAolU1OrE3O06MSv/kuV+VvXuUh399UbV7D8dh3QAgGRCwSeIym0ndPiFdarcdKxVj6svrdbRlzbpzOriGCUDACQjNtF7Fqmo1al3ClWx4Wjbn6TO6dT8AtXsP63eE26SZbDcBgCprl0Fb2Zfk/RjSbdKuts5l9do2g8kfUtSvaT/6ZxbGh1/TNJ/SEqT9Fvn3M/bkyGZ1R6vVOmiQtWX1ypzUHepkzUcNBe92Ll/dYlpjcekqp0lumIYR9gDQKpr7xr8FklfkfRS40Ezu03S05KGSRog6X0zGxqdPFnSOEkHJK01s4XOuW3tzJGUMvpeob7fHOY7BgAgQO0qeOdcviSZXfRVrQmSXnXOVUvaY2YFku6OTitwzhVGH/dq9L4pWfAAAMRKrHbWXiNpf6PbB6JjzY0DAIAOdNk1eDN7X1L/Jib90Dm3oOMjnXvdSZImRW9Wm9mWWL1WAugr6fhl75W8eH/JLeT3F/J7k3h/ye7m9jz4sgXvnHu4Dc97UNLARrevjY7pEuMXvu40SdMkyczynHM5bciRFHh/yY33l7xCfm8S7y/ZmVne5e/VvFhtol8o6Wkz62xm10saImmNpLWShpjZ9WaWqYYD8RbGKAMAACmrvV+Te1LSryVlSXrXzDY65x51zm01s3lqOHiuTtJ3nXP10cd8T9JSNXxNbrpzbmu73gEAALhIe4+iny9pfjPTfirpp02ML5a0uJUvNa316ZIK7y+58f6SV8jvTeL9Jbt2vT9zznVUEAAAkCA4pykAAAFKuII3s6+Z2VYzi5hZzgXTfmBmBWa2w8webTT+WHSswMy+H//UbWNmr5nZxuilyMw2RscHm1llo2kveo7aJmb2YzM72Oh9PN5oWpPzMlmY2b+a2XYz22xm882sV3Q8iHknJe/fVXPMbKCZ/cHMtkX/j/nb6Hizn9NkE/1/5PPo+8iLjl1lZsvMbFf0396+c7aWmd3caP5sNLMyM/u7ZJ93ZjbdzI42/hp4c/PLGvxn9O9xs5ndedkXcM4l1EUN57W/WdJHknIajd8maZOkzpKul7RbDQfqpUWv3yApM3qf23y/jza87+cl/Uv0+mBJW3xn6oD39GNJ/7uJ8Sbnpe+8rXxvj0hKj17/haRfBDbvgvi7uuA9XS3pzuj17pJ2Rj+LTX5Ok/EiqUhS3wvGfinp+9Hr3z/7WU3WS/SzeVjSdck+7yQ9JOnOxv9nNDe/JD0u6feSTNI9klZf7vkTbg3eOZfvnNvRxKRzp791zu2RdPb0t3crevpb51yNpLOnv00a1nCu36ckzfWdJU6am5dJwzn3nnOuLnpzlRrO6RCSpP+7upBzrtg5tz56/bSkfKXGmTQnSJoRvT5D0kR/UTrEWEm7nXN7fQdpL+fcJ5JKLhhubn5NkJTrGqyS1MvMrr7U8ydcwV9CyKe/fVDSEefcrkZj15vZBjP72Mwe9BWsA3wvujlpeqNNgyHMs8b+Sg1L1meFMO9Cm0fnMbPBku6QtDo61NTnNBk5Se+Z2TprOBuoJGU754qj1w9LyvYTrcM8rfNXhkKZd2c1N79a/TfppeDN7H0z29LEJanXEJrSwvf6jM7/wBZLGuScu0PS30uaY2Y94pm7pS7z/qZKulHSSDW8p+d9Zm2tlsw7M/uhGs71MDs6lDTzLlWZWTdJb0r6O+dcmZL8c3qBB5xzd0oaL+m7ZvZQ44muYVtv0n51yhpOkPZlSa9Hh0Kadxdp7/xq78/FtonzdPpbHy73Xs0sXQ0/uXtXo8dUS6qOXl9nZrslDZXUrtMWxkJL56WZvSxpUfTmpeZlwmjBvPumpCckjY3+ISbVvLuMpJhHrWVmGWoo99nOubckyTl3pNH0xp/TpOOcOxj996iZzVfDrpYjZna1c644ukn3qNeQ7TNe0vqz8yykeddIc/Or1X+TybSJPtTT3z4sabtz7sDZATPLMrO06PUb1PBeCz3la7ML9g89KenskaLNzcukYWaPSfpHSV92zlU0Gg9i3in5/64uEj3W5XeS8p1zv2o03tznNKmYWVcz6372uhoOBN2ihvn2bPRuz0qK2Y+ExcF5WztDmXcXaG5+LZT0F9Gj6e+RVNpoU36TvKzBX4ql3ulvL9yfJDUcWfkTM6uVFJH0nHPuwgMxksEvzWykGjYxFUn6tiRdal4mkd+o4VsAyxp6Q6ucc88pkHnnnKtL8r+rptwv6RuSPrfoV1Il/ZOkZ5r6nCahbEnzo5/HdElznHNLzGytpHlm9i1Je9VwQG/SiS60jNP586fJ/2OShZnNlTRaUl8zOyDpR5J+rqbn12I1HElfIKlC0l9e9vmjWxYBAEBAkmkTPQAAaCEKHgCAAFHwAAAEiIIHACBAFDwAAAGi4AEACBAFDwBAgCh4AAAC9P8BzZwi+7Q6XtQAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAxm0lEQVR4nO3deXxU5b3H8e8vGwlhh7CDAQxrkC0FRaCAEve1LmCvWvUWbbWL7W3rUiuK3rpg9xakV1u1itoq1bbuXrdr6wK4IbggBWURQxIgG2R77h+Z6ACBbHPmzJzzeb9e83LmzMw5v/HM8M3znOc8x5xzAgAAwZLidwEAACD2CHgAAAKIgAcAIIAIeAAAAoiABwAggAh4AAACKCYBb2Z3mtlnZrY6alkPM3vazD6M/Ld7ZLmZ2a/MbJ2ZvW1mE2NRAwAA+EKsWvB/lHTsPsuukPSscy5P0rORx5J0nKS8yG2+pMUxqgEAAETEJOCdcy9KKtln8SmS7orcv0vSqVHL73YNXpHUzcz6xaIOAADQwMtj8H2cc1sj9z+V1Cdyf4CkT6JetymyDAAAxEhaPDbinHNm1qo5cc1svhq68JWdnT1p5MiRntQGAEAiWrly5XbnXE5b3+9lwG8zs37Oua2RLvjPIss3SxoU9bqBkWV7cc4tlbRUkgoKCtyKFSs8LBUAgMRiZhvb834vu+gflXR+5P75kh6JWn5eZDT94ZJ2RnXlAwCAGIhJC97MlkmaKamXmW2SdK2kmyQ9aGYXSdoo6azIyx+TdLykdZIqJV0QixoAAMAXYhLwzrl5B3jqqCZe6yRdGovtAgCApjGTHQAAAUTAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEEAEPAAAAUTAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEEAEPAAAAUTAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEEAEPAAAAUTAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEEAEPAAAAUTAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEEAEPAAAAUTAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEEAEPAAAAUTAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEEAEPAAAAUTAAwAQQAQ8AAABRMADABBAaV6u3MxGSHogatFQST+R1E3S1yUVRZZf5Zx7zMtaAAAIE08D3jn3vqTxkmRmqZI2S1ou6QJJP3fOLfJy+wAAhFU8u+iPkvSRc25jHLcJAEAoxTPg50paFvX4MjN728zuNLPu+77YzOab2QozW1FUVLTv0wAA4CDiEvBmliHpZEl/jixaLGmYGrrvt0q6bd/3OOeWOucKnHMFOTk58SgTAIDAiFcL/jhJq5xz2yTJObfNOVfnnKuX9HtJk+NUBwAAoRCvgJ+nqO55M+sX9dxpklbHqQ4AAELB01H0kmRm2ZLmSLo4avEtZjZekpO0YZ/nAABAO3ke8M65Ckk991l2rtfbBQAgzJjJDgCAACLgAQAIIAIeAIAAIuABAAggAh4AgAAi4AEACCACHgCAACLgAQAIIAIeAIAAIuABAAggAj6J1ZVXyNXU+F0GACABEfBJyDmnXU88qfUnnKDKVW/4XQ4AIAF5frEZxFb1J5/o04ULVfHiS5KkipdeVPaUyT5XBQBINLTgk0R9dbW2L1mi9See9Hm4S1J51H0AABrRgk8CFa++pk+vu07V69fv99yeDz5QzaefKr1vXx8qAwAkKlrwCay2uFhbfvQjfXz++U2Ge6Pyl2jFAwD2RsAnIFdfr9L7H9BHxx2vnY882uzrK158MQ5VAQCSCV30CWb32rX6dMF1qnrrrRa/p+Kf/5KrrpZlZHhYGQAgmRDwCaKuvELbf/1rldxzj1Rf36r31ldUqPKNNxlNDwD4HF30PnPOadeTT2n9CSeo5K67Wh3ujSpeopseAPAFAt5H1Zs26ZNLLtHm73xHtdu2tWtdnC4HAIhGF70PXHW1iu/8g7YvXiy3Z09M1snpcgCAaLTgffDpjf+tol/8Imbh3ojT5QAAjQh4H/S95sfqOX9+zNfL6XIAgEYEvA8sLU29v3e5Bi5ZrJSuXWO23sbT5QAAIOB91HnmTA19+CFljjssJutrPF0OAAAC3mfpAwYo95571P28c2OyPk6XAwBIBHxCsIwM9b3qKg34xS+Ukp3drnVxuhwAQCLgE0qXY4/RkIcfUoeRI9u8jsbT5YBkUl4a2zNKABDwCSfjkEOUe/8ydTvzzDavg9PlkGze+9dWv0sAAoeAT0ApmZnqt/B69b/5JllWVqvfX0E3PZJIXV293nuFgAdijYBPYF1POUVDHnxAGcOGtep9Ff/8J6fLIWlU7arWzs+qtGNbpd+lAIFCwCe4Dnl5GvLgA+py0kktfg+nyyGZlO9oOP6+8d1inysBgiUpAr5q1y7tqQzvX/cp2dnqf8vN6nvddS2+5junyyFZVO5o6G36mIAHYiopAn7X9s+05JJz9cTvfq5Na1fLOed3SXFnZup+9lnKvX+Z0gcPbvb1nC6HZFGxs6EFv/mDHaqtrvO5GiA4kiLgJal2zx69+8KzemDBFfrD5ZfotUf+ooodpX6XFXeZo0dryEN/Uec5cw76Ok6XQ7KoiHTR19XUa/MHO/wtBgiQpAn4aKVbN+ul+/6o279xvv566w36aOWrqq8Lz1/+qZ07a8Cvfqk+V10ppR34ir+cLodk0NiClzgOD8RSUgZ8I1dfr49WvKK/3rJQSy+9QC/d90eVbt3sd1lxYWbqcd55yv3TPUrr16/J13C6HJJBYwtekj5eTcADsZLUAR+torRErz3yF9353Yv1wHVXaM2L/6uaPbv9LstzWePHa8jDDyl7xvT9nuN0OSSDip1ffEd3FlVpx2fhHVALxFJgAj7apjWr9fhvf6YlF5+nZ/7nt/r0ow8DPTAvrXt3DVqyRDmXXy6lfLFLOV0OySC6BS8xmh6IlUAGfKPqqkq99fTjuveqy3XPD7+lVY//TVXlZX6X5QlLSVGvi+dr8B/+oNScXp8v53Q5JLLa6jrtqazda9nG1SU+VQMES6ADPlrRxxv03B9v1+2XnKe///IWbXz7Tbn6er/LirnsKZM19OGH1XHKFEmcLofEFj3ArtHmD0o5XQ6IgQMPwQ6oupoavf/PF/X+P19Ul5w+yp95tMbMPFpdeuX4XVrMpOXkaPCdd2j7b3+r7YuXqObTT5Xet6/fZQH7qdix/xiRupp6bf5whw4Z09OHioDgCF3AR9tVtE3//PO9+udf7lPuuIkaO2uOhhVMUWpaut+ltZulpirn299W1oQJ2v3uuwQ8ElLPgZ3UuUemykr2HhD78epiAh5op1AH/Oec04Y3V2rDmyuV1bmLRs+YpfxZheo16BC/K2u3TtOnB3qAIZJbh6w0HX3BaC3/2Sop6mu68d1i7X9eCIDW8DzgzWyDpDJJdZJqnXMFZtZD0gOSciVtkHSWcy4hpqWrKtullf94RCv/8Yj6HTpC+bMLNXLqdGVkdfS7tDYzM79LAA6of143TTzmEK16YuPny3Z+VqWdRZXqmpO8vzvAb/EaZDfLOTfeOVcQeXyFpGedc3mSno08Tjhb172vp5f+WksuPk9PLP6FNr+3htYw4IHJJw5RzuDOey1jND3QPn6Noj9F0l2R+3dJOtWnOlqkZs9uvfv8M7r/2h/qj9/7hl5/9KFQzoMPeCU1LUVzLhyttPQv/knifHigfeIR8E7SU2a20szmR5b1cc5tjdz/VFKfONQREyVbNunFe/+gpd/8mh5ZdKPWr3o9VPPgA17p3jdbR55x6OePN79fqtoafltAW8VjkN0059xmM+st6Wkzey/6SeecM7P9+r0jfwzMl6TuHbPiUGbr1NfVad3r/9K61/+lTt17aMzMo5U/c4669W16XngAzRszY4A2rC7WxneKVVtTry0f7NBgRtMDbeJ5C945tzny388kLZc0WdI2M+snSZH/ftbE+5Y65wqccwXZHTK8LrNdyktL9OryB3XHd76uB6+7Umteek411ftP4AHg4MxMs88dpazODaeqcnU5oO08DXgzyzazzo33JRVKWi3pUUnnR152vqRHvKwjnj5Z844e/81tuv3i8/TMHYu1bf06v0sCkkrHLhmade4oSdLH7zLQDmgrr7vo+0haHjlNK03Sfc65J8zsdUkPmtlFkjZKOsvjOuJuT2WF3nrqH3rrqX8oJ3eoxs6ao1HTZimzUye/SwMS3pDDemnM9P5696Ut2llUpa45iXeYDkh0lgynfQ3q0c19d840v8tot9T0dOVNnqqxsws1aPRYWUpoLgUAtFrNnjo9cONrGjd7kMbOHOh3OUDcmdnKqNPLW42Z7OKorqZG7738gt57+QV17d1H+TPnaMzMo9W5Z6/m3wyETHqHVM25cIxWPr6BgAfagID3yc7PtunlB/+kf/75PuWOm6D82YUaNmlyIObBB2KlT24X9c/rptqaOqWlp/pdDpBUkqKLftShw9x/Thrldxmey+rSVaNnzNbYWYXqOXCQ3+UACaG+3qm6qlaZ2fzxi3Bpbxd9UgR8QUGBu/tnt+jJJb8MzaQy/YaP1NhZhRoxdboyMhlgBABhE5qAX7FihTa+/aYe/dmNqq6q8rukuEnvkKkRU6dr7OxC9csbyYVjACAkQhXwklS08d96+KYFKi8J3wQYPQYM0thZczR6xmx17NrN73IAAB4KXcBLUlnxdj3802u1/ZONB3lXcKWkpmrYpCnKnz1HueMmKiWFwUcAEDShDHipYSKZR2+7UR+vftunqhJDpx49lT/zaI2ZOUfd+vT1uxwAQIyENuAlqa62Rk8u+ZXWvvScD1UlnsH5hyl/VqHyJk9VWkZiz98PADi4UE90k5qWruMu/Z669MrRq8sf9Lsc3328+m19vPptdcjO1qhpM5U/q1B9hgzzuywAgA+SugUf7e1nntAz//M7OVcfp6qSQ+8hwzR2VqFGTvuyMrOZBx8AkkWou+j3tX7V6/rbL25S7R4u1bqvtPQM5U2ZqvxZhRo0Op958AEgwRHw+/j0ow+1/ObrVLlzh7dFJbGuffpG5sE/Sp17MA8+ACQiAr4JOz/7VA/9dIFKt2zysKrkZ5aiIRMmKX/WHA2dOFmpaUk9JAMAAoWAP4Cqsl366603aMv7azyqKlg6du2m0TNmK3/WHPUcwDz4AOA3Av4gaqur9fhvbtMHr77sQVXB1X/4KI2dXajhR0xjHnwA8AkB3wxXX68X/nSHVv7jkRhXFXzpmVkaOXW68mcVql/eCObBB4A4IuBbaNVjj+i5u/9HSoLPm4h6Dhys/MZ58Lt09bscAAg8Ar4VPnj1ZT3+69tUW1Mdg6rCKSU1TYcWTFH+7EIdcth45sEHAI+Eeia71ho+5Uhld+uhv95yvXaXl/ldTlKqr6vVB6++rA9efVmde+ZozMyjlD/zaHXtzTz4AJBIQtWCb1SyZZMe/um12vnZtpitM+wG54/T2NmFOvRLRzAPPgDEAF30bVSxo1TLb75e29Z/GNP1hl1mdieNmj5L+bPmqHfuUL/LAYCkRcC3Q83u3fr7L2/W+lWvx3zdkPoMPVT5swo18sgZzIMPAK1EwLdTfV2d/vcPS/TW0497sn40zIM//PAjlT+7UANH5XO6HQC0AAEfA845vfbIX/R/y+7ybBto0K1vv4Z58L98lDr16Ol3OQCQsAj4GFr70nN6YvEvVV9X6/m2ws5SUjRk/CTlzy7U0AlfYh58ANgHp8nF0Kjps5TdvYceWXSjqqsq/S4n0Fx9vdavel3rV72ujl27acyXj1L+rDnq0X+g36UBQCDQgm/C9o836KGbFqi8eHvctokGA0aOVv6sQo04fJrSMzP9LgcAfEMXvUfKSrZr+U8XqOjjDXHdLhpkZGVpxNQZmnb2uerYtZvf5QBA3LU34FNiWUyQdO7RS2dfd4sGjx3vdymhVF1VpXeefVJb133gdykAkJQI+IPo0LGjTr/iWo2eMdvvUkKrorTE7xIAICkR8M1ITUvXsd+8XId/Za7fpYRSWUmx3yUAQFIi4FvAzHTkWf+hOfO/JUvhf1k8VZQS8ADQFqRVKxx21DE67Yc/UXoHRnfHSzld9ADQJgR8Kw2ZUKCzF9zEyO44KaeLHgDahIBvgz5DD9U5N9zGpCxxQAseANqGgG+jrr37aO7CWzVg5Bi/Swm0ql07VVdb43cZAJB0CPh2yOrUWWdcvVDDj5judymBVrGj1O8SACDpEPDtlJaRoRO//QNNOvE0v0sJLI7DA0DrEfAxYCkpmnnuRZr1tYslrnUecxyHB4DWI+BjaOJxJ+nk712ptPQMv0sJlPISAh4AWouAj7G8yVN15k9uVGbnLn6XEhjlTHYDAK1GwHug//BROmfhrerWp5/fpQRCBcfgAaDVCHiPdO83QPMW3qq+hw73u5SkxzF4AGg9At5DHbt201k/+W8NK5jidylJjYAHgNbzLODNbJCZPWdma8zsXTP7TmT5AjPbbGZvRm7He1VDIkjvkKmTv3+VxhWe4HcpSYvT5ACg9dI8XHetpO8751aZWWdJK83s6chzP3fOLfJw2wklJSVVR114ibr0ytFL9/3R73KSTnVVpap3VykjM8vvUgAgaXjWgnfObXXOrYrcL5O0VtIAr7aX6MxMk085Q8d/+wdKTfPy76pgqqCbHgBaJS7H4M0sV9IESa9GFl1mZm+b2Z1m1j0eNSSKUUd+WV+5eqE6ZGf7XUpSoZseAFrH84A3s06SHpL0XefcLkmLJQ2TNF7SVkm3HeB9881shZmtKCoq8rrMuBo0eqzmXneLOvfM8buUpMFAOwBoHU8D3szS1RDu9zrnHpYk59w251ydc65e0u8lTW7qvc65pc65AudcQU5O8IKw16BDdM4Ni5STO9TvUpICAQ8ArePlKHqTdIektc65n0Utj5795TRJq72qIdF16tFTcxfcpEMOm+B3KQmvgtnsAKBVvGzBHynpXEmz9zkl7hYze8fM3pY0S9LlHtaQ8DKyOuq0H12rMTOP9ruUhFbGfPQA0CqeDed2zv2fpKYurfaYV9tMVqlpaTrmku+oS6/e+tdf7vO7nIRECx4AWoeZ7BKEmWnqmeeo8JJvy1LYLfviGDwAtA5JkmDGzirU6T+6VulM6rKXipISOef8LgMAkgYBn4Byx0/S2QtuUnb3Hn6XkjBqa6q1u6Lc7zIAIGkQ8Amqz5BhOmfhIvUYMMjvUhIGl40FgJYj4BNYl5zemnf9rRo4Ot/vUhICx+EBoOUI+ASX2amTvnLVQo2YOsPvUnzHdLUA0HIEfBJIS0/XCd/6L33p5K/4XYqvaMEDQMsR8EnCUlI046sXaPaFl8gsnLuNgAeAlgtnUiSxCcecqJO/f5XSMjr4XUrcMdkNALQcAZ+EDv3S4TrrJ/+trM5d/C4lrjgGDwAtR8AnqX55IzTvhkXq1rdf8y8OCLroAaDlCPgk1r1vf81buEj98kb4XUpcVOwoVX19nd9lAEBSIOCTXMcuXXXmNTdqWMHhfpfiOVdfr8qdO/0uAwCSAgEfAOkdMnXy96/U+GNO9LsUz1XQTQ8ALULAB0RKSqpmX3CxvvwfF/pdiqfKGUkPAC1CwAeImangpNN1wnd+qNS0NL/L8UR5CS14AGgJAj6ARk6doTOuvkEdsrP9LiXmaMEDQMsQ8AE1cHS+5l2/SF1yevtdSkzRggeAliHgA6znwEGat3CReg8Z5ncpMcNsdgDQMgR8wHXq3kNnL7hJueMn+V1KTDCbHQC0DAEfAhmZWTr1B9cof1ah36W0G7PZAUDLEPAhkZqWpsKLv6WpZ33V71Lapapsl2pravwuAwASHgEfImamI74yT8d+83KlpKb6XU6bVe4o9bsEAEh4BHwIjfnyUTrtigXKyMryu5Q2KeM4PAA0i4APqdzDJujsBTerU/cefpfSaoykB4DmEfAh1jt3qObdcJt6DhzsdymtwkA7AGgeAR9yXXrlaO71t2jQmMP8LqXFCHgAaB4BD2Vmd9LpV16nUdNm+l1Ki3AuPAA0j4CHJCktPV3HXfo9TT71TL9LaRbH4AGgeQQ8PmcpKZo+73wd/Z/flFnifjWYjx4Ampe4/4rDN+PmHK9TfnC10jp08LuUJnFFOQBoHgGPJg2bNEVn/+SnyurS1e9S9lNdVaXqqkq/ywDgs/I9tX6XkNAIeBxQ30OH65yFi9S9X3+/S9lPeSmz2QFhtqe2Thf98XXtrqnzu5SERcDjoLr17ae519+qfsNH+l3KXhhoB4RbaUWNXv13ib617A3V1tX7XU5CIuDRrI5duurMa25U3uSpfpfyOU6VA8KtuGKPJOnpNdt01fJ35JzzuaLEQ8CjRdIzOujEy3+kiced7HcpkpjsBgi70oovrir54IpNuvmJ932sJjER8GixlJRUzfrafM087z/9LoWAB0KusQXfaMkLH+n3L673qZrERMCj1SadcKpO/O4VSk1P960GuuiBcCutqN5v2Y2PrdVfVm7yoZrERMCjTUYcMU1n/PgGZWZ38mX7tOCBcCtpIuAl6UcPva1n1myLczWJiYBHmw0cOUZzF96qLjl94r5tRtED4VZS2XTA19U7XXrfKr32bxoBBDzapeeAQTrnhkXqM/TQuG63vLSEUbNAiB2oBS9Je2rrddFdr2vt1l1xrCjxEPBot+xu3XXWtT/VkAkFcdtmXU2NdpeXxW17ABLLwQJeksp21+q8O1/Tx8XhnfWSgEdMZGRm6dQfXKOxRx0Tt21yHB4Ir+YCXpKKyvbo3DtfVVHZnmZfG0QEPGImJTVVc75+mabNPS8u26tgJD0QWi0JeEnaWFyp8+98Tbt21zT/4oAh4BFTZqYpp52l4y79nlJSUz3dFi14IJzq651KK1se2Gu27tKVD7/jYUWJiYCHJ0bPmK3Tr7xOGVkdPdsG58ID4bRrd43q6ls+yDY1xfS1qbneFZSgfAt4MzvWzN43s3VmdoVfdcA7h4wdr7nX36JOPXp6sn5a8EA4tbR7vtGVx43Ul3J7eFRN4vIl4M0sVdJvJR0nabSkeWY22o9a4K2cwbk654bb1GtwbszXTcAD4dSagD9hbD9dNG2Ih9UkLr9a8JMlrXPOrXfOVUu6X9IpPtUCj3Xu2Utzr7tZg/PHxXS9dNED4dTSgB+Wk62bzzhMZuZxRYnJr4AfIOmTqMebIss+Z2bzzWyFma0oKiqKa3GIvQ4ds3X6lQs0evqsmK2T2eyAcGpJwHfMSNXt505Spw5pcagoMSXsIDvn3FLnXIFzriAnJ8fvchADqWnpOvbS72nKaWfHZH0VO3aovr4uJusCkDwONE1ttJu/cpgO7d05DtUkLr8CfrOkQVGPB0aWIeDMTNPmnqs5X79MltK+r59z9arcuTNGlQFIFiXlBw/4C47M1Unj+sepmsTlV8C/LinPzIaYWYakuZIe9akW+OCwo4/VqT+8RmkdOrRrPRyHB8LnYC34gkO666rjR8WxmsTlS8A752olXSbpSUlrJT3onHvXj1rgn6ETvqSzr71JHbt2a/M6GEkPhM+BjsH36pSh35wzUempCXv0Oa58+7/gnHvMOTfcOTfMOXejX3XAX32H5emcGxape/+BbXo/A+2A8Gkq4FNM+vW8ierbNdOHihITf+bAd11799W8629R/xGtnwqBLnogfJoK+B8eO1JHDPNmUq1kRcAjIWR17qIzf3yDhk85slXvo4seCJ99A75wdB9dPGOoT9UkLgIeCSMtI0MnfvdHmnRCy+c8IuCBcNldU6fK6i9Ojx3SK1uLzhoX2slsDoaAR0KxlBTNPO/rmnX+16UW/GC5ZCwQLtGt98z0FC3+j4nqkpnuY0WJi4BHQpp4/Ck66fIrlJaecdDXldGCB0IlOuB/evpYjezbxcdqEhsBj4Q1fMqROuOaG5XZ6cCzUe0u26XampZfFxpAcmsM+HMPP0SnTWjb2TdhQcAjoQ0YMUrzFt6qrr37HPA1FbTigdAorazWuEHd9OMTmcymOQQ8El6P/gM1b+Ei9Rma1+TznCoHhMvir05Uh7RUv8tIeAQ8kkJ2t+46+9qfaujEL+33HCPpgfA48bD+6t8ty+8ykgIBj6SRnpmpU/7rxxo357i9ljObHRAeqSmcDtdSBDySSkpqqo666JuaNu/8z5fRggeA/RHwSDpmpimnnqnjL/u+UlLTOAYPAE1I87sAoK1GTZ+l7O499MYTf/O7FABIOAQ8ktrg/HHqNegQv8sAgIRDFz2SXnuuJw8AQUXAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEEAEPAAAAUTAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEEAEPAAAAUTAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEEAEPAAAAUTAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEEAEPAAAAUTAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEEAEPAAAAeRJwJvZrWb2npm9bWbLzaxbZHmumVWZ2ZuR2xIvtg8AQNh51YJ/WlK+c+4wSR9IujLquY+cc+Mjt0s82j4AAKHmScA7555yztVGHr4iaaAX2wEAAE2LxzH4CyU9HvV4iJm9YWYvmNn0OGwfAIDQSWvrG83sGUl9m3jqaufcI5HXXC2pVtK9kee2ShrsnCs2s0mS/mpmY5xzu5pY/3xJ8yVp8ODBbS0TAIBQanPAO+eOPtjzZvY1SSdKOso55yLv2SNpT+T+SjP7SNJwSSuaWP9SSUslqaCgwLW1TgAAwsirUfTHSvqhpJOdc5VRy3PMLDVyf6ikPEnrvagBAIAwa3MLvhm/kdRB0tNmJkmvREbMz5B0vZnVSKqXdIlzrsSjGgAACC1PAt45d+gBlj8k6SEvtgkAAL7ATHYAAAQQAQ8AQAAR8AAABBABDwBAABHwAAAEEAEPAEAAEfAAAARQUgZ8cVWxHv3oUa0tXut3KQAAJKSkDPieWT11TO4xenzD4zpp+Un6xcpfEPYAAESxyHVgElpBQYFbsWK/69FIklZvX61rXr5G63as06DOg1R4SKEKcws1uufoOFcJAEDsmNlK51xBm9+f7AEvSTV1Nbr97dt1xzt3qNbVStLnYT935Fz1zW7qqrYAACSu9gZ8UnbR7ys9NV2XTbhMy05cppE9RkqSPin7RHesvkOL31rsc3UAAMRfIAK+0cgeI7XshGW6bPxlSk9JlyQ9ueFJVdZUNvNOAACCJVABL0lpKWm6eNzFeuDEB5TfM18VNRV6auNTfpcFAEBcBS7gG+V1z9Ofjv+TLp90uR7/9+N+lwMAQFx5cj34RJGakqoL8y/U7EGzVVNXo/TUdL9LAgAgLgId8I1yu+b6XQIAAHEV2C56AADCjIAHACCACHgAAAKIgAcAIIAIeAAIirV/k6pK/a4CCYKAB4CgeP5madEI6cHzpA+elOrr/K4IPgrFaXIAEAqp6VLdHmnNIw23Tn2ksWdK478q9eEKm2FDCx4AgiI1Y+/H5dukf/1GWnyEdPsM6dXbpcoSf2pD3NGCB4CgONhsnVvfarg99WMpr7ChVZ9XKKUSA0HFngWAoGjJdNx11dJ7f2+4ZedEuvDPkfqO9b4+xBVd9AAQFCmtvN5GRZH0yu+kJdOkxdOkf/1OqtjuTW2IOwIeAIKiPRfU2vaO9OSV0m0jpWXzGk65q6uJXW2IO7roASAoYnHFzPoa6f3HGm4de0r5ZzR04fcf3/51I65owQNAUOw7ir69Koul126Xln5Z+t1U6ZUlsV0/PEXAA0BQxKIFfyBlWziXPsnQRQ8AQdHaQXYt1Wu4NO9+qecwb9YPTxDwABAUse6il6RhR0ln/kHK7Br7dcNTdNEDQFDEuot+yjekr/6ZcE9StOABIChiFfAp6dIJi6RJX4vN+uALAh4AgiIWx+Czekhn3yPlTmv/uuArAh4AgqK9x+BzRkrzlkk9hsamHviKgAeAoGjPhWPyCqWv3CFldoldPfAVg+wAICja2oI/4jJp3gOEe8DQggeAoGhtwKekSyf+XJp4rjf1wFcEPAAERUor/knv2FM66x4p90jv6oGvCHgACIqWtuBzRknn3C91z/W0HPiLgAeAoGjJefB5x0hn3CF16Ox9PfAVg+wAICiaC/ip32qYU55wDwXPAt7MFpjZZjN7M3I7Puq5K81snZm9b2bHeFUDAITKgSa6Sc2QTvmdVHiDlEK7Liy87qL/uXNuUfQCMxstaa6kMZL6S3rGzIY75+o8rgUAgq2pY/Ade0ln/0k65Ij41wNf+fGn3CmS7nfO7XHO/VvSOkmTfagDAIJl3y763mOkr/8v4R5SXgf8ZWb2tpndaWbdI8sGSPok6jWbIssAAO0RHfAjjpcuekrqfoh/9cBX7Qp4M3vGzFY3cTtF0mJJwySNl7RV0m2tXPd8M1thZiuKioraUyYAhENjF/2R35XOvlfq0MnXcuCvdh2Dd84d3ZLXmdnvJf098nCzpEFRTw+MLNt33UslLZWkgoIC1546E52rd6otqlRajyxZOgNgALRRRrZ06hJp/Dy/K0EC8HIUfb+oh6dJWh25/6ikuWbWwcyGSMqT9JpXdSQDSzGl98km3AG0T58xhDs+5+Uo+lvMbLwkJ2mDpIslyTn3rpk9KGmNpFpJlzKCHgCA2PIs4J1zB7x6gXPuRkk3erVtAADCjj5hAAACiIAHACCACHgAAAKIgAcAIIAIeCDg/l25Ryt2VvhdBoA4I+CBAKqtd/rbZzt05pvrNPXVtVq1i4AHwsbrq8kBiKNPdlfrT1uKtWxrsT6rrv18eU5GM9cJBxA4BDyQ5Oqc0zPFu3TX5u16vqRM9U28JieDnzoQNvzqgSS1dU+17t1Sovu2FmvLnpqDvpYWPBA+BDyQROqd0/MlZbp7y3Y9XbxLdS28DBMteCB8+NUDSaCoukbLtpboT1uK9fHu6la9N91M3dNSPaoMQKIi4IEE5ZzT/5WW6+4txXpi+07VuLZdNblXRprMLMbVAUh0BDyQYEpqanV/pLW+vmpPu9dH9zwQTvzygQTxyo5y3bOlWH8v2qE99W1rrTclJ50BdkAYEfCAj3bW1OrP20p19+ZifVC525Nt0IIHwolfPuCDVTsrdNeWYj36WamqYthab0pvAh4IJX75QJyU19bpoW2lumdLsVaXV8Vtu5wDD4QTAQ947J2ySt29pVgPbytVRV1T88x5iy56IJz45QMeqKyr11+3leruLcV6s6zS11oIeCCc+OUDMbS2vEr3bCnWX7aVaFdt/FvrTelNFz0QSgQ80E676+r1t6IdumdLsV5LwOuu04IHwolfPtAORdU1+smHm/X49p3a7fFo+LbokGLqls7PHAgjfvlAO+RkpGvxmFztrqvXKzvL9VxJmZ4vKdP7Fd6c095avQh3ILT49QMxkJmaopk9umhmjy6SGi7l+nwk7F8qLVNJTZ0vdfWiex4ILX79gAf6dcjQvH49Na9fT9U7p7fKqvR8yS69UFKmFbsqVBun3nwG2AHhRcADHksx04QuHTWhS0ddnttXZbV1erm0XM+V7NLzJWXa2MrLv7YGA+yA8OLXD8RZ57RUHZvTVcfmdJUkbajaEzl2v0svl5arPIaT4dCCB8KLgAd8lpvVQRcM6KALBvRSTb3Til0VeqGkTM+V7NI7ZVVqT9xzDB4IL379QAJJTzEd0a2TjujWSVcM7afi6lq9VFqm50rK9EJJmT6trmnV+mjBA+FFwAMJrGdGmk7t012n9ukuqWGmvOcjYf/KzvJmz73nGDwQXvz6gSQyqlOWRnXK0jcG91ZVXb1e2VGu50sPfO49l4oFwotfP5CkslJTNKtnF83qeeBz77lULBBeBDwQEE2de98lLdXvsgD4JMXvAgDEXuO590Cycy7xrvGQLAh4AEDCMjO/S0haBDwAAAFEwAMAEEAEPAAAAUTAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEEAEPAAAAUTAAwAQQAQ8AAAB5MnV5MzsAUkjIg+7SdrhnBtvZrmS1kp6P/LcK865S7yoAQCAMPMk4J1zZzfeN7PbJO2Mevoj59x4L7YLAAAaeHo9eGu4DNBZkmZ7uR0AALA3r4/BT5e0zTn3YdSyIWb2hpm9YGbTD/RGM5tvZivMbEVRUZHHZQIAECxtbsGb2TOS+jbx1NXOuUci9+dJWhb13FZJg51zxWY2SdJfzWyMc27Xvitxzi2VtFSSCgoKXFvrBAAgjNoc8M65ow/2vJmlSTpd0qSo9+yRtCdyf6WZfSRpuKQVba0DAADsz8su+qMlveec29S4wMxyzCw1cn+opDxJ6z2sAQCAUPJykN1c7d09L0kzJF1vZjWS6iVd4pwr8bAGAABCybOAd859rYllD0l6yKttAgCABsxkBwBAABHwAAAEEAEPAEAAEfAAAAQQAQ8AQAAR8AAABBABDwBAABHwAAAEEAEPAEAAEfAAAAQQAQ8AQAAR8AAABBABDwBAABHwAAAEEAEPAEAAEfAAAAQQAQ8AQAAR8AAABBABDwBAABHwAAAEEAEPAEAAEfAAAAQQAQ8AQAAR8AAABBABDwBAABHwAAAEEAEPAEAAEfAAAAQQAQ8AQAAR8AAABBABD8AXdXV1fpcABBoBD8AXRUVFfpcABBoBDyDutm3bJuec32UAgUbAA4i7t956S/369fO7DCDQCHgAcbVx40ZlZmb6XQYQeAQ8gLh6+umnNXbsWL/LAAKPgAcQN2vWrFFKSoq6d+/udylA4BHwAOKirq5Ozz77rA477DC/SwFCgYAHEBdvvPGGduzYoTFjxvhdChAKBDyAuFi3bp3y8vKUlZXldylAKBDwAOKiurpa48aN87sMIDQIeABxkZKSory8PL/LAEKDgAcQF4ceeqjS0tL8LgMIDQIeQFyMGDHC7xKAUCHgAcQF574D8dWugDezM83sXTOrN7OCfZ670szWmdn7ZnZM1PJjI8vWmdkV7dk+AABoWntb8KslnS7pxeiFZjZa0lxJYyQdK+l3ZpZqZqmSfivpOEmjJc2LvBYAAMRQu0a8OOfWSpKZ7fvUKZLud87tkfRvM1snaXLkuXXOufWR990fee2a9tQBAAD25tUx+AGSPol6vCmy7EDLAQBADDXbgjezZyT1beKpq51zj8S+pM+3O1/S/MjDPWa22qttJYBekrb7XYSH+HzJLcifL8ifTeLzJbt2nXrSbMA7545uw3o3SxoU9XhgZJkOsnzf7S6VtFSSzGyFc66gqdcFAZ8vufH5kleQP5vE50t2ZraiPe/3qov+UUlzzayDmQ2RlCfpNUmvS8ozsyFmlqGGgXiPelQDAACh1a5BdmZ2mqRfS8qR9A8ze9M5d4xz7l0ze1ANg+dqJV3qnKuLvOcySU9KSpV0p3Pu3XZ9AgAAsJ/2jqJfLmn5AZ67UdKNTSx/TNJjrdzU0tZXl1T4fMmNz5e8gvzZJD5fsmvX5zPnXKwKAQAACYKpagEACKCEC/gwTX9rZg+Y2ZuR2wYzezOyPNfMqqKeW+JzqW1iZgvMbHPU5zg+6rkm92WyMLNbzew9M3vbzJabWbfI8kDsOyl5f1cHYmaDzOw5M1sT+TfmO5HlB/yeJpvIvyPvRD7HisiyHmb2tJl9GPlv0l0UwMxGRO2fN81sl5l9N9n3nZndaWafRZ8GfqD9ZQ1+Ffk9vm1mE5vdgHMuoW6SRqnh3L/nJRVELR8t6S1JHSQNkfSRGgbqpUbuD5WUEXnNaL8/Rxs+922SfhK5nytptd81xeAzLZD0X00sb3Jf+l1vKz9boaS0yP2bJd0csH0XiN/VPp+pn6SJkfudJX0Q+S42+T1NxpukDZJ67bPsFklXRO5f0fhdTdZb5Lv5qaRDkn3fSZohaWL0vxkH2l+Sjpf0uCSTdLikV5tbf8K14J1za51z7zfx1OfT3zrn/i2pcfrbyYpMf+ucq5bUOP1t0rCGuX7PkrTM71ri5ED7Mmk4555yztVGHr6ihjkdgiTpf1f7cs5tdc6titwvk7RW4ZhJ8xRJd0Xu3yXpVP9KiYmjJH3knNvodyHt5Zx7UVLJPosPtL9OkXS3a/CKpG5m1u9g60+4gD+IIE9/O13SNufch1HLhpjZG2b2gplN96uwGLgs0p10Z1TXYBD2WbQL1fCXdaMg7Lug7aO9mFmupAmSXo0saup7moycpKfMbKU1zAYqSX2cc1sj9z+V1Mef0mJmrvZuDAVl3zU60P5q9W/Sl4A3s2fMbHUTt6RuITSlhZ91nvb+wm6VNNg5N0HS9yTdZ2Zd4ll3SzXz+RZLGiZpvBo+021+1tpaLdl3Zna1GuZ6uDeyKGn2XViZWSdJD0n6rnNul5L8e7qPac65iWq4YuelZjYj+knX0NebtKdOWcMEaSdL+nNkUZD23X7au7/adR58Wzmfpr/1Q3Of1czS1HDJ3UlR79kjaU/k/koz+0jScEntmrbQCy3dl2b2e0l/jzw82L5MGC3Yd1+TdKKkoyI/xKTad81Iin3UWmaWroZwv9c597AkOee2RT0f/T1NOs65zZH/fmZmy9VwqGWbmfVzzm2NdOl+5muR7XOcpFWN+yxI+y7KgfZXq3+TydRFH9Tpb4+W9J5zblPjAjPLMbPUyP2havis632qr832OT50mqTGkaIH2pdJw8yOlfRDSSc75yqjlgdi3yn5f1f7iYx1uUPSWufcz6KWH+h7mlTMLNvMOjfeV8NA0NVq2G/nR152viTPLhIWB3v1dgZl3+3jQPvrUUnnRUbTHy5pZ1RXfpN8acEfjIVv+tt9jydJDSMrrzezGkn1ki5xzu07ECMZ3GJm49XQxbRB0sWSdLB9mUR+o4azAJ5uyA294py7RAHZd8652iT/XTXlSEnnSnrHIqekSrpK0rymvqdJqI+k5ZHvY5qk+5xzT5jZ65IeNLOLJG1Uw4DepBP5o2WO9t4/Tf4bkyzMbJmkmZJ6mdkmSddKuklN76/H1DCSfp2kSkkXNLv+SM8iAAAIkGTqogcAAC1EwAMAEEAEPAAAAUTAAwAQQAQ8AAABRMADABBABDwAAAFEwAMAEED/D0BdHPYVwyJVAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAlM0lEQVR4nO3deXxcdb3/8fcnS9MlKd1iUtqEllqpLUuBsLldkSKgKIpXblG5uBEQ6vK78HDjoaIPcUERr7vVyxXvRQSvIBVBoCiIPGRJS2kLbaW0hbaEJNDSlmbPfH5/5KRM00nbJHPmZL7zej4e88iZ79k+p2dm3j3fOeeMubsAAEBYipIuAAAAZB8BDwBAgAh4AAACRMADABAgAh4AgAAR8AAABCgrAW9m15tZs5mtTmubZGb3mtnT0d+JUbuZ2Q/MbL2ZrTSz47JRAwAAeFW2juB/JenMfm2fl3Sfu8+WdF/0XJLOkjQ7etRL+mmWagAAAJGsBLy7/03Stn7N50i6IRq+QdJ70tp/7b0eljTBzKZmow4AANArzu/gq9y9MRp+QVJVNDxN0ua06bZEbQAAIEtKcrESd3czG9Q9cc2sXr1d+Bo3btzxc+bMiaU2AABGomXLlr3o7pVDnT/OgG8ys6nu3hh1wTdH7Vsl1aRNNz1q24u7L5a0WJLq6uq8oaEhxlIBABhZzOzZ4cwfZxf9EkkXRsMXSro9rf3fo7PpT5a0I60rHwAAZEFWjuDN7CZJb5U0xcy2SPqKpG9JusXMPibpWUnnRZPfKekdktZLapX0kWzUAAAAXpWVgHf38wcYdVqGaV3SZdlYLwAAyIw72QEAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwwQj3/9Mu66+er1NOVSroUAHmIgAdGoA0rWrTkP1dow+MtarhrU9LlAMhDJUkXAGBvT/39ed1/41q5S0e9dbrqzpqRdEkA8hABD4wQ7q5ldz2rR5Zs0KjRxTr1gtfrtce/JumyAOQpAh4YATzlevCWp7Xq/i2qrK3QGRfN0yGVY5MuC0AeI+CBhPV0pbT0V09p/bJmHXXqdL3x3NequJTTYwAMDwEPJKizrVt3/XyVmjft1Jn1R2rWcXTJA8gOAh5ISOvOTt3xoyckSeddeaIOqRyTcEUAQkLAAwnY0dKmP/5ghWqPnEyXPIBYEPBAjrVs3qV7fvmkTjl3lmYdS5c8gHgQ8EAObVm3XQ13btLZi46hSx5ArAh4IEeeWd6spo079a5Fx9AlDyB2BDyQA08/1qTi0iK94X2vTboUAAWCgAdi5O56dvVLqpo5XuOn0CUPIHcIeCAmqZRrR3OrauZMokseQM4R8ECMJlaPS7oEAAWKwwogJkVFlnQJAAoYAQ8AQIBi7aI3syMk3ZzWdLikL0uaIOkiSS1R+xfd/c44awEAoJDEGvDuvk7SfEkys2JJWyXdJukjkq5z9+/GuX4AAApVLrvoT5P0jLs/m8N1AgBQkHIZ8Asl3ZT2fJGZrTSz681sYv+JzazezBrMrKGlpaX/aAAAsB85CXgzGyXp3ZJ+FzX9VNIs9XbfN0q6tv887r7Y3evcva6ysjIXZQIAEIxcHcGfJWm5uzdJkrs3uXuPu6ck/ULSiTmqAwCAgpCrgD9fad3zZjY1bdx7Ja3OUR0AABSE2O9kZ2bjJJ0u6eK05mvMbL4kl7Sp3zgAADBMsQe8u++WNLlf2wVxrxcAgELGnewAAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgACVxL0CM9skaZekHknd7l5nZpMk3SxphqRNks5z9+1x1wIAQKHI1RH8qe4+393rouefl3Sfu8+WdF/0HAAAZElSXfTnSLohGr5B0nsSqgMAgCDlIuBd0j1mtszM6qO2KndvjIZfkFSVgzoAACgYsX8HL+lN7r7VzF4j6V4zW5s+0t3dzLz/TNF/Buolqba2NgdlAgAQjtiP4N19a/S3WdJtkk6U1GRmUyUp+tucYb7F7l7n7nWVlZVxlwkAQFBiDXgzG2dmFX3Dkt4uabWkJZIujCa7UNLtcdYBAEChibuLvkrSbWbWt67fuPufzewxSbeY2cckPSvpvJjrAACgoMQa8O6+QdIxGdpfknRanOsGAKCQcSc7AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeBWvb/94o7+pKugwAiAUBj4LkqZRafvhDNV51ldw96XIAIOsIeBSkzo0bldqxQzt+f6te/OGPki4HALKOgEdBanv88T3DL/7kJ9p+8y0JVgMA2UfAoyC1pgW8JL3w1a9q11/+mlA1AJB9BDwKUtvyvQNeqZS2/sd/qG3FikTqAYBsI+BRcLq3b1fnxo37tHt7uzZf8gl1bNh3HADkGwIeBWd/R+k9L7+szRddpO6WltwVBAAxIOBRcNoeX7Hf8V1bt+q5iy9Wzyu7c1MQAMSAgEfBaet3gl0mHU+t0dZPf1re2ZmDigAg+wh4FBTv6lLbqlUHNe3uhx5S45e+xI1wAOSl2ALezGrM7K9m9pSZPWlmn47arzKzrWa2Inq8I64agP7a166Vt7cf9PQ7bl+iluu+H19BABCTkhiX3S3pcndfbmYVkpaZ2b3RuOvc/bsxrhvI6GC65/t7afFilVS9RpM++MEYKgKAeMR2BO/uje6+PBreJWmNpGlxrQ84GP1vcHOwmr5+tXbee++BJwSAESIn38Gb2QxJx0p6JGpaZGYrzex6M5uYixoA6cBn0A/IXc9ffoValy3Laj0AEJfYA97MyiX9XtJn3H2npJ9KmiVpvqRGSdcOMF+9mTWYWUML1yQjC7oaG9X9wgtDnt87O7X50svUsX59FqsCgHjEGvBmVqrecL/R3W+VJHdvcvced09J+oWkEzPN6+6L3b3O3esqKyvjLBMFYijfv/eX2rFDz11Ur66mpixUBADxifMsepP0X5LWuPv30tqnpk32Xkmr46oBSNc61O75frobG7W5/mL17NqVleUBQBziPIJ/o6QLJL2t3yVx15jZKjNbKelUSf8vxhqAPdqWL8/asjrWrdOWRZ9UihvhABihYrtMzt3/LskyjLozrnUCA0m1tqp97dqsLrP1kUfU+IUv6tDvXCMr4p5RAEYWPpVQENpWrZZ6erK+3J1/+pOav5vxPFEASBQBj4KQjRPsBrLt+uu17YYbYls+AAwFAY+CEGfAS1LTt76tnXfdFes6AGAwCHgEz1Op/f4GfHZW4nr+s5/T7kcfjXc9AHCQCHgEr3PTJvXs2BH7eryrS1suW6T2df+MfV0AcCAEPIKXzcvjDiS1a5c219erq7ExZ+sEgEwIeARvqD8wM1TdTU3aXF+fk14DABgIAY/gDfkHZoah4+n12nLZIqU6OnK+bgCQCHgErnv7dnVu2JDIulsbGvT8Zz8nT6USWT+AwkbAI2htTzyR6Pp33X23mr75Lbl7onUAKDwEPIKWRPd8f9v/53+07fr/TroMAAWGgEfQcnkG/f40f+c72vHHO5IuA0ABIeARLO/qUtuqVUmXscfzX/yidv/jH0mXAaBAEPAIVvvadfL29qTLeFVXl7Ys+qTa16xJuhIABYCAR7Divv/8UKR279Zz9fXq3LI16VIABI6AR7DaVoy8gJeknpYXtfmii9S9fXvSpQAIGAGPYLWOgDPoB9K5caO2XHqZUiPpKwQAQSHgEaSuxkZ1j/D7wbc9/ri2XnGFvKcn6VIABIiAR5BG4vfvmbyy9D41XX01N8IBkHUEPII0krvn+9v+m5v00uJfJF0GgMAQ8AhSvhzB92m57jq9fNsfki4DQEAIeAQn1dqal9eaN37pS3rlwQeTLgNAIEqSLgDItrbVq6U8OXHNyspUOn26RtXUqLS2Rt3NLXJ3mVnSpQHIcwQ8gjMSfmAmXfGkSb0BXlOjUbU1Kp0e/a2pUUllpayIjjQA2UfAIzg5/4GZkhKVHnpoFOLTNaqmtvdvba1Kp9eouHxcbusBABHwCIynUmpbsSLryy0qL1dpbY1G1dRqVM10lfb9ra1VaXW1rIS3EoCRhU8lBKVz0yb17Ngx+BnNVFJdrVHTp0dB3telXqvS6dNVPGEC34sDyCsEPIKyv8vjbPTo3qPuPd+Bv3o0XjrtUBWVleWwUgCIFwGPoHRu2qQx8+f3HoVPr9nraLykspKjcAAFg4BHUF5z+eVJlwAAIwLX5wAAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACxI1uAOzXphd3a+maJknS6NJinTRzkmZXVSRcFYAD4QgewH7NmDJO/3ZCjcpKinTjI8/p3T96SH984vmkywJwABzBAzigitGluuCUGbrglBl6/Lnt+u2jm7WhZbc++bbXqqiI+/sDIxEBD2BQjq2dqGNrJ2pXe5ee29aqGVPGJV0SgAwIeABDUjG6VBWjS5MuA8AA+A4eAIAAEfAAAASIgAcAIECJBbyZnWlm68xsvZl9Pqk6AAAIUSIBb2bFkn4s6SxJcyWdb2Zzk6gFAIAQJXUEf6Kk9e6+wd07Jf1W0jkJ1QIAQHCSCvhpkjanPd8Ste1hZvVm1mBmDS0tLTktDgCAfDdiT7Jz98XuXufudZWVlUmXAwBAXkkq4LdKqkl7Pj1qAwAAWZBUwD8mabaZzTSzUZIWSlqSUC0AAAQnkVvVunu3mS2SdLekYknXu/uTSdQCAECIErsXvbvfKenOpNYPAEDIRuxJdgAAYOgIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABCiWgDez75jZWjNbaWa3mdmEqH2GmbWZ2Yro8bM41g8AQKGL6wj+XklHuvvRkv4p6Qtp455x9/nR45KY1g8AQEGLJeDd/R53746ePixpehzrAQAAmeXiO/iPSror7flMM3vczB4wszfnYP0AABSckqHOaGZLJVVnGHWlu98eTXOlpG5JN0bjGiXVuvtLZna8pD+Y2Tx335lh+fWS6iWptrZ2qGUCBau9vV1r1qxReXm5qqqqVFFRITNLuiwAOWLuHs+CzT4s6WJJp7l76wDT3C/pCndv2N+y6urqvKFhv5MAyKC1tVV//vOftXLlSo0dO1ZVVVWqqqpSdXW1qqqqVFlZqZKSIf8/H0CMzGyZu9cNdf5Y3tlmdqakz0r6l/RwN7NKSdvcvcfMDpc0W9KGOGoAII0dO1bnnnuujjrqKN1xxx3auHGjNm7cuGd8UVGRpkyZsk/wl5eXc7QP5LlYjuDNbL2kMkkvRU0Pu/slZvY+SV+T1CUpJekr7v7HAy2PI3hg+Do6OvSXv/xFjzzyyAGnHTt27J6w7wv+KVOmcLQP5NBwj+Bj66LPJgIeyJ7NmzdryZIlamlpGdR8fUf7/YO/vLw8pkqBwkbAAxi07u5uPfjgg3rwwQeVSqWGtaxx48bt1b1fVVXF0T6QBQQ8gCFramrSkiVLtHXr1qwut6ioSJWVlaqurtb06dN1wgknZHX5QCEYbsBzL3qggFVVVeljH/uYzjjjDJWWlmZtualUSk1NTXriiSfU2dmZteUCOHgEPFDgioqKdMopp+jSSy/VrFmzsrrs6upqnXzyyVldJoCDQ8ADkCRNnDhRH/rQh/Se97xHY8aMGfbyzEzvete7VFxcnIXqAAwWAQ9gDzPT/Pnzddlll2nevHnDWtZJJ52kadOmZakyAINFwAPYR3l5ud7//vdr4cKFqqioGPT848eP16mnnhpDZQAOFtexoKB0d3Zq0xPLNWb8IaqYPEXlkyapqIgu5IHMmTNHM2bM0NKlSzWYK1ne+c53qqysLMbKABwIAY+CUjJqlCZUT9VdP/6emjc+Iysq0rgJE1UxaUpv4E/u/fuaGYer9shjki53RBg9erTOPvtsHXnkkVqyZIm2bdu23+nnzp2rI444IkfVARgI18GjIKV6evTwrTfrkdtuUaqne5/xVYfP1oe+eV0ClY1sXV1deuCBB/TQQw8p02dHWVmZFi1aNKRufQB74zp4YAiKiov1hvd/QB/4+nc1peawfca3v7LPLxhDUmlpqRYsWKD6+npNnTp1n/ELFiwg3IERgoBHQas6/LX64De/rxPO+VdZ0atvh7ZdhRfwXV0vH/S0U6dO1cc//nEtWLBgzy1pa2pqdPzxx8dUHYDBIuBR8EpKS/WWD3xYC796jSZO7b2sq7OtTT3d+3bdh6y5+S7t2LH8oKcvLi7Wm970Jn3iE5/QrFmzdPbZZ6uoiI8UYKTg3QhEDn3dHF1wzQ903FnvlswK7ih+3LjZWrnqUrW3Nw5qvsmTJ+uCCy5QVVVVTJUBGAoCHkhTOqpMp364Xud9+RtSHpyAmk3l5a9XZ+dLWrnqYvX0tCVdDoBhIuCBDGrmHqXySZOTLiOnSkrGaezYw7Rr15N6as1nky4HwDAR8AD2KC+fK0lqbr5TGzb+MOFqAAwHAQ9gj4qKV+8/v3Hjf6q5+e4EqwEwHAQ8gD0qoiP4Xq6n1lyhXbvWJFYPgKEj4AHskX4EL0k9Pa1aubJenZ0vJlQRgKEi4AHsMWrUJJWVVe/V1t7xvFauulSpVGdCVQEYCgIewF76H8VL0o4dy7R23ZcTqAbAUBHwAPay9/fwr2ps/J2e2/zfOa4GwFAR8AD2UlGROeAlaf36b+qllx7MYTUAhoqAB7CXioojBxzn3qPVT35Ku3dvyGFFAIaCgAewl9GjD1VJyYQBx3d379TKVfXq6iqse/UD+YaAB7CP/XXTS1Jr60atXv1JuffkqCIAg0XAA9jHgQJekrZt/7uefvobOagGwFAQ8AD2UVG+76VymWze8is9//wtMVcDYCgIeAD7mDz5rZp26PkyKz3gtGvXfUUvv9yQg6oADAYBD2AfpaXjNWfO13XySXeruuoc7e+jwr1TK1d9Qm1tW3NXIIADIuABDGjs2MM0b973dNKJd6hyyukDTtfVtU0rV12snp7WHFYHYH8IeAAHVF5+hI4++meqq7tVkya+MeM0r7yyRk8+dbncPcfVAciEgAdw0A4Zf4yOPfbXOvbY/9X48cfuM76l5R5t2Pj93BcGYB8EPIBBmzTxFJ1Q9386+ujFKi+fs9e4TZt+pKamOxKqDEAfAh7AkFVOOU0nnnCH5s29TmPGzNjT/tSaz2nnzlXJFQaAgAcwPGam6up36+ST7tacI65WWVm1Uql2rVx1iTo6WpIuDyhYBDyArCgqKtG0aQv1hlP+otmvvVKpVKdWrrpEqVRH0qUBBYmAB5BVRUVlqq39qN5wyv2aMvmtenr9N5MuCShIJUkXACBMJSXjNHPmJ9XV9bK6urartHRi0iUBBYWABxCr0tIJSZcAFCS66AEACBABDwBAgAh4AAACRMADABCg2ALezK4ys61mtiJ6vCNt3BfMbL2ZrTOzM+KqAQCAQhX3WfTXuft30xvMbK6khZLmSTpU0lIze52798RcCwAABSOJLvpzJP3W3TvcfaOk9ZJOTKAOAACCFXfALzKzlWZ2vZn13eVimqTNadNsidoAAECWDCvgzWypma3O8DhH0k8lzZI0X1KjpGsHuex6M2sws4aWFn6wAgCAwRjWd/DuvuBgpjOzX0jq+4HorZJq0kZPj9r6L3uxpMWSVFdX58OpEwCAQhPnWfRT056+V9LqaHiJpIVmVmZmMyXNlvRoXHUAAFCI4jyL/hozmy/JJW2SdLEkufuTZnaLpKckdUu6jDPoAQDIrtgC3t0v2M+4qyVdHde6AQAodNzJDgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAEL34nppw/1JV4EcI+ABIGQrbpJ+/hbpleakK0GOlSRdAAAgBh27pD9dLq28uff56AmJloPcI+ABIDTPPy7930elbRskmXT8hVLtSUlXhRwj4AEgFKmU9PBPpKVXSakuqfYU6axvS1OPSboyJICAB4AQ7H5R+sMnpKfvkcZPl97+NWneuZJZ0pUhIbEEvJndLOmI6OkESS+7+3wzmyFpjaR10biH3f2SOGoAgIKx4QHp1nqp/WXpXz4nvfEz0qixSVeFhMUS8O7+b33DZnatpB1po59x9/lxrBcACkpPt3T/N6QHvyfNPUc6/WvSxMOSrgojRKxd9GZmks6T9LY41wMASel5pVPF5aNyv+KXn5N+/3Gpc7d04R+lmW/OfQ0Y0eK+Dv7Nkprc/em0tplm9riZPWBmA74izazezBrMrKGlpSXmMgFg8Lq3t2vHXZtyv+Knbpd+fY509HlS/QOEOzIa8hG8mS2VVJ1h1JXufns0fL6km9LGNUqqdfeXzOx4SX8ws3nuvrP/Qtx9saTFklRXV+dDrRMA4tK6rEltK1uUetfhKhqdg3OWu9qke77Ue+Lcx++Txk6Kf53IW0N+Rbr7gv2NN7MSSedKOj5tng5JHdHwMjN7RtLrJDUMtQ4ASIKnXLuXNcm7Ump9okXlJ02Nd4XNa6Tlv5bqPipVzY13XQhCnF30CyStdfctfQ1mVmlmxdHw4ZJmS9oQYw0AEIuODTvUs71DktTa0BTfitylZ/4q7dwqnfENwh0HLc4+pYXau3tekt4i6Wtm1iUpJekSd98WYw0AEIvWhhf2DHdu3qWupt0qrRqX3ZX0dPWeTFd7ilQ6OrvLRvBiC3h3/3CGtt9L+n1c6wSAXEi1dat19Ut7te1uaNKEdx6e3RUVlUiTZ2V3mSgY/JocAAxS68oWqTu1d9vyZnlPaoA5hoi70GEYCHgAGKTdGb5zT+3uUvsavnHEyEHAA8AgdL2wW12bd2Uclyn4gaQQ8AAwCEUVozR67uSM49rXbVPPzo4cVwRkRsADwCAUjyvV5Ater4nvmy0b1e8j1KXdy5uTKQzoh4AHgEEyM407oVpVnzpOo2oq9hrX2tAkd26+ieQR8AAwRCVTxqjykmM0fkHtnk/T7hfb1PnsPnffBnKOgAeAYbBi0/gFh6nykmNUPLn3ZjS7H+NkOySPgAeALCirHa+qTx2ncSdUq21Vi1Id3UmXhAKXg58/AoDCUFRWrInvm63Rcyap45kdGjPA2fZALhDwAJBlY+ZNlqc40Q7JooseAGJgRdxmFski4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACVJJ0AQDC4u7qSnWpo6dDHT0dKrZijSkZo7LiMplZ0uUBBYOABwLk7ur2bnX2dKq9u12dPZ17Arfv0dnTqfaetHHdUXsq8zydPZ0aXTJao4tHa0zJGI0pHdP7N8Nj/KjxmlA2QRNGT1BZcVnS/xxAQSLggTzzy1W/1KONj+4/rHs6lPLUgMsosRIdUnbInhCeUNb76GubVj5tz7i+tvGjxqukiI8MIF/wbgXyTHt3u/7R+I89z8eUjNEhZYdo8ujJe8K47+/E0RNfDfKofWLZRI0rHUd3ORA4Ah7IMwvnLNTph51OFziA/SLggTwzZcwUTRkzJekyAIxww7pMzszeb2ZPmlnKzOr6jfuCma03s3VmdkZa+5lR23oz+/xw1g8AADIb7nXwqyWdK+lv6Y1mNlfSQknzJJ0p6SdmVmxmxZJ+LOksSXMlnR9NCwAAsmhYXfTuvkZSppN1zpH0W3fvkLTRzNZLOjEat97dN0Tz/Taa9qnh1AEAAPYW153spknanPZ8S9Q2UDsAAMiiAx7Bm9lSSdUZRl3p7rdnv6Q9662XVB897TCz1XGtawSYIunFpIuIEduX30LevpC3TWL78t0Rw5n5gAHv7guGsNytkmrSnk+P2rSf9v7rXSxpsSSZWYO712WaLgRsX35j+/JXyNsmsX35zswahjN/XF30SyQtNLMyM5spabakRyU9Jmm2mc00s1HqPRFvSUw1AABQsIZ1kp2ZvVfSDyVVSvqTma1w9zPc/Ukzu0W9J891S7rM3XuieRZJultSsaTr3f3JYW0BAADYx3DPor9N0m0DjLta0tUZ2u+UdOcgV7V48NXlFbYvv7F9+SvkbZPYvnw3rO0zd89WIQAAYISI6zt4AACQoBEX8IV0+1szu9nMVkSPTWa2ImqfYWZtaeN+lnCpQ2JmV5nZ1rTteEfauIz7Ml+Y2XfMbK2ZrTSz28xsQtQexL6T8vd9NRAzqzGzv5rZU9FnzKej9gFfp/km+hxZFW1HQ9Q2yczuNbOno78Tk65zsMzsiLT9s8LMdprZZ/J935nZ9WbWnH4Z+ED7y3r9IHo/rjSz4w64AncfUQ9Jr1fvtX/3S6pLa58r6QlJZZJmSnpGvSfqFUfDh0saFU0zN+ntGMJ2Xyvpy9HwDEmrk64pC9t0laQrMrRn3JdJ1zvIbXu7pJJo+NuSvh3YvgvifdVvm6ZKOi4arpD0z+i1mPF1mo8PSZskTenXdo2kz0fDn+97rebrI3ptviDpsHzfd5LeIum49M+MgfaXpHdIukuSSTpZ0iMHWv6IO4J39zXuvi7DqD23v3X3jZL6bn97oqLb37p7p6S+29/mDeu91+95km5KupYcGWhf5g13v8fdu6OnD6v3ng4hyfv3VX/u3ujuy6PhXZLWqDDupHmOpBui4RskvSe5UrLiNEnPuPuzSRcyXO7+N0nb+jUPtL/OkfRr7/WwpAlmNnV/yx9xAb8fId/+9s2Smtz96bS2mWb2uJk9YGZvTqqwLFgUdSddn9Y1GMI+S/dR9f7Puk8I+y60fbQXM5sh6VhJj0RNmV6n+cgl3WNmy6z3bqCSVOXujdHwC5KqkiktaxZq74OhUPZdn4H216Dfk4kEvJktNbPVGR55fYSQyUFu6/na+wXbKKnW3Y+V9B+SfmNm43NZ98E6wPb9VNIsSfPVu03XJlnrYB3MvjOzK9V7r4cbo6a82XeFyszKJf1e0mfcfafy/HXaz5vc/Tj1/mLnZWb2lvSR3tvXm7eXTlnvDdLeLel3UVNI+24fw91fw7oOfqg8odvfJuFA22pmJer9yd3j0+bpkNQRDS8zs2ckvU7SsG5bGIeD3Zdm9gtJd0RP97cvR4yD2HcflnS2pNOiN2Je7bsDyIt9NFhmVqrecL/R3W+VJHdvShuf/jrNO+6+NfrbbGa3qferliYzm+rujVGXbnOiRQ7PWZKW9+2zkPZdmoH216Dfk/nURR/q7W8XSFrr7lv6Gsys0syKo+HD1butGxKqb8j6fT/0Xkl9Z4oOtC/zhpmdKemzkt7t7q1p7UHsO+X/+2of0bku/yVpjbt/L619oNdpXjGzcWZW0Tes3hNBV6t3v10YTXahpNh+JCwH9urtDGXf9TPQ/loi6d+js+lPlrQjrSs/o0SO4PfHCu/2t/2/T5J6z6z8mpl1SUpJusTd+5+IkQ+uMbP56u1i2iTpYkna377MIz9S71UA9/bmhh5290sUyL5z9+48f19l8kZJF0haZdElqZK+KOn8TK/TPFQl6bbo9Vgi6Tfu/mcze0zSLWb2MUnPqveE3rwT/afldO29fzJ+xuQLM7tJ0lslTTGzLZK+Iulbyry/7lTvmfTrJbVK+sgBlx/1LAIAgIDkUxc9AAA4SAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAATo/wOpXG/nueYrvgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwmklEQVR4nO3deXxU5d3///cnmSRASMK+yY5hUxYhgHs3F8AFl6qgdb9vtNVbrVp/anu3tndte3fRu73v1pb+butSRW3dre0tLrXUajUqCiiRfZMlECBA9sz1/SMDBkhCljlzZq55PR+PeTBznTPnfIYzyTvnOudcx5xzAgAAfskIuwAAABB/BDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOChuAS8md1vZlvNbEmjth5mtsDMlsf+7R5rNzP7hZmtMLMPzWxSPGoAAACfidce/AOSph/UdrukV5xzhZJeib2WpBmSCmOPuZLui1MNAAAgJi4B75z7m6Syg5pnSXow9vxBSec0an/INXhLUjcz6x+POgAAQIMgj8H3dc5tij3fLKlv7PkRktY3mm9DrA0AAMRJJBErcc45M2vTmLhmNlcNXfjKzc2dPHr06EBqAwAgGb377rvbnHO92/v+IAN+i5n1d85tinXBb421b5Q0qNF8A2NtB3DOzZM0T5KKiopccXFxgKUCAJBczGxtR94fZBf9c5Iujz2/XNKzjdovi51Nf6ykXY268gEAQBzEZQ/ezOZL+rykXma2QdJ3JP1I0hNmdrWktZIujM3+oqSZklZIqpB0ZTxqAAAAn4lLwDvn5jQz6UtNzOskXReP9QIAgKYxkh0AAB4i4AEA8BABDwCAhwh4pJT6+npFo9GwywCApEfAI2VUVVXpjTfeUEYGX1sAOBx+UyIl7Nq1S7/73e/Ut2/fw88MAEjMULVAR2zatEmPPvqoOnXqpMLCwrDLAYCUQMAjqS1fvlx/+MMfVFNToy9+8Yt0zwNAKxHwSFrFxcX605/+JOec8vLyNG7cuLBLAoCUQcAj6USjUb366qv6+9//vr/t2GOPVSTC1xUAWovfmEgqtbW1euaZZ7R06dL9bTk5OZo8eXKIVQFA6iHgkTQqKio0f/58rV+//oD2oqIiderUKaSqACA1EfBICtu3b9cjjzyisrKyA9ozMzM1bdq0kKoCgNRFwCN069ev1/z581VRUXHItPHjxys/Pz+EqgAgtRHwCNXSpUv11FNPqb6+vsnpxx9/fIIrAgA/EPAIhXNO//jHP7RgwYJm5xk1apR69+6dwKoAwB8EPBKuvr5ef/7zn1VcXNzifCeeeGKCKgIA/xDwSKjq6mr98Y9/1PLly1ucb/DgwRo0aFCCqgIA/xDwSJjy8nI9+uij2rx582HnPeGEExJQEQD4i4BHQmzZskWPPPKIysvLDztvr169uKkMAHQQAY/ArVy5Uo8//rhqampaNf8JJ5zATWUAoIMIeATqvffe0wsvvKBoNNqq+bmpDADEBwGPQDjn9Oqrr2rhwoVteh83lQGA+OA3KeKurq5Ozz77rBYvXtym93FTGQCIHwIecbdq1SplZmaqsLBQe/bs0Z49e7R3797DdtNzUxkAiB8CHnE3cuRIjRw58oA255wqKyv3h33j4N/3nJvKAED8EPBICDNTly5d1KVLl7BLAYC0wLVIAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHooEuXAzGyXp8UZNwyV9W1I3Sf8qqTTWfqdz7sUgawEAIJ0EGvDOuRJJEyXJzDIlbZT0tKQrJd3rnPtpkOsHACBdJbKL/kuSVjrn1iZwnQAAJIXajRsTur5EBvxsSfMbvb7ezD40s/vNrPvBM5vZXDMrNrPi0tLSgycDAJBSNtx4k3Y991zC1peQgDezbElnS/pDrOk+SSPU0H2/SdLPDn6Pc26ec67IOVfUu3fvRJQJAEBgsvr316e3/X/aeNttqt+zN/D1JWoPfoak95xzWyTJObfFOVfvnItK+q2kqQmqAwCAUOQUFkqSyp97XqvPO0+VH34Y6PoSFfBz1Kh73sz6N5p2rqQlCaoDAIBQ5Iws3P+8dt06rbnkK9r2m3ly0Wgg6ws84M0sV9Kpkp5q1PxjM1tsZh9K+oKkrwddBwAAYdq3B79fba1K771X6666WrVbtsZ9fYEHvHNur3Oup3NuV6O2S51z45xz451zZzvnNgVdBwAAYcoeMkSWnX1Ie8Vbb2n1rFna/eqrcV1foNfBAwCABhaJqOvnPqe60lJl5OYe8qheuVKdjj5aWX36xGV9BDwAAAky8L9/kbB1MRY9AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAEALnHPasHuDVu5cGXYpbcJY9AAAxNTU12jFzhUqKStRyY4SLStbpvXl6zVnzBxdNvaysMtrEwIeAJCWdlbt3B/iJWUlWrZjmVbvXK06V7d/nlOHnKofnvhD9e/aP8RK24eABwB4Leqi2rh7o5btWLY/zEt2lGjz3s3Nvmdo/lDdMe0OHT/g+ARWGl8EPADAG9X11fu72BuH+d7ava16f+dIZ10z/hpdNvYyZWVmBVxtsAh4AEBK2lG144Du9ZKyEq3etVr1rr5dyzttyGn6xpRvqF9uvzhXGg4CHgCQ1KIuqvW71x+wR76sbJm2VmyNy/KH5g/VndPu1HEDjovL8pIFAQ8ASBpVdVVasXOFlpV9drz8kx2fqKKuIu7r6hzprGsnXKtLx1ya8t3xTSHgAQCh2F65/YDu9ZKyEq0uX62oiwa+7tOHnq5bi271pju+KQQ8ACBQ9dH6hi72WJDv2zMvrSxNeC3DCobpzml36tj+xyZ83YlGwAMA4qayrlLLdyw/4OS35TuWq7KuMtS6Okc666sTvqqvjPmKl93xTSHgAQDtsq1y2wF75Mt2LNPa8rUJ6WJvi+lDp+uWolu87o5vCgEPAGhRfbRea3evPTDMy5Zpe9X2sEtr0fCC4bpz2p2a1n9a2KWEgoAHAOxXUVuhT3Z8sv9ytH1nsVfVV4VdWqt1iXTRVyd8VZeMuSRtuuObQsADQBpyzmlb5baGPfJG47GvLV8rJxd2ee02Y9gM3TL5FvXN7Rt2KaEj4AHAc3XROq0tX3tA93rJjhKVVZWFXVrcjCgYoTun3amp/aeGXUrSIOABwCN7a/fu72LfF+jLdy5XdX112KUFokuki7428Wu6eMzFyspI3+74phDwAJCCnHPaWrF1f/f6vjBft3td2KUlzMxhM3VL0S3q06VP2KUkJQIeAJJcbbRWa3atOWAs9pKyEu2o3hF2aaE4stuRunPanZrSb0rYpSQ1Ah4Aklhtfa3OfPpMfbr307BLCV1uVq6+OuGrdMe3UkbYBQAAmpeVmaWrx10ddhmhO2P4GXr+nOd1+VGXE+6tRMADQJI7r/A8DSsYFnYZoTiy25G6//T79aOTfqTeXXqHXU5KIeABIMlFMiL6+qSvh11GQuVm5eq2KbfpibOe4Fh7O3EMHgBSwOcHfV6T+kzSe1vfC7uUwJ05/EzdPPlm9tg7iD14AEgBZqZbi24Nu4xAFXYv1O9O/51+eNIPCfc4YA8eAFLEuN7jNH3odP1lzV/CLiWuumZ11XUTr9Ps0bMVySCW4oU9eABIITdMusGrEDxr+Fl6/tzn9ZWxX/HqcyUDAh4AUsigvEGaM3pO2GV0WGH3Qj0w/QH94KQfqFfnXmGX4yUCHgBSzDXjr1Fedl7YZbRL16yuun3q7XrizCc0ue/ksMvxGgEPACmmIKdAc8fNDbuMNjt7xNl6/tzndcmYS+iOTwACHgBS0JwxczQgd0DYZbTKqO6j9NCMh3T3iXfTHZ9ABDwApKCczBzdMOmGsMtoUV5Wnm6ferseO/MxHdPnmLDLSTsEPACkqBnDZmhsz7Fhl9Gks0ecrefOfY7u+BAFHvBmtsbMFpvZIjMrjrX1MLMFZrY89m/3oOsAAN9kWEbSDX4zusdouuOTRKL24L/gnJvonCuKvb5d0ivOuUJJr8ReAwDaaEq/KfrcwM+FXYbysvJ0x9Q7NP+M+XTHJ4mwuuhnSXow9vxBSeeEVAcApLyvT/66Miy8I66zRszS8+c+r4vHXEx3fBJJxDfCSXrJzN41s33XdfR1zm2KPd8sqW8C6gAAL43oNkLnFZ6X8PWO7jFaD894WN8/8fvq2blnwtePliXiT60TnXMbzayPpAVmtqzxROecMzN38JtifwzMlaTBgwcnoEwASF3XTbxOf1r1J1XWVQa+rrzsPN1wzA26YOQFyszIDHx9aJ/A9+Cdcxtj/26V9LSkqZK2mFl/SYr9u7WJ981zzhU554p69+auQgDQkl6de+nKo64MfD3nHnmunj/nec0ePZtwT3KBBryZ5ZpZ3r7nkk6TtETSc5Iuj812uaRng6wDANLB5UddHtiZ62N6jNHDMx7W9074Ht3xKSLoPfi+kv5uZh9IelvSn5xzf5H0I0mnmtlySafEXgMAOqBLVhddN/G6uC4zLztP35r2Lc0/Y74m9pkY12UjWIEeg3fOrZI0oYn27ZK+FOS6ASAdnXPkOXr4o4e1ateqDi/rvMLzdOOkG9WjU484VIZEYyQ7APBIJCOimyff3KFljOkxRr+f+Xt99/jvEu4pjAsWAcAzJw88WVP6TdE7m99p0/vys/N1wzE36Msjv8wJdB5gDx4APGNmuqXolja95/zC8/XCuS/ootEXEe6eYA8eADx0VM+jNHPYTL24+sUW5xvbc6y+Oe2bGt97fIIqQ6IQ8ADgqRsm3aAFaxeoNlp7yLT87HzdOOlGnV94PnvsnqKLHgA8dUTXI3TJmEsOaDPZ/u74C0ddSLh7jIAHAI/9y7h/UX52vqSGbvtHZj6iu46/S907cZdu39FFDwAeK8gp0M2Tb1ZUUZ135HnssacRAh4APHf+yPPDLgEhoIseAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4KLODNbJCZvWZmH5nZUjO7MdZ+l5ltNLNFscfMoGoAACBdRQJcdp2kW5xz75lZnqR3zWxBbNq9zrmfBrhuAADSWmAB75zbJGlT7PluM/tY0hFBrQ8AAHwmIcfgzWyopGMk/TPWdL2ZfWhm95tZ90TUAABAOgk84M2sq6QnJd3knCuXdJ+kEZImqmEP/2fNvG+umRWbWXFpaWnQZQIA4JVAA97MstQQ7o84556SJOfcFudcvXMuKum3kqY29V7n3DznXJFzrqh3795BlgkAgHeCPIveJP2vpI+dc/c0au/faLZzJS0JqgYAANJVkGfRnyDpUkmLzWxRrO1OSXPMbKIkJ2mNpGsCrAEAgLQU5Fn0f5dkTUx6Mah1AgCABoxkBwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPOKqtHSBdu4sDrsMAEh7kbALgD/q6vaq5JO7ZMrQ1KkvKCurIOySACBtsQePuFm1+r9UXb1ZVdWf6uNld4ZdDgCkNQIecbF790fasOHB/a9LS/+ijRvnh1gRAKQ3Ah4d5lxUy0r+Xc7VH9D+yfLva8/e5SFVBQDpjYBHh2389DGVly86pD0ardLSpTepvr468UUBQJoj4NEh1TXbtHLlT5qdvmfPMq1Y8cMEVgQAkAh4dNDy5Xerrq68xXk2bHxYZWX/SFBFAAApxIA3s+lmVmJmK8zs9rDqQPuVlb2hLVuea3GeSKSbRo36D3XvfmyCqgIASCFdB29mmZJ+KelUSRskvWNmzznnPgqjHrRdNFqtZSXfbmGODA0YcKGOHHGrsrK6J6wuAECDsAa6mSpphXNulSSZ2WOSZkki4FPEmjW/VmXlmian5edP0KiRdyk/f3xiiwIA7BdWwB8haX2j1xskTWs8g5nNlTRXkgYPHpy4ynBYFRWrtXbdrw9pz8rqoSNHfEP9+18gMwuhMgDAPkk7VK1zbp6keZJUVFTkQi4HjSwr+bai0Zr9r80yNWDAHI0YfjPD0wJAkggr4DdKGtTo9cBYG5Lc5s3PaseOz86ILyiYpFEjv6u8vLEhVgUAhxetqJVlZ8oi6XEBWVgB/46kQjMbpoZgny3p4pBqQSvV1pZr+YofSJKys3vpyBG3qV+/8+iOB1LA0tdf0cZlS9U5v0Bd8gsa/s3LV+d9z/MLFMnODrvMQO355yblfX7Q4Wf0RCgB75yrM7PrJf2fpExJ9zvnloZRC1pv5aqfqLZ2pwYNvELDh9+kSCQv7JIAtNLoEz6nVe8Xa/GrLzU7T1anzuqSn//ZHwF5Beqcn//ZHwQFBeqS99kfBFmdOiXwE3RM/Z4aVS7epvwvpM85XaEdg3fOvSjpxbDWj7bZtet97d27UlOnPKeuXUeFXQ6ANsqMRHTGv92qzEhEHy98rcl5aqsqtauqUru2bmnVMiPZORo6YZJm3frNeJYaiN2vb5DlJO1pZ4FIr0+LdsvM7KLJkx4NuwwAHZCRmanpX7tJGZmZWvrXlzu8vLqa6pQ4RFdfXqM9b25S56N7hl1KQqXHmQboMPbaAT9kZGTq9Gtu0IRTZ8RleV26Jf9AVuWvrZPqosrM9/scg4MR8ACQZiwjQ1+6+ms6ZsZZHV5W1yQP+LqdVdr79mZJUmZeTsjVJBYBDwBpyMz0hcvnquis8zq0nGTfg9/96nqpvmEolcwC9uABAGnAzHTyJVfq2PMuavcycpM44Ou2V2pv8WcnDNJFDwBIG2amEy66VMdfeEm73p/MAV/+yjop+tlAqJn5dNEDANLMcefP0UkXX9Hm9+V2T86Ary2tUMX7W/e/zh6Sr8y89NqD5zI5AIAkaeqsLyszkqW/PvTbVr+nS3634ArqgPKX1ykjL1u5k/qoy+S+yurdJeySEo6ABwDsN/mMWcrMytIr//urw87bOS9fmZHkixFXF1Xu5L7qcdEoWUbyX6cfFLroAQAHmHjaTJ12zQ3SYQaxye3eI0EVtY1FMtRpZPe0DneJgAcANGHcF0/TjK99XWbNx0Qyn2AHAh4A0IyxJ39RM2+4VZbRdFTkFnRLbEFoEwIeANCs0cefrLNuul0ZmYcea0/2QW7SHQEPAGhR4bTjdfYtdx5yQl3XJD0GjwYEPADgsEZMnqpzvvHvimR9di05e/DJjYAHALTK0ImTde7t31Ekp2FEuNwCAj6ZEfAAgFYbfPQEnX/Hd5XVqTNn0Sc5Ah4A0CYDxxytL3/zP9S1R8+wS0ELkm8IIgBA0hswcnTYJeAw2IMHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAHFTU1UXdgmIIeABAHGzY1OFdpVWhl0GRMADAOKoxxG5+udzq8IuAyLgAQBxlJWdqZ1bKrRpxc6wS0l7BDwAIK76DcvXG0+ukHMu7FLSGgEPAIirvsMLtGV1uVYUbw27lLRGwAMA4qrvsHxJ0ptPr1RdbX3I1aQvAh4AEFcFvTurU9cs7S6r0oevbgi7nLRFwAMA4srM1C+2F//un9eocndNyBWlJwIeABB3fYcVSJJqqur1zgurQ64mPRHwAIC46zc8f//zJQs/VdmmvSFWk54IeABA3PUZmi9Zw3MXdXrzqRXhFpSGCHgAQNxld4qo54Dc/a/XLN6uDcvKQqwo/RDwAIBA9B1ecMDrN55coWiUwW8ShYAHAARi35n0+2xbv0clb20OqZr0Q8ADAAKx70z6xv757ErVVjP4TSIEEvBm9hMzW2ZmH5rZ02bWLdY+1MwqzWxR7PHrINYPAAhf975dlFuQfUDb3l01WvTyupAqSi9B7cEvkHS0c268pE8k3dFo2krn3MTY49qA1g8ACJllmGZcO16RrAOj5r3/W6u9O6tDqip9BBLwzrmXnHN1sZdvSRoYxHoAAMmt77B8nXrVUfsvmZOkupoo94xPgEQcg79K0p8bvR5mZu+b2etmdlIC1g8ACNHwY3rrxC8XHtD28ZubtG3D7pAqSg/tDngze9nMljTxmNVonm9KqpP0SKxpk6TBzrljJN0s6VEzyz906ZKZzTWzYjMrLi0tbW+ZAIAkMP6LAzXuC406c530xh+5Z3yQIu19o3PulJamm9kVks6U9CUX24LOuWpJ1bHn75rZSkkjJRU3sfx5kuZJUlFREd8AAEhhZqYTLyjU7u1VWvPhNknShmU7tHbJdg0d1yvk6vwU1Fn00yXdJuls51xFo/beZpYZez5cUqEkDsQAQBrIyDCddvVR6j04b3/bP55coWh9NMSq/BXUMfj/kZQnacFBl8OdLOlDM1sk6Y+SrnXOMXYhAKSJrJxMnXHdeOX16CRJ2rG5Qh+9sSnkqvzU7i76ljjnjmym/UlJTwaxTgBAasgtyNEZ14/XUz95TzWVdXr7+VUaOaWvsjsHEklpi5HsAAAJ13NAV8245mhlZJgqd9fq3b+sDbsk7xDwAIBQDBzdQ1+4dLQk6YNX1qt8e2XIFfmFgAcAhGb0cf015Yyhqq+L6q1nOOc6ngh4AECoppw5TKOm9dPyd7Zoy+rysMvxBgEPAAiVmekLl47WEaO66Y0nlzP4TZwQ8ACA0GVGMjR97jhV7anVqvcZvTQeCHgAQFLolJulM6+foA9eWa/6Oga/6SgCHgCQNPJ7ddYJFxRq2ZsMftNRjCoAAEgqfYfmq742qurKOuUw+E27sQcPAEg6Awq7KTPTDj8jmkXAAwCSUiQ7M+wSUhoBDwCAhwh4AAA8RMADAOAhAh4AAA9x/QEAHMa/Llmjd3btVc/sTPXMijQ8siPNPu8WyVSGcQY4wkXAA0ALKuujenn7LlVGnTbX1LbqPZkmdY809UdA5iF/EPTKjqh7JKJIBn8QIL4IeABowd937FZltG03P6l30rbaOm2rrWvV/PeMGqSLB/RsT3lAszgGDwAtWLA92NuXfnvEAMIdgSDgAaAZzrlAA/7GIX31tcF9Als+0hsBDwDNWLKnUpuqW3fcva2uOKKXbh/WL5Blt0d1Xb2qauvDLgNxRMADQDNe2hbM3vv5fbvrB4VHyJLoTPuFn2zTzF8s1DtrysIuBXFCwANAM17avivuyzytZ77+a/TgpLuMbsFHW7SqdK8u+PWb+vazS7SnunUnCCJ5EfAA0ITN1bX6YHdlXJd5XLdc/eaoocpKskvi6qNOL3+8Zf/rh95cq9PueV2vLdsaYlXoKAIeAJrwcpxPrpuQ11kPjRuuzpnJ92v3/XU7tH1vzQFtn+6q0pUPvKObHntfZQdNQ2pIvm8aACSBl7bFr3u+sEuOHh0/QnmR5Lz96YKPtjQ77ZlFn+qUe17Xs4s2yrm2jQeAcBHwAHCQyvqoFu7YHZdlDeqUrScmjlDP7OQdV6ylgJeksr01uvGxRfqXB4u1aVd8D1sgOAQ8ABxkYTtGr2tK7+yInpgwQv1zsuNQVTBWbN2jVdv2tmreV5Zt1an3/E2/f2utonH4/0GwCHgAOEg8BrcpiGTq8QkjNKxLThwqCs7h9t4Ptqe6Tt96Zolm//YtrSrdE1BViAcCHgAacc5pQQevf++ckaFHxg/X2K6d41RVcBZ8tLld73t7dZmm/3yhfvXXFaqtj8a5KsQDAQ8AjXy4p7LVd41rSraZHhg3TEUFuXGsKhilu6v1/vqd7X5/TV1UP/5Lic755RtasjH+YwagYwh4AGikI2fPZ0i676gh+lyPvPgVFKBXPt6ieJwYv/TTcs365Rv6z78sY7jbJELAA0AjHemev2f0IJ3Ru1v8iglYW4+/t6Q+6nTfX1dq5s8X6u3VDHebDAh4AIjZVF2jD/e07zKw7x05QLP7p85tX/dW12nhim1xX+6qbXt14W/e1LeeWazdVcHcqAetQ8ADQEx7995vHtpXcwel1m1fFy4vVU1dcCfH/f6tdTrt3r/p1WXx6yVA2xDwABDzUjsuj7v6iF76xtDkue1ra70Ux+755mzaVaWrHijWDfPf1/Y91YGvDwci4AFAUkV9VH9v4+h1F/Trrv9Istu+tkZdfVSvJvBGMs990DDc7TPvM9xtIhHwAKCG0euq2jA624xeBbp3VPLd9rU1itfu0M6KxB4f31FRq5seX6SrHnhHn+5kuNtEIOABQG27PO7Ebl1139ghiiTZbV9bK55nz7fVayWlOvWe1/Xwm2sY7jZgBDyAtBd1rtXD0x6T10UPjBumTkl429fWcM6FGvCStLemXv/+7FJdNO9NrWS428Ck5jcUAOLog92V2lpTd9j5RuV20qMThqtrkt72tTU+2bJH68oqwi5DkvTOmh2a8fOF+uVrDHcbBAIeQNpbsP3w3fNDOmXr8Qkj1D0reW/72hrtHXs+KDV1Uf3k/0p09v+8ocUbGO42ngh4AGnvcNe/982O6ImJI9QvJytBFQUn7O755ny8qVzn/OoN/fDPHzPcbZwQ8ADS2qdVNVrcwuh13SOZenziCA3pnNy3fW2Nzbuq9EES7yXXR51+8/oqTf+vv+nNldvDLiflEfAA0lpLJ9flZmbokQnDNTo3+W/72hoLPk7OvfeDrdleoTm/fUt3PLVY5Qx3226BBbyZ3WVmG81sUewxs9G0O8xshZmVmNnpQdUAAIfzUjPd8zkZpgfHDdOk/OS/7WtrJWv3fHPmv71Op97zesrVnSyCPlvkXufcTxs3mNlYSbMlHSVpgKSXzWykc46DLgASam99vf6+89DR6zJN+s3YoTqxe2rc9rU1dlfV6s2V8b+5TNC2lFfrW88s1oRBBeqT1ynsclJKGF30syQ95pyrds6tlrRC0tQQ6gCQ5haW7VF1E4Ot3Dt6sKb3LgihouC8/kmpautTb2CZ4b1y9eRXjyfc2yHogL/ezD40s/vNrHus7QhJ6xvNsyHWBgAJ9VITl8d9v/AIXdivRwjVBCsVu7knDCzQH649TgO7dwm7lJTUoYA3s5fNbEkTj1mS7pM0QtJESZsk/ayNy55rZsVmVlxaWtqRMgHgEE2NXnfbsH76l4G9Q6ooOLX1Ub2WwJvLxMNJhb306L8eq55dU//qhbB06Bi8c+6U1sxnZr+V9ELs5UZJgxpNHhhrO3jZ8yTNk6SioqLU61cCkNQW7a5QaaPR664Z2FtfH9I3xIqC8/bqMpVXHX6kvmRx9oQB+ukFE5Qd4UKvjgjyLPr+jV6eK2lJ7PlzkmabWY6ZDZNUKOntoOoAgKY0Htxmdr8euuvIASl329fWSqXu+StPGKr/umgi4R4HQZ5F/2MzmyjJSVoj6RpJcs4tNbMnJH0kqU7SdZxBDyDR9h1/P6N3gX46apC34Z4MN5dprdumj9JXPzfC222RaIEFvHPu0ham3S3p7qDWDQAt2VBVo6V7qvS57nn6VQrf9rU1ln5aro1Jfv/1DJN+eN44XTRlcNileCW175oAAO2wYHu5ivK76P5xQ5WT4XdXcLLvvedEMvQ/F0/SqWP9PP8hTAQ8gLSzsapGvx8/XLmZqXvb19ZK5oDP6xTR/14+RVOH+XdZYjIg4AGknX8b3EcFKX7b19bYsKNCH21q+U55YemTl6OHrp6q0f3ywy7FW/5/wwHgIOkQ7pL0cpLuvQ/vlasHr5qqQT0YwCZI6fEtB4A0lIx3jxs/sEC/u2IKA9gkAAEPAB7aVVmrf64qC7uMA5xU2Ev3fWWyuuYQPYnA/zIAeOivJVtV18SNdMJy1oQB+hmj0yUUAQ8AHnopiY6/X3H8UH37zLHK8Hi8gWREwAOAZ6rr6vV6SXLcpOsbp4/S1z7P6HRhIOABwDNvrtyuPdXh3lwmw6QfnDtOs6cyOl1YCHgA8EzYg9tkRzL033OO0elH9Qu1jnRHwAOAR6JRp5dDvDwur1NE//9lRZo2vGdoNaABAQ8AHlm8cZe2lFeHsu4+eTl68KqpGtOf0emSAQEPAB4Jq3t+WK9cPcTodEmFgAcAj4QR8OOOKNDvrpyiXoxOl1QIeADwxLrtFSrZsjuh6zzxyF769aWMTpeM2CIA4ImXPtqc0PWdOb6/7rlwIqPTJSkCHgA8kcjueUanS34EPAB4oGxvjd5Zk5iby9x62khd94UjGZ0uyRHwAOCBV5dtVdD3lskw6e5zx2kOo9OlBAIeADywIODj74xOl3oIeABIcVW19frbJ9sCW35eTkS/vbxIxzI6XUoh4AEgxb2xYpsqa+sDWXbvvBw9eOVUjR3A6HSphoAHgBQX1NnzQ3t20cNXT2N0uhRFwANACmu4uczWuC+X0elSHwEPACns/fU7tW1PfG8uc8KRPfWbS4sYnS7FsfUAIIXFu3v+jPH9dc+FE5QTyYzrcpF4BDwApLB4Xh53+XFD9J2zjmJ0Ok8Q8ACQolaW7tHK0r1xWdYtp47U9V9kdDqfEPAAkKLi0T2fYdL3zxmni6cxOp1vCHgASFEdDfjsSIZ+MXuiph/dP04VIZkQ8ACQgkp3V+u9dTva/X5Gp/MfAQ8AKejVZVvk2nlzGUanSw8EPACkoPZ2zw/t2UUPXTVNg3syOp3vCHgASDEVNXVauLztN5c5+oh8/e6Kqeqdx+h06YCAB4AUs3D5NlXXRdv0nuNH9NRvLp2svE5ZAVWFZEPAA0CKaWv3/Bnj+uueixidLt0Q8ACQQurqo3rl49YH/GWx0ekyGZ0u7RDwAJBC3l27Qzsqals1782njtS/MTpd2iLgASCFtKZ7PsOk/zjnaF0ybUgCKkKyIuABIEU457TgMN3z2ZkZ+sUcRqcDAQ8AKWP51j1au72i2el5ORHNu6xIx41gdDoQ8ACQMlrqnu/VNUcPXjVFRw0oSGBFSGYEPACkiJeaCfghPbvooaumakjP3ARXhGRGwANACthSXqUP1u88pP2oAfl64EpGp8OhCHgASAEvN3FyHaPToSWBBLyZPS5pVOxlN0k7nXMTzWyopI8llcSmveWcuzaIGgDAJwcff585rp/uvWgio9OhWYEEvHPuon3PzexnknY1mrzSOTcxiPUCgI/2VNfpHyu273/9lWMH67tnH83odGhRoF301jB80oWSvhjkegDAZ6+XlKqmvuHmMjedUqgbv1TI6HQ4rIyAl3+SpC3OueWN2oaZ2ftm9rqZndTcG81srpkVm1lxaWlpwGUCQPJa8NFmmUnfP+do3XTKSMIdrdLuPXgze1lSvyYmfdM592zs+RxJ8xtN2yRpsHNuu5lNlvSMmR3lnCs/eCHOuXmS5klSUVGRa2+dAJDKauujemPldv3q4kmaMY7R6dB67Q5459wpLU03s4ik8yRNbvSeaknVsefvmtlKSSMlFbe3DgDw2bJNu/Xz2RN1/IheYZeCFBPkMfhTJC1zzm3Y12BmvSWVOefqzWy4pEJJqwKsAQBS2tFH5NMlj3YJMuBn68DueUk6WdL3zKxWUlTStc65sgBrAICURrijvQILeOfcFU20PSnpyaDWCQAAGgR9Fj0AAAgBAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA0BznpOrdYVfRLgQ8AABN2b1ZevRCaeN7YVfSLgQ8AAAHW/KU9KtjpeUvSbm9w66mXYK8HzwAAKmlokx68RvSkj9+1pbbK7x6OoCABwBAkla8LD17vbR704HtnXuEU08HEfAAgPRWvUda8O9S8f2HTuvcQ8pMzahMzaoBAIiHdW9JT18j7VjT9PSufRJaTjwR8ACA9FNXLb12t/TGLyS5A6dl5UqFp0pjzpIKTwulvHgg4AEA6WXTh9LT10pbl37W1rm7NGpmQ6gP/7yU1Tm08uKFgAcApIf6OukfP5de+6EUrZXy+kujz2wI9SEnpOyx9ub49WkAAGjK9pUNx9ortkvHfU0ac7Y0YJKU4e9wMAQ8AMBfzknr35Y2vC2d9QupzxjJLOyqEoKABwD4bfC0hkea8bdvAgCANNlbbwoBDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAAD3Uo4M3sAjNbamZRMys6aNodZrbCzErM7PRG7dNjbSvM7PaOrB8AADSto3vwSySdJ+lvjRvNbKyk2ZKOkjRd0q/MLNPMMiX9UtIMSWMlzYnNCwAA4ijSkTc75z6WJDM7eNIsSY8556olrTazFZKmxqatcM6tir3vsdi8H3WkDgAAcKCgjsEfIWl9o9cbYm3NtQMAgDg67B68mb0sqV8Tk77pnHs2/iXtX+9cSXNjL6vNbElQ60oCvSRtC7uIAPH5UpvPn8/nzybx+VLdqI68+bAB75w7pR3L3ShpUKPXA2NtaqH94PXOkzRPksys2DlX1NR8PuDzpTY+X+ry+bNJfL5UZ2bFHXl/UF30z0mabWY5ZjZMUqGktyW9I6nQzIaZWbYaTsR7LqAaAABIWx06yc7MzpX035J6S/qTmS1yzp3unFtqZk+o4eS5OknXOefqY++5XtL/ScqUdL9zbmmHPgEAADhER8+if1rS081Mu1vS3U20vyjpxTaual7bq0spfL7UxudLXT5/NonPl+o69PnMORevQgAAQJJgqFoAADyUdAGfTsPfmtnjZrYo9lhjZoti7UPNrLLRtF+HXGq7mNldZrax0eeY2Whak9syVZjZT8xsmZl9aGZPm1m3WLsX205K3Z+r5pjZIDN7zcw+iv2OuTHW3uz3NNXEfo8sjn2O4lhbDzNbYGbLY/92D7vOtjKzUY22zyIzKzezm1J925nZ/Wa2tfFl4M1tL2vwi9jP44dmNumwK3DOJdVD0hg1XPv3V0lFjdrHSvpAUo6kYZJWquFEvczY8+GSsmPzjA37c7Tjc/9M0rdjz4dKWhJ2TXH4THdJurWJ9ia3Zdj1tvGznSYpEnv+n5L+07Nt58XP1UGfqb+kSbHneZI+iX0Xm/yepuJD0hpJvQ5q+7Gk22PPb9/3XU3VR+y7uVnSkFTfdpJOljSp8e+M5raXpJmS/izJJB0r6Z+HW37S7cE75z52zpU0MWn/8LfOudWS9g1/O1Wx4W+dczWS9g1/mzKsYazfCyXND7uWBGluW6YM59xLzrm62Mu31DCmg09S/ufqYM65Tc6592LPd0v6WOkxkuYsSQ/Gnj8o6ZzwSomLL0la6ZxbG3YhHeWc+5uksoOam9tesyQ95Bq8JambmfVvaflJF/At8Hn425MkbXHOLW/UNszM3jez183spLAKi4PrY91J9zfqGvRhmzV2lRr+st7Hh23n2zY6gJkNlXSMpH/Gmpr6nqYiJ+klM3vXGkYDlaS+zrlNseebJfUNp7S4ma0Dd4Z82Xb7NLe92vwzGUrAm9nLZrakiUdK7yE0pZWfdY4O/MJukjTYOXeMpJslPWpm+Ymsu7UO8/nukzRC0kQ1fKafhVlrW7Vm25nZN9Uw1sMjsaaU2Xbpysy6SnpS0k3OuXKl+Pf0ICc65yap4Y6d15nZyY0nuoa+3pS9dMoaBkg7W9IfYk0+bbtDdHR7deg6+PZyIQ1/G4bDfVYzi6jhlruTG72nWlJ17Pm7ZrZS0khJHRq2MAit3ZZm9ltJL8RetrQtk0Yrtt0Vks6U9KXYD2JKbbvDSIlt1FZmlqWGcH/EOfeUJDnntjSa3vh7mnKccxtj/241s6fVcKhli5n1d85tinXpbg21yI6ZIem9fdvMp23XSHPbq80/k6nURe/r8LenSFrmnNuwr8HMeptZZuz5cDV81lUh1dduBx0fOlfSvjNFm9uWKcPMpku6TdLZzrmKRu1ebDul/s/VIWLnuvyvpI+dc/c0am/ue5pSzCzXzPL2PVfDiaBL1LDdLo/NdrmkwG4SlgAH9Hb6su0O0tz2ek7SZbGz6Y+VtKtRV36TQtmDb4ml3/C3Bx9PkhrOrPyemdVKikq61jl38IkYqeDHZjZRDV1MayRdI0ktbcsU8j9quApgQUNu6C3n3LXyZNs55+pS/OeqKSdIulTSYotdkirpTklzmvqepqC+kp6OfR8jkh51zv3FzN6R9ISZXS1prRpO6E05sT9aTtWB26fJ3zGpwszmS/q8pF5mtkHSdyT9SE1vrxfVcCb9CkkVkq487PJjPYsAAMAjqdRFDwAAWomABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAP/T+L/wtqHBfahAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAApCElEQVR4nO3deZxcVZ338e+v9y2dTtKdpLNvHbKwJNADKiA+AsMySMAZER4FBmQiz4CCjsOgPqOOy8yIIIqoEGRzFBAHGRjFJUFFBFkSyEACAgl0J2k66SwkadJ795k/6iZUOtVJL3Xr1j31eb9e9cqtc7df5Vb3t++5p26Zc04AAMAveVEXAAAA0o+ABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPJSWgDezO8ysxczWJLWNNbPlZvZa8O+YoN3M7CYzW2dmL5jZ0emoAQAAvCNdZ/B3STq9X9u1kh51ztVJejR4LklnSKoLHkslfT9NNQAAgEBaAt459wdJO/o1L5F0dzB9t6Rzktp/6BKeklRlZrXpqAMAACSEeQ1+gnOuOZjeLGlCMD1Z0sak5TYFbQAAIE0KMrET55wzsyHdE9fMlirRha/y8vJj5s2bF0ptAABko1WrVm1zztUMd/0wA36LmdU655qDLviWoL1J0tSk5aYEbftxzi2TtEyS6uvr3cqVK0MsFQCA7GJmjSNZP8wu+oclXRxMXyzpoaT2i4LR9O+StCupKx8AAKRBWs7gzexeSe+TVG1mmyR9UdK/S7rfzD4mqVHSecHij0g6U9I6SW2SLklHDQAA4B1pCXjn3AUDzDo5xbJO0hXp2C8AAEiNO9kBAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8FBB1AUAwEGtuksqKJVmnihVToq6GiA2CHgA2e2tBumPNyamx86WZpwgzXxv4t9REyMtDchmBDyA7Fa76J3pHesTj+fuTjwfVxcE/onSjBOlivGRlAhkIwIeQHabtGjgedtfSzxW3Zl4Xn1YEPYnJAK/vDojJQLZiIAHkN2qpkslVVLHzkMvu+2VxOPZHySe18x/J/CnnyCVjwuzUiCrEPAAsptZ4iz+9d8Pfd2tLycezyxLPB+/8J3u/OnvkcrGprNSIKsQ8ACyX+2i4QV8fy1rE4+nb5Fk0sTDE2E/40Rp+rul0jEj3weQJQh4ANnvYNfhh81Jm19MPJ76niSTao/cP/BLRoewXyAzCHgA2S95JH1onNT8P4nHn26WLE+qPWr/wC8elYE6gPQg4AFkvzEzBj/QLl1cn/Tm84nHkzdJlp/oSdgb+NPeJRVXZK4eYIgIeADZzyxxNv3GY9HV4HqlplWJxxPfkvIKpEmLE2E/80Rp2nukwpLo6gP64V70AOIhlOvwI9DXI216NnH9fvOaROADWYR3JIB4yMh1+CGafrx09nekcbOjrgQ4AAEPIB6y6Qy+aJR06r9Ix1wi5dERiuxEwAOIhzEzEx9b69gVbR1zTpU+8C1p9JRo6wAOgT89AcTD3oF2USkdI527TPrITwl3xAIBDyA+oroOv/Bc6YpnpKM+nPhDA4gBuugBxEemr8NXTJD+6pvS/LMyu18gDQh4APGRyTP4RR+VTvsq96dHbBHwAOJj7CypeLTUGeJAu9HTpLO/Lc1+f3j7ADKAa/AA4sOCL4QJZ+PSsR+X/v5PhDu8wBk8gHiZtEhqeDy92xxXJy25OXF/ecATBDyAeEnndXjLl46/Sjrpn7iPPLxDwAOIl0mL07OdiUdIS74b7WfrgRCFGvBmdpiknyQ1zZL0BUlVkv5O0tag/XPOuUfCrAWAJ8bMlIorpc7dw1s/vyhxxn78VVJ+YXprA7JIqAHvnHtF0iJJMrN8SU2SHpR0iaQbnXPXh7l/AB7Ky0ucdQ/nOvzU46Szb5Zq5qa/LiDLZHIU/cmS1jvnGjO4TwA+Gmq3emGZdPrXpUt+SbgjZ2Qy4M+XdG/S8yvN7AUzu8PMDriThJktNbOVZrZy69at/WcDyGVDuQ4/632Jj76963IpLz+0koBsk5GAN7MiSWdL+mnQ9H1Js5Xovm+WdEP/dZxzy5xz9c65+pqamkyUCSAuBjOSvnh0ojv+wv+SxswIuSAg+2RqFP0Zkp5zzm2RpL3/SpKZ3Sbp5xmqA4APxs5KfCd7V2vq+fPOks68XqqszWxdQBbJVBf9BUrqnjez5J+6cyWtyVAdAHywd6Bdf2XV0t/cKX34R4Q7cl7oZ/BmVi7pVEkfT2q+zswWSXKSGvrNA4BDm7RIavzjO8+P/LB02r9J5eMiKwnIJqEHvHNuj6Rx/douDHu/ADy39zp85WTprBuluadFWg6QbbiTHYB4mrRYOuYS6dQvSyWVUVcDZB2+TQ5APFXPkT7wrbSFe89bb6VlO0C2IOABQNKOO+6MugQgrQh4AJD01v33q7ulJeoygLQh4AFAUl5ZmbbfuizqMoC0IeABQNL0//ih2p57Tt1vvhl1KUBaEPAAIKloyhRNv+tOtT3/fNSlAGlBwANAIH/0aFWecUbUZQBpQcADQBLL49ci/MA7GQAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AHklL7OXrU+vkl9bd1RlwKEqiDqAgAgk/KK89X+0nbt/k2jyhaNV/m7a1U0qSLqsoC0I+AB5JyyxeO1843d2vPsZu15drOKpleq4j21Kl1YLSugYxN+4J0MIOeUHV4t5du+512Nu7Xj3lfU/PVn1PpEU4SVAelDwAPIOXllhSqZN/aA9r7WbuWXF0ZQEZB+BDyAnFS2aPwBbSXzxqr0qJoIqgHSj4AHkJNK542VleTve25F+ao6Z47M7CBrAfFBwAPISVaYp9LDq/c9H33GDBVUFUdYEZBeoQe8mTWY2YtmttrMVgZtY81suZm9Fvw7Juw6AKC/ssWJbvqi6ZUqP6424mqA9MrUGfz/cc4tcs7VB8+vlfSoc65O0qPBcwDIqOKZo5U/rkRj/rpOlkfXPPwSVRf9Ekl3B9N3SzonojoA5DDLM9VcergKx5dFXQqQdpkIeCfpN2a2ysyWBm0TnHPNwfRmSRMyUAcAHKBgXGnUJQChyMSd7E5wzjWZ2XhJy83sz8kznXPOzFz/lYI/BpZK0rRp0zJQJgAA/gj9DN451xT82yLpQUnHStpiZrWSFPzbkmK9Zc65eudcfU0Nn0sFAGAoQg14Mys3s1F7pyX9paQ1kh6WdHGw2MWSHgqzDgAAck3YXfQTJD0Y3DiiQNI9zrlfmdmzku43s49JapR0Xsh1AACQU0INeOfc65KOStG+XdLJYe4bAIBcxp3sAADwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwj4iHT3uahLAAB4jICPQEtnt9a1dURdBgDAYwR8hrX29OqWjVs1v6I06lIAAB4j4DOoq69Pf7emQefVjom6FACA5wj4DOlzTle+vEGzyoo1r5yzdwBAuAqiLiBX/PNrTfrjW6168rj5UZcCAMgBnMFnwE2NW3R70zZ9ZsZEVRXyNxUAIHwEfMjua96uf329WfPKS3Tx5OqoywEA5AgCPkTLt+3SZ17ZKEn6at1k5ZtFXBF27OmKugQAyAgCPiSrdu3R0rWN6nHSGdWjdcKYUVGXlNNe2dyq8279k27/4+tRlwIAGcEF4ZBc++omtff1qTjP9KU5k6IuJ2e93dmjby1/VXc92aCePqeaUcVRlwQAGRHaGbyZTTWz35nZS2a21syuCtq/ZGZNZrY6eJwZVg1R2tSR6Ar++JQaTS8lVKLw0OomnXzD7/WDP76hnuDWwA3b9kRcVXw0Nzfr8ccf16ZNm9Tb2xt1OQCGKMwz+B5J/+Cce87MRklaZWbLg3k3OueuD3Hfkero7dNbPb2aWFSoq6ZPiLqcnLOupVVfeGitnly//YB5jdvbIqgonmpra9Xa2qoVK1aoq6tLY8eO1dSpUzVr1ixVV1fLGFMCZLXQAt451yypOZhuNbOXJU0Oa3/ZZEtXtyTpc7NrVV6QH3E1uaOtq0ffXvGa7njiDXX3pv4yn7c7e7S1tZOu+kGaO3eu5s6dK0lyzqm9vV27d+/Wli1bNHbsWBUVFUVcIYCBZOQavJnNkLRY0tOSjpd0pZldJGmlEmf5b2Wijkxp7uzW0ZVl+tAEbkmbKb94oVlf/cVLat516C/xadi+h4AfBjNTWVmZysrKoi4FwCCEPorezCokPSDpaufcbknflzRb0iIlzvBvGGC9pWa20sxWbt26Newy02pzZ7e+OmcyXZgZsH7r27rw9qd1xT3PDSrcJekNrsMDyAGhnsGbWaES4f5j59zPJMk5tyVp/m2Sfp5qXefcMknLJKm+vj5WX55+XFW5aovpugxTe1evvvPb1/SDx99QV2/fkNZt3E7AA/BfaAFvidPX2yW97Jz7ZlJ7bXB9XpLOlbQmrBqiQriH61drmvWVn7+spp3tw1q/YRsD7QD4L8wz+OMlXSjpRTNbHbR9TtIFZrZIkpPUIOnjIdYAjzRs26MvPrxWj706sks2dNEDyAVhjqL/o6RUF6EfCWuf8FNHd6+++7t1uvUPr6urZ2jd8anQRQ8gF3AnO2S11Rt36lM/WZ3Ws+49Xb1qae3Q+FEladsmAGQbAh5ZbdHUKv32H07Sjj1damntTDx2d6iltVNbWzvV0tqhlt1Be2uHOroHd4bfsK2NgAfgNQIeWc/MNK6iWOMqijW/9uDL7u7oDgK/I/EHQDDd0m+6YfseHTtzbGZeAABEgICHVypLClVZUqg54ysOupxzsfrkJQAMGV8Xi5zETYgA+I6ABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDkQW8mZ1uZq+Y2TozuzaqOgAA8FEkAW9m+ZK+K+kMSQskXWBmC6KoBQAAH0V1Bn+spHXOudedc12S7pO0JKJaAADwTlQBP1nSxqTnm4K2fcxsqZmtNLOVW7duzWhxAADEXdYOsnPOLXPO1Tvn6mtqaqIuBwCAWIkq4JskTU16PiVoAwAAaRBVwD8rqc7MZppZkaTzJT0cUS0AAHinIIqdOud6zOxKSb+WlC/pDufc2ihqAQDAR5EEvCQ55x6R9EhU+wcAwGdZO8gOAAAMHwEPAICHCHgAADxEwCM0rTu2adUvHoq6DADISZENsoPfXn36CS1fdrNmLjom6lIAICcR8EirrvY2/fbOZVr72ApJUlFpWcQVAUBuIuCRNm+++rIeufkG7dqyeV9bcRkBDwBRIOAxYn29vfrTA/fp6Qd/ItfXt988zuABIBoEPEZk5+ZmPXLz9Wp+7ZWU84vLyjNcEQBAIuAxAi/+7jf63V23qbujfcBliuiiB4BIEPAYsvbW3Vq+7Ga99syTh1yWa/AAEA0CHkPS8MLz+vX3btTbb+0Y1PJcgweAaBDwGJSe7m49/uM79dyv/ltybtDrcQ0eAKJBwOOQtm5o0CM3fUPbNjYOeV3O4AEgGgQ8BuSc03OPPKTH771bvd3dw9oG1+ABIBoEPFJ6e8d2/fJ7N2rDi6tHtB3O4AEgGgQ8DrD3PvIdb7eOaDsFRcXKL+AtBgBR4Lcv9unqaNdv77xVa3+/Ii3bKyotTct2AABDR8BDUur7yI8UI+gB9NfV0aOiEqInE/hfznEHu4/8SHH9HUB/z/z3Gzrq5KkaNbYk6lK8lxd1AYjOzs3Nuu+L1+ipB+5Ne7hLjKAHcKD8wjw9/O3Vam/tiroU7xHwOapt9y7959f+/4BfEpMOnMED6G/MhDLt3NKmh29arc72nqjL8RoBn6PKKkfrouu+o/d86COhBTHX4AH0VzUh8ftm28a39Yvv/o96unojrshfBHwOKyot07v/5gJd9p0fqP4DH1RBYVF6t1/GKHoA+9sb8JLUvG6XfnnrGvX2pv8SIQh4SCodVamTPnqpLr1pmY485XTl5eenZbucwQPor6S8UCUVhfueb1i7XY/e+ZJc3+C/4wKDQ8Bjn1Fjq3Xq312pS755i+Ydf5LMRvb24Bo8gFSqxu//u+G1lS167N7wxgPlKgIeB6iaWKu/+uQ/6sLrbtKsY44d9nYYRQ8glaqJB/5uWPv4m/rTg+sjqMZfBDwGVDNths695gu64CvXa+rCI4e8PmfwAFKpGp96fM5zv27Uc78e+rdWIjUCHoc0ae48nfeFf9Vff/4rmji7btDrcQ0eQCpjJgz8u+FPD67X2sebMliNv7iTHQZtxpGLNePIxXrt6Sf1xP0/0vZNGw66PGfwAFIZPeHgn7B57J5XVFRaoLr6CRmqyE8EPIas7rj3aM5fvEsvPf47PfnTe7R765aUy3ENHkAqVTVlMpPcAAPnnZNW3PmSikoKNP3wcZktziN00WNYLC9PC086WZd+6xa9/9LLVV415oBlOIMHkEp+YZ5GjTv4vej7ep1+texFvbluZ2aK8hABjxHJLyjU4tPO0sduuk0nXHCxSsor9s3jGjyAgSTf8GYgPV19+sV3X9DWja0ZqMg/BDzSorC4RMed8yF97Ds/0HHnnqei0lK+Dx7AgAYT8JLU1d6jR+96WW6g/nwMiGvwSKuS8gqdcP5FOvrMJTKzqMsBkKX63+xmIKWjCvWXH1vI75Nh4AweoSirHB11CQCyWKqb3fRXUlGoJVcv1thJXO4bDgIeAJBxhzqDLy4v0JKrF2nc5IqDLoeBEfAAgIyrGFOsgqLUEVRcVqAlVy1W9ZRRGa7KLwQ8ACDjzEyjU5zFF5UW6OyrFqlmGuE+UgQ8ACASY/qNpC8qydcHPnmUxk+vjKgivxDwAIBIJH9UrrA4X2d9YpEmzmSAbroQ8ACASOwN+ILifJ115VGqnU24pxMBDwCIRNX4MhUU5emsK47UpLqqqMvxDgEPAIhE1cQynfn3R2ry3AO/ywIjR8ADACJRXFqgqfPGRl2Gt0IJeDP7hpn92cxeMLMHzawqaJ9hZu1mtjp43BLG/gEAyHVhncEvl3S4c+5ISa9K+mzSvPXOuUXB4/KQ9g8AQE4LJeCdc79xzvUET5+SNCWM/QAAgNQycQ3+Ukm/THo+08yeN7PHzOzEDOwfAICcM+yvizWzFZImppj1eefcQ8Eyn5fUI+nHwbxmSdOcc9vN7BhJ/2VmC51zu1Nsf6mkpZI0bdq04ZYJAEBOGnbAO+dOOdh8M/tbSWdJOtk554J1OiV1BtOrzGy9pLmSVqbY/jJJyySpvr7eDbdOAAByUVij6E+XdI2ks51zbUntNWaWH0zPklQn6fUwagAAIJcN+wz+EG6WVCxpuZlJ0lPBiPn3SvqymXVL6pN0uXNuR0g1AACQs0IJeOfcnAHaH5D0QBj7BAAA7+BOdgAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiLgAQDwEAEPAICHCHgAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAh0ILeDP7kpk1mdnq4HFm0rzPmtk6M3vFzE4LqwYAAHJVQcjbv9E5d31yg5ktkHS+pIWSJklaYWZznXO9IdcCAEDOiKKLfomk+5xznc65NyStk3RsBHUAAOCtsAP+SjN7wczuMLMxQdtkSRuTltkUtAEAgDQZUcCb2QozW5PisUTS9yXNlrRIUrOkG4a47aVmttLMVm7dunUkZQIAkHNGdA3eOXfKYJYzs9sk/Tx42iRpatLsKUFb/20vk7RMkurr691I6gQAINeEOYq+NunpuZLWBNMPSzrfzIrNbKakOknPhFUHAAC5KMxR9NeZ2SJJTlKDpI9LknNurZndL+klST2SrmAEPQAA6RVawDvnLjzIvK9J+lpY+wYAINdxJzsAADxEwAMA4CECHgAADxHwAAB4iIAHAMBDBDwAAB4i4AEA8BABDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAeIuABAPAQAQ8AgIcIeAAAPETAAwDgIQIeAAAPEfAAAHiIgAcAwEMEPAAAHiqIugAAmeGc00PrH1J1abXqquo0vmy8zCzqsgCEhIAHcoSZaU/3Hv3zE/8sSaosqtScqjmqG1Onuqo6zRkzR3Oq5mh08eiIKwWQDuaci7qGQ6qvr3crV66Mugwg9rp7u3XOQ+doQ+uGAZcZXzZedWPqNLdqruaMmaO6qjrNHD1TJQUlGawUgJmtcs7VD3d9zuBjrre3Tfn5ZVGXgZgozC/Up4/5tK7+/dUDLtPS1qKWthY90fTEvrY8y9O0UdP2ne2fNvM0zRo9KwMVAxguBtnFXOOG29Xb2xF1GYiR9097v44ef/SQ1ulzfWrY3aDljct119q7VFlUGVJ1ANKFgI+5XTtXqnnzz6IuAzFiZvpM/WeGvf5lR1ym6tLqNFYEIAwEfMy1tTdqQ+Nt6uvriboUxMgRNUfojJlnDHm92vJaXbjgwhAqApBuBHyM9fV1qaOjSe0dG9Sy9ZdRl4OYueroq1SYVzikda4++moG2wExQcDHWEdHk6Q+SVJj462KwycikD0mV0zWR+d/dNDLH1lz5LDO+gFEg4CPsbb2xn3Tb7/9snbs+EOE1SCOLjvyMlUVVw1q2Wv+4hpujAPECAEfY+3t+3+WuaHx1ogqQVxVFlXq8qMuP+RyZ8w4Q0fVHJWBigCkCwEfY+1tjfs937nzae3a9VxE1SCuzpt7nqZXTh9wflFeka4+5urMFQQgLQj4GEvuot+Ls3gMVWF+oT519KcGnH/Rwos0qWJSBisCkA4EfIz176KXpG3bVujtPa9FUA3ibKCb34wtGavLjrgsgooAjBQBH1PO9aq9fWPKeRsal2W4GsTdQDe/+cTiT6i8sDyCigCMFAEfUx0dm+VcV8p5m7c8rI6ONzNcEeKu/81v6sbU6dw550ZYEYCRIOBjqj3F9fe9nOvRho13ZLAa+OKqo69SUV6RJOkf6/9R+Xn5EVcEYLgI+Jg6WMBLUlPTferufitD1cAXkysm6yMLPqKTppykd096d9TlABgBvi42plKNoE/W19eujZv+Q7NmfjJDFcEXlx1xmd7q4I9DIO44g4+pVCPo+9u48W719rZloBr4pLKo8qCfiwcQDwR8TB2qi16Senp2qunNn2SgGgBAtiHgY8g5N6gzeEnasOF29fWlHm0PAPAXAR9DXV3bBt313tnZrC1b/jvkigAA2YaAj6HBdM8na2hcJuf6QqoGAJCNQgl4M/uJma0OHg1mtjpon2Fm7Unzbglj/75ra28Y2vJt67Rt26PhFAMAyEqhfEzOOffhvdNmdoOkXUmz1zvnFoWx31wx2OvvyRoab1F19Sl8nzcA5IhQu+gtkSbnSbo3zP3kmv5fEzsYu3ev1s6dz4RQDQAgG4V9Df5ESVucc8lfbzbTzJ43s8fM7MSBVjSzpWa20sxWbt26NeQy4+VQN7kZSGMjV0QAIFcMO+DNbIWZrUnxWJK02AXa/+y9WdI059xiSZ+WdI+ZVabavnNumXOu3jlXX1NTM9wyvTScLnpJ2r7jD2ptfSnN1QAAstGwr8E750452HwzK5D0QUnHJK3TKakzmF5lZuslzZW0crh15Jru7p3q6dl16AUH0Nh4qw4//NtprAgAkI3C7KI/RdKfnXOb9jaYWY2Z5QfTsyTVSXo9xBq8M9yz9722tDyitmFcwwcAxEuYAX++Dhxc915JLwQfm/tPSZc753aEWIN32toaRriFPm3Y+IN0lAIAyGKhfZucc+5vU7Q9IOmBsPaZC4Z6k5tUmpv/UzNnfFLFxYxtAABfcSe7mBlpF70k9fV1aeOmu0ZeDAAgaxHwMTPcj8j1t2nTj9TT05qWbQEAsg8BHzPp6KKXpN7et9XUdE9atgUAyD4EfIz09OxRV9e2tG1vw8Y71dvbmbbtAQCyBwEfI+m4/p6sq2urNm/+WVq3CQDIDgR8jKSrez5Z44Zlcq437dsFAESLgI+RMAK+vX2DWlp+lfbtAgCiRcDHSLpG0PfX2HirnHOhbBsAEA0CPkaG8zWxg9H69lrteOuJULYNAIgGAR8j6R5kt1dBQZUqyueGsm0AQDQI+Jjo7e1UR2dzKNueN+8rKi4eH8q2AQDRIOBjoqNjo6T0XyefOGGJJow/M+3bBQBEi4CPiTC654uLJ2ru3C+mfbsAgOgR8DERxgj6BfOvU2Hh6LRvFwAQPQI+JtI9gn7KlIs0duzxad0mACB7EPAxkc6b3JSVzdKc2dekbXsAgOxDwMdEurrozfK1cMENys8vTcv2AADZiYCPgb6+HnV0NKVlWzNmXKnKyiPTsi0AQPYi4GOgs/NNOdcz4u2MGnWEZkz/f2moCACQ7Qj4GGhLwwC7vLxiLVxwg/LyCtNQEQAg2xHwMZCOAXZzZv+Tystnp6EaAEAcEPAxMNKb3Iwdc7ymTLkwTdUAAOKAgI+BkYygLyio1Pz5X5cZhxoAcgm/9WNgJF30h839F5WU1KaxGgBAHBDwWc65vmF30Y8ff6YmTPhAmisCAMQBAZ/lOju3qK+vc8jrFRWN17zDviwzC6EqAEC2I+Cz3HDP3ufP/zcVFo5JczUAgLgg4LPccK6/T578f1U97n3pLwYAEBsEfJYb6gj60tLpqpvz2ZCqAQDEBQGf5YbWRZ8XfJFMWWj1AADigYDPckP5HvgZ0y/X6NGLQ6wGABAXBHwWc84Nuot+VMVCzZz5iZArAgDEBQGfxbq7d6i39+1DLpeXV6QFC65XXl5RBqoCAMQBAZ/FBjuCfvasz6iiYm7I1QAA4oSAz2KD+ZrYqqrjNHXqJRmoBgAQJwR8FjvUCPr8/AotmP8NvkgGAHAAkiGLHaqL/rC5X1Bp6eQMVQMAiBMCPosdbAR9TfWpmjjxgxmsBgAQJwR8Fhuoi76wcJzmzfsaXyQDABgQAZ+lurt3q7t7R8p58+f/m4qKxmW4IgBAnBDwWWqg6++Tas9TTfXJGa4GABA3BHyWStU9X1IyVXV1n4+gGgBA3BDwWerAM3jTggXfUEFBRST1AADihYDPUv1H0E+bdpnGVP1FRNUAAOKGgM9SyV30FeWHafasT0VYDQAgbkYU8Gb2ITNba2Z9Zlbfb95nzWydmb1iZqcltZ8etK0zs2tHsn+f7f2aWLNCLVhwg/LyiiOuCAAQJyM9g18j6YOS/pDcaGYLJJ0vaaGk0yV9z8zyzSxf0nclnSFpgaQLgmWRpLe3XZ1dWyRJs2Z9SqNGzY+4IgBA3BSMZGXn3MuSUt1wZYmk+5xznZLeMLN1ko4N5q1zzr0erHdfsOxLI6nDN3u750ePrtf0aZdFXA0AII7CugY/WdLGpOebgraB2pGkvb1R+fllWrjgG0p0egAAMDSHPIM3sxWSJqaY9Xnn3EPpL2nffpdKWho87TSzNWHtKwtUS9p2YPP0jBcSkgFenzd4ffHl82uTeH1xd9hIVj5kwDvnThnGdpskTU16PiVo00Ha++93maRlkmRmK51z9amW8wGvL954ffHl82uTeH1xZ2YrR7J+WF30D0s638yKzWympDpJz0h6VlKdmc00syIlBuI9HFINAADkrBENsjOzcyV9R1KNpF+Y2Wrn3GnOubVmdr8Sg+d6JF3hnOsN1rlS0q8l5Uu6wzm3dkSvAAAAHGCko+gflPTgAPO+JulrKdofkfTIEHe1bOjVxQqvL954ffHl82uTeH1xN6LXZ865dBUCAACyBLeqBQDAQ1kX8Ll0+1sz+4mZrQ4eDWa2OmifYWbtSfNuibjUYTGzL5lZU9LrODNpXspjGRdm9g0z+7OZvWBmD5pZVdDuxbGT4vtzNRAzm2pmvzOzl4LfMVcF7QO+T+Mm+D3yYvA6VgZtY81suZm9Fvw7Juo6h8rMDks6PqvNbLeZXR33Y2dmd5hZS/LHwAc6XpZwU/Dz+IKZHX3IHTjnsuohab4Sn/37vaT6pPYFkv5HUrGkmZLWKzFQLz+YniWpKFhmQdSvYxiv+wZJXwimZ0haE3VNaXhNX5L0mRTtKY9l1PUO8bX9paSCYPrrkr7u2bHz4ueq32uqlXR0MD1K0qvBezHl+zSOD0kNkqr7tV0n6dpg+tq979W4PoL35mYlbhQS62Mn6b2Sjk7+nTHQ8ZJ0pqRfSjJJ75L09KG2n3Vn8M65l51zr6SYte/2t865NyTtvf3tsQpuf+uc65K09/a3sWGJe/2eJ+neqGvJkIGOZWw4537jnOsJnj6lxD0dfBL7n6v+nHPNzrnngulWSS8rN+6kuUTS3cH03ZLOia6UtDhZ0nrnXOMhl8xyzrk/SNrRr3mg47VE0g9dwlOSqsys9mDbz7qAPwifb397oqQtzrnXktpmmtnzZvaYmZ0YVWFpcGXQnXRHUtegD8cs2aVK/GW9lw/HzrdjtB8zmyFpsaSng6ZU79M4cpJ+Y2arLHE3UEma4JxrDqY3S5oQTWlpc772Pxny5djtNdDxGvLPZCQBb2YrzGxNikeszxBSGeRrvUD7v2GbJU1zzi2W9GlJ95hZZSbrHqxDvL7vS5otaZESr+mGKGsdqsEcOzP7vBL3evhx0BSbY5erzKxC0gOSrnbO7VbM36f9nOCcO1qJb+y8wszemzzTJfp6Y/vRKUvcIO1sST8Nmnw6dgcY6fEa0efgh8tFdPvbKBzqtZpZgRJfuXtM0jqdkjqD6VVmtl7SXEkjum1hGAZ7LM3sNkk/D54e7FhmjUEcu7+VdJakk4MfxFgdu0OIxTEaKjMrVCLcf+yc+5kkOee2JM1Pfp/GjnOuKfi3xcweVOJSyxYzq3XONQddui2RFjkyZ0h6bu8x8+nYJRnoeA35ZzJOXfS+3v72FEl/ds5t2ttgZjUWfI2cmc1S4rW+HlF9w9bv+tC5kvaOFB3oWMaGmZ0u6RpJZzvn2pLavTh2iv/P1QGCsS63S3rZOffNpPaB3qexYmblZjZq77QSA0HXKHHcLg4Wu1hSaF8SlgH79Xb6cuz6Geh4PSzpomA0/bsk7Urqyk8pkjP4g7Hcu/1t/+tJUmJk5ZfNrFtSn6TLnXP9B2LEwXVmtkiJLqYGSR+XpIMdyxi5WYlPASxP5Iaecs5dLk+OnXOuJ+Y/V6kcL+lCSS9a8JFUSZ+TdEGq92kMTZD0YPB+LJB0j3PuV2b2rKT7zexjkhqVGNAbO8EfLadq/+OT8ndMXJjZvZLeJ6nazDZJ+qKkf1fq4/WIEiPp10lqk3TJIbcf9CwCAACPxKmLHgAADBIBDwCAhwh4AAA8RMADAOAhAh4AAA8R8AAAeIiABwDAQwQ8AAAe+l8IyrX5rG/z4wAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkI0lEQVR4nO3debxVdb3/8dfnDIAiCgiYDIoYGup1PKmZEuWQ0kA2mJBlWZfsZw5pD6/lQ/P2sFtq6L3dJqm4V835er36SCtzyCYnHDIUUUBMCOUgCCQIZ/j+/tgbOuBhPGefdfb3vJ6Px36ctb9r7bU+i7UP77O+a+3vjpQSkiQpLzVFFyBJkjqfAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGWoUwI+IqZFxKKImNGmbWBE/CYiXij/HFBuj4j4XkTMjoinI+LgzqhBkiT9Q2edwf83cPwGbRcA96WURgP3lZ8DnACMLj8mAz/qpBokSVJZpwR8Sul3wJINmicA15SnrwE+0qb92lTyMNA/InbtjDokSVJJJa/B75JSWliefgXYpTw9DHi5zXLzy22SJKmT1HXFRlJKKSK2akzciJhMqQufvn37HvKOd7yjIrVJktQdPf7444tTSoO39fWVDPhXI2LXlNLCchf8onL7AmBEm+WGl9vWk1KaCkwFaGhoSNOnT69gqZIkdS8R8VJHXl/JLvo7gVPL06cCd7Rp/0z5bvrDgWVtuvIlSVIn6JQz+Ii4ERgHDIqI+cA3gO8At0TE54GXgJPKi98NjAdmAyuBz3VGDZIk6R86JeBTShM3MuvodpZNwBmdsV1JktQ+R7KTJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlKG6Sq48IvYGbm7TNAq4GOgP/DPQWG7/ekrp7krWIklST1LRgE8pzQIOBIiIWmABcDvwOeCqlNJ3K7l9SZJ6qq7soj8amJNSeqkLtylJUo/UlQF/MnBjm+dfjoinI2JaRAzYcOGImBwR0yNiemNj44azJUnSJnRJwEdEL+DDwK3lph8Be1Lqvl8ITNnwNSmlqSmlhpRSw+DBg7uiTEmSstFVZ/AnAE+klF4FSCm9mlJqSSm1Aj8BDu2iOiRJ6hG6KuAn0qZ7PiJ2bTPvRGBGF9UhSVKPUNG76AEioi9wLPDFNs2XR8SBQALmbTBPkiR1UMUDPqX0BrDzBm2frvR2JUnqyRzJTpKkDBnwkiRlyICXJClDFb8GXw3WtLby2yUrWN7cQv/6OgbU1dK/vpb+dXX0r6+lNqLoEiVJ2io9OuBbUuL3S1fwy8ZlLGtuAWDDKK+NYIe62vVCf0B9LQPqSz/XPvePAElSd9KjA742gnEDd2TcwB2LLkWSpE7lNXhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScpQXaU3EBHzgBVAC9CcUmqIiIHAzcBIYB5wUkppaaVrkSSpp+iqM/j3ppQOTCk1lJ9fANyXUhoN3Fd+LkmSOklRXfQTgGvK09cAHymoDkmSstQVAZ+AeyLi8YiYXG7bJaW0sDz9CrBLF9QhSVKPUfFr8MCRKaUFETEE+E1EPNd2ZkopRUTa8EXlPwYmA+y2225dUKYkSfmo+Bl8SmlB+eci4HbgUODViNgVoPxzUTuvm5pSakgpNQwePLjSZUqSlJWKBnxE9I2IfmungeOAGcCdwKnlxU4F7qhkHZIk9TSV7qLfBbg9ItZu64aU0q8i4jHgloj4PPAScFKF65AkqUepaMCnlOYCB7TT/hpwdCW3LUlST+ZIdpIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShioW8BExIiIeiIhnI+KZiDi73H5JRCyIiKfKj/GVqkGSpJ6qroLrbgbOSyk9ERH9gMcj4jfleVellL5bwW1LktSjVSzgU0oLgYXl6RURMRMYVqntSZKkf+iSa/ARMRI4CHik3PTliHg6IqZFxICuqEGSpJ6k4gEfETsAtwHnpJSWAz8C9gQOpHSGP2Ujr5scEdMjYnpjY2Oly5QkKSsVDfiIqKcU7tenlP4XIKX0akqpJaXUCvwEOLS916aUpqaUGlJKDYMHD65kmZIkZaeSd9EH8DNgZkrpyjbtu7ZZ7ERgRqVqkCSpp6rkXfTvBj4N/CUiniq3fR2YGBEHAgmYB3yxgjVIktQjVfIu+j8A0c6suyu1TUmSVOJIdpIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyVFjAR8TxETErImZHxAVF1SFJUo4KCfiIqAV+AJwA7ANMjIh9iqhFkqQcFXUGfygwO6U0N6W0BrgJmFBQLZIkZaeogB8GvNzm+fxy2zoRMTkipkfE9MbGxi4tTpKkatdtb7JLKU1NKTWklBoGDx5cdDmSJFWVogJ+ATCizfPh5TZJktQJigr4x4DREbFHRPQCTgbuLKgWSZKyU1fERlNKzRHxZeDXQC0wLaX0TBG1SJKUo0ICHiCldDdwd1HblyQpZ932JjtJkrTtDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNe7XvjNXjiWlj6UtGVSJK2QV3RBaib6rszrHkD/mN/GDgK9nxf6bHHWOjdr+jqJEmbUZGAj4grgA8Ba4A5wOdSSq9HxEhgJjCrvOjDKaXTK1GDOsHhX4IlL8KjV8OSufDYT6GmDoa/E0a9txT4ww6GmtqiK5UkbSBSSp2/0ojjgPtTSs0RcRlASulfygH/i5TSfluzvoaGhjR9+vROr1NboLUVbpoEz/+y/fl9+pfO6tee4Q/YvUvLk6QcrVizgh177/h4SqlhW9dRkTP4lNI9bZ4+DHy8EttRF6ipgY//DP7rBFj457fOf/N1mHln6QH/6M7f6wQYfUyXlipJOfjr8r9y5v1ndng9XXGT3WlA29O/PSLiyYh4MCKO6oLtq6N69YVJt8COwze/7Nqu/Bs/CauWVr42ScrIQ397iIl3TWTusrkdXtc2B3xE3BsRM9p5TGizzIVAM3B9uWkhsFtK6SDgXOCGiNhxI+ufHBHTI2J6Y2PjtpapztLvbfCpW6B3u4frrVqb4fl7Nr+cJImUEtfPvJ4v3fsllq9Z3inr3OYu+pTSJvtfI+KzwAeBo1P5Qn9KaTWwujz9eETMAfYC3nKBPaU0FZgKpWvw21qnOtEu+8In/htuOKkU4Jsz6y444JMVL0uSqllTSxPfeuRb3PbCbZ263op00UfE8cD5wIdTSivbtA+OiNry9ChgNNDxfgh1nbcfDR+YsmXLzr4PmldXth5JqmKvrXqNL9zzhbeE+8A+Azu87kpdg/8+0A/4TUQ8FRE/LrePBZ6OiKeA/wFOTyktqVANqpRDPgvvPmfzy635O7z4u0pXI0lVadaSWUy8ayJPLHpivfaDhxzMrR+6tcPrr9Rd9G/fSPttQOf2QagYx1wCS+fBs/+36eWeuwtGH9sFBUlS9bj3pXv5+h++zqrmVeu1f3bfz3LWwWdRX1Pf4W04kp22TQSceDUs/xvMf3Tjyz3/K0iptLwk9XApJX789I/54VM/XK+9b31fLn33pRyze+d9vNix6LXt6vvAxBthwMiNL7NiIfztiY3P1xZpamktugRJHZBSYmXTSr764FffEu6jB4zmpg/c1KnhDga8OqrvIPjU/8B2Aza+zHN3d109mWppTcxt/HvRZUjaRgtXLOTUX53KPS+t//HhD+/5Ya4ffz0jdxrZ6ds04NVxg0bDJ38Otb3anz/LgO+oPvW1DO2/Hfc++yqr1rQUXY6krfDkoieZdNcknlvy3Lq2+pp6Ln7XxVz67kvZrm67imzXgFfnGHkkfPg/25+36NnSl9aoQ/rU1/Ledwzhf5+c79m8VCVuf+F2Pv/LL/Da6n98YGxo36Fcd8J1fGKvTxAVvD/JgFfnOeBkGPe19ud5Ft8pamuCSYfuxu9fWMzdf1lYdDmSNqK5tZnLH7uci/90Ma2trRCl8dqOGnYUt3zoFvYdtG/FazDg1bnGXQAHTHxru9fhO01EcOoRI1m5poVv3fUsa5q9AU/qTpatXsYZ953Bdc9eV2pIQRCcedCZfP/o77NT7526pA4DXp3vQ9+DkRt8j9BfH4KVjmnUmT5+yHCOePsgPvffj7Lg9VWbf4Gkintx2Yuccvcp/Olvf1rXNqD3AK4+9mom7z+Zmui62DXg1fnqesEnr4NBe/2jLbXA878urqZMvXfvIZz//ndw6rRH+e2sRUWXI/Vof1jwBz5116eYt3zeurYDBh3Atcdfy7uGvqvL6zHgVRnbDSh9xez2g/7RNuuu4urJ2AEj+vPTzzRwyZ3PcOVvnqel1e9mkrpSSolrnrmGM+47gxVNK9a1nzLmFK5+z08YPnBoIXUZ8KqcgXvAxJugrk/p+ez7oenNYmvK1MhBfbn19CN44LlFnDrtURb/3S/5kbrCmpY1XPTHi/ju9O/Smkr3w2xftz1XvOcK/uXQf6Gupq6id8pvigGvyhrxztKQtgQ0vQEvPlh0Rdka3K83N00+nJqa4APf+z3T53nPg1RJi1ct5rRfn8Ydc+5Y17bnTnty4wdv5PiRxwNQ17u2qPIMeHWBfT9S+nIaKH35jCqmb+86fnZqA+9++yBeWW5viVQpz772LCf/4mT+3PjndW0n7HECN3zgBkbtNGpdW21tcTHrl82oaxx5Dix9EWb90i+fqbD62hqmfOKAwroFpdz96sVfcdEfL+LNltIf0XU1dZz/zvM5ee+Tu9XvnQGvrjN+Crz+MsyfXuq6V8V0p/9kpFy0plZ+8NQPmPr01HVtb+v7Nqa8Zwr7D96/wMraZxe9uk5tHZx0Dbz+UtGVSNJWWdm0kq888JX1wv2IoUdwywdv6ZbhDp7Bq6v17gf7nlh0FZK0xeavmM9ZD5zFC0tfACAITj/gdL64/xeprSnuJrrNMeDV9brxL4QktfXYK49x3m/PY+nqpQDs1HsnvnPUdzhy2JEFV7Z5BrwkSe249flb+beH/43m1AzAfjvvx5RxUxi6QzED12wtA16SpDaaWpu44rEruPG5G9e1fXLvT3L+O8+nV22vAivbOga8JEllr7/5Ol998Ks88sojAGxXtx3feNc3+MCoDxRc2dYz4Hug1tYmamrqiy5DkrqVOa/P4cz7z+TlFS8DMHLHkVw17irePuDtBVe2bfyYXA+0bNmTRZcgSd3Kgy8/yKfu/tS6cD9u9+O46YM3VW24g2fwPc7S1x+jtdXvDpckKH0T3LQZ0/iPJ/6DRKIu6ji34VxOGXNK1Q8YZcD3IK2tzcydM4WDDrq26FIkqXBvNr/JJQ9dwl1zS9+RMWS7IXx33Hc5aMhBBVfWOQz4HmT+guvo02cYNTXVcxeoJFXCopWLOPv+s5nx2gwADnvbYVw29jJ23m7ngivrPF6D7yFWr17E3Ln/zpAh7y+6FEkq1F8a/8LJvzh5Xbj/8z/9M1cfe3VW4Q6ewfcYs2dfBrQycODYokuRpML8Yu4v+MYfv8Ga1jX069WPbx/5bd4z4j1Fl1URBnwPsHTpo7zy6v8xZMh4amv7FF2OJHW5ltYWvvfk95g2YxoAYwaO4cpxVzK83/CCK6scAz5zra1NzHr+GwAMGWz3vKSe5+9r/s4Fv7+AB+c/CMDHRn+Mrx32NXrX9i64ssoy4DM3f8HPeeON56mp6cXOO48ruhxJ6lIvL3+ZM+8/kznL5tC7tjcXHX4RE94+oeiyuoQBn7G1N9YB7L77/6OubodiC5KkLvTIwkc497fnsnzNcnbrtxtXjruSvQfuXXRZXcaAz9js2d+hrm4H9v+nHzJw4LuLLkeSukRKiZtm3cRlj15GS2rhfSPex6VHXkq/Xv2KLq1LGfCZWrr0EVpb13DYoXdRX9+/6HIkqUs0tTTx7Ue/za3P30pt1HLeIedx6r6nVv2odNvCgN+MlBLNzc00NTVRW1tL797VcVNGbe127Lfff/bIN7WknmnJm0s477fnMf3V6QzabhBXjL2Chrc1FF1WYbIP+CeffJI33niDpqamdUHddnrDnxu2NTc3AzBixAgmTpxY8N5suR133L/oEiSpy8xaMouzHzibBX9fwCG7HMIVY69g8PaDiy6rUNkH/DPPPMPs2bM7tI4xY8bw0Y9+lPp6v2JVkrqb+/56H1/7/ddY1byKz+33Oc466CzqarKPt83K/l9g5MiRHQr4ww8/nOOOO46aGkf1laTuJKXE1Ken8v2nvs8O9Tvw7+/9d47e7eiiy+o2sg/43XfffZteFxEcf/zxHHbYYZ1ckZSnpjWrWbF4MSsWN9LS0sTOw3Zjx8FDvA9EFbGqeRUX/fEifj3v1+w1YC+uGncVu+24W9FldSvZB/zQoUOpr6+nqalpi19TV1fHxz72McaMGVPByqS81PfqzcChwxg4dFjRpShzr7zxCmfdfxYzl8xkwp4TuPDwC9mubruiy+p2sg/42tpaRowYwdy5c7do+e23355JkyYxfHi+4xNLUrV6atFTnPPAOaxYs4JL3nUJHx39UXuJNqJHXFje0m76nXfemS984QuGuyR1Q3fMvoPTfn0afer6cN346/jYXh8z3Dch+zN4KN1otzlrPwa3/fbbV74gSdIWa2lt4crHr+TaZ69l3PBxXHrkpezUe6eiy+r2ekTADxs2jLq6unWfad/QPvvsw4knnujH4CSpm1m+Zjnn/+58HvrbQ5x98Nmctt9p1ESP6HzusB4R8HV1dQwbNoyXXnrpLfOOOOIIjj32WLt5JKmbmbdsHmfefybL1yxn6rFTOWxXP9W0NSr2Z1BEXBIRCyLiqfJjfJt5X4uI2RExKyK65EvKN+ymjwjGjx/PcccdZ7hLUjfzpwV/YtJdk+jfuz+3fPAWw30bVPoM/qqU0nfbNkTEPsDJwL7AUODeiNgrpdRSyULa3mhXX1/Pxz/+cfbeu+d8baAkVYOUEj+f+XOmTJ/CpDGT+MohX6G+xsun26KILvoJwE0ppdXAixExGzgUeKiSGx0xYgS1tbX06dOHSZMmMWyYn9WVpO5kTcsaLn34Uu556R4uH3s5x408ruiSqlqlA/7LEfEZYDpwXkppKTAMeLjNMvPLbRVVX1/P/vvvz9ixYxkwYEClNydJ2gqLVy3m3N+ey4o1K7jxAzeyx057FF1S1evQNfiIuDciZrTzmAD8CNgTOBBYCEzZynVPjojpETG9sbGxI2WuM2HCBMNdkrqZma/NZOJdExm2wzCuH3+94d5JOnQGn1I6ZkuWi4ifAL8oP10AjGgze3i5bcN1TwWmAjQ0NKSO1ClJ6p7umXcP//rQv3LWQWdx0t4nedNzJ6pYF31E7JpSWlh+eiIwozx9J3BDRFxJ6Sa70cCjlapDktT9tKZWfvznH3PH7Du4+tir2W/QfkWXlJ1KXoO/PCIOBBIwD/giQErpmYi4BXgWaAbOqPQd9JKk7mNl00ou/MOFrGpZxc0fvJn+ffoXXVKWKhbwKaVPb2Let4BvVWrbkqTu6W9//xvnPHAO79vtfUzef7Kj0lVQjxjJTpJUvCdefYJvPvRNzn/n+Rwx7Iiiy8meAS9Jqrjbnr+NO+fcyY+O+RG77rBr0eX0CAa8JKlimlubueKxK0gkfnrcT6mvdVS6rmLAS5IqYtnqZVz8x4t5/8j3M37U+M2/QJ3KgJckdbq5r8/lqsev4pxDzmHP/nsWXU6PZMBLkjrV7+b/jgdefoDvjP0Ofev7Fl1Oj2XAS5I6RUqJ62deT21NLRcffrGj0hXMgJckddjqltVc/eerGTt8LAcOObDocoQBL0nqoMaVjdw862ZO2ecUBvYZWHQ5KjPgJUnb7NnXnmXG4hl86YAvUVtTW3Q5asOAlyRtkz8t+BP1tfWctPdJRZeidhjwkqSt0ppaeeCvDzBm5zEM3WFo0eVoIwx4SdIWe6PpDZ549QmOHH4kvWt7F12ONsGAlyRtkcWrFtO4spGjhh9VdCnaAga8JGmzGlc2AjBm5zEFV6ItZcBLkjZpyZtL6NerH33q+hRdiraCAS9JaldKiTWtaxjQe4Cj0lUhA16S1K6I8Ea6KlZTdAGSJKnzGfCSJGXILnpJUtVoXb2alsWLaS4/Wt94g7pBg6gbMoS6XXahtl+/okvsNgx4SVJVWD13Lq9Nm0bN9tvTZ5992G7ffek1ahRR6xj47THgJUlVofeoUQy99NKiy6gaXoOXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDNVVYqURcTOwd/lpf+D1lNKBETESmAnMKs97OKV0eiVqkCSpJ6tIwKeUPrl2OiKmAMvazJ6TUjqwEtuVJEklFQn4tSIigJOA91VyO5IkaX2VvgZ/FPBqSumFNm17RMSTEfFgRBy1sRdGxOSImB4R0xsbGytcpiRJednmM/iIuBd4WzuzLkwp3VGengjc2GbeQmC3lNJrEXEI8H8RsW9KafmGK0kpTQWmAjQ0NKRtrVOSpJ5omwM+pXTMpuZHRB3wUeCQNq9ZDawuTz8eEXOAvYDp21qHJEl6q0p20R8DPJdSmr+2ISIGR0RteXoUMBqYW8EaJEnqkSp5k93JrN89DzAW+GZENAGtwOkppSUVrEGSpB6pYgGfUvpsO223AbdVapuSJKnEkewkScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAwZ8JIkZciAlyQpQwa8JEkZMuAlScqQAS9JUoYMeEmSMmTAS5KUIQNekqQMGfCSJGXIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDBnwkiRlyICXJClDBrwkSRky4CVJypABL0lShgx4SZIyZMBLkpQhA16SpAx1KOAj4hMR8UxEtEZEwwbzvhYRsyNiVkS8v0378eW22RFxQUe2L0mS2tfRM/gZwEeB37VtjIh9gJOBfYHjgR9GRG1E1AI/AE4A9gEmlpeVJEmdqK4jL04pzQSIiA1nTQBuSimtBl6MiNnAoeV5s1NKc8uvu6m87LMdqUOSJK2vUtfghwEvt3k+v9y2sXZJktSJNnsGHxH3Am9rZ9aFKaU7Or+kddudDEwuP10dETMqta1uYBCwuOgiKsj9q24571/O+wbuX7XbuyMv3mzAp5SO2Yb1LgBGtHk+vNzGJto33O5UYCpARExPKTW0t1wO3L/q5v5Vr5z3Ddy/ahcR0zvy+kp10d8JnBwRvSNiD2A08CjwGDA6IvaIiF6UbsS7s0I1SJLUY3XoJruIOBH4T2AwcFdEPJVSen9K6ZmIuIXSzXPNwBkppZbya74M/BqoBaallJ7p0B5IkqS36Ohd9LcDt29k3reAb7XTfjdw91ZuaurWV1dV3L/q5v5Vr5z3Ddy/ateh/YuUUmcVIkmSugmHqpUkKUPdLuB70vC3EXFzRDxVfsyLiKfK7SMjYlWbeT8uuNRtEhGXRMSCNvsxvs28do9ltYiIKyLiuYh4OiJuj4j+5fYsjh1U7+/VxkTEiIh4ICKeLf8fc3a5faPv02pT/n/kL+X9mF5uGxgRv4mIF8o/BxRd59aKiL3bHJ+nImJ5RJxT7ccuIqZFxKK2HwPf2PGKku+Vfx+fjoiDN7uBlFK3egBjKH3277dAQ5v2fYA/A72BPYA5lG7Uqy1PjwJ6lZfZp+j92Ib9ngJcXJ4eCcwouqZO2KdLgK+2097usSy63q3ct+OAuvL0ZcBlmR27LH6vNtinXYGDy9P9gOfL78V236fV+ADmAYM2aLscuKA8fcHa92q1PsrvzVeA3av92AFjgYPb/p+xseMFjAd+CQRwOPDI5tbf7c7gU0ozU0qz2pm1bvjblNKLwNrhbw+lPPxtSmkNsHb426oRpbF+TwJuLLqWLrKxY1k1Ukr3pJSay08fpjSmQ06q/vdqQymlhSmlJ8rTK4CZ9IyRNCcA15SnrwE+UlwpneJoYE5K6aWiC+molNLvgCUbNG/seE0Ark0lDwP9I2LXTa2/2wX8JuQ8/O1RwKsppRfatO0REU9GxIMRcVRRhXWCL5e7k6a16RrM4Zi1dRqlv6zXyuHY5XaM1hMRI4GDgEfKTe29T6tRAu6JiMejNBoowC4ppYXl6VeAXYoprdOczPonQ7kcu7U2dry2+neykICPiHsjYkY7j6o+Q2jPFu7rRNZ/wy4EdkspHQScC9wQETt2Zd1bajP79yNgT+BASvs0pchat9aWHLuIuJDSWA/Xl5uq5tj1VBGxA3AbcE5KaTlV/j7dwJEppYMpfWPnGRExtu3MVOrrrdqPTkVpgLQPA7eWm3I6dm/R0ePVoc/Bb6tU0PC3RdjcvkZEHaWv3D2kzWtWA6vL049HxBxgL6BDwxZWwpYey4j4CfCL8tNNHctuYwuO3WeBDwJHl38Rq+rYbUZVHKOtFRH1lML9+pTS/wKklF5tM7/t+7TqpJQWlH8uiojbKV1qeTUidk0pLSx36S4qtMiOOQF4Yu0xy+nYtbGx47XVv5PV1EWf6/C3xwDPpZTmr22IiMERUVueHkVpX+cWVN822+D60InA2jtFN3Ysq0ZEHA+cD3w4pbSyTXsWx47q/716i/K9Lj8DZqaUrmzTvrH3aVWJiL4R0W/tNKUbQWdQOm6nlhc7FajYl4R1gfV6O3M5dhvY2PG6E/hM+W76w4Flbbry21XIGfymRM8b/nbD60lQurPymxHRBLQCp6eUNrwRoxpcHhEHUupimgd8EWBTx7KKfJ/SpwB+U8oNHk4pnU4mxy6l1Fzlv1fteTfwaeAvUf5IKvB1YGJ779MqtAtwe/n9WAfckFL6VUQ8BtwSEZ8HXqJ0Q2/VKf/RcizrH592/4+pFhFxIzAOGBQR84FvAN+h/eN1N6U76WcDK4HPbXb95Z5FSZKUkWrqopckSVvIgJckKUMGvCRJGTLgJUnKkAEvSVKGDHhJkjJkwEuSlCEDXpKkDP1/ny18iB8ChpQAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAhGklEQVR4nO3dfZBddZ3n8c+3H/JAJ6ET0kAPSUzAEAZFA7SsDkKBifKwDojjurC1io61kVqpwt2dmsKhynGtmVrHkWHLdcQKIyMqjyMiqFFJHBVRA3QihjySB0AS8tBJJ+l0d7rTt+93/7inw02nO91J97nn3u99v6pu5ZzfOeee78m53Z/+nXPuOebuAgAAsdRkXQAAABh/BDwAAAER8AAABETAAwAQEAEPAEBABDwAAAGNS8Cb2f1mtsfM1ha1zTCz5Wa2Ofl3etJuZvZVM9tiZmvM7JLxqAEAALxpvHrw35J07aC2OyX93N3nS/p5Mi5J10man7yWSLp3nGoAAACJcQl4d39GUvug5hslPZAMPyDpQ0Xt3/aClZIazax5POoAAAAFaZ6DP8vddybDuySdlQyfI+n1ovm2J20AAGCc1JViJe7uZnZS98Q1syUqHMJXQ0PDpRdccEEqtQEAUI5WrVq1192bTnX5NAN+t5k1u/vO5BD8nqR9h6TZRfPNStqO4e5LJS2VpJaWFm9tbU2xVAAAyouZvTaW5dM8RP+UpFuT4VslPVnU/vHkavp3SzpYdCgfAACMg3HpwZvZw5KukjTTzLZL+ltJX5L0mJl9StJrkj6azL5M0vWStkjqlvTJ8agBAAC8aVwC3t1vGWbSoiHmdUmfGY/1AgCAoXEnOwAAAiLgAQAIiIAHACAgAh4AgIAIeAAAAiLgAQAIiIAHACAgAh4AgIAIeAAAAiLgAQAIiIAHACAgAh4AgIAIeAAAAiLgAQAIiIAHACAgAh4AgIAIeAAAAiLgAQAIiIAHACAgAh4AgIAIeAAAAiLgAQAIiIAHACAgAh4AgIAIeAAAAiLgAQAIiIAHACAgAh4AgIAIeAAAAiLgAQAIiIAHACAgAh4AgIAIeAAAAiLgAQAIiIAHACAgAh4AgIAIeAAAAiLgAQAIiIAHACAgAh4AgIAIeAAAAiLgAQAIiIAHACAgAh4AgIAIeAAAAiLgAQAIqC7NNzezBZIeLWo6V9LnJTVK+m+S2pL2v3H3ZWnWAgBANUk14N19k6SFkmRmtZJ2SHpC0icl3ePuX0lz/QAAVKtSHqJfJGmru79WwnUCAFCVShnwN0t6uGj8djNbY2b3m9n0wTOb2RIzazWz1ra2tsGTAQDACZQk4M1sgqQbJP1b0nSvpPNUOHy/U9Ldg5dx96Xu3uLuLU1NTaUoEwCAMErVg79O0mp33y1J7r7b3fvdPS/pPkmXlagOAACqQqkC/hYVHZ43s+aiaTdJWluiOgAAqAqpXkUvSWbWIOn9kj5d1PxlM1soySW9OmgaAAAYo9QD3t27JJ0xqO1jaa8XAIBqxp3sAAAIiIAHACAgAh4AgIAIeFSdnt5d2r3nJ8rnj2RdCgCkJvWL7IByk+s7qLVrb1ddXaPOPvvP1dz8EU2b+vasywKAcUXAo+qYFT72udwBbd/+HW3f/h1NmXKBmps/orPPukETJpwxwjsAQPnjED2qTk1N/XFtnZ0btXnz3+nZ31yuNWtuU1vbCuXzuQyqA4DxQQ8eVWegBz8U9z617V2utr3LVV9/hprP/pCam/9CU6YsKGGFADB29OBRdaxmwujmM9ORI3t16NBa9ff3pFwVAIwvevCoOjXD9OBraiZreuO7NGPGezV9xuWa0rBAZlbi6gBgfBDwqDpvHqKv0bSpb9eMGZdr+ozL1Xj6JaqpmZhpbQAwXgh4VJ3a2sl6+9u/phnT36P6+sasywGAVBDwqDpmtTrrzOuyLgMAUsVFdgAABETAAwAQEAEPAEBABDwAAAER8AAABETAAwAQEAEPAEBABDwAAAER8AAABETAAwAQEAEPAEBABDwAAAER8AAABETAAwAQEAEPAEBABDwAAAER8AAABETAAwAQEAEPAEBABDwAAAER8AAABETAAwAQEAEPAEBABDwAAAER8AAABETAAwAQEAEPAEBABDwAAAER8AAABETAAwAQEAEPAEBABDwAAAHVpb0CM3tV0iFJ/ZJy7t5iZjMkPSpprqRXJX3U3fenXQsAANWiVD34q919obu3JON3Svq5u8+X9PNkHAAAjJOsDtHfKOmBZPgBSR/KqA4AAEIqRcC7pKfNbJWZLUnaznL3ncnwLklnlaAOAACqRurn4CW91913mNmZkpab2cbiie7uZuaDF0r+GFgiSXPmzClBmQAAxJF6D97ddyT/7pH0hKTLJO02s2ZJSv7dM8RyS929xd1bmpqa0i4TAIBQUg14M2sws6kDw5I+IGmtpKck3ZrMdqukJ9OsAwCAapP2IfqzJD1hZgPresjdf2pmL0h6zMw+Jek1SR9NuQ4AAKpKqgHv7tskvXOI9n2SFqW5bgAAqhl3sgMAICACHgCAUeg/eDDrEk4KAQ8AwCgcWrEi6xJOCgEPAMAodP76WfV3dmVdxqgR8AAAjEL+cLc6f/XLrMsYNQIeAIDR6M/r0NPLs65i1Ah4AABGI9+vzl//WvmenqwrGRUCHgCAUfBcv7y7W13PPpt1KaNCwAMAwvC8y/2455eN03v3S5I6nn46lfcfbwQ8ACCMXFu3ktujj7/+vCSp8xe/lB85ks46xhEBDwAIoWdTu2pPn5ja+w/04POHDqlr5crU1jNeCHgAQMXr3XZQMlPNpBQfsZL04KXKOExPwAMAKlpu32EdXrdXk86fnup6BnrwktT583+X9/efYO7sEfAAgIqV78lp/+ObNfV9c9JfWe7NQO/fv1/dL7Smv84xIOABABXJ8659D21Uw7ubVdtQX4L1HdtjP1Tmh+kJeABARTr4422qmVCj097RVJoVFp2DlwoPn0nrK3njgYAHAFSczud3qvv3e9R441tLts7BPfjcnj06/PsXS7b+k0XAAwAqSs/WAzrw5Fad/sFzVTt1QulWPKgHL5X3YXoCHgBQMXJ7D6v9wQ2aNH+6Gi45q6TrHuqq+UPLy/fhMwQ8AKAi5Hty2vvAOnneNf2m0h2aP2qIgO/bsUOH160rfS2jQMADAMrewBXzubbDOv36eanesW74Go4/RC+pbB8hS8ADAMrewR9tU+/L+zXxrY2acllzNkUMc2Obcj0PT8ADAMpa58qd6vztG7IJNZr+4fmZ1TFcD/7IK6+od/PmElczMgIeAFC2erbs14GntkqSpl0zV3UzJmVXzAluTVuO96Yn4AEAZalv72Hte3CjlHdNmDtNU/7sTzKt50T3ni/H8/AEPACg7OQP57TvgXXywzmprkbT/2J+es95H60TBHzvpk068sc/lrCYkRHwAICy4v2ufQ9uUK7tsCTp9PfPUX3TaRlXNfw5+AHldrEdAQ8AKCsHfrhVvVsOSJLqZ03RlCtmZVvQgBEeD9tRZofpCXgAQNno/N0b6lq5szBSa5rxkfNlNRkfmpcKD5UZ4cEyPS+9pL6dO0tU0cgIeABAWejZvF8Hfrjt6Pi0q2er/uyGDCsqMkLvXZLkXla3riXgAQCZ62vrPnrFvCTVNzdo6tWzM67qTSe6gr5YOV1NX5d1AQCA6pbv7tO+B9bLe3KFhhrT9I+cL6stnz6o1ddr1jfulfcekR/plff2Kt/be3T86HCuT57Lyeqyj9fsKwAAVK2jV8zvPXy0beqVszThnCkZVnU8q6nR1KuuyrqMk1I+fx4BAKrOgae2qHfrwaPjdWdO1rTFczKsKA4CHgCQic7f7FDXc7vebDAVDs3XEU3jgf9FAEDJ9by8Xwd+vO2YtimXn6OJc6ZlVFE8BDwAoKT69nRr30MbpKIbw9WdMUmnX/OW7IoKiIAHAJRMvrtPex9YJ+8p+tqZqXCv+fra7AoLiIAHAJRUvuPIMeMN/6FZE89tzKaYwAh4AEDJ1JxWr9MuPvPoeG3jRJ1+3bwMK4qLgAcAlFTDe958rvv0D89XzUQOzaeBG90AAEpqQnODJsybproZkzXp/OlZlxMWAQ8AKLlpi9+iCX9SXneri4aABwCU3KTzGrMuITzOwQMAEFBqAW9ms83sF2a23szWmdkdSfsXzGyHmb2YvK5PqwYAAKpVmofoc5L+l7uvNrOpklaZ2cCDcu9x96+kuG4AAKpaagHv7jsl7UyGD5nZBknnpLU+AADwppKcgzezuZIulvRc0nS7ma0xs/vNjO9IAEhdf65P+Xz/yDMCQaQe8GY2RdLjkj7r7h2S7pV0nqSFKvTw7x5muSVm1mpmrW1tbWmXCSC4A7t2ae0vlo88IxBEqgFvZvUqhPuD7v59SXL33e7e7+55SfdJumyoZd19qbu3uHtLU1NTmmUCqAIde/fo2Ue+o97urqxLAUoizavoTdI3JW1w938qam8umu0mSWvTqgEABnS07dHhjoNa+f1Hsy4FKIk0e/CXS/qYpPcN+krcl83sJTNbI+lqSf8jxRoAQFKhBy9Jq5c9pf273si4GiB9aV5F/6wkG2LSsrTWCQDD6WgrBHy+P6dnvvuvuvGv7sq4IiBd3MkOQFUYCHhJ2vLC7/THtWsyrAZIHwEPoCoMHKIf8Mtv38fX5hAaAQ8gvP5cnzr3tx/T1vbaK3xtDqER8ADCO7Rvn+R+XDtfm0NkBDyA8IrPvxc73HFQzz3xWImrAUqDgAcQ3uDz78VWL3tSB3btLGE1QGkQ8ADC62jbPey0/lxOzzz4ryWsBigNAh5AeB0jPM9i8/O/1evr+NocYiHgAYR3okP0A37xAF+bQywEPIDwRhPwha/NrShBNUBpEPAAQvN8Xof27h3VvL959Dvq7e5OuSKgNFK7Fz0AlIP+XE7vveXj6u3qUm93Z/Jvl3q6utTb1anerk71dHcp19ur7oMH9NwPHtOV/+UTWZcNjBkBDyC0ugkT9K4///CI8/Xn+tTb3a2+np4SVAWkj4AHAEm1dfU6bdrp0rTTsy4FGBecgwcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACqsu6AKAS9PT1a1/XEbV3HtG+rl7t6zyi9q4jhbau3qPDF8+erv/67jk6t2lK1iUDqHIEPDBIrj+vzzy0Wrs6etWehHn3kf4TLrPogjP1v294m94xq7E0RQLACAh4YJDVfzygn63bPap5F11wpu5YPJ9gB1B2CHhgkBUbRg73911wpu5YNF/vnN2YfkEAcAoIeGCQFeuHD/irFzTps4vPJ9gBlD0CHiiyta1T2/Z2Hdd+9YIm3bH4fC0k2AFUCAIeKDK4937VgibdsWi+Lp4zPaOKAODUEPBAkYHz7wQ7gEpHwAOJ9q4jmjqpXt//73+mSwh2ABUuszvZmdm1ZrbJzLaY2Z1Z1QEMaJxcr/s/8S7CHUAImQS8mdVK+mdJ10m6UNItZnZhFrUAA2pqLOsSAGDcZNWDv0zSFnff5u5HJD0i6caMagEAIJysAv4cSa8XjW9P2o4ysyVm1mpmrW1tbSUtDgCASle2T5Nz96Xu3uLuLU1NTVmXAwBARckq4HdIml00PitpAwAA4yCrgH9B0nwzm2dmEyTdLOmpjGoBACCcTL4H7+45M7td0s8k1Uq6393XZVELAAARZXajG3dfJmlZVusHACCysr3IDgAAnDoCHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcqwOH+vH53oFObunqUd8+6HAAVIJWAN7N/NLONZrbGzJ4ws8akfa6ZHTazF5PXN9JYPxDNbw50akZ9nRY0TFKNWdblAKgAafXgl0t6u7u/Q9LLkj5XNG2ruy9MXreltH4glMVnTNOChklZlwGggqQS8O7+tLvnktGVkmalsR4AADC0UpyD/0tJPykan2dmvzezX5nZFSVYPwAAVafuVBc0sxWSzh5i0l3u/mQyz12ScpIeTKbtlDTH3feZ2aWSfmBmb3P3jiHef4mkJZI0Z86cUy0TAICqdMoB7+6LTzTdzD4h6YOSFrkXLvt1915JvcnwKjPbKul8Sa1DvP9SSUslqaWlhcuGAQA4CWldRX+tpL+WdIO7dxe1N5lZbTJ8rqT5kralUQMAANXslHvwI/iapImSllvhKz0rkyvmr5T0RTPrk5SXdJu7t6dUAwAAVSuVgHf3tw7T/rikx9NYJwAAeBN3sgMAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgI/od1+Xcr1ZVwEAyBABH1HjHKltU9ZVAAAyRMBHNPe9UtvGrKsAAGSIgI9ocqNUk9ZzhAAAlYCAj6phZtYVAAAyRMBHdRoBDwDVjICPasY8qacj6yoAABnhRG1U9ZOlmvqsqwAAZIQefGS1/P0GANWKgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuABAAiIgAcAICACHgCAgAh4AAACIuCB4NxduVwu6zIAlFhqAW9mXzCzHWb2YvK6vmja58xsi5ltMrNr0qoBgPTKK6+oq6sr6zIAlFjaPfh73H1h8lomSWZ2oaSbJb1N0rWSvm5mtSnXAVSt1tZWuXvWZQAosSwO0d8o6RF373X3VyRtkXRZBnUA4R06dEgbN27MugwAGUg74G83szVmdr+ZTU/azpH0etE825M2AONs9erVyufz9OCBKjSmgDezFWa2dojXjZLulXSepIWSdkq6+yTfe4mZtZpZa1tb21jKBKpSPp/XqlWrJImAB6pQ3VgWdvfFo5nPzO6T9KNkdIek2UWTZyVtg997qaSlktTS0sJvJ+Akvfzyy+ro6JBEwAPVKM2r6JuLRm+StDYZfkrSzWY20czmSZov6fm06gCqVWtr69FhAh6oPmPqwY/gy2a2UJJLelXSpyXJ3deZ2WOS1kvKSfqMu/enWAdQddrb27Vly5asywCQIauEv+xbWlq8uDcC4MRyuZwOHDig9vZ2tbe366KLLlJDQ0PWZQE4CWa2yt1bTnX5NHvwADJSV1enmTNnaubMmVmXAiAj3KoWAICACHgAAAIi4AEACIiABwAgIAIeAICACHgAAAIi4AEACIiABwAgIAIeAICACHgAAAIi4AEACIiABwAgIAIeAICACHgAAAIi4AEACIiABwAgIAIeAICACHgAAAIi4AEACIiABwAgIAIeAICACHgAAAIi4AEACIiABwAgIAIeAICACHgAAAIi4AEACIiABwAgIAIeAICACHgAAAIi4AEACIiABwAgIAIeAICACHgAAAIi4AEACIiAB4BA+vJ9WZeAMkHAA0AQrbtaVWd1WZeBMkHAA0AAD214SHOmzZGZZV0KygQBDwAV7l9e+hedMfkMnXnamVmXgjJCwANABfvW2m9p24FtumbuNVmXgjLDyRoAqFDfXf9dPbzxYX3vhu9lXQrKEAEPABXo5f0v6yutX9F9H7hPUydMzboclCEO0QNABTp/+vm656p79K6z35V1KShTBDwAVKir51yddQkoYwQ8AAABpXIO3swelbQgGW2UdMDdF5rZXEkbJG1Kpq1099vSqAEAgGqWSsC7+38eGDazuyUdLJq81d0XprFeAABQkOpV9Fa4pdJHJb0vzfUAAIBjpX0O/gpJu919c1HbPDP7vZn9ysyuGG5BM1tiZq1m1trW1pZymQAAxHLKPXgzWyHp7CEm3eXuTybDt0h6uGjaTklz3H2fmV0q6Qdm9jZ37xj8Ju6+VNJSSWppafFTrRMAgGp0ygHv7otPNN3M6iR9WNKlRcv0SupNhleZ2VZJ50tqPdU6AADA8dI8RL9Y0kZ33z7QYGZNZlabDJ8rab6kbSnWAABAVUrzIrubdezheUm6UtIXzaxPUl7Sbe7enmINAABUpdQC3t0/MUTb45IeT2udAACggDvZAUCZ2/XKQe3b0Zl1GagwBDwAlLmezj498nfPa8W31qtj3+Gsy0GF4HGxAFDmpp4xSXJp08pd2ty6WxddOUuXXv8WTZ4yIevSUMYIeAAoc1NnTDo6nM+5/vDvr2v9b9/Qxe+fo3cumq0Jk/hVjuNxiB4AytyESXWaPLX+mLa+nn49/8NX9N3Pr9RLv9yu/v58RtWhXBHwAFABinvxxQ53HNEzj7ysh77wnDa/sFue58afKCDgAaACTD1j8gmnd7Qd1tPfXKfH/s8L+uP6fXIn6KsdAQ8AFWDaGUP34Afb+3qnfvjVP+jJ//uidr963GM+UEUIeACoANNmji7gB+zYtF/f+1Krfrr0JR3Y3Z1SVShnXHoJABVgwXuaNXP2VO3b0an2N7rUvrNL+97o0uGOIydcbuvqNm17ca/+9PJmXfYf56mhcWKJKkbWCHgAqAD1E2p19rmn6+xzTz+m/XDnkULgv1EI/PY3Cn8A9Hbnjs7jedf6X7+hl1fu0jsWzdYlH5ijiafVD14FgrFKuBCjpaXFW1t5oiwAjIa7q/vgkST03+zxt7/Rpb7efk08rU6XXjtXF119jurqa7MuF8Mws1Xu3nKqy9ODB4BgzEwNjRPV0DhRsy+ccbTd865D7T1Hw771x6/qvEvP1MxZU2RmGVaMNBDwAFAlrMY0beZkTZs5WXMvmpl1OUgZV9EDABAQAQ8AQEAEPAAAARHwAAAERMADABAQAQ8AQEAEPAAAARHwAAAERMADABAQAQ8AQEAEPAAAARHwAAAERMADABAQAQ8AQEAEPAAAARHwAAAERMADABAQAQ8AQEAEPAAAARHwAAAERMADABAQAQ8AQEAEPAAAARHwAAAERMADABAQAQ8AQEAEPAAAARHwAAAERMADABAQAQ8AQEAEPAAAAY0p4M3sP5nZOjPLm1nLoGmfM7MtZrbJzK4par82adtiZneOZf0AAGBoY+3Br5X0YUnPFDea2YWSbpb0NknXSvq6mdWaWa2kf5Z0naQLJd2SzAsAAMZR3VgWdvcNkmRmgyfdKOkRd++V9IqZbZF0WTJti7tvS5Z7JJl3/VjqAAAAx0rrHPw5kl4vGt+etA3XDgAAxtGIPXgzWyHp7CEm3eXuT45/SUfXu0TSkmS018zWprWuMjBT0t6si0gR21fZIm9f5G2T2L5Kt2AsC48Y8O6++BTed4ek2UXjs5I2naB98HqXSloqSWbW6u4tQ80XAdtX2di+yhV52yS2r9KZWetYlk/rEP1Tkm42s4lmNk/SfEnPS3pB0nwzm2dmE1S4EO+plGoAAKBqjekiOzO7SdL/k9Qk6cdm9qK7X+Pu68zsMRUunstJ+oy79yfL3C7pZ5JqJd3v7uvGtAUAAOA4Y72K/glJTwwz7e8l/f0Q7cskLTvJVS09+eoqCttX2di+yhV52yS2r9KNafvM3cerEAAAUCa4VS0AAAGVXcBX0+1vzexRM3sxeb1qZi8m7XPN7HDRtG9kXOopMbMvmNmOou24vmjakPuyUpjZP5rZRjNbY2ZPmFlj0h5i30mV+3M1HDObbWa/MLP1ye+YO5L2YT+nlSb5PfJSsh2tSdsMM1tuZpuTf6dnXefJMrMFRfvnRTPrMLPPVvq+M7P7zWxP8dfAh9tfVvDV5OdxjZldMuIK3L2sXpL+VIXv/v1SUktR+4WS/iBpoqR5kraqcKFebTJ8rqQJyTwXZr0dp7Ddd0v6fDI8V9LarGsah236gqS/GqJ9yH2Zdb0nuW0fkFSXDP+DpH8Itu9C/FwN2qZmSZckw1MlvZx8Fof8nFbiS9KrkmYOavuypDuT4TsHPquV+ko+m7skvaXS952kKyVdUvw7Y7j9Jel6ST+RZJLeLem5kd6/7Hrw7r7B3TcNMeno7W/d/RVJA7e/vUzJ7W/d/YikgdvfVgwr3Ov3o5IezrqWEhluX1YMd3/a3XPJ6EoV7ukQScX/XA3m7jvdfXUyfEjSBlXHnTRvlPRAMvyApA9lV8q4WCRpq7u/lnUhY+Xuz0hqH9Q83P66UdK3vWClpEYzaz7R+5ddwJ9A5NvfXiFpt7tvLmqbZ2a/N7NfmdkVWRU2Dm5PDifdX3RoMMI+K/aXKvxlPSDCvou2j45hZnMlXSzpuaRpqM9pJXJJT5vZKivcDVSSznL3ncnwLklnZVPauLlZx3aGouy7AcPtr5P+mcwk4M1shZmtHeJV0T2EoYxyW2/RsR/YnZLmuPvFkv6npIfMbFop6x6tEbbvXknnSVqowjbdnWWtJ2s0+87M7lLhXg8PJk0Vs++qlZlNkfS4pM+6e4cq/HM6yHvd/RIVntj5GTO7sniiF471VuxXp6xwg7QbJP1b0hRp3x1nrPtrTN+DP1We0e1vszDStppZnQqP3L20aJleSb3J8Coz2yrpfEljum1hGka7L83sPkk/SkZPtC/Lxij23SckfVDSouQHsaL23QgqYh+dLDOrVyHcH3T370uSu+8uml78Oa047r4j+XePmT2hwqmW3WbW7O47k0O6ezItcmyuk7R6YJ9F2ndFhttfJ/0zWUmH6KPe/naxpI3uvn2gwcyazKw2GT5XhW3dllF9p2zQ+aGbJA1cKTrcvqwYZnatpL+WdIO7dxe1h9h3qvyfq+Mk17p8U9IGd/+novbhPqcVxcwazGzqwLAKF4KuVWG/3ZrMdquk1B4SVgLHHO2Msu8GGW5/PSXp48nV9O+WdLDoUP6QMunBn4hV3+1vB59PkgpXVn7RzPok5SXd5u6DL8SoBF82s4UqHGJ6VdKnJelE+7KCfE2FbwEsL+SGVrr7bQqy79w9V+E/V0O5XNLHJL1kyVdSJf2NpFuG+pxWoLMkPZF8HuskPeTuPzWzFyQ9ZmafkvSaChf0Vpzkj5b369j9M+TvmEphZg9LukrSTDPbLulvJX1JQ++vZSpcSb9FUrekT474/smRRQAAEEglHaIHAACjRMADABAQAQ8AQEAEPAAAARHwAAAERMADABAQAQ8AQEAEPAAAAf1/uzddcEvzuNYAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "text/plain": "
", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAHWCAYAAACbjps5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAlsklEQVR4nO3de5xcdX3/8fdnb7lvEpIliSQhmxACgR+EZItYBUVALlIo/iqXWkDg0YiC2Iu2WB4/q61ai6KV1oJBUFohgNooVRCBAmI1kA3E3GPuJGGz2VzIkt3N3ubz+2POxslm7ztnzs53Xs/HYx575ntun5Mzu++cM9/5jrm7AABAWIqSLgAAAGQfAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAAQoKwFvZg+Z2R4zW53RdpyZPWtmG6Of46N2M7N7zWyTma00s/nZqAEAAPxetq7gvyfpkk5td0p63t1nS3o+ei5Jl0qaHT0WSrovSzUAAIBIVgLe3X8paX+n5islPRxNPyzpjzPa/8PTlkoaZ2ZTslEHAABIi/M9+EnuXhNN75Y0KZo+QdKOjOV2Rm0AACBLSnKxE3d3M+vXmLhmtlDpW/gaNWrUglNOOSWW2gAAGIqWL1++190rBrp+nAFfa2ZT3L0mugW/J2rfJWlaxnJTo7ajuPsiSYskqaqqyqurq2MsFX3RfqhBDb98SSPPPlslEycmXQ4ABM3Mtg9m/Thv0T8p6cZo+kZJP8lovyHqTX+OpIMZt/IxBDVv3qzd//hFbb/heg075VTCHQDyQFau4M1ssaT3SZpoZjsl/b2kr0h6wsxukbRd0tXR4k9JukzSJkmNkm7KRg3ILm9r09svvKADjzyqxqVLNWLBAk1/8EGVjB+fdGkAgD7ISsC7+3XdzLqgi2Vd0m3Z2C+yr23vXr31wx/qwONPqK0mfWOl/Io/0pQvflFFZWUJVwcA6KucdLLD0ObualqxQgceeVT1zzwjtbYemTfxjk9q4sc/LjNLsEIAQH8R8AUs1dSk+p/9TPsffVTNa9cdNc/KyjTly1/W2Ms/mFB1AIDBIOALUMv27Tqw+DG9tWSJUgcPHjO/ePx4Tf3WtzRy/lkJVAcAyAYCvkB4e7sOvfyyDjzyqBpefrnb5cpmzdK0++9T2bRp3S4DABj6CPjAeXu79n/vYR1YvFitO3f2uOzId52jqd/8porLy3NUHQAgLnxdbOCsuFglEyeodffuHpcb9+EPa/qiRYQ7AASCK/gCMPbKK1VSUaGdn7xDqYaGo2ea6fhPf1rH3XwTPeUBICBcwReIUX/4hzrx0UdUMmnSkTYbPlwn3PtNTbjlZsIdAAJDwBeQ4XPmaMbjj2nY7NkqqajQid//vsovuijpsgAAMeAWfYEpnTxZJz7yfaUaG1U6eXLS5QAAYkLAF6Di8nI60wFA4LhFDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQoJI4N25mcyQ9ntE0U9LnJI2T9OeS6qL2v3P3p+KsBQCAQhJrwLv7BknzJMnMiiXtkrRE0k2SvuHuX4tz/wAAFKpc3qK/QNJmd9+ew30CAFCQchnw10panPH8djNbaWYPmdn4zgub2UIzqzaz6rq6us6zAQBAD3IS8GZWJukKST+Imu6TNEvp2/c1ku7pvI67L3L3KnevqqioyEWZAAAEI1dX8JdKes3dayXJ3Wvdvd3dU5IekHR2juoAAKAg5Crgr1PG7Xkzm5Ix7ypJq3NUBwAABSHWXvSSZGajJF0k6WMZzXeb2TxJLmlbp3kAAGCQYg94d2+QNKFT2/Vx7xcAgELGSHYAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAAJUkXQCAsDU2Nqq2tlZ79uzRnj179M53vlPHH3980mUBwSPgAWTdhg0btHTpUu3Zs0cNDQ1HzTMzXX755QlVBhQObtEDyLo5c+bojDPOUHt7+zHzVq5cqebm5gSqAgoLAQ8gFmeddZZuv/12zZ0796j2lpYWrVq1KqGqgMJBwAOIzejRo3X11Vfrmmuu0ejRo4+0L1++PMGqgMJAwAOI3amnnqrbbrtN8+fPlyTV1NRo586dCVcFhI2AB5ATI0aM0BVXXKEbbrhB48ePV3V1ddIlAUEj4AHk1MyZM/WJT3xCY8eOpbMdECMCHgXD3ZMuAZHS0lKdf/75GjZsWNKlAF1qr2/W3ofXqP1QS9KlDBgBj4KxY+f35J5KugwAeaBhea0Or9uv2m++psObDiRdzoAQ8CgY9fUrtXXrvUmXAWCIc3c1VtdKklJvt6r9rfy8iifgUTBKSsZo67Zvad++l5MuBcAQ1rL1oNr2HZYklU4eqZHz83NoZQIeBaOkZIyklNas/SsdPlyTdDkAhqiG6OpdksovqZQVWYLVDFzsAW9m28xslZmtMLPqqO04M3vWzDZGP8fHXQdQUjxGktTaul+r19yhVKot4YoADDWpw21qWrVXkjRs5liNOOW4hCsauFxdwZ/v7vPcvSp6fqek5919tqTno+dArNJX8GkHD76mzZvvTrAaAENR42/r5K0pyaSxl1YmXc6gJHWL/kpJD0fTD0v644TqQAHJDHhJemPHg9pT90xC1QAYijpuz4/4PxNVNm1ML0sPbbkIeJf0CzNbbmYLo7ZJ7t7xJuhuSZNyUAcKXEnJ6GPa1q37WzU2bk+gGgBDTWttg1p3vC0Vm8ZePCPpcgYtFwH/HnefL+lSSbeZ2XmZMz09+sgxI5CY2UIzqzaz6rq6uhyUidAVlxz7v/G2tre1evUn1d7OiGpAoWtYlr56H3X2ZJVMGJFwNYMXe8C7+67o5x5JSySdLanWzKZIUvRzTxfrLXL3KnevqqioiLtMFIDOt+g7vH1ojX638Qs5rgbAUOLtKTW+vkc2rFjlF0xPupysiDXgzWyUmY3pmJb0AUmrJT0p6cZosRsl/STOOgDp973ou/Lmm4+rpmZJDqsBMJQ0rd2vVEOrxpw3VcWjy5IuJytKYt7+JElLzKxjX4+6+8/NbJmkJ8zsFknbJV0dcx1At1fwHdZv+H8aM+Y0jR59co4qAjBUNFbvVtGYUo0+94SkS8maWAPe3bdIOrOL9n2SLohz30Bn6U52pi66fEiSUqkmrVp9u/6gaolKSkbltDYAyWmvb9bhjQc07sqTVFRWnHQ5WcNIdigYZkUqLu45uBsbN2v9hrtyVBGAoaBhea1KJozQqKrJSZeSVQQ8CkpXH5XrrLb2v7Vz5yM5qAZA0jq+WGbsxTNkxfk5JG13CHgUlN7eh++wcdMXVV+/KuZqACStZetBFY0u04jTJyZdStYR8CgoJcW9X8FLUirVolWrP6nW1vqYKwKQpIbqWo29dEbSZcSCgEdB6esVvCQdPrxDa9d9RumxmACEJnW4TZ5yDZsxNulSYkHAo6B0NZpdT/bufU5vvPFATNUASFLTqr0qf38Yg9p0hYBHQenPFXyHzVvu0YG3lsVQDYCklR4/MukSYkPAo6AMJODd27Rm9afU0rI3hooAJKFt/2ENn5O/3/XeFwQ8CspAAl6SmltqtXrNX8o9leWKACShaHixisvDGJK2OwQ8Ckpfe9F35cCBX2vr1nuzWA2ApBSNLE26hNgR8CgoA72C77B127e0b9/LWaoGAOJDwKOgDDbgpZTWrP0rHT5ck5V6ACAucX+bHDCkjBlzmiorP6WW5j1qbqlTS0udmpv3qKVlr9xb+7SN1tb9Wr3mDs0/a7GKivgVAjA08dcJBWX48HdoZuUdx7S7u9ra3lJzR/Af8x+A3/9HoL39kA4efE2bN9+t2bP/LoGjAIDeEfCAJDNTael4lZaO12jN6XHZ9vbGI2GfSrVxFQ9gSOIvE9BPxcUjNXLkDI0cOSPpUgCgW3SyAwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgkXstjdKOZUlXAQBBI+CRW2/tkL57iTRqQtKVAEDQCHjkzvbfSA+cLw0fJx03M+lqACBofJsccqP6u9JTn5FSrVLVTUlXAwDBI+ARr/Y26ed/Ky37Tvr5qArplMuTrQkACgABj/g07peeuEHa9vLv2+Z9RCouTa4mACgQBDziUbtGWnyd9Nb2jEaTFtyYWEkAUEgIeGTfuv+WltwqtRw6un3me+lcBwA5QsAje9yll/5ZevErkvzY+QvoXAcAuULAIztaGtJX7eue7Hr+qOOlUz6Y25oAoIAR8Bi8A9ulxz4i1a7qfpmz6FwHALlEwGNwtv0q3VO+cV8PC5k0n851AJBLBDwGbtl3pKfvTA9e05OZ75OOq8xJSQCANAIe/dfeKj39N1L1Q31bnpHrACDnCHj0T8Pe9C357f/bt+VHT5Lm0LkOAHKNgEff7V4lLf5T6eAbfV9n3kekYl5mAJBr/OVF36z5sfTjT0itDf1YiZHrACApBDx65i69+E/SS3ery8FrejLr/dL4GXFUBQDoBQGP7jUfkpZ8TFr/04Gtv+CjWS0HANB3RXFt2MymmdkLZrbWzNaY2aei9s+b2S4zWxE9LourBgzCgW3SgxcNPNxHT5bmcGoBIClxXsG3Sfprd3/NzMZIWm5mz0bzvuHuX4tx3xiMrb+UnrhRato/8G2cRec6AEhSbH+B3b1GUk00/baZrZN0Qlz7Q5a8skh65rNSqm3g27AiRq4DgITFdos+k5nNkHSWpFeiptvNbKWZPWRm43NRA3rR3io9eYf09GcGF+5S1LnuxOzUBQAYkNgD3sxGS/qRpL9w93pJ90maJWme0lf493Sz3kIzqzaz6rq6urjLxJYXpRWPZmdbdK4DgMTFGvBmVqp0uD/i7v8lSe5e6+7t7p6S9ICks7ta190XuXuVu1dVVFTEWSYkafZF0g0/lkZOGNx2Rk+WTr40KyUBAAYuzl70JulBSevc/esZ7VMyFrtK0uq4akA/zXiP9Of/Ix0/d+DbmH89nesAYAiI8wr+3ZKul/T+Th+Ju9vMVpnZSknnS/rLGGtAf42fId3yi4F9xM2KpPk3ZL0kAED/xdmL/leSrItZT8W1T2TJsDHSNY9I//OP0q++3vvyHWZdII2bHl9dAIA+y0kveuShoiLpwr+XPvQdqWR439bha2EBYMgg4NGzMz4s3fSUNGZKz8uNmSKdfEluagIA9IqAR+9OWCD9+QvSO+Z3v8xZ10tFxbmrCQDQIwIefVM+Rbrpaen0Pzl2Hp3rAGDIIeDRd6XDpT95ULrgczqq/+RJF0rjpiVWFgDgWAQ8+u/cv5aufVQqG51+voDOdQAw1BDwGJhTLpNueVaa/ofSyRcnXQ0AoBOGHMPATZqb7mFvXQ13AABIElfwGBzCHQCGJAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABKkm6AAAAsiGVcnm7p3+mjv6ZancVFZlGjRuWdJk5Q8ADKFhNbU1qTbWqtKhUpUWlKrZimVnSZUHS899bq91b648J6iM/jwS5jrR3pWx4saafPkEzz6zQiadPyPFRJIuAB1CwhhcPV3Nbs7a9vU1vNryp3Q27tbdpr/Y27VVdU532Nu5VfUu9/mjWH+m2ebepyHhXMxdS7Slter1Obc3tA1p/5NgyVZ4xUZXzKjR1zngVlxTmeSPgARQsM9O44eM0bvg4nTrh1C6XaW5v1u6G3TrUekjlZeU5rrAw1b1xqN/hPm7SSM2cN1GVZ1ZoUmU5d2JEwANAj4YVD9OJ5ScmXUZBeXPTW70vZNKkGeWqPHOiZs6r0PjJo2KvK98Q8ACAIaWmm4AvKjFNPXm8KudVqPLMiRo1tnA6zA0EAQ8AGFJqNh88Ml02vFgnnj5BlVEnubIRxFZf8S8FABgyDuxuUHGx6bTzTtDMMyfqhALuJDdYBDwAYMgYM2G4bvzKu+kklwUEPABgyCgpLU66hGBw3wMAgAAR8AAABIiABwAgQAQ8AAABIuABAP3i3vUXu2BoIeABAH3m7mpoTyVdBvqAgAcA9Nn2wy0aXkR05IPEzpKZXWJmG8xsk5ndmVQdAIC+e/Nwq0qKGIQmHyQS8GZWLOlbki6VNFfSdWY2N4laAAB9t6elNekS0EdJXcGfLWmTu29x9xZJj0m6MqFaAAB98EZTs8q4es8bSQX8CZJ2ZDzfGbUdYWYLzazazKrr6upyWhwA4FjP7K3X/HK+dz1fDNmeEu6+yN2r3L2qoqIi6XIAoOCtPNSoycNKky4DfZRUwO+SNC3j+dSoDQAwBDW0t6s1xeff80lSAb9M0mwzqzSzMknXSnoyoVoAAL0osyLNLx+ZdBnoh0S+Ltbd28zsdknPSCqW9JC7r0miFgBA70qLTBdOGJt0GeiHxL4P3t2fkvRUUvsHAPTPzJHDki4B/TBkO9kBAICBI+ABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAoA82L38l6RL6hYAHAKAXh/bv08/u/ZoO7H4z6VL6jIAHAKAXL33/IbUebtLGV36ddCl9RsADANCDnWtXa/3/viRJ2vTqbxKupu8IeAAAupFKtev5795/5HnN5t/p0P59CVbUdwQ8AADdWPHMU9r7xrbfN7hr47L8uIon4AEA6EJj/UH9+gffP6Y9X27TE/AAAHTh5Ue/p+aGhmPad65braZDbydQUf8Q8AAAdFKzaYNWv/hcl/NS7e3asvzVHFfUfwQ8AAAZPJXS8w/eL7l3u8zGV4f+x+UIeAAAMqx64Req3bKxx2W2//Z1tR4+nKOKBoaABwAgcvjQIf1q8X/0ulxba4u2rqjOQUUDR8ADABD51eP/qaa36/u07MYh3puegAcAQNKebVu08rmn+7z8lteWqb2tNcaKBieWgDezr5rZejNbaWZLzGxc1D7DzJrMbEX0uL+XTQEAkBPPP3S/PJXq8/ItTY16Y9VvY6xocOK6gn9W0unufoak30n6bMa8ze4+L3rcGtP+AQDos7Uvv6A3N6zt93pDuTd9LAHv7r9w97bo6VJJU+PYDwAAg9XS1KhfPvLdAa27efmr/brqz6VcvAd/s6TMNzUqzex1M3vJzM7Nwf4BAOjWr3+4WA0H9g9o3caDb2nX+v5f+edCyUBXNLPnJE3uYtZd7v6TaJm7JLVJeiSaVyNpurvvM7MFkn5sZqe5+zFdFs1soaSFkjR9+vSBlgkAQLf27dyh15/+70FtY+Oy32jq3NOzVFH2DPgK3t0vdPfTu3h0hPtHJV0u6SPu6eGA3L3Z3fdF08slbZZ0cjfbX+TuVe5eVVFRMdAyAQDo1v9879tKtbf1vmAPNg3Rb5eLqxf9JZL+RtIV7t6Y0V5hZsXR9ExJsyVtiaMGAAB68rulv9Ibq1YMejv1dXtUu2XT4AvKsrjeg/83SWMkPdvp43DnSVppZisk/VDSre4+sDc+AAAYoNbmw3rxPx/M2vaG4qA3A34PvifuflI37T+S9KM49gkAQF+9suQHentvXda2t/HVX+s9116fte1lAyPZAQAKylu7a1T90//K6jb379qh/W/uzOo2B4uABwAUlBceXqT21uwPMbvxlaE16A0BDwAoGFteW6Ytry2LZdtDrTc9AQ8AKAhtra164eFFsW1/95ZNqs/i+/qDRcADAAqCmenMiy7TsFGj4tmBuzYtWxrPtgeAgAcAFITikhJVXX6Vbv6XRTrzAx+UFWU/AjcNoS+fIeABAAVlZPlYXXjLx3XjV/9NM+YtyOq2d65fo8b6g1nd5kAR8ACAgjRh6nT9389+QR/67Bc0YWp2vvPEUyltXv5KVrY1WAQ8AKCgVc5boBu++q+64JZPaMSY8kFvb9MQGdWOgAcAFLyiomLN+8BluuXeB7Tg8qtUXDLwgV63r1qhlqbG3heMGQEPAEBk2MhRet/1t+jGe/5dJ/3Buwa0jfbWVm15vTrLlfUfAQ8AQCfjJ79DV376Ll39uS/r+Bmz+r3+UPjyGQIeAIBuTDvtDP3ZP31DF9/6KY0af1yf19u2olptMQyH2x8EPAAAPbCiIp1+/kW6+V++rXM+dI1Kyob1uk5LU5O2r3w9B9V1j4AHAKAPyoaP0LuvuV43feN+nfLu90pmPS6f9Nj0BDwAAP1QPrFCH7zjM/rTf/yapsye0+1ym6tfUSrVnsPKjkbAAwAwAFNmz9GffvEeffCOz2jMxIpj5je9Xa9d69YkUFkaAQ8AwCCc8u736uZvfFvvufYGlQ4fcdS8JHvTE/AAAAxSSVmZ3nnV1brlm4t0+vkfkFk6Xjcu+43cPZGaCHgAALJk1LjxuvjWO/RnX/kXTTvtDB3at1e1mzcmUsvAx+IDAABdOn7GTF39uS9r07KlqtuxTZNPOjnnNRDwAADE5KQ/OCexfXOLHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAIUW8Cb2efNbJeZrYgel2XM+6yZbTKzDWZ2cVw1AABQqEpi3v433P1rmQ1mNlfStZJOk/QOSc+Z2cnu3h5zLQAAFIwkbtFfKekxd292962SNkk6O4E6AAAIVtwBf7uZrTSzh8xsfNR2gqQdGcvsjNoAAECWDCrgzew5M1vdxeNKSfdJmiVpnqQaSff0c9sLzazazKrr6uoGUyYAAAVnUO/Bu/uFfVnOzB6Q9NPo6S5J0zJmT43aOm97kaRFklRVVeWDqRMAgEITZy/6KRlPr5K0Opp+UtK1ZjbMzColzZb0alx1AABQiOLsRX+3mc2T5JK2SfqYJLn7GjN7QtJaSW2SbqMHPQAA2RVbwLv79T3M+5KkL8W1bwAACh0j2QEAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAIUEkcGzWzxyXNiZ6Ok/SWu88zsxmS1knaEM1b6u63xlEDAACFLJaAd/drOqbN7B5JBzNmb3b3eXHsFwAApMUS8B3MzCRdLen9ce4HAAAcLe734M+VVOvuGzPaKs3sdTN7yczO7W5FM1toZtVmVl1XVxdzmQAAhGXAV/Bm9pykyV3MusvdfxJNXydpcca8GknT3X2fmS2Q9GMzO83d6ztvxN0XSVokSVVVVT7QOgEAKEQDDnh3v7Cn+WZWIulDkhZkrNMsqTmaXm5mmyWdLKl6oHUAAIBjxXmL/kJJ6919Z0eDmVWYWXE0PVPSbElbYqwBAICCFGcnu2t19O15STpP0j+YWauklKRb3X1/jDUAAFCQYgt4d/9oF20/kvSjuPYJAADSGMkOAIAAEfAAAASIgAcAIEAEPAAAASLgAQBIWFt7Sq+/cSCr2yTgAQBIiLvrJyt26cKvv6S9h1qyuu1Yv2wGAAB07YX1e/TVZzZobU29Tp1SrgtPPT6r2yfgAQDIoWXb9uvun6/Xsm2/vyX/yfefpPQXsGYPAQ8AQA6sq6nX3T9frxc2HP0NqbOPH61LT+/qu9sGh/fgAQDIgfte3HxMuEvS7TFcvUsEPAAAOfGuWROOaaucOEqXn/GOWPZHwAMAkAPnzDw24D/+vlkqLsr+1btEwAMAkBOVE0dpcvnwI8+njh+hD511Qmz7I+ABAMiRzNv0H3/fLJUUxxfDBDwAADlyzszjJEmTy4frwwumxbovAh4AgBx518yJkqSPvXemykrijWACHgCAHJk+YaTOnDZO1509PfZ9EfAAAOTQvdfO0/DS4tj3Q8ADAJBDJ04YlZP9EPAAAASIgAcAIEAEPAAAASLgAQAIEAEPAECACHgAAAJEwAMAECACHgCAABHwAAAEiIAHACBABDwAAAEi4AEACBABDwBAgAh4AAACRMADABAgAh4AgAAR8AAABIiABwAgQAQ8AAABIuABAAgQAQ8AQIAIeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIECDCngz+7CZrTGzlJlVdZr3WTPbZGYbzOzijPZLorZNZnbnYPYPAAC6Ntgr+NWSPiTpl5mNZjZX0rWSTpN0iaR/N7NiMyuW9C1Jl0qaK+m6aFkAAJBFJYNZ2d3XSZKZdZ51paTH3L1Z0lYz2yTp7GjeJnffEq33WLTs2sHUAQAAjhbXe/AnSNqR8Xxn1NZdOwAAyKJer+DN7DlJk7uYdZe7/yT7JR3Z70JJC6OnzWa2Oq59DQETJe1NuogYcXz5LeTjC/nYJI4v380ZzMq9Bry7XziA7e6SNC3j+dSoTT20d97vIkmLJMnMqt29qqvlQsDx5TeOL3+FfGwSx5fvzKx6MOvHdYv+SUnXmtkwM6uUNFvSq5KWSZptZpVmVqZ0R7wnY6oBAICCNahOdmZ2laR/lVQh6WdmtsLdL3b3NWb2hNKd59ok3ebu7dE6t0t6RlKxpIfcfc2gjgAAABxjsL3ol0ha0s28L0n6UhftT0l6qp+7WtT/6vIKx5ffOL78FfKxSRxfvhvU8Zm7Z6sQAAAwRDBULQAAARpyAV9Iw9+a2eNmtiJ6bDOzFVH7DDNryph3f8KlDoiZfd7MdmUcx2UZ87o8l/nCzL5qZuvNbKWZLTGzcVF7EOdOyt/fq+6Y2TQze8HM1kZ/Yz4VtXf7Os030d+RVdFxVEdtx5nZs2a2Mfo5Puk6+8vM5mScnxVmVm9mf5Hv587MHjKzPZkfA+/ufFnavdHv40ozm9/rDtx9SD0knar0Z/9elFSV0T5X0m8lDZNUKWmz0h31iqPpmZLKomXmJn0cAzjueyR9LpqeIWl10jVl4Zg+L+nTXbR3eS6Trrefx/YBSSXR9D9L+ufAzl0Qv1edjmmKpPnR9BhJv4tei12+TvPxIWmbpImd2u6WdGc0fWfHazVfH9Frc7ekE/P93Ek6T9L8zL8Z3Z0vSZdJelqSSTpH0iu9bX/IXcG7+zp339DFrCPD37r7Vkkdw9+erWj4W3dvkdQx/G3esPRYv1dLWpx0LTnS3bnMG+7+C3dvi54uVXpMh5Dk/e9VZ+5e4+6vRdNvS1qnwhhJ80pJD0fTD0v64+RKyYoLJG129+1JFzJY7v5LSfs7NXd3vq6U9B+etlTSODOb0tP2h1zA9yDk4W/PlVTr7hsz2irN7HUze8nMzk2qsCy4Pbqd9FDGrcEQzlmmm5X+n3WHEM5daOfoKGY2Q9JZkl6Jmrp6neYjl/QLM1tu6dFAJWmSu9dE07slTUqmtKy5VkdfDIVy7jp0d776/TuZSMCb2XNmtrqLR15fIXSlj8d6nY5+wdZImu7uZ0n6K0mPmll5Luvuq16O7z5JsyTNU/qY7kmy1v7qy7kzs7uUHuvhkagpb85doTKz0ZJ+JOkv3L1eef467eQ97j5f6W/svM3Mzsuc6el7vXn70SlLD5B2haQfRE0hnbtjDPZ8Depz8APlCQ1/m4TejtXMSpT+yt0FGes0S2qOppeb2WZJJ0sa1LCFcejruTSzByT9NHra07kcMvpw7j4q6XJJF0S/iHl17nqRF+eov8ysVOlwf8Td/0uS3L02Y37m6zTvuPuu6OceM1ui9FsttWY2xd1rolu6exItcnAulfRaxzkL6dxl6O589ft3Mp9u0Yc6/O2Fkta7+86OBjOrMLPiaHqm0se6JaH6BqzT+0NXSeroKdrducwbZnaJpL+RdIW7N2a0B3HulP+/V8eI+ro8KGmdu389o72712leMbNRZjamY1rpjqCrlT5vN0aL3Sgpti8Jy4Gj7naGcu466e58PSnphqg3/TmSDmbcyu9SIlfwPbHCG/628/tJUrpn5T+YWauklKRb3b1zR4x8cLeZzVP6FtM2SR+TpJ7OZR75N6U/BfBsOje01N1vVSDnzt3b8vz3qivvlnS9pFUWfSRV0t9Juq6r12kemiRpSfR6LJH0qLv/3MyWSXrCzG6RtF3pDr15J/pPy0U6+vx0+TcmX5jZYknvkzTRzHZK+ntJX1HX5+sppXvSb5LUKOmmXrcf3VkEAAAByadb9AAAoI8IeAAAAkTAAwAQIAIeAIAAEfAAAASIgAcAIEAEPAAAASLgAQAI0P8HO+07QLI0NvoAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for _ in range(50):\n", + " generate_map()" + ], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + }, + { + "cell_type": "code", + "execution_count": 12, + "outputs": [], + "source": [], + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%%\n" + } + } + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/model b/model new file mode 160000 index 0000000..c174620 --- /dev/null +++ b/model @@ -0,0 +1 @@ +Subproject commit c17462041b57c0f6978bad6ca31f27ca75556369 diff --git a/poetry.lock b/poetry.lock new file mode 100644 index 0000000..d3770cf --- /dev/null +++ b/poetry.lock @@ -0,0 +1,2741 @@ +[[package]] +name = "absl-py" +version = "1.0.0" +description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py." +category = "main" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +six = "*" + +[[package]] +name = "appnope" +version = "0.1.3" +description = "Disable App Nap on macOS >= 10.9" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "argon2-cffi" +version = "21.3.0" +description = "The secure Argon2 password hashing algorithm." +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +argon2-cffi-bindings = "*" + +[package.extras] +dev = ["pre-commit", "cogapp", "tomli", "coverage[toml] (>=5.0.2)", "hypothesis", "pytest", "sphinx", "sphinx-notfound-page", "furo"] +docs = ["sphinx", "sphinx-notfound-page", "furo"] +tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pytest"] + +[[package]] +name = "argon2-cffi-bindings" +version = "21.2.0" +description = "Low-level CFFI bindings for Argon2" +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +cffi = ">=1.0.1" + +[package.extras] +dev = ["pytest", "cogapp", "pre-commit", "wheel"] +tests = ["pytest"] + +[[package]] +name = "asttokens" +version = "2.0.5" +description = "Annotate AST trees with source code positions" +category = "dev" +optional = false +python-versions = "*" + +[package.dependencies] +six = "*" + +[package.extras] +test = ["astroid", "pytest"] + +[[package]] +name = "astunparse" +version = "1.6.3" +description = "An AST unparser for Python" +category = "main" +optional = false +python-versions = "*" + +[package.dependencies] +six = ">=1.6.1,<2.0" + +[[package]] +name = "attrs" +version = "21.4.0" +description = "Classes Without Boilerplate" +category = "dev" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" + +[package.extras] +dev = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "zope.interface", "furo", "sphinx", "sphinx-notfound-page", "pre-commit", "cloudpickle"] +docs = ["furo", "sphinx", "zope.interface", "sphinx-notfound-page"] +tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "zope.interface", "cloudpickle"] +tests_no_zope = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "cloudpickle"] + +[[package]] +name = "backcall" +version = "0.2.0" +description = "Specifications for callback functions passed in to an API" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "beautifulsoup4" +version = "4.11.1" +description = "Screen-scraping library" +category = "dev" +optional = false +python-versions = ">=3.6.0" + +[package.dependencies] +soupsieve = ">1.2" + +[package.extras] +html5lib = ["html5lib"] +lxml = ["lxml"] + +[[package]] +name = "black" +version = "22.3.0" +description = "The uncompromising code formatter." +category = "dev" +optional = false +python-versions = ">=3.6.2" + +[package.dependencies] +click = ">=8.0.0" +ipython = {version = ">=7.8.0", optional = true, markers = "extra == \"jupyter\""} +mypy-extensions = ">=0.4.3" +pathspec = ">=0.9.0" +platformdirs = ">=2" +tokenize-rt = {version = ">=3.2.0", optional = true, markers = "extra == \"jupyter\""} +tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} +typing-extensions = {version = ">=3.10.0.0", markers = "python_version < \"3.10\""} + +[package.extras] +colorama = ["colorama (>=0.4.3)"] +d = ["aiohttp (>=3.7.4)"] +jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] +uvloop = ["uvloop (>=0.15.2)"] + +[[package]] +name = "bleach" +version = "5.0.0" +description = "An easy safelist-based HTML-sanitizing tool." +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +six = ">=1.9.0" +webencodings = "*" + +[package.extras] +css = ["tinycss2 (>=1.1.0)"] +dev = ["pip-tools (==6.5.1)", "pytest (==7.1.1)", "flake8 (==4.0.1)", "tox (==3.24.5)", "sphinx (==4.3.2)", "twine (==4.0.0)", "wheel (==0.37.1)", "hashin (==0.17.0)", "black (==22.3.0)", "mypy (==0.942)"] + +[[package]] +name = "cachetools" +version = "5.0.0" +description = "Extensible memoizing collections and decorators" +category = "main" +optional = false +python-versions = "~=3.7" + +[[package]] +name = "certifi" +version = "2021.10.8" +description = "Python package for providing Mozilla's CA Bundle." +category = "main" +optional = false +python-versions = "*" + +[[package]] +name = "cffi" +version = "1.15.0" +description = "Foreign Function Interface for Python calling C code." +category = "dev" +optional = false +python-versions = "*" + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "charset-normalizer" +version = "2.0.12" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +category = "main" +optional = false +python-versions = ">=3.5.0" + +[package.extras] +unicode_backport = ["unicodedata2"] + +[[package]] +name = "click" +version = "8.1.2" +description = "Composable command line interface toolkit" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[[package]] +name = "colorama" +version = "0.4.4" +description = "Cross-platform colored terminal text." +category = "dev" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" + +[[package]] +name = "cycler" +version = "0.11.0" +description = "Composable style cycles" +category = "dev" +optional = false +python-versions = ">=3.6" + +[[package]] +name = "debugpy" +version = "1.6.0" +description = "An implementation of the Debug Adapter Protocol for Python" +category = "dev" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +category = "dev" +optional = false +python-versions = ">=3.5" + +[[package]] +name = "defusedxml" +version = "0.7.1" +description = "XML bomb protection for Python stdlib modules" +category = "dev" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" + +[[package]] +name = "entrypoints" +version = "0.4" +description = "Discover and load entry points from installed packages." +category = "dev" +optional = false +python-versions = ">=3.6" + +[[package]] +name = "executing" +version = "0.8.3" +description = "Get the currently executing AST node of a frame, and other information" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "fastjsonschema" +version = "2.15.3" +description = "Fastest Python implementation of JSON schema" +category = "dev" +optional = false +python-versions = "*" + +[package.extras] +devel = ["colorama", "jsonschema", "json-spec", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] + +[[package]] +name = "flatbuffers" +version = "2.0" +description = "The FlatBuffers serialization format for Python" +category = "main" +optional = false +python-versions = "*" + +[[package]] +name = "fonttools" +version = "4.33.3" +description = "Tools to manipulate font files" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.extras] +all = ["fs (>=2.2.0,<3)", "lxml (>=4.0,<5)", "zopfli (>=0.1.4)", "lz4 (>=1.7.4.2)", "matplotlib", "sympy", "skia-pathops (>=0.5.0)", "uharfbuzz (>=0.23.0)", "brotlicffi (>=0.8.0)", "scipy", "brotli (>=1.0.1)", "munkres", "unicodedata2 (>=14.0.0)", "xattr"] +graphite = ["lz4 (>=1.7.4.2)"] +interpolatable = ["scipy", "munkres"] +lxml = ["lxml (>=4.0,<5)"] +pathops = ["skia-pathops (>=0.5.0)"] +plot = ["matplotlib"] +repacker = ["uharfbuzz (>=0.23.0)"] +symfont = ["sympy"] +type1 = ["xattr"] +ufo = ["fs (>=2.2.0,<3)"] +unicode = ["unicodedata2 (>=14.0.0)"] +woff = ["zopfli (>=0.1.4)", "brotlicffi (>=0.8.0)", "brotli (>=1.0.1)"] + +[[package]] +name = "gast" +version = "0.5.3" +description = "Python AST that abstracts the underlying Python version" +category = "main" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" + +[[package]] +name = "google-auth" +version = "2.6.6" +description = "Google Authentication Library" +category = "main" +optional = false +python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*" + +[package.dependencies] +cachetools = ">=2.0.0,<6.0" +pyasn1-modules = ">=0.2.1" +rsa = {version = ">=3.1.4,<5", markers = "python_version >= \"3.6\""} +six = ">=1.9.0" + +[package.extras] +aiohttp = ["requests (>=2.20.0,<3.0.0dev)", "aiohttp (>=3.6.2,<4.0.0dev)"] +pyopenssl = ["pyopenssl (>=20.0.0)"] +reauth = ["pyu2f (>=0.1.5)"] + +[[package]] +name = "google-auth-oauthlib" +version = "0.4.6" +description = "Google Authentication Library" +category = "main" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +google-auth = ">=1.0.0" +requests-oauthlib = ">=0.7.0" + +[package.extras] +tool = ["click (>=6.0.0)"] + +[[package]] +name = "google-pasta" +version = "0.2.0" +description = "pasta is an AST-based Python refactoring library" +category = "main" +optional = false +python-versions = "*" + +[package.dependencies] +six = "*" + +[[package]] +name = "grpcio" +version = "1.45.0" +description = "HTTP/2-based RPC framework" +category = "main" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +six = ">=1.5.2" + +[package.extras] +protobuf = ["grpcio-tools (>=1.45.0)"] + +[[package]] +name = "h5py" +version = "3.6.0" +description = "Read and write HDF5 files from Python" +category = "main" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +numpy = ">=1.14.5" + +[[package]] +name = "idna" +version = "3.3" +description = "Internationalized Domain Names in Applications (IDNA)" +category = "main" +optional = false +python-versions = ">=3.5" + +[[package]] +name = "importlib-metadata" +version = "4.11.3" +description = "Read metadata from Python packages" +category = "main" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +zipp = ">=0.5" + +[package.extras] +docs = ["sphinx", "jaraco.packaging (>=9)", "rst.linker (>=1.9)"] +perf = ["ipython"] +testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "pytest-cov", "pytest-enabler (>=1.0.1)", "packaging", "pyfakefs", "flufl.flake8", "pytest-perf (>=0.9.2)", "pytest-black (>=0.3.7)", "pytest-mypy (>=0.9.1)", "importlib-resources (>=1.3)"] + +[[package]] +name = "ipykernel" +version = "6.13.0" +description = "IPython Kernel for Jupyter" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +debugpy = ">=1.0" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +tornado = ">=6.1" +traitlets = ">=5.1.0" + +[package.extras] +test = ["pytest (>=6.0)", "pytest-cov", "flaky", "ipyparallel", "pre-commit", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.2.0" +description = "IPython: Productive Interactive Computing" +category = "dev" +optional = false +python-versions = ">=3.8" + +[package.dependencies] +appnope = {version = "*", markers = "sys_platform == \"darwin\""} +backcall = "*" +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +pickleshare = "*" +prompt-toolkit = ">=2.0.0,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" + +[package.extras] +all = ["black", "Sphinx (>=1.3)", "ipykernel", "nbconvert", "nbformat", "ipywidgets", "notebook", "ipyparallel", "qtconsole", "pytest (<7.1)", "pytest-asyncio", "testpath", "curio", "matplotlib (!=3.2.0)", "numpy (>=1.19)", "pandas", "trio"] +black = ["black"] +doc = ["Sphinx (>=1.3)"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] +test_extra = ["pytest (<7.1)", "pytest-asyncio", "testpath", "curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.19)", "pandas", "trio"] + +[[package]] +name = "ipython-genutils" +version = "0.2.0" +description = "Vestigial utilities from IPython" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "ipywidgets" +version = "7.7.0" +description = "IPython HTML widgets for Jupyter" +category = "dev" +optional = false +python-versions = "*" + +[package.dependencies] +ipykernel = ">=4.5.1" +ipython = {version = ">=4.0.0", markers = "python_version >= \"3.3\""} +ipython-genutils = ">=0.2.0,<0.3.0" +jupyterlab-widgets = {version = ">=1.0.0", markers = "python_version >= \"3.6\""} +nbformat = ">=4.2.0" +traitlets = ">=4.3.1" +widgetsnbextension = ">=3.6.0,<3.7.0" + +[package.extras] +test = ["pytest (>=3.6.0)", "pytest-cov", "mock"] + +[[package]] +name = "jedi" +version = "0.18.1" +description = "An autocompletion tool for Python that can be used for text editors." +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +parso = ">=0.8.0,<0.9.0" + +[package.extras] +qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] +testing = ["Django (<3.1)", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "jinja2" +version = "3.1.1" +description = "A very fast and expressive template engine." +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + +[[package]] +name = "jsonschema" +version = "4.4.0" +description = "An implementation of JSON Schema validation for Python" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +attrs = ">=17.4.0" +pyrsistent = ">=0.14.0,<0.17.0 || >0.17.0,<0.17.1 || >0.17.1,<0.17.2 || >0.17.2" + +[package.extras] +format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] +format_nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] + +[[package]] +name = "jupyter" +version = "1.0.0" +description = "Jupyter metapackage. Install all the Jupyter components in one go." +category = "dev" +optional = false +python-versions = "*" + +[package.dependencies] +ipykernel = "*" +ipywidgets = "*" +jupyter-console = "*" +nbconvert = "*" +notebook = "*" +qtconsole = "*" + +[[package]] +name = "jupyter-client" +version = "7.3.0" +description = "Jupyter protocol implementation and client libraries" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +entrypoints = "*" +jupyter-core = ">=4.9.2" +nest-asyncio = ">=1.5.4" +python-dateutil = ">=2.8.2" +pyzmq = ">=22.3" +tornado = ">=6.0" +traitlets = "*" + +[package.extras] +doc = ["ipykernel", "myst-parser", "sphinx (>=1.3.6)", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] +test = ["codecov", "coverage", "ipykernel (>=6.5)", "ipython", "mypy", "pre-commit", "pytest", "pytest-asyncio (>=0.18)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "jupyter-console" +version = "6.4.3" +description = "Jupyter terminal console" +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +ipykernel = "*" +ipython = "*" +jupyter-client = ">=7.0.0" +prompt-toolkit = ">=2.0.0,<3.0.0 || >3.0.0,<3.0.1 || >3.0.1,<3.1.0" +pygments = "*" + +[package.extras] +test = ["pexpect"] + +[[package]] +name = "jupyter-core" +version = "4.10.0" +description = "Jupyter core package. A base package on which Jupyter projects rely." +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +pywin32 = {version = ">=1.0", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = "*" + +[package.extras] +test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "jupyterlab-pygments" +version = "0.2.2" +description = "Pygments theme using JupyterLab CSS variables" +category = "dev" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "jupyterlab-widgets" +version = "1.1.0" +description = "A JupyterLab extension." +category = "dev" +optional = false +python-versions = ">=3.6" + +[[package]] +name = "keras" +version = "2.8.0" +description = "Deep learning for humans." +category = "main" +optional = false +python-versions = "*" + +[[package]] +name = "keras-preprocessing" +version = "1.1.2" +description = "Easy data preprocessing and data augmentation for deep learning models" +category = "main" +optional = false +python-versions = "*" + +[package.dependencies] +numpy = ">=1.9.1" +six = ">=1.9.0" + +[package.extras] +image = ["scipy (>=0.14)", "Pillow (>=5.2.0)"] +pep8 = ["flake8"] +tests = ["pandas", "pillow", "tensorflow", "keras", "pytest", "pytest-xdist", "pytest-cov"] + +[[package]] +name = "kiwisolver" +version = "1.4.2" +description = "A fast implementation of the Cassowary constraint solver" +category = "dev" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "libclang" +version = "14.0.1" +description = "Clang Python Bindings, mirrored from the official LLVM repo: https://github.com/llvm/llvm-project/tree/main/clang/bindings/python, to make the installation process easier." +category = "main" +optional = false +python-versions = "*" + +[[package]] +name = "markdown" +version = "3.3.6" +description = "Python implementation of Markdown." +category = "main" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} + +[package.extras] +testing = ["coverage", "pyyaml"] + +[[package]] +name = "markupsafe" +version = "2.1.1" +description = "Safely add untrusted strings to HTML/XML markup." +category = "dev" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "matplotlib" +version = "3.5.1" +description = "Python plotting package" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +cycler = ">=0.10" +fonttools = ">=4.22.0" +kiwisolver = ">=1.0.1" +numpy = ">=1.17" +packaging = ">=20.0" +pillow = ">=6.2.0" +pyparsing = ">=2.2.1" +python-dateutil = ">=2.7" +setuptools_scm = ">=4" + +[[package]] +name = "matplotlib-inline" +version = "0.1.3" +description = "Inline Matplotlib backend for Jupyter" +category = "dev" +optional = false +python-versions = ">=3.5" + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mistune" +version = "0.8.4" +description = "The fastest markdown parser in pure Python" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "mypy-extensions" +version = "0.4.3" +description = "Experimental type system extensions for programs checked with the mypy typechecker." +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "nbclient" +version = "0.6.0" +description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." +category = "dev" +optional = false +python-versions = ">=3.7.0" + +[package.dependencies] +jupyter-client = ">=6.1.5" +nbformat = ">=5.0" +nest-asyncio = "*" +traitlets = ">=5.0.0" + +[package.extras] +sphinx = ["mock", "moto", "myst-parser", "Sphinx (>=1.7)", "sphinx-book-theme"] +test = ["black", "check-manifest", "flake8", "ipykernel", "ipython (<8.0.0)", "ipywidgets (<8.0.0)", "mypy", "pip (>=18.1)", "pre-commit", "pytest (>=4.1)", "pytest-asyncio", "pytest-cov (>=2.6.1)", "setuptools (>=60.0)", "testpath", "twine (>=1.11.0)", "xmltodict"] + +[[package]] +name = "nbconvert" +version = "6.5.0" +description = "Converting Jupyter Notebooks" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +beautifulsoup4 = "*" +bleach = "*" +defusedxml = "*" +entrypoints = ">=0.2.2" +jinja2 = ">=3.0" +jupyter-core = ">=4.7" +jupyterlab-pygments = "*" +MarkupSafe = ">=2.0" +mistune = ">=0.8.1,<2" +nbclient = ">=0.5.0" +nbformat = ">=5.1" +packaging = "*" +pandocfilters = ">=1.4.1" +pygments = ">=2.4.1" +tinycss2 = "*" +traitlets = ">=5.0" + +[package.extras] +all = ["pytest", "pytest-cov", "pytest-dependency", "ipykernel", "ipywidgets (>=7)", "pre-commit", "pyppeteer (>=1,<1.1)", "tornado (>=6.1)", "sphinx (>=1.5.1)", "sphinx-rtd-theme", "nbsphinx (>=0.2.12)", "ipython"] +docs = ["sphinx (>=1.5.1)", "sphinx-rtd-theme", "nbsphinx (>=0.2.12)", "ipython"] +serve = ["tornado (>=6.1)"] +test = ["pytest", "pytest-cov", "pytest-dependency", "ipykernel", "ipywidgets (>=7)", "pre-commit", "pyppeteer (>=1,<1.1)"] +webpdf = ["pyppeteer (>=1,<1.1)"] + +[[package]] +name = "nbformat" +version = "5.3.0" +description = "The Jupyter Notebook format" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +fastjsonschema = "*" +jsonschema = ">=2.6" +jupyter-core = "*" +traitlets = ">=4.1" + +[package.extras] +test = ["check-manifest", "testpath", "pytest", "pre-commit"] + +[[package]] +name = "nest-asyncio" +version = "1.5.5" +description = "Patch asyncio to allow nested event loops" +category = "dev" +optional = false +python-versions = ">=3.5" + +[[package]] +name = "notebook" +version = "6.4.11" +description = "A web-based notebook environment for interactive computing" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +argon2-cffi = "*" +ipykernel = "*" +ipython-genutils = "*" +jinja2 = "*" +jupyter-client = ">=5.3.4" +jupyter-core = ">=4.6.1" +nbconvert = ">=5" +nbformat = "*" +nest-asyncio = ">=1.5" +prometheus-client = "*" +pyzmq = ">=17" +Send2Trash = ">=1.8.0" +terminado = ">=0.8.3" +tornado = ">=6.1" +traitlets = ">=4.2.1" + +[package.extras] +docs = ["sphinx", "nbsphinx", "sphinxcontrib-github-alt", "sphinx-rtd-theme", "myst-parser"] +json-logging = ["json-logging"] +test = ["pytest", "coverage", "requests", "testpath", "nbval", "selenium", "pytest-cov", "requests-unixsocket"] + +[[package]] +name = "numpy" +version = "1.22.3" +description = "NumPy is the fundamental package for array computing with Python." +category = "main" +optional = false +python-versions = ">=3.8" + +[[package]] +name = "oauthlib" +version = "3.2.0" +description = "A generic, spec-compliant, thorough implementation of the OAuth request-signing logic" +category = "main" +optional = false +python-versions = ">=3.6" + +[package.extras] +rsa = ["cryptography (>=3.0.0)"] +signals = ["blinker (>=1.4.0)"] +signedtoken = ["cryptography (>=3.0.0)", "pyjwt (>=2.0.0,<3)"] + +[[package]] +name = "opt-einsum" +version = "3.3.0" +description = "Optimizing numpys einsum function" +category = "main" +optional = false +python-versions = ">=3.5" + +[package.dependencies] +numpy = ">=1.7" + +[package.extras] +docs = ["sphinx (==1.2.3)", "sphinxcontrib-napoleon", "sphinx-rtd-theme", "numpydoc"] +tests = ["pytest", "pytest-cov", "pytest-pep8"] + +[[package]] +name = "packaging" +version = "21.3" +description = "Core utilities for Python packages" +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +pyparsing = ">=2.0.2,<3.0.5 || >3.0.5" + +[[package]] +name = "pandas" +version = "1.4.2" +description = "Powerful data structures for data analysis, time series, and statistics" +category = "main" +optional = false +python-versions = ">=3.8" + +[package.dependencies] +numpy = [ + {version = ">=1.18.5", markers = "platform_machine != \"aarch64\" and platform_machine != \"arm64\" and python_version < \"3.10\""}, + {version = ">=1.19.2", markers = "platform_machine == \"aarch64\" and python_version < \"3.10\""}, + {version = ">=1.20.0", markers = "platform_machine == \"arm64\" and python_version < \"3.10\""}, + {version = ">=1.21.0", markers = "python_version >= \"3.10\""}, +] +python-dateutil = ">=2.8.1" +pytz = ">=2020.1" + +[package.extras] +test = ["hypothesis (>=5.5.3)", "pytest (>=6.0)", "pytest-xdist (>=1.31)"] + +[[package]] +name = "pandocfilters" +version = "1.5.0" +description = "Utilities for writing pandoc filters in python" +category = "dev" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" + +[[package]] +name = "parso" +version = "0.8.3" +description = "A Python Parser" +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.extras] +qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] +testing = ["docopt", "pytest (<6.0.0)"] + +[[package]] +name = "pathspec" +version = "0.9.0" +description = "Utility library for gitignore style pattern matching of file paths." +category = "dev" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" + +[[package]] +name = "pexpect" +version = "4.8.0" +description = "Pexpect allows easy control of interactive console applications." +category = "dev" +optional = false +python-versions = "*" + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pickleshare" +version = "0.7.5" +description = "Tiny 'shelve'-like database with concurrency support" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "pillow" +version = "9.1.0" +description = "Python Imaging Library (Fork)" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.extras] +docs = ["olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-issues (>=3.0.1)", "sphinx-removed-in", "sphinx-rtd-theme (>=1.0)", "sphinxext-opengraph"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "platformdirs" +version = "2.5.2" +description = "A small Python module for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.extras] +docs = ["furo (>=2021.7.5b38)", "proselint (>=0.10.2)", "sphinx-autodoc-typehints (>=1.12)", "sphinx (>=4)"] +test = ["appdirs (==1.4.4)", "pytest-cov (>=2.7)", "pytest-mock (>=3.6)", "pytest (>=6)"] + +[[package]] +name = "prometheus-client" +version = "0.14.1" +description = "Python client for the Prometheus monitoring system." +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.extras] +twisted = ["twisted"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.29" +description = "Library for building powerful interactive command lines in Python" +category = "dev" +optional = false +python-versions = ">=3.6.2" + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "protobuf" +version = "3.20.1" +description = "Protocol Buffers" +category = "main" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "psutil" +version = "5.9.0" +description = "Cross-platform lib for process and system monitoring in Python." +category = "dev" +optional = false +python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" + +[package.extras] +test = ["ipaddress", "mock", "unittest2", "enum34", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "pure-eval" +version = "0.2.2" +description = "Safely evaluate AST nodes without side effects" +category = "dev" +optional = false +python-versions = "*" + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "py" +version = "1.11.0" +description = "library with cross-python path, ini-parsing, io, code, log facilities" +category = "dev" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" + +[[package]] +name = "pyasn1" +version = "0.4.8" +description = "ASN.1 types and codecs" +category = "main" +optional = false +python-versions = "*" + +[[package]] +name = "pyasn1-modules" +version = "0.2.8" +description = "A collection of ASN.1-based protocols modules." +category = "main" +optional = false +python-versions = "*" + +[package.dependencies] +pyasn1 = ">=0.4.6,<0.5.0" + +[[package]] +name = "pycparser" +version = "2.21" +description = "C parser in Python" +category = "dev" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" + +[[package]] +name = "pygments" +version = "2.12.0" +description = "Pygments is a syntax highlighting package written in Python." +category = "dev" +optional = false +python-versions = ">=3.6" + +[[package]] +name = "pyparsing" +version = "3.0.8" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +category = "dev" +optional = false +python-versions = ">=3.6.8" + +[package.extras] +diagrams = ["railroad-diagrams", "jinja2"] + +[[package]] +name = "pyrsistent" +version = "0.18.1" +description = "Persistent/Functional/Immutable data structures" +category = "dev" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "python-dateutil" +version = "2.8.2" +description = "Extensions to the standard Python datetime module" +category = "main" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "pytz" +version = "2022.1" +description = "World timezone definitions, modern and historical" +category = "main" +optional = false +python-versions = "*" + +[[package]] +name = "pywin32" +version = "303" +description = "Python for Window Extensions" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "pywinpty" +version = "2.0.5" +description = "Pseudo terminal support for Windows from Python." +category = "dev" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "pyzmq" +version = "22.3.0" +description = "Python bindings for 0MQ" +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} +py = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "qtconsole" +version = "5.3.0" +description = "Jupyter Qt console" +category = "dev" +optional = false +python-versions = ">= 3.7" + +[package.dependencies] +ipykernel = ">=4.1" +ipython-genutils = "*" +jupyter-client = ">=4.1" +jupyter-core = "*" +pygments = "*" +pyzmq = ">=17.1" +qtpy = ">=2.0.1" +traitlets = "*" + +[package.extras] +doc = ["Sphinx (>=1.3)"] +test = ["flaky", "pytest", "pytest-qt"] + +[[package]] +name = "qtpy" +version = "2.0.1" +description = "Provides an abstraction layer on top of the various Qt bindings (PyQt5/6 and PySide2/6)." +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +packaging = "*" + +[package.extras] +test = ["pytest (>=6.0.0)", "pytest-cov (>=3.0.0)", "pytest-qt"] + +[[package]] +name = "requests" +version = "2.27.1" +description = "Python HTTP for Humans." +category = "main" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = {version = ">=2.0.0,<2.1.0", markers = "python_version >= \"3\""} +idna = {version = ">=2.5,<4", markers = "python_version >= \"3\""} +urllib3 = ">=1.21.1,<1.27" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)", "win-inet-pton"] +use_chardet_on_py3 = ["chardet (>=3.0.2,<5)"] + +[[package]] +name = "requests-oauthlib" +version = "1.3.1" +description = "OAuthlib authentication support for Requests." +category = "main" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" + +[package.dependencies] +oauthlib = ">=3.0.0" +requests = ">=2.0.0" + +[package.extras] +rsa = ["oauthlib[signedtoken] (>=3.0.0)"] + +[[package]] +name = "rsa" +version = "4.8" +description = "Pure-Python RSA implementation" +category = "main" +optional = false +python-versions = ">=3.6,<4" + +[package.dependencies] +pyasn1 = ">=0.1.3" + +[[package]] +name = "scipy" +version = "1.8.0" +description = "SciPy: Scientific Library for Python" +category = "main" +optional = false +python-versions = ">=3.8,<3.11" + +[package.dependencies] +numpy = ">=1.17.3,<1.25.0" + +[[package]] +name = "send2trash" +version = "1.8.0" +description = "Send file to trash natively under Mac OS X, Windows and Linux." +category = "dev" +optional = false +python-versions = "*" + +[package.extras] +nativelib = ["pyobjc-framework-cocoa", "pywin32"] +objc = ["pyobjc-framework-cocoa"] +win32 = ["pywin32"] + +[[package]] +name = "setuptools-scm" +version = "6.4.2" +description = "the blessed package to manage your versions by scm tags" +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +packaging = ">=20.0" +tomli = ">=1.0.0" + +[package.extras] +test = ["pytest (>=6.2)", "virtualenv (>20)"] +toml = ["setuptools (>=42)"] + +[[package]] +name = "shapely" +version = "1.8.2" +description = "Geometric objects, predicates, and operations" +category = "main" +optional = false +python-versions = ">=3.6" + +[package.extras] +all = ["pytest", "pytest-cov", "numpy"] +test = ["pytest", "pytest-cov"] +vectorized = ["numpy"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +category = "main" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" + +[[package]] +name = "soupsieve" +version = "2.3.2.post1" +description = "A modern CSS selector implementation for Beautiful Soup." +category = "dev" +optional = false +python-versions = ">=3.6" + +[[package]] +name = "stack-data" +version = "0.2.0" +description = "Extract data from python stack frames and tracebacks for informative displays" +category = "dev" +optional = false +python-versions = "*" + +[package.dependencies] +asttokens = "*" +executing = "*" +pure-eval = "*" + +[package.extras] +tests = ["pytest", "typeguard", "pygments", "littleutils", "cython"] + +[[package]] +name = "tensorboard" +version = "2.8.0" +description = "TensorBoard lets you watch Tensors Flow" +category = "main" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +absl-py = ">=0.4" +google-auth = ">=1.6.3,<3" +google-auth-oauthlib = ">=0.4.1,<0.5" +grpcio = ">=1.24.3" +markdown = ">=2.6.8" +numpy = ">=1.12.0" +protobuf = ">=3.6.0" +requests = ">=2.21.0,<3" +tensorboard-data-server = ">=0.6.0,<0.7.0" +tensorboard-plugin-wit = ">=1.6.0" +werkzeug = ">=0.11.15" + +[[package]] +name = "tensorboard-data-server" +version = "0.6.1" +description = "Fast data loading for TensorBoard" +category = "main" +optional = false +python-versions = ">=3.6" + +[[package]] +name = "tensorboard-plugin-wit" +version = "1.8.1" +description = "What-If Tool TensorBoard plugin." +category = "main" +optional = false +python-versions = "*" + +[[package]] +name = "tensorflow" +version = "2.8.0" +description = "TensorFlow is an open source machine learning framework for everyone." +category = "main" +optional = false +python-versions = "*" + +[package.dependencies] +absl-py = ">=0.4.0" +astunparse = ">=1.6.0" +flatbuffers = ">=1.12" +gast = ">=0.2.1" +google-pasta = ">=0.1.1" +grpcio = ">=1.24.3,<2.0" +h5py = ">=2.9.0" +keras = ">=2.8.0rc0,<2.9" +keras-preprocessing = ">=1.1.1" +libclang = ">=9.0.1" +numpy = ">=1.20" +opt-einsum = ">=2.3.2" +protobuf = ">=3.9.2" +six = ">=1.12.0" +tensorboard = ">=2.8,<2.9" +tensorflow-io-gcs-filesystem = ">=0.23.1" +termcolor = ">=1.1.0" +tf-estimator-nightly = "2.8.0.dev2021122109" +typing-extensions = ">=3.6.6" +wrapt = ">=1.11.0" + +[[package]] +name = "tensorflow-io-gcs-filesystem" +version = "0.25.0" +description = "TensorFlow IO" +category = "main" +optional = false +python-versions = ">=3.7, <3.11" + +[package.extras] +tensorflow = ["tensorflow (>=2.8.0,<2.9.0)"] +tensorflow-aarch64 = ["tensorflow-aarch64 (>=2.8.0,<2.9.0)"] +tensorflow-cpu = ["tensorflow-cpu (>=2.8.0,<2.9.0)"] +tensorflow-gpu = ["tensorflow-gpu (>=2.8.0,<2.9.0)"] +tensorflow-rocm = ["tensorflow-rocm (>=2.8.0,<2.9.0)"] + +[[package]] +name = "termcolor" +version = "1.1.0" +description = "ANSII Color formatting for output in terminal." +category = "main" +optional = false +python-versions = "*" + +[[package]] +name = "terminado" +version = "0.13.3" +description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.dependencies] +ptyprocess = {version = "*", markers = "os_name != \"nt\""} +pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} +tornado = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "tf-estimator-nightly" +version = "2.8.0.dev2021122109" +description = "TensorFlow Estimator." +category = "main" +optional = false +python-versions = "*" + +[[package]] +name = "tinycss2" +version = "1.1.1" +description = "A tiny CSS parser" +category = "dev" +optional = false +python-versions = ">=3.6" + +[package.dependencies] +webencodings = ">=0.4" + +[package.extras] +doc = ["sphinx", "sphinx-rtd-theme"] +test = ["pytest", "pytest-cov", "pytest-flake8", "pytest-isort", "coverage"] + +[[package]] +name = "tokenize-rt" +version = "4.2.1" +description = "A wrapper around the stdlib `tokenize` which roundtrips." +category = "dev" +optional = false +python-versions = ">=3.6.1" + +[[package]] +name = "tomli" +version = "2.0.1" +description = "A lil' TOML parser" +category = "dev" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "tornado" +version = "6.1" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +category = "dev" +optional = false +python-versions = ">= 3.5" + +[[package]] +name = "traitlets" +version = "5.1.1" +description = "Traitlets Python configuration system" +category = "dev" +optional = false +python-versions = ">=3.7" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "typing-extensions" +version = "4.2.0" +description = "Backported and Experimental Type Hints for Python 3.7+" +category = "main" +optional = false +python-versions = ">=3.7" + +[[package]] +name = "urllib3" +version = "1.26.9" +description = "HTTP library with thread-safe connection pooling, file post, and more." +category = "main" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, <4" + +[package.extras] +brotli = ["brotlicffi (>=0.8.0)", "brotli (>=1.0.9)", "brotlipy (>=0.6.0)"] +secure = ["pyOpenSSL (>=0.14)", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "certifi", "ipaddress"] +socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.5" +description = "Measures the displayed width of unicode strings in a terminal" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "webencodings" +version = "0.5.1" +description = "Character encoding aliases for legacy web content" +category = "dev" +optional = false +python-versions = "*" + +[[package]] +name = "werkzeug" +version = "2.1.1" +description = "The comprehensive WSGI web application library." +category = "main" +optional = false +python-versions = ">=3.7" + +[package.extras] +watchdog = ["watchdog"] + +[[package]] +name = "widgetsnbextension" +version = "3.6.0" +description = "IPython HTML widgets for Jupyter" +category = "dev" +optional = false +python-versions = "*" + +[package.dependencies] +notebook = ">=4.4.1" + +[[package]] +name = "wrapt" +version = "1.14.0" +description = "Module for decorators, wrappers and monkey patching." +category = "main" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7" + +[[package]] +name = "zipp" +version = "3.8.0" +description = "Backport of pathlib-compatible object wrapper for zip files" +category = "main" +optional = false +python-versions = ">=3.7" + +[package.extras] +docs = ["sphinx", "jaraco.packaging (>=9)", "rst.linker (>=1.9)"] +testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "pytest-cov", "pytest-enabler (>=1.0.1)", "jaraco.itertools", "func-timeout", "pytest-black (>=0.3.7)", "pytest-mypy (>=0.9.1)"] + +[metadata] +lock-version = "1.1" +python-versions = ">=3.9, <3.11" +content-hash = "8b3939c0ee9990f543bf30b87cbf38286eaeb9a237c5e215f97ed3e087822ff2" + +[metadata.files] +absl-py = [ + {file = "absl-py-1.0.0.tar.gz", hash = "sha256:ac511215c01ee9ae47b19716599e8ccfa746f2e18de72bdf641b79b22afa27ea"}, + {file = "absl_py-1.0.0-py3-none-any.whl", hash = "sha256:84e6dcdc69c947d0c13e5457d056bd43cade4c2393dce00d684aedea77ddc2a3"}, +] +appnope = [ + {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, + {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, +] +argon2-cffi = [ + {file = "argon2-cffi-21.3.0.tar.gz", hash = "sha256:d384164d944190a7dd7ef22c6aa3ff197da12962bd04b17f64d4e93d934dba5b"}, + {file = "argon2_cffi-21.3.0-py3-none-any.whl", hash = "sha256:8c976986f2c5c0e5000919e6de187906cfd81fb1c72bf9d88c01177e77da7f80"}, +] +argon2-cffi-bindings = [ + {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"}, + {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, +] +asttokens = [ + {file = "asttokens-2.0.5-py2.py3-none-any.whl", hash = "sha256:0844691e88552595a6f4a4281a9f7f79b8dd45ca4ccea82e5e05b4bbdb76705c"}, + {file = "asttokens-2.0.5.tar.gz", hash = "sha256:9a54c114f02c7a9480d56550932546a3f1fe71d8a02f1bc7ccd0ee3ee35cf4d5"}, +] +astunparse = [ + {file = "astunparse-1.6.3-py2.py3-none-any.whl", hash = "sha256:c2652417f2c8b5bb325c885ae329bdf3f86424075c4fd1a128674bc6fba4b8e8"}, + {file = "astunparse-1.6.3.tar.gz", hash = "sha256:5ad93a8456f0d084c3456d059fd9a92cce667963232cbf763eac3bc5b7940872"}, +] +attrs = [ + {file = "attrs-21.4.0-py2.py3-none-any.whl", hash = "sha256:2d27e3784d7a565d36ab851fe94887c5eccd6a463168875832a1be79c82828b4"}, + {file = "attrs-21.4.0.tar.gz", hash = "sha256:626ba8234211db98e869df76230a137c4c40a12d72445c45d5f5b716f076e2fd"}, +] +backcall = [ + {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, + {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, +] +beautifulsoup4 = [ + {file = "beautifulsoup4-4.11.1-py3-none-any.whl", hash = "sha256:58d5c3d29f5a36ffeb94f02f0d786cd53014cf9b3b3951d42e0080d8a9498d30"}, + {file = "beautifulsoup4-4.11.1.tar.gz", hash = "sha256:ad9aa55b65ef2808eb405f46cf74df7fcb7044d5cbc26487f96eb2ef2e436693"}, +] +black = [ + {file = "black-22.3.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2497f9c2386572e28921fa8bec7be3e51de6801f7459dffd6e62492531c47e09"}, + {file = "black-22.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5795a0375eb87bfe902e80e0c8cfaedf8af4d49694d69161e5bd3206c18618bb"}, + {file = "black-22.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e3556168e2e5c49629f7b0f377070240bd5511e45e25a4497bb0073d9dda776a"}, + {file = "black-22.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:67c8301ec94e3bcc8906740fe071391bce40a862b7be0b86fb5382beefecd968"}, + {file = "black-22.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:fd57160949179ec517d32ac2ac898b5f20d68ed1a9c977346efbac9c2f1e779d"}, + {file = "black-22.3.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:cc1e1de68c8e5444e8f94c3670bb48a2beef0e91dddfd4fcc29595ebd90bb9ce"}, + {file = "black-22.3.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2fc92002d44746d3e7db7cf9313cf4452f43e9ea77a2c939defce3b10b5c82"}, + {file = "black-22.3.0-cp36-cp36m-win_amd64.whl", hash = "sha256:a6342964b43a99dbc72f72812bf88cad8f0217ae9acb47c0d4f141a6416d2d7b"}, + {file = "black-22.3.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:328efc0cc70ccb23429d6be184a15ce613f676bdfc85e5fe8ea2a9354b4e9015"}, + {file = "black-22.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:06f9d8846f2340dfac80ceb20200ea5d1b3f181dd0556b47af4e8e0b24fa0a6b"}, + {file = "black-22.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:ad4efa5fad66b903b4a5f96d91461d90b9507a812b3c5de657d544215bb7877a"}, + {file = "black-22.3.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e8477ec6bbfe0312c128e74644ac8a02ca06bcdb8982d4ee06f209be28cdf163"}, + {file = "black-22.3.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:637a4014c63fbf42a692d22b55d8ad6968a946b4a6ebc385c5505d9625b6a464"}, + {file = "black-22.3.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:863714200ada56cbc366dc9ae5291ceb936573155f8bf8e9de92aef51f3ad0f0"}, + {file = "black-22.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10dbe6e6d2988049b4655b2b739f98785a884d4d6b85bc35133a8fb9a2233176"}, + {file = "black-22.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:cee3e11161dde1b2a33a904b850b0899e0424cc331b7295f2a9698e79f9a69a0"}, + {file = "black-22.3.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5891ef8abc06576985de8fa88e95ab70641de6c1fca97e2a15820a9b69e51b20"}, + {file = "black-22.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:30d78ba6bf080eeaf0b7b875d924b15cd46fec5fd044ddfbad38c8ea9171043a"}, + {file = "black-22.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ee8f1f7228cce7dffc2b464f07ce769f478968bfb3dd1254a4c2eeed84928aad"}, + {file = "black-22.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6ee227b696ca60dd1c507be80a6bc849a5a6ab57ac7352aad1ffec9e8b805f21"}, + {file = "black-22.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:9b542ced1ec0ceeff5b37d69838106a6348e60db7b8fdd245294dc1d26136265"}, + {file = "black-22.3.0-py3-none-any.whl", hash = "sha256:bc58025940a896d7e5356952228b68f793cf5fcb342be703c3a2669a1488cb72"}, + {file = "black-22.3.0.tar.gz", hash = "sha256:35020b8886c022ced9282b51b5a875b6d1ab0c387b31a065b84db7c33085ca79"}, +] +bleach = [ + {file = "bleach-5.0.0-py3-none-any.whl", hash = "sha256:08a1fe86d253b5c88c92cc3d810fd8048a16d15762e1e5b74d502256e5926aa1"}, + {file = "bleach-5.0.0.tar.gz", hash = "sha256:c6d6cc054bdc9c83b48b8083e236e5f00f238428666d2ce2e083eaa5fd568565"}, +] +cachetools = [ + {file = "cachetools-5.0.0-py3-none-any.whl", hash = "sha256:8fecd4203a38af17928be7b90689d8083603073622229ca7077b72d8e5a976e4"}, + {file = "cachetools-5.0.0.tar.gz", hash = "sha256:486471dfa8799eb7ec503a8059e263db000cdda20075ce5e48903087f79d5fd6"}, +] +certifi = [ + {file = "certifi-2021.10.8-py2.py3-none-any.whl", hash = "sha256:d62a0163eb4c2344ac042ab2bdf75399a71a2d8c7d47eac2e2ee91b9d6339569"}, + {file = "certifi-2021.10.8.tar.gz", hash = "sha256:78884e7c1d4b00ce3cea67b44566851c4343c120abd683433ce934a68ea58872"}, +] +cffi = [ + {file = "cffi-1.15.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:c2502a1a03b6312837279c8c1bd3ebedf6c12c4228ddbad40912d671ccc8a962"}, + {file = "cffi-1.15.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:23cfe892bd5dd8941608f93348c0737e369e51c100d03718f108bf1add7bd6d0"}, + {file = "cffi-1.15.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:41d45de54cd277a7878919867c0f08b0cf817605e4eb94093e7516505d3c8d14"}, + {file = "cffi-1.15.0-cp27-cp27m-win32.whl", hash = "sha256:4a306fa632e8f0928956a41fa8e1d6243c71e7eb59ffbd165fc0b41e316b2474"}, + {file = "cffi-1.15.0-cp27-cp27m-win_amd64.whl", hash = "sha256:e7022a66d9b55e93e1a845d8c9eba2a1bebd4966cd8bfc25d9cd07d515b33fa6"}, + {file = "cffi-1.15.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:14cd121ea63ecdae71efa69c15c5543a4b5fbcd0bbe2aad864baca0063cecf27"}, + {file = "cffi-1.15.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:d4d692a89c5cf08a8557fdeb329b82e7bf609aadfaed6c0d79f5a449a3c7c023"}, + {file = "cffi-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0104fb5ae2391d46a4cb082abdd5c69ea4eab79d8d44eaaf79f1b1fd806ee4c2"}, + {file = "cffi-1.15.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:91ec59c33514b7c7559a6acda53bbfe1b283949c34fe7440bcf917f96ac0723e"}, + {file = "cffi-1.15.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f5c7150ad32ba43a07c4479f40241756145a1f03b43480e058cfd862bf5041c7"}, + {file = "cffi-1.15.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:00c878c90cb53ccfaae6b8bc18ad05d2036553e6d9d1d9dbcf323bbe83854ca3"}, + {file = "cffi-1.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:abb9a20a72ac4e0fdb50dae135ba5e77880518e742077ced47eb1499e29a443c"}, + {file = "cffi-1.15.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a5263e363c27b653a90078143adb3d076c1a748ec9ecc78ea2fb916f9b861962"}, + {file = "cffi-1.15.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f54a64f8b0c8ff0b64d18aa76675262e1700f3995182267998c31ae974fbc382"}, + {file = "cffi-1.15.0-cp310-cp310-win32.whl", hash = "sha256:c21c9e3896c23007803a875460fb786118f0cdd4434359577ea25eb556e34c55"}, + {file = "cffi-1.15.0-cp310-cp310-win_amd64.whl", hash = "sha256:5e069f72d497312b24fcc02073d70cb989045d1c91cbd53979366077959933e0"}, + {file = "cffi-1.15.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:64d4ec9f448dfe041705426000cc13e34e6e5bb13736e9fd62e34a0b0c41566e"}, + {file = "cffi-1.15.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2756c88cbb94231c7a147402476be2c4df2f6078099a6f4a480d239a8817ae39"}, + {file = "cffi-1.15.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b96a311ac60a3f6be21d2572e46ce67f09abcf4d09344c49274eb9e0bf345fc"}, + {file = "cffi-1.15.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75e4024375654472cc27e91cbe9eaa08567f7fbdf822638be2814ce059f58032"}, + {file = "cffi-1.15.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:59888172256cac5629e60e72e86598027aca6bf01fa2465bdb676d37636573e8"}, + {file = "cffi-1.15.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:27c219baf94952ae9d50ec19651a687b826792055353d07648a5695413e0c605"}, + {file = "cffi-1.15.0-cp36-cp36m-win32.whl", hash = "sha256:4958391dbd6249d7ad855b9ca88fae690783a6be9e86df65865058ed81fc860e"}, + {file = "cffi-1.15.0-cp36-cp36m-win_amd64.whl", hash = "sha256:f6f824dc3bce0edab5f427efcfb1d63ee75b6fcb7282900ccaf925be84efb0fc"}, + {file = "cffi-1.15.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:06c48159c1abed75c2e721b1715c379fa3200c7784271b3c46df01383b593636"}, + {file = "cffi-1.15.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:c2051981a968d7de9dd2d7b87bcb9c939c74a34626a6e2f8181455dd49ed69e4"}, + {file = "cffi-1.15.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:fd8a250edc26254fe5b33be00402e6d287f562b6a5b2152dec302fa15bb3e997"}, + {file = "cffi-1.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:91d77d2a782be4274da750752bb1650a97bfd8f291022b379bb8e01c66b4e96b"}, + {file = "cffi-1.15.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:45db3a33139e9c8f7c09234b5784a5e33d31fd6907800b316decad50af323ff2"}, + {file = "cffi-1.15.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:263cc3d821c4ab2213cbe8cd8b355a7f72a8324577dc865ef98487c1aeee2bc7"}, + {file = "cffi-1.15.0-cp37-cp37m-win32.whl", hash = "sha256:17771976e82e9f94976180f76468546834d22a7cc404b17c22df2a2c81db0c66"}, + {file = "cffi-1.15.0-cp37-cp37m-win_amd64.whl", hash = "sha256:3415c89f9204ee60cd09b235810be700e993e343a408693e80ce7f6a40108029"}, + {file = "cffi-1.15.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4238e6dab5d6a8ba812de994bbb0a79bddbdf80994e4ce802b6f6f3142fcc880"}, + {file = "cffi-1.15.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0808014eb713677ec1292301ea4c81ad277b6cdf2fdd90fd540af98c0b101d20"}, + {file = "cffi-1.15.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:57e9ac9ccc3101fac9d6014fba037473e4358ef4e89f8e181f8951a2c0162024"}, + {file = "cffi-1.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b6c2ea03845c9f501ed1313e78de148cd3f6cad741a75d43a29b43da27f2e1e"}, + {file = "cffi-1.15.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:10dffb601ccfb65262a27233ac273d552ddc4d8ae1bf93b21c94b8511bffe728"}, + {file = "cffi-1.15.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:786902fb9ba7433aae840e0ed609f45c7bcd4e225ebb9c753aa39725bb3e6ad6"}, + {file = "cffi-1.15.0-cp38-cp38-win32.whl", hash = "sha256:da5db4e883f1ce37f55c667e5c0de439df76ac4cb55964655906306918e7363c"}, + {file = "cffi-1.15.0-cp38-cp38-win_amd64.whl", hash = "sha256:181dee03b1170ff1969489acf1c26533710231c58f95534e3edac87fff06c443"}, + {file = "cffi-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:45e8636704eacc432a206ac7345a5d3d2c62d95a507ec70d62f23cd91770482a"}, + {file = "cffi-1.15.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:31fb708d9d7c3f49a60f04cf5b119aeefe5644daba1cd2a0fe389b674fd1de37"}, + {file = "cffi-1.15.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6dc2737a3674b3e344847c8686cf29e500584ccad76204efea14f451d4cc669a"}, + {file = "cffi-1.15.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:74fdfdbfdc48d3f47148976f49fab3251e550a8720bebc99bf1483f5bfb5db3e"}, + {file = "cffi-1.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffaa5c925128e29efbde7301d8ecaf35c8c60ffbcd6a1ffd3a552177c8e5e796"}, + {file = "cffi-1.15.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f7d084648d77af029acb79a0ff49a0ad7e9d09057a9bf46596dac9514dc07df"}, + {file = "cffi-1.15.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ef1f279350da2c586a69d32fc8733092fd32cc8ac95139a00377841f59a3f8d8"}, + {file = "cffi-1.15.0-cp39-cp39-win32.whl", hash = "sha256:2a23af14f408d53d5e6cd4e3d9a24ff9e05906ad574822a10563efcef137979a"}, + {file = "cffi-1.15.0-cp39-cp39-win_amd64.whl", hash = "sha256:3773c4d81e6e818df2efbc7dd77325ca0dcb688116050fb2b3011218eda36139"}, + {file = "cffi-1.15.0.tar.gz", hash = "sha256:920f0d66a896c2d99f0adbb391f990a84091179542c205fa53ce5787aff87954"}, +] +charset-normalizer = [ + {file = "charset-normalizer-2.0.12.tar.gz", hash = "sha256:2857e29ff0d34db842cd7ca3230549d1a697f96ee6d3fb071cfa6c7393832597"}, + {file = "charset_normalizer-2.0.12-py3-none-any.whl", hash = "sha256:6881edbebdb17b39b4eaaa821b438bf6eddffb4468cf344f09f89def34a8b1df"}, +] +click = [ + {file = "click-8.1.2-py3-none-any.whl", hash = "sha256:24e1a4a9ec5bf6299411369b208c1df2188d9eb8d916302fe6bf03faed227f1e"}, + {file = "click-8.1.2.tar.gz", hash = "sha256:479707fe14d9ec9a0757618b7a100a0ae4c4e236fac5b7f80ca68028141a1a72"}, +] +colorama = [ + {file = "colorama-0.4.4-py2.py3-none-any.whl", hash = "sha256:9f47eda37229f68eee03b24b9748937c7dc3868f906e8ba69fbcbdd3bc5dc3e2"}, + {file = "colorama-0.4.4.tar.gz", hash = "sha256:5941b2b48a20143d2267e95b1c2a7603ce057ee39fd88e7329b0c292aa16869b"}, +] +cycler = [ + {file = "cycler-0.11.0-py3-none-any.whl", hash = "sha256:3a27e95f763a428a739d2add979fa7494c912a32c17c4c38c4d5f082cad165a3"}, + {file = "cycler-0.11.0.tar.gz", hash = "sha256:9c87405839a19696e837b3b818fed3f5f69f16f1eec1a1ad77e043dcea9c772f"}, +] +debugpy = [ + {file = "debugpy-1.6.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:eb1946efac0c0c3d411cea0b5ac772fbde744109fd9520fb0c5a51979faf05ad"}, + {file = "debugpy-1.6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e3513399177dd37af4c1332df52da5da1d0c387e5927dc4c0709e26ee7302e8f"}, + {file = "debugpy-1.6.0-cp310-cp310-win32.whl", hash = "sha256:5c492235d6b68f879df3bdbdb01f25c15be15682665517c2c7d0420e5658d71f"}, + {file = "debugpy-1.6.0-cp310-cp310-win_amd64.whl", hash = "sha256:40de9ba137d355538432209d05e0f5fe5d0498dce761c39119ad4b950b51db31"}, + {file = "debugpy-1.6.0-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:0d383b91efee57dbb923ba20801130cf60450a0eda60bce25bccd937de8e323a"}, + {file = "debugpy-1.6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:1ff853e60e77e1c16f85a31adb8360bb2d98ca588d7ed645b7f0985b240bdb5e"}, + {file = "debugpy-1.6.0-cp37-cp37m-win32.whl", hash = "sha256:8e972c717d95f56b6a3a7a29a5ede1ee8f2c3802f6f0e678203b0778eb322bf1"}, + {file = "debugpy-1.6.0-cp37-cp37m-win_amd64.whl", hash = "sha256:a8aaeb53e87225141fda7b9081bd87155c1debc13e2f5a532d341112d1983b65"}, + {file = "debugpy-1.6.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:132defb585b518955358321d0f42f6aa815aa15b432be27db654807707c70b2f"}, + {file = "debugpy-1.6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ee75844242b4537beb5899f3e60a578454d1f136b99e8d57ac424573797b94a"}, + {file = "debugpy-1.6.0-cp38-cp38-win32.whl", hash = "sha256:a65a2499761d47df3e9ea9567109be6e73d412e00ac3ffcf74839f3ddfcdf028"}, + {file = "debugpy-1.6.0-cp38-cp38-win_amd64.whl", hash = "sha256:bd980d533d0ddfc451e03a3bb32acb2900049fec39afc3425b944ebf0889be62"}, + {file = "debugpy-1.6.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:245c7789a012f86210847ec7ee9f38c30a30d4c2223c3e111829a76c9006a5d0"}, + {file = "debugpy-1.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:0e3aa2368883e83e7b689ddff3cafb595f7b711f6a065886b46a96a7fef874e7"}, + {file = "debugpy-1.6.0-cp39-cp39-win32.whl", hash = "sha256:72bcfa97f3afa0064afc77ab811f48ad4a06ac330f290b675082c24437730366"}, + {file = "debugpy-1.6.0-cp39-cp39-win_amd64.whl", hash = "sha256:30abefefd2ff5a5481162d613cb70e60e2fa80a5eb4c994717c0f008ed25d2e1"}, + {file = "debugpy-1.6.0-py2.py3-none-any.whl", hash = "sha256:4de7777842da7e08652f2776c552070bbdd758557fdec73a15d7be0e4aab95ce"}, + {file = "debugpy-1.6.0.zip", hash = "sha256:7b79c40852991f7b6c3ea65845ed0f5f6b731c37f4f9ad9c61e2ab4bd48a9275"}, +] +decorator = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] +defusedxml = [ + {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, + {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, +] +entrypoints = [ + {file = "entrypoints-0.4-py3-none-any.whl", hash = "sha256:f174b5ff827504fd3cd97cc3f8649f3693f51538c7e4bdf3ef002c8429d42f9f"}, + {file = "entrypoints-0.4.tar.gz", hash = "sha256:b706eddaa9218a19ebcd67b56818f05bb27589b1ca9e8d797b74affad4ccacd4"}, +] +executing = [ + {file = "executing-0.8.3-py2.py3-none-any.whl", hash = "sha256:d1eef132db1b83649a3905ca6dd8897f71ac6f8cac79a7e58a1a09cf137546c9"}, + {file = "executing-0.8.3.tar.gz", hash = "sha256:c6554e21c6b060590a6d3be4b82fb78f8f0194d809de5ea7df1c093763311501"}, +] +fastjsonschema = [ + {file = "fastjsonschema-2.15.3-py3-none-any.whl", hash = "sha256:ddb0b1d8243e6e3abb822bd14e447a89f4ab7439342912d590444831fa00b6a0"}, + {file = "fastjsonschema-2.15.3.tar.gz", hash = "sha256:0a572f0836962d844c1fc435e200b2e4f4677e4e6611a2e3bdd01ba697c275ec"}, +] +flatbuffers = [ + {file = "flatbuffers-2.0-py2.py3-none-any.whl", hash = "sha256:3751954f0604580d3219ae49a85fafec9d85eec599c0b96226e1bc0b48e57474"}, + {file = "flatbuffers-2.0.tar.gz", hash = "sha256:12158ab0272375eab8db2d663ae97370c33f152b27801fa6024e1d6105fd4dd2"}, +] +fonttools = [ + {file = "fonttools-4.33.3-py3-none-any.whl", hash = "sha256:f829c579a8678fa939a1d9e9894d01941db869de44390adb49ce67055a06cc2a"}, + {file = "fonttools-4.33.3.zip", hash = "sha256:c0fdcfa8ceebd7c1b2021240bd46ef77aa8e7408cf10434be55df52384865f8e"}, +] +gast = [ + {file = "gast-0.5.3-py3-none-any.whl", hash = "sha256:211aac1e58c167b25d3504998f2db694454a24bb1fb1225bce99420166f21d6a"}, + {file = "gast-0.5.3.tar.gz", hash = "sha256:cfbea25820e653af9c7d1807f659ce0a0a9c64f2439421a7bba4f0983f532dea"}, +] +google-auth = [ + {file = "google-auth-2.6.6.tar.gz", hash = "sha256:1ba4938e032b73deb51e59c4656a00e0939cf0b1112575099f136babb4563312"}, + {file = "google_auth-2.6.6-py2.py3-none-any.whl", hash = "sha256:349ac49b18b01019453cc99c11c92ed772739778c92f184002b7ab3a5b7ac77d"}, +] +google-auth-oauthlib = [ + {file = "google-auth-oauthlib-0.4.6.tar.gz", hash = "sha256:a90a072f6993f2c327067bf65270046384cda5a8ecb20b94ea9a687f1f233a7a"}, + {file = "google_auth_oauthlib-0.4.6-py2.py3-none-any.whl", hash = "sha256:3f2a6e802eebbb6fb736a370fbf3b055edcb6b52878bf2f26330b5e041316c73"}, +] +google-pasta = [ + {file = "google-pasta-0.2.0.tar.gz", hash = "sha256:c9f2c8dfc8f96d0d5808299920721be30c9eec37f2389f28904f454565c8a16e"}, + {file = "google_pasta-0.2.0-py2-none-any.whl", hash = "sha256:4612951da876b1a10fe3960d7226f0c7682cf901e16ac06e473b267a5afa8954"}, + {file = "google_pasta-0.2.0-py3-none-any.whl", hash = "sha256:b32482794a366b5366a32c92a9a9201b107821889935a02b3e51f6b432ea84ed"}, +] +grpcio = [ + {file = "grpcio-1.45.0-cp310-cp310-linux_armv7l.whl", hash = "sha256:0d74a159df9401747e57960f0772f4371486e3281919004efa9df8a82985abee"}, + {file = "grpcio-1.45.0-cp310-cp310-macosx_10_10_universal2.whl", hash = "sha256:4e6d15bfdfa28e5f6d524dd3b29c7dc129cfc578505b067aa97574490c5b70fe"}, + {file = "grpcio-1.45.0-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:44615be86e5540a18f5e4ca5a0f428d4b1efb800d255cfd9f902a11daca8fd74"}, + {file = "grpcio-1.45.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8b452f715e2cae9e75cb309f59a37f82e5b25f51f0bfc3cd1462de86265cef05"}, + {file = "grpcio-1.45.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db1c45daa35c64f17498af1ba6eb1d0a8d88a8a0b6b322f960ab461e7ef0419e"}, + {file = "grpcio-1.45.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:678a673fe811dad3ed5bd2e2352b79851236e4d718aeaeffc10f372a55954d8d"}, + {file = "grpcio-1.45.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a5c8a08aff0af770c977dcede62fbed53ae7b99adbc184d5299d148bb04652f1"}, + {file = "grpcio-1.45.0-cp310-cp310-win32.whl", hash = "sha256:1d764c8a190719301ec6f3b6ddeb48a234604e337d0fbb3184a4ddcda2aca9da"}, + {file = "grpcio-1.45.0-cp310-cp310-win_amd64.whl", hash = "sha256:797f5b750be6ff2905b9d0529a00c1f873d8035a5d01a9801910ace5f0d52a18"}, + {file = "grpcio-1.45.0-cp36-cp36m-linux_armv7l.whl", hash = "sha256:b46772b7eb58c6cb0b468b56d59618694d2c2f2cee2e5b4e83ae9729a46b8af0"}, + {file = "grpcio-1.45.0-cp36-cp36m-macosx_10_10_x86_64.whl", hash = "sha256:2f135e5c8e9acd14f3090fd86dccb9d7c26aea7bfbd4528e8a86ff621d39e610"}, + {file = "grpcio-1.45.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:16603b9544a4af135ce4d594a7396602fbe62d1ccaa484b05cb1814c17a3e559"}, + {file = "grpcio-1.45.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ccba925045c00acc9ce2cc645b6fa9d19767dbb16c9c49921013da412b1d3415"}, + {file = "grpcio-1.45.0-cp36-cp36m-manylinux_2_17_aarch64.whl", hash = "sha256:7262b9d96db79e29049c7eb2b75b03f2b9485fd838209b5ff8e3cca73b2a706c"}, + {file = "grpcio-1.45.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a1c1098f35c33b985c312cacea39e2aa66f7ac1462579eed1d3aed2e51fff00d"}, + {file = "grpcio-1.45.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b18c86a9cfbedd0c4e083690fecc82027b3f938100ed0af8db77d52a171eb1e"}, + {file = "grpcio-1.45.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:638364d3603df9e4a1dbc2151b5fe1b491ceecda4e1672be86724e1dfa79c44d"}, + {file = "grpcio-1.45.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:8de79eac582431cb6d05ff5652e68089c40aa0e604ec1630fa52ac926bc44f1b"}, + {file = "grpcio-1.45.0-cp36-cp36m-win32.whl", hash = "sha256:6cf5f1827c182ef9b503d7d01e503c1067f4499d45af792d95ccd1d8b0bea30d"}, + {file = "grpcio-1.45.0-cp36-cp36m-win_amd64.whl", hash = "sha256:4f1a22744f93b38d393b7a83cb607029ac5e2de680cab39957ffdd116590a178"}, + {file = "grpcio-1.45.0-cp37-cp37m-linux_armv7l.whl", hash = "sha256:321f84dbc788481f7a3cd12636a133ba5f4d17e57f1c906de5a22fd709c971b5"}, + {file = "grpcio-1.45.0-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:a33ed7d3e52ddc839e2f020592a4371d805c2ae820fb63b12525058e1810fe46"}, + {file = "grpcio-1.45.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f9f28d8c5343602e1510d4839e38568bcd0ca6353bd98ad9941787584a371a1d"}, + {file = "grpcio-1.45.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:3a40dbb8aac60cf6a86583e2ba74fc2c286f1abc7a3404b25dcd12a49b9f7d8b"}, + {file = "grpcio-1.45.0-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:b00ce58323dde47d2ea240d10ee745471b9966429c97d9e6567c8d56e02b0372"}, + {file = "grpcio-1.45.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd4944f35f1e5ab54804c3e37d24921ecc01908ef871cdce6bd52995ea4f985c"}, + {file = "grpcio-1.45.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc135b77f384a84bac67a37947886986be136356446338d64160a30c85f20c6d"}, + {file = "grpcio-1.45.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:35ae55460514ed404ceaa95533b9a79989691b562faf012fc8fb143d8fd16e47"}, + {file = "grpcio-1.45.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:779db3d00c8da1d3efa942387cb0fea9ac6d50124d656024f82f9faefdd016e3"}, + {file = "grpcio-1.45.0-cp37-cp37m-win32.whl", hash = "sha256:aea67bd3cbf93db552c725bc0b4db0acdc6a284d036d1cc32d638305e0f01fd9"}, + {file = "grpcio-1.45.0-cp37-cp37m-win_amd64.whl", hash = "sha256:7fe3ac700cc5ecba9dc9072c0e6cfd2f964ea9f273ce1111eaa27d13aa20ec32"}, + {file = "grpcio-1.45.0-cp38-cp38-linux_armv7l.whl", hash = "sha256:259c126821fefcda298c020a0d83c4a4edac3cf10b1af12a62d250f8192ea1d1"}, + {file = "grpcio-1.45.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:5d05cd1b2b0975bb000ba97ca465565158dc211616c9bbbef5d1b77871974687"}, + {file = "grpcio-1.45.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6f2e044a715507fd13c70c928cd90daf8d0295c936a81fd9065a24e58ba7cc7d"}, + {file = "grpcio-1.45.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4d37c526b86c46d229f6117df5dca2510de597ab73c5956bc379ca41f8a1db84"}, + {file = "grpcio-1.45.0-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:6df338b8d2c328ba91a25e28786d10059dea3bc9115fa1ddad30ba5d459e714a"}, + {file = "grpcio-1.45.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:042921a824e90bf2974dbef7d89937096181298294799fb53e5576d9958884c7"}, + {file = "grpcio-1.45.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fb23ed6ed84ae312df03e96c7a7cd3aa5f7e3a1ad7066fdb6cd47f1bd334196c"}, + {file = "grpcio-1.45.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:79582ec821ef10162348170a6e912d93ea257c749320a162dfc3a132ef25ac1b"}, + {file = "grpcio-1.45.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d14d372ea5a51d5ab991aa6d499a26e5a1e3b3f3af93f41826ea610f8a276c9e"}, + {file = "grpcio-1.45.0-cp38-cp38-win32.whl", hash = "sha256:b54444cf4212935a7b98cd26a30ad3a036389e4fd2ff3e461b176af876c7e20b"}, + {file = "grpcio-1.45.0-cp38-cp38-win_amd64.whl", hash = "sha256:da395720d6e9599c754f862f3f75bc0e8ff29fa55259e082e442a9cc916ffbc3"}, + {file = "grpcio-1.45.0-cp39-cp39-linux_armv7l.whl", hash = "sha256:add03308fa2d434628aeaa445e0c75cdb9535f39128eb949b1483ae83fafade6"}, + {file = "grpcio-1.45.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:250d8f18332f3dbd4db00efa91d33d336e58362e9c80e6946d45ecf5e82d95ec"}, + {file = "grpcio-1.45.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dfca4dfd307b449d0a1e92bc7fbb5224ccf16db384aab412ba6766fc56bdffb6"}, + {file = "grpcio-1.45.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b7f2dc8831045eb0c892bb947e1cba2b1ed639e79a54abff7c4ad90bdd329f78"}, + {file = "grpcio-1.45.0-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:2355493a9e71f15d9004b2ab87892cb532e9e98db6882fced2912115eb5631af"}, + {file = "grpcio-1.45.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2798e42d62a0296982276d0bab96fc7d6772cd148357154348355304d6216763"}, + {file = "grpcio-1.45.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fe6acb1439127e0bee773f8a9a3ece290cb4cac4fe8d46b10bc8dda250a990c"}, + {file = "grpcio-1.45.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:6774272a59b9ee16fb0d4f53e23716953a22bbb3efe12fdf9a4ee3eec2c4f81f"}, + {file = "grpcio-1.45.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:52f61fcb17d92b87ba47d54b3c9deae09d4f0216a3ea277b7df4b6c1794e6556"}, + {file = "grpcio-1.45.0-cp39-cp39-win32.whl", hash = "sha256:3992c690228126e5652c7a1f61863c1ebfd71369cf2adb0fce86fee1d82d2d27"}, + {file = "grpcio-1.45.0-cp39-cp39-win_amd64.whl", hash = "sha256:220867a53e53b2e201e98c55061e3053e31c0ce613625087242be684d3e8612a"}, + {file = "grpcio-1.45.0.tar.gz", hash = "sha256:ff2c8b965b0fc25cf281961aa46619c10900543effe3f806ef818231c40aaff3"}, +] +h5py = [ + {file = "h5py-3.6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a5320837c60870911645e9a935099bdb2be6a786fcf0dac5c860f3b679e2de55"}, + {file = "h5py-3.6.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:98646e659bf8591a2177e12a4461dced2cad72da0ba4247643fd118db88880d2"}, + {file = "h5py-3.6.0-cp310-cp310-win_amd64.whl", hash = "sha256:5996ff5adefd2d68c330a4265b6ef92e51b2fc674834a5990add5033bf109e20"}, + {file = "h5py-3.6.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c9a5529343a619fea777b7caa27d493595b28b5af8b005e8d1817559fcccf493"}, + {file = "h5py-3.6.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e2b49c48df05e19bb20b400b7ff7dc6f1ee36b84dc717c3771c468b33697b466"}, + {file = "h5py-3.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cd9447633b0bafaf82190d9a8d56f3cb2e8d30169483aee67d800816e028190a"}, + {file = "h5py-3.6.0-cp37-cp37m-win_amd64.whl", hash = "sha256:1c5acc660c458421e88c4c5fe092ce15923adfac4c732af1ac4fced683a5ea97"}, + {file = "h5py-3.6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:35ab552c6f0a93365b3cb5664a5305f3920daa0a43deb5b2c547c52815ec46b9"}, + {file = "h5py-3.6.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:542781d50e1182b8fb619b1265dfe1c765e18215f818b0ab28b2983c28471325"}, + {file = "h5py-3.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f39242960b8d7f86f3056cc2546aa3047ff4835985f6483229af8f029e9c8db"}, + {file = "h5py-3.6.0-cp38-cp38-win_amd64.whl", hash = "sha256:8ecedf16c613973622a334701f67edcc0249469f9daa0576e994fb20ac0405db"}, + {file = "h5py-3.6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d8cacad89aa7daf3626fce106f7f2662ac35b14849df22d252d0d8fab9dc1c0b"}, + {file = "h5py-3.6.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dbaa1ed9768bf9ff04af0919acc55746e62b28333644f0251f38768313f31745"}, + {file = "h5py-3.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:954c5c39a09b5302f69f752c3bbf165d368a65c8d200f7d5655e0fa6368a75e6"}, + {file = "h5py-3.6.0-cp39-cp39-win_amd64.whl", hash = "sha256:9fd8a14236fdd092a20c0bdf25c3aba3777718d266fabb0fdded4fcf252d1630"}, + {file = "h5py-3.6.0.tar.gz", hash = "sha256:8752d2814a92aba4e2b2a5922d2782d0029102d99caaf3c201a566bc0b40db29"}, +] +idna = [ + {file = "idna-3.3-py3-none-any.whl", hash = "sha256:84d9dd047ffa80596e0f246e2eab0b391788b0503584e8945f2368256d2735ff"}, + {file = "idna-3.3.tar.gz", hash = "sha256:9d643ff0a55b762d5cdb124b8eaa99c66322e2157b69160bc32796e824360e6d"}, +] +importlib-metadata = [ + {file = "importlib_metadata-4.11.3-py3-none-any.whl", hash = "sha256:1208431ca90a8cca1a6b8af391bb53c1a2db74e5d1cef6ddced95d4b2062edc6"}, + {file = "importlib_metadata-4.11.3.tar.gz", hash = "sha256:ea4c597ebf37142f827b8f39299579e31685c31d3a438b59f469406afd0f2539"}, +] +ipykernel = [ + {file = "ipykernel-6.13.0-py3-none-any.whl", hash = "sha256:2b0987af43c0d4b62cecb13c592755f599f96f29aafe36c01731aaa96df30d39"}, + {file = "ipykernel-6.13.0.tar.gz", hash = "sha256:0e28273e290858393e86e152b104e5506a79c13d25b951ac6eca220051b4be60"}, +] +ipython = [ + {file = "ipython-8.2.0-py3-none-any.whl", hash = "sha256:1b672bfd7a48d87ab203d9af8727a3b0174a4566b4091e9447c22fb63ea32857"}, + {file = "ipython-8.2.0.tar.gz", hash = "sha256:70e5eb132cac594a34b5f799bd252589009905f05104728aea6a403ec2519dc1"}, +] +ipython-genutils = [ + {file = "ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8"}, + {file = "ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"}, +] +ipywidgets = [ + {file = "ipywidgets-7.7.0-py2.py3-none-any.whl", hash = "sha256:e58ff58bc94d481e91ecb6e13a5cb96a87b6b8ade135e055603d0ca24593df38"}, + {file = "ipywidgets-7.7.0.tar.gz", hash = "sha256:ab4a5596855a88b83761921c768707d65e5847068139bc1729ddfe834703542a"}, +] +jedi = [ + {file = "jedi-0.18.1-py2.py3-none-any.whl", hash = "sha256:637c9635fcf47945ceb91cd7f320234a7be540ded6f3e99a50cb6febdfd1ba8d"}, + {file = "jedi-0.18.1.tar.gz", hash = "sha256:74137626a64a99c8eb6ae5832d99b3bdd7d29a3850fe2aa80a4126b2a7d949ab"}, +] +jinja2 = [ + {file = "Jinja2-3.1.1-py3-none-any.whl", hash = "sha256:539835f51a74a69f41b848a9645dbdc35b4f20a3b601e2d9a7e22947b15ff119"}, + {file = "Jinja2-3.1.1.tar.gz", hash = "sha256:640bed4bb501cbd17194b3cace1dc2126f5b619cf068a726b98192a0fde74ae9"}, +] +jsonschema = [ + {file = "jsonschema-4.4.0-py3-none-any.whl", hash = "sha256:77281a1f71684953ee8b3d488371b162419767973789272434bbc3f29d9c8823"}, + {file = "jsonschema-4.4.0.tar.gz", hash = "sha256:636694eb41b3535ed608fe04129f26542b59ed99808b4f688aa32dcf55317a83"}, +] +jupyter = [ + {file = "jupyter-1.0.0-py2.py3-none-any.whl", hash = "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78"}, + {file = "jupyter-1.0.0.tar.gz", hash = "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"}, + {file = "jupyter-1.0.0.zip", hash = "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7"}, +] +jupyter-client = [ + {file = "jupyter_client-7.3.0-py3-none-any.whl", hash = "sha256:671dd2d90d03f41716b09627a4eb06bb37875f92bf6563cc2ce4fe71c61c5cda"}, + {file = "jupyter_client-7.3.0.tar.gz", hash = "sha256:3bcc8e08a294d0fa9406e48cfe17e11ef0efdb7c504fe8cc335128e3ef8f3dac"}, +] +jupyter-console = [ + {file = "jupyter_console-6.4.3-py3-none-any.whl", hash = "sha256:e630bcb682c0088dda45688ad7c2424d4a825c8acf494cb036ced03ed0424841"}, + {file = "jupyter_console-6.4.3.tar.gz", hash = "sha256:55f32626b0be647a85e3217ddcdb22db69efc79e8b403b9771eb9ecc696019b5"}, +] +jupyter-core = [ + {file = "jupyter_core-4.10.0-py3-none-any.whl", hash = "sha256:e7f5212177af7ab34179690140f188aa9bf3d322d8155ed972cbded19f55b6f3"}, + {file = "jupyter_core-4.10.0.tar.gz", hash = "sha256:a6de44b16b7b31d7271130c71a6792c4040f077011961138afed5e5e73181aec"}, +] +jupyterlab-pygments = [ + {file = "jupyterlab_pygments-0.2.2-py2.py3-none-any.whl", hash = "sha256:2405800db07c9f770863bcf8049a529c3dd4d3e28536638bd7c1c01d2748309f"}, + {file = "jupyterlab_pygments-0.2.2.tar.gz", hash = "sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"}, +] +jupyterlab-widgets = [ + {file = "jupyterlab_widgets-1.1.0-py3-none-any.whl", hash = "sha256:c2a9bd3789f120f64d73268c066ed3b000c56bc1dda217be5cdc43e7b4ebad3f"}, + {file = "jupyterlab_widgets-1.1.0.tar.gz", hash = "sha256:d5f41bc1713795385f718d44dcba47e1e1473c6289f28a95aa6b2c0782ee372a"}, +] +keras = [ + {file = "keras-2.8.0-py2.py3-none-any.whl", hash = "sha256:744d39dc6577dcd80ff4a4d41549e92b77d6a17e0edd58a431d30656e29bc94e"}, +] +keras-preprocessing = [ + {file = "Keras_Preprocessing-1.1.2-py2.py3-none-any.whl", hash = "sha256:7b82029b130ff61cc99b55f3bd27427df4838576838c5b2f65940e4fcec99a7b"}, + {file = "Keras_Preprocessing-1.1.2.tar.gz", hash = "sha256:add82567c50c8bc648c14195bf544a5ce7c1f76761536956c3d2978970179ef3"}, +] +kiwisolver = [ + {file = "kiwisolver-1.4.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:6e395ece147f0692ca7cdb05a028d31b83b72c369f7b4a2c1798f4b96af1e3d8"}, + {file = "kiwisolver-1.4.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0b7f50a1a25361da3440f07c58cd1d79957c2244209e4f166990e770256b6b0b"}, + {file = "kiwisolver-1.4.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3c032c41ae4c3a321b43a3650e6ecc7406b99ff3e5279f24c9b310f41bc98479"}, + {file = "kiwisolver-1.4.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:1dcade8f6fe12a2bb4efe2cbe22116556e3b6899728d3b2a0d3b367db323eacc"}, + {file = "kiwisolver-1.4.2-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:0e45e780a74416ef2f173189ef4387e44b5494f45e290bcb1f03735faa6779bf"}, + {file = "kiwisolver-1.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d2bb56309fb75a811d81ed55fbe2208aa77a3a09ff5f546ca95e7bb5fac6eff"}, + {file = "kiwisolver-1.4.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:69b2d6c12f2ad5f55104a36a356192cfb680c049fe5e7c1f6620fc37f119cdc2"}, + {file = "kiwisolver-1.4.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:262c248c60f22c2b547683ad521e8a3db5909c71f679b93876921549107a0c24"}, + {file = "kiwisolver-1.4.2-cp310-cp310-win32.whl", hash = "sha256:1008346a7741620ab9cc6c96e8ad9b46f7a74ce839dbb8805ddf6b119d5fc6c2"}, + {file = "kiwisolver-1.4.2-cp310-cp310-win_amd64.whl", hash = "sha256:6ece2e12e4b57bc5646b354f436416cd2a6f090c1dadcd92b0ca4542190d7190"}, + {file = "kiwisolver-1.4.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b978afdb913ca953cf128d57181da2e8798e8b6153be866ae2a9c446c6162f40"}, + {file = "kiwisolver-1.4.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7f88c4b8e449908eeddb3bbd4242bd4dc2c7a15a7aa44bb33df893203f02dc2d"}, + {file = "kiwisolver-1.4.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e348f1904a4fab4153407f7ccc27e43b2a139752e8acf12e6640ba683093dd96"}, + {file = "kiwisolver-1.4.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c839bf28e45d7ddad4ae8f986928dbf5a6d42ff79760d54ec8ada8fb263e097c"}, + {file = "kiwisolver-1.4.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:8ae5a071185f1a93777c79a9a1e67ac46544d4607f18d07131eece08d415083a"}, + {file = "kiwisolver-1.4.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:c222f91a45da9e01a9bc4f760727ae49050f8e8345c4ff6525495f7a164c8973"}, + {file = "kiwisolver-1.4.2-cp37-cp37m-win32.whl", hash = "sha256:a4e8f072db1d6fb7a7cc05a6dbef8442c93001f4bb604f1081d8c2db3ca97159"}, + {file = "kiwisolver-1.4.2-cp37-cp37m-win_amd64.whl", hash = "sha256:be9a650890fb60393e60aacb65878c4a38bb334720aa5ecb1c13d0dac54dd73b"}, + {file = "kiwisolver-1.4.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:8ec2e55bf31b43aabe32089125dca3b46fdfe9f50afbf0756ae11e14c97b80ca"}, + {file = "kiwisolver-1.4.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d1078ba770d6165abed3d9a1be1f9e79b61515de1dd00d942fa53bba79f01ae"}, + {file = "kiwisolver-1.4.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cbb5eb4a2ea1ffec26268d49766cafa8f957fe5c1b41ad00733763fae77f9436"}, + {file = "kiwisolver-1.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e6cda72db409eefad6b021e8a4f964965a629f577812afc7860c69df7bdb84a"}, + {file = "kiwisolver-1.4.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b1605c7c38cc6a85212dfd6a641f3905a33412e49f7c003f35f9ac6d71f67720"}, + {file = "kiwisolver-1.4.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81237957b15469ea9151ec8ca08ce05656090ffabc476a752ef5ad7e2644c526"}, + {file = "kiwisolver-1.4.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:240009fdf4fa87844f805e23f48995537a8cb8f8c361e35fda6b5ac97fcb906f"}, + {file = "kiwisolver-1.4.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:240c2d51d098395c012ddbcb9bd7b3ba5de412a1d11840698859f51d0e643c4f"}, + {file = "kiwisolver-1.4.2-cp38-cp38-win32.whl", hash = "sha256:8b6086aa6936865962b2cee0e7aaecf01ab6778ce099288354a7229b4d9f1408"}, + {file = "kiwisolver-1.4.2-cp38-cp38-win_amd64.whl", hash = "sha256:0d98dca86f77b851350c250f0149aa5852b36572514d20feeadd3c6b1efe38d0"}, + {file = "kiwisolver-1.4.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:91eb4916271655dfe3a952249cb37a5c00b6ba68b4417ee15af9ba549b5ba61d"}, + {file = "kiwisolver-1.4.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fa4d97d7d2b2c082e67907c0b8d9f31b85aa5d3ba0d33096b7116f03f8061261"}, + {file = "kiwisolver-1.4.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:71469b5845b9876b8d3d252e201bef6f47bf7456804d2fbe9a1d6e19e78a1e65"}, + {file = "kiwisolver-1.4.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8ff3033e43e7ca1389ee59fb7ecb8303abb8713c008a1da49b00869e92e3dd7c"}, + {file = "kiwisolver-1.4.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:89b57c2984f4464840e4b768affeff6b6809c6150d1166938ade3e22fbe22db8"}, + {file = "kiwisolver-1.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffbdb9a96c536f0405895b5e21ee39ec579cb0ed97bdbd169ae2b55f41d73219"}, + {file = "kiwisolver-1.4.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8a830a03970c462d1a2311c90e05679da56d3bd8e78a4ba9985cb78ef7836c9f"}, + {file = "kiwisolver-1.4.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f74f2a13af201559e3d32b9ddfc303c94ae63d63d7f4326d06ce6fe67e7a8255"}, + {file = "kiwisolver-1.4.2-cp39-cp39-win32.whl", hash = "sha256:e677cc3626287f343de751e11b1e8a5b915a6ac897e8aecdbc996cd34de753a0"}, + {file = "kiwisolver-1.4.2-cp39-cp39-win_amd64.whl", hash = "sha256:b3e251e5c38ac623c5d786adb21477f018712f8c6fa54781bd38aa1c60b60fc2"}, + {file = "kiwisolver-1.4.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0c380bb5ae20d829c1a5473cfcae64267b73aaa4060adc091f6df1743784aae0"}, + {file = "kiwisolver-1.4.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:484f2a5f0307bc944bc79db235f41048bae4106ffa764168a068d88b644b305d"}, + {file = "kiwisolver-1.4.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e8afdf533b613122e4bbaf3c1e42c2a5e9e2d1dd3a0a017749a7658757cb377"}, + {file = "kiwisolver-1.4.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:42f6ef9b640deb6f7d438e0a371aedd8bef6ddfde30683491b2e6f568b4e884e"}, + {file = "kiwisolver-1.4.2.tar.gz", hash = "sha256:7f606d91b8a8816be476513a77fd30abe66227039bd6f8b406c348cb0247dcc9"}, +] +libclang = [ + {file = "libclang-14.0.1-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:a00c5f433af032979ac0cf03bcba59cf5247cb01fa04ef2380bf9668e84d50a9"}, + {file = "libclang-14.0.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:52634f51635e8fc710febde1d7c59d3756b14531bd9ab60df54397ccc08cc4a8"}, + {file = "libclang-14.0.1-py2.py3-none-manylinux1_x86_64.whl", hash = "sha256:02bacd219959601c627872f2c7c7090ce57cf6bd497618388e41813c7ee75a3a"}, + {file = "libclang-14.0.1-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:9d44b8e4b063ea4c7e78c925f083c05ab14440d63ed1bad13d4ca62d2908d277"}, + {file = "libclang-14.0.1-py2.py3-none-manylinux2014_armv7l.whl", hash = "sha256:7c7b8c7c82c0cdc088052c6b7b2be4a45b6b06f5f856e7e7058e598f05c09910"}, + {file = "libclang-14.0.1-py2.py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:58b9679868b2d6b5172ded26026c2f71306c4cabd6d15b93b597446fd677eb98"}, + {file = "libclang-14.0.1-py2.py3-none-win_amd64.whl", hash = "sha256:1a4f0d5959c801c975950926cffb9b45521c890d7c4b730d8a1f688d75b25de9"}, +] +markdown = [ + {file = "Markdown-3.3.6-py3-none-any.whl", hash = "sha256:9923332318f843411e9932237530df53162e29dc7a4e2b91e35764583c46c9a3"}, + {file = "Markdown-3.3.6.tar.gz", hash = "sha256:76df8ae32294ec39dcf89340382882dfa12975f87f45c3ed1ecdb1e8cefc7006"}, +] +markupsafe = [ + {file = "MarkupSafe-2.1.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:86b1f75c4e7c2ac2ccdaec2b9022845dbb81880ca318bb7a0a01fbf7813e3812"}, + {file = "MarkupSafe-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f121a1420d4e173a5d96e47e9a0c0dcff965afdf1626d28de1460815f7c4ee7a"}, + {file = "MarkupSafe-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a49907dd8420c5685cfa064a1335b6754b74541bbb3706c259c02ed65b644b3e"}, + {file = "MarkupSafe-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10c1bfff05d95783da83491be968e8fe789263689c02724e0c691933c52994f5"}, + {file = "MarkupSafe-2.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7bd98b796e2b6553da7225aeb61f447f80a1ca64f41d83612e6139ca5213aa4"}, + {file = "MarkupSafe-2.1.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b09bf97215625a311f669476f44b8b318b075847b49316d3e28c08e41a7a573f"}, + {file = "MarkupSafe-2.1.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:694deca8d702d5db21ec83983ce0bb4b26a578e71fbdbd4fdcd387daa90e4d5e"}, + {file = "MarkupSafe-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:efc1913fd2ca4f334418481c7e595c00aad186563bbc1ec76067848c7ca0a933"}, + {file = "MarkupSafe-2.1.1-cp310-cp310-win32.whl", hash = "sha256:4a33dea2b688b3190ee12bd7cfa29d39c9ed176bda40bfa11099a3ce5d3a7ac6"}, + {file = "MarkupSafe-2.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:dda30ba7e87fbbb7eab1ec9f58678558fd9a6b8b853530e176eabd064da81417"}, + {file = "MarkupSafe-2.1.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:671cd1187ed5e62818414afe79ed29da836dde67166a9fac6d435873c44fdd02"}, + {file = "MarkupSafe-2.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3799351e2336dc91ea70b034983ee71cf2f9533cdff7c14c90ea126bfd95d65a"}, + {file = "MarkupSafe-2.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591e9ecd94d7feb70c1cbd7be7b3ebea3f548870aa91e2732960fa4d57a37"}, + {file = "MarkupSafe-2.1.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6fbf47b5d3728c6aea2abb0589b5d30459e369baa772e0f37a0320185e87c980"}, + {file = "MarkupSafe-2.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d5ee4f386140395a2c818d149221149c54849dfcfcb9f1debfe07a8b8bd63f9a"}, + {file = "MarkupSafe-2.1.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:bcb3ed405ed3222f9904899563d6fc492ff75cce56cba05e32eff40e6acbeaa3"}, + {file = "MarkupSafe-2.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:e1c0b87e09fa55a220f058d1d49d3fb8df88fbfab58558f1198e08c1e1de842a"}, + {file = "MarkupSafe-2.1.1-cp37-cp37m-win32.whl", hash = "sha256:8dc1c72a69aa7e082593c4a203dcf94ddb74bb5c8a731e4e1eb68d031e8498ff"}, + {file = "MarkupSafe-2.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:97a68e6ada378df82bc9f16b800ab77cbf4b2fada0081794318520138c088e4a"}, + {file = "MarkupSafe-2.1.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e8c843bbcda3a2f1e3c2ab25913c80a3c5376cd00c6e8c4a86a89a28c8dc5452"}, + {file = "MarkupSafe-2.1.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0212a68688482dc52b2d45013df70d169f542b7394fc744c02a57374a4207003"}, + {file = "MarkupSafe-2.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e576a51ad59e4bfaac456023a78f6b5e6e7651dcd383bcc3e18d06f9b55d6d1"}, + {file = "MarkupSafe-2.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b9fe39a2ccc108a4accc2676e77da025ce383c108593d65cc909add5c3bd601"}, + {file = "MarkupSafe-2.1.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:96e37a3dc86e80bf81758c152fe66dbf60ed5eca3d26305edf01892257049925"}, + {file = "MarkupSafe-2.1.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6d0072fea50feec76a4c418096652f2c3238eaa014b2f94aeb1d56a66b41403f"}, + {file = "MarkupSafe-2.1.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:089cf3dbf0cd6c100f02945abeb18484bd1ee57a079aefd52cffd17fba910b88"}, + {file = "MarkupSafe-2.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6a074d34ee7a5ce3effbc526b7083ec9731bb3cbf921bbe1d3005d4d2bdb3a63"}, + {file = "MarkupSafe-2.1.1-cp38-cp38-win32.whl", hash = "sha256:421be9fbf0ffe9ffd7a378aafebbf6f4602d564d34be190fc19a193232fd12b1"}, + {file = "MarkupSafe-2.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:fc7b548b17d238737688817ab67deebb30e8073c95749d55538ed473130ec0c7"}, + {file = "MarkupSafe-2.1.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e04e26803c9c3851c931eac40c695602c6295b8d432cbe78609649ad9bd2da8a"}, + {file = "MarkupSafe-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b87db4360013327109564f0e591bd2a3b318547bcef31b468a92ee504d07ae4f"}, + {file = "MarkupSafe-2.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99a2a507ed3ac881b975a2976d59f38c19386d128e7a9a18b7df6fff1fd4c1d6"}, + {file = "MarkupSafe-2.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56442863ed2b06d19c37f94d999035e15ee982988920e12a5b4ba29b62ad1f77"}, + {file = "MarkupSafe-2.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ce11ee3f23f79dbd06fb3d63e2f6af7b12db1d46932fe7bd8afa259a5996603"}, + {file = "MarkupSafe-2.1.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:33b74d289bd2f5e527beadcaa3f401e0df0a89927c1559c8566c066fa4248ab7"}, + {file = "MarkupSafe-2.1.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:43093fb83d8343aac0b1baa75516da6092f58f41200907ef92448ecab8825135"}, + {file = "MarkupSafe-2.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8e3dcf21f367459434c18e71b2a9532d96547aef8a871872a5bd69a715c15f96"}, + {file = "MarkupSafe-2.1.1-cp39-cp39-win32.whl", hash = "sha256:d4306c36ca495956b6d568d276ac11fdd9c30a36f1b6eb928070dc5360b22e1c"}, + {file = "MarkupSafe-2.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:46d00d6cfecdde84d40e572d63735ef81423ad31184100411e6e3388d405e247"}, + {file = "MarkupSafe-2.1.1.tar.gz", hash = "sha256:7f91197cc9e48f989d12e4e6fbc46495c446636dfc81b9ccf50bb0ec74b91d4b"}, +] +matplotlib = [ + {file = "matplotlib-3.5.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:456cc8334f6d1124e8ff856b42d2cc1c84335375a16448189999496549f7182b"}, + {file = "matplotlib-3.5.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8a77906dc2ef9b67407cec0bdbf08e3971141e535db888974a915be5e1e3efc6"}, + {file = "matplotlib-3.5.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8e70ae6475cfd0fad3816dcbf6cac536dc6f100f7474be58d59fa306e6e768a4"}, + {file = "matplotlib-3.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53273c5487d1c19c3bc03b9eb82adaf8456f243b97ed79d09dded747abaf1235"}, + {file = "matplotlib-3.5.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e3b6f3fd0d8ca37861c31e9a7cab71a0ef14c639b4c95654ea1dd153158bf0df"}, + {file = "matplotlib-3.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8c87cdaf06fd7b2477f68909838ff4176f105064a72ca9d24d3f2a29f73d393"}, + {file = "matplotlib-3.5.1-cp310-cp310-win32.whl", hash = "sha256:e2f28a07b4f82abb40267864ad7b3a4ed76f1b1663e81c7efc84a9b9248f672f"}, + {file = "matplotlib-3.5.1-cp310-cp310-win_amd64.whl", hash = "sha256:d70a32ee1f8b55eed3fd4e892f0286df8cccc7e0475c11d33b5d0a148f5c7599"}, + {file = "matplotlib-3.5.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:68fa30cec89b6139dc559ed6ef226c53fd80396da1919a1b5ef672c911aaa767"}, + {file = "matplotlib-3.5.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e3484d8455af3fdb0424eae1789af61f6a79da0c80079125112fd5c1b604218"}, + {file = "matplotlib-3.5.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e293b16cf303fe82995e41700d172a58a15efc5331125d08246b520843ef21ee"}, + {file = "matplotlib-3.5.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:e3520a274a0e054e919f5b3279ee5dbccf5311833819ccf3399dab7c83e90a25"}, + {file = "matplotlib-3.5.1-cp37-cp37m-win32.whl", hash = "sha256:2252bfac85cec7af4a67e494bfccf9080bcba8a0299701eab075f48847cca907"}, + {file = "matplotlib-3.5.1-cp37-cp37m-win_amd64.whl", hash = "sha256:abf67e05a1b7f86583f6ebd01f69b693b9c535276f4e943292e444855870a1b8"}, + {file = "matplotlib-3.5.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6c094e4bfecd2fa7f9adffd03d8abceed7157c928c2976899de282f3600f0a3d"}, + {file = "matplotlib-3.5.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:506b210cc6e66a0d1c2bb765d055f4f6bc2745070fb1129203b67e85bbfa5c18"}, + {file = "matplotlib-3.5.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b04fc29bcef04d4e2d626af28d9d892be6aba94856cb46ed52bcb219ceac8943"}, + {file = "matplotlib-3.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:577ed20ec9a18d6bdedb4616f5e9e957b4c08563a9f985563a31fd5b10564d2a"}, + {file = "matplotlib-3.5.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e486f60db0cd1c8d68464d9484fd2a94011c1ac8593d765d0211f9daba2bd535"}, + {file = "matplotlib-3.5.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:b71f3a7ca935fc759f2aed7cec06cfe10bc3100fadb5dbd9c435b04e557971e1"}, + {file = "matplotlib-3.5.1-cp38-cp38-win32.whl", hash = "sha256:d24e5bb8028541ce25e59390122f5e48c8506b7e35587e5135efcb6471b4ac6c"}, + {file = "matplotlib-3.5.1-cp38-cp38-win_amd64.whl", hash = "sha256:778d398c4866d8e36ee3bf833779c940b5f57192fa0a549b3ad67bc4c822771b"}, + {file = "matplotlib-3.5.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bb1c613908f11bac270bc7494d68b1ef6e7c224b7a4204d5dacf3522a41e2bc3"}, + {file = "matplotlib-3.5.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:edf5e4e1d5fb22c18820e8586fb867455de3b109c309cb4fce3aaed85d9468d1"}, + {file = "matplotlib-3.5.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:40e0d7df05e8efe60397c69b467fc8f87a2affeb4d562fe92b72ff8937a2b511"}, + {file = "matplotlib-3.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7a350ca685d9f594123f652ba796ee37219bf72c8e0fc4b471473d87121d6d34"}, + {file = "matplotlib-3.5.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3e66497cd990b1a130e21919b004da2f1dc112132c01ac78011a90a0f9229778"}, + {file = "matplotlib-3.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:87900c67c0f1728e6db17c6809ec05c025c6624dcf96a8020326ea15378fe8e7"}, + {file = "matplotlib-3.5.1-cp39-cp39-win32.whl", hash = "sha256:b8a4fb2a0c5afbe9604f8a91d7d0f27b1832c3e0b5e365f95a13015822b4cd65"}, + {file = "matplotlib-3.5.1-cp39-cp39-win_amd64.whl", hash = "sha256:fe8d40c434a8e2c68d64c6d6a04e77f21791a93ff6afe0dce169597c110d3079"}, + {file = "matplotlib-3.5.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:34a1fc29f8f96e78ec57a5eff5e8d8b53d3298c3be6df61e7aa9efba26929522"}, + {file = "matplotlib-3.5.1-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:b19a761b948e939a9e20173aaae76070025f0024fc8f7ba08bef22a5c8573afc"}, + {file = "matplotlib-3.5.1-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6803299cbf4665eca14428d9e886de62e24f4223ac31ab9c5d6d5339a39782c7"}, + {file = "matplotlib-3.5.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:14334b9902ec776461c4b8c6516e26b450f7ebe0b3ef8703bf5cdfbbaecf774a"}, + {file = "matplotlib-3.5.1.tar.gz", hash = "sha256:b2e9810e09c3a47b73ce9cab5a72243a1258f61e7900969097a817232246ce1c"}, +] +matplotlib-inline = [ + {file = "matplotlib-inline-0.1.3.tar.gz", hash = "sha256:a04bfba22e0d1395479f866853ec1ee28eea1485c1d69a6faf00dc3e24ff34ee"}, + {file = "matplotlib_inline-0.1.3-py3-none-any.whl", hash = "sha256:aed605ba3b72462d64d475a21a9296f400a19c4f74a31b59103d2a99ffd5aa5c"}, +] +mistune = [ + {file = "mistune-0.8.4-py2.py3-none-any.whl", hash = "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4"}, + {file = "mistune-0.8.4.tar.gz", hash = "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e"}, +] +mypy-extensions = [ + {file = "mypy_extensions-0.4.3-py2.py3-none-any.whl", hash = "sha256:090fedd75945a69ae91ce1303b5824f428daf5a028d2f6ab8a299250a846f15d"}, + {file = "mypy_extensions-0.4.3.tar.gz", hash = "sha256:2d82818f5bb3e369420cb3c4060a7970edba416647068eb4c5343488a6c604a8"}, +] +nbclient = [ + {file = "nbclient-0.6.0-py3-none-any.whl", hash = "sha256:2eed35fc954716cdf0a01ea8cbdd9f9316761479008570059e2f5de29e139423"}, + {file = "nbclient-0.6.0.tar.gz", hash = "sha256:3f89a403c6badf24d2855a455b69a80985b3b27e04111243fdb6a88a28d27031"}, +] +nbconvert = [ + {file = "nbconvert-6.5.0-py3-none-any.whl", hash = "sha256:c56dd0b8978a1811a5654f74c727ff16ca87dd5a43abd435a1c49b840fcd8360"}, + {file = "nbconvert-6.5.0.tar.gz", hash = "sha256:223e46e27abe8596b8aed54301fadbba433b7ffea8196a68fd7b1ff509eee99d"}, +] +nbformat = [ + {file = "nbformat-5.3.0-py3-none-any.whl", hash = "sha256:38856d97de49e8292e2d5d8f595e9d26f02abfd87e075d450af4511870b40538"}, + {file = "nbformat-5.3.0.tar.gz", hash = "sha256:fcc5ab8cb74e20b19570b5be809e2dba9b82836fd2761a89066ad43394ba29f5"}, +] +nest-asyncio = [ + {file = "nest_asyncio-1.5.5-py3-none-any.whl", hash = "sha256:b98e3ec1b246135e4642eceffa5a6c23a3ab12c82ff816a92c612d68205813b2"}, + {file = "nest_asyncio-1.5.5.tar.gz", hash = "sha256:e442291cd942698be619823a17a86a5759eabe1f8613084790de189fe9e16d65"}, +] +notebook = [ + {file = "notebook-6.4.11-py3-none-any.whl", hash = "sha256:b4a6baf2eba21ce67a0ca11a793d1781b06b8078f34d06c710742e55f3eee505"}, + {file = "notebook-6.4.11.tar.gz", hash = "sha256:709b1856a564fe53054796c80e17a67262071c86bfbdfa6b96aaa346113c555a"}, +] +numpy = [ + {file = "numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:92bfa69cfbdf7dfc3040978ad09a48091143cffb778ec3b03fa170c494118d75"}, + {file = "numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8251ed96f38b47b4295b1ae51631de7ffa8260b5b087808ef09a39a9d66c97ab"}, + {file = "numpy-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48a3aecd3b997bf452a2dedb11f4e79bc5bfd21a1d4cc760e703c31d57c84b3e"}, + {file = "numpy-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3bae1a2ed00e90b3ba5f7bd0a7c7999b55d609e0c54ceb2b076a25e345fa9f4"}, + {file = "numpy-1.22.3-cp310-cp310-win32.whl", hash = "sha256:f950f8845b480cffe522913d35567e29dd381b0dc7e4ce6a4a9f9156417d2430"}, + {file = "numpy-1.22.3-cp310-cp310-win_amd64.whl", hash = "sha256:08d9b008d0156c70dc392bb3ab3abb6e7a711383c3247b410b39962263576cd4"}, + {file = "numpy-1.22.3-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:201b4d0552831f7250a08d3b38de0d989d6f6e4658b709a02a73c524ccc6ffce"}, + {file = "numpy-1.22.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f8c1f39caad2c896bc0018f699882b345b2a63708008be29b1f355ebf6f933fe"}, + {file = "numpy-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:568dfd16224abddafb1cbcce2ff14f522abe037268514dd7e42c6776a1c3f8e5"}, + {file = "numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ca688e1b9b95d80250bca34b11a05e389b1420d00e87a0d12dc45f131f704a1"}, + {file = "numpy-1.22.3-cp38-cp38-win32.whl", hash = "sha256:e7927a589df200c5e23c57970bafbd0cd322459aa7b1ff73b7c2e84d6e3eae62"}, + {file = "numpy-1.22.3-cp38-cp38-win_amd64.whl", hash = "sha256:07a8c89a04997625236c5ecb7afe35a02af3896c8aa01890a849913a2309c676"}, + {file = "numpy-1.22.3-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:2c10a93606e0b4b95c9b04b77dc349b398fdfbda382d2a39ba5a822f669a0123"}, + {file = "numpy-1.22.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fade0d4f4d292b6f39951b6836d7a3c7ef5b2347f3c420cd9820a1d90d794802"}, + {file = "numpy-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5bfb1bb598e8229c2d5d48db1860bcf4311337864ea3efdbe1171fb0c5da515d"}, + {file = "numpy-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97098b95aa4e418529099c26558eeb8486e66bd1e53a6b606d684d0c3616b168"}, + {file = "numpy-1.22.3-cp39-cp39-win32.whl", hash = "sha256:fdf3c08bce27132395d3c3ba1503cac12e17282358cb4bddc25cc46b0aca07aa"}, + {file = "numpy-1.22.3-cp39-cp39-win_amd64.whl", hash = "sha256:639b54cdf6aa4f82fe37ebf70401bbb74b8508fddcf4797f9fe59615b8c5813a"}, + {file = "numpy-1.22.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c34ea7e9d13a70bf2ab64a2532fe149a9aced424cd05a2c4ba662fd989e3e45f"}, + {file = "numpy-1.22.3.zip", hash = "sha256:dbc7601a3b7472d559dc7b933b18b4b66f9aa7452c120e87dfb33d02008c8a18"}, +] +oauthlib = [ + {file = "oauthlib-3.2.0-py3-none-any.whl", hash = "sha256:6db33440354787f9b7f3a6dbd4febf5d0f93758354060e802f6c06cb493022fe"}, + {file = "oauthlib-3.2.0.tar.gz", hash = "sha256:23a8208d75b902797ea29fd31fa80a15ed9dc2c6c16fe73f5d346f83f6fa27a2"}, +] +opt-einsum = [ + {file = "opt_einsum-3.3.0-py3-none-any.whl", hash = "sha256:2455e59e3947d3c275477df7f5205b30635e266fe6dc300e3d9f9646bfcea147"}, + {file = "opt_einsum-3.3.0.tar.gz", hash = "sha256:59f6475f77bbc37dcf7cd748519c0ec60722e91e63ca114e68821c0c54a46549"}, +] +packaging = [ + {file = "packaging-21.3-py3-none-any.whl", hash = "sha256:ef103e05f519cdc783ae24ea4e2e0f508a9c99b2d4969652eed6a2e1ea5bd522"}, + {file = "packaging-21.3.tar.gz", hash = "sha256:dd47c42927d89ab911e606518907cc2d3a1f38bbd026385970643f9c5b8ecfeb"}, +] +pandas = [ + {file = "pandas-1.4.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:be67c782c4f1b1f24c2f16a157e12c2693fd510f8df18e3287c77f33d124ed07"}, + {file = "pandas-1.4.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5a206afa84ed20e07603f50d22b5f0db3fb556486d8c2462d8bc364831a4b417"}, + {file = "pandas-1.4.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0010771bd9223f7afe5f051eb47c4a49534345dfa144f2f5470b27189a4dd3b5"}, + {file = "pandas-1.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3228198333dd13c90b6434ddf61aa6d57deaca98cf7b654f4ad68a2db84f8cfe"}, + {file = "pandas-1.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b79af3a69e5175c6fa7b4e046b21a646c8b74e92c6581a9d825687d92071b51"}, + {file = "pandas-1.4.2-cp310-cp310-win_amd64.whl", hash = "sha256:5586cc95692564b441f4747c47c8a9746792e87b40a4680a2feb7794defb1ce3"}, + {file = "pandas-1.4.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:061609334a8182ab500a90fe66d46f6f387de62d3a9cb9aa7e62e3146c712167"}, + {file = "pandas-1.4.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b8134651258bce418cb79c71adeff0a44090c98d955f6953168ba16cc285d9f7"}, + {file = "pandas-1.4.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:df82739e00bb6daf4bba4479a40f38c718b598a84654cbd8bb498fd6b0aa8c16"}, + {file = "pandas-1.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:385c52e85aaa8ea6a4c600a9b2821181a51f8be0aee3af6f2dcb41dafc4fc1d0"}, + {file = "pandas-1.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:295872bf1a09758aba199992c3ecde455f01caf32266d50abc1a073e828a7b9d"}, + {file = "pandas-1.4.2-cp38-cp38-win32.whl", hash = "sha256:95c1e422ced0199cf4a34385ff124b69412c4bc912011ce895582bee620dfcaa"}, + {file = "pandas-1.4.2-cp38-cp38-win_amd64.whl", hash = "sha256:5c54ea4ef3823108cd4ec7fb27ccba4c3a775e0f83e39c5e17f5094cb17748bc"}, + {file = "pandas-1.4.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c072c7f06b9242c855ed8021ff970c0e8f8b10b35e2640c657d2a541c5950f59"}, + {file = "pandas-1.4.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f549097993744ff8c41b5e8f2f0d3cbfaabe89b4ae32c8c08ead6cc535b80139"}, + {file = "pandas-1.4.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ff08a14ef21d94cdf18eef7c569d66f2e24e0bc89350bcd7d243dd804e3b5eb2"}, + {file = "pandas-1.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c5bf555b6b0075294b73965adaafb39cf71c312e38c5935c93d78f41c19828a"}, + {file = "pandas-1.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:51649ef604a945f781105a6d2ecf88db7da0f4868ac5d45c51cb66081c4d9c73"}, + {file = "pandas-1.4.2-cp39-cp39-win32.whl", hash = "sha256:d0d4f13e4be7ce89d7057a786023c461dd9370040bdb5efa0a7fe76b556867a0"}, + {file = "pandas-1.4.2-cp39-cp39-win_amd64.whl", hash = "sha256:09d8be7dd9e1c4c98224c4dfe8abd60d145d934e9fc1f5f411266308ae683e6a"}, + {file = "pandas-1.4.2.tar.gz", hash = "sha256:92bc1fc585f1463ca827b45535957815b7deb218c549b7c18402c322c7549a12"}, +] +pandocfilters = [ + {file = "pandocfilters-1.5.0-py2.py3-none-any.whl", hash = "sha256:33aae3f25fd1a026079f5d27bdd52496f0e0803b3469282162bafdcbdf6ef14f"}, + {file = "pandocfilters-1.5.0.tar.gz", hash = "sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38"}, +] +parso = [ + {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, + {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, +] +pathspec = [ + {file = "pathspec-0.9.0-py2.py3-none-any.whl", hash = "sha256:7d15c4ddb0b5c802d161efc417ec1a2558ea2653c2e8ad9c19098201dc1c993a"}, + {file = "pathspec-0.9.0.tar.gz", hash = "sha256:e564499435a2673d586f6b2130bb5b95f04a3ba06f81b8f895b651a3c76aabb1"}, +] +pexpect = [ + {file = "pexpect-4.8.0-py2.py3-none-any.whl", hash = "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937"}, + {file = "pexpect-4.8.0.tar.gz", hash = "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c"}, +] +pickleshare = [ + {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, + {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, +] +pillow = [ + {file = "Pillow-9.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:af79d3fde1fc2e33561166d62e3b63f0cc3e47b5a3a2e5fea40d4917754734ea"}, + {file = "Pillow-9.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:55dd1cf09a1fd7c7b78425967aacae9b0d70125f7d3ab973fadc7b5abc3de652"}, + {file = "Pillow-9.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:66822d01e82506a19407d1afc104c3fcea3b81d5eb11485e593ad6b8492f995a"}, + {file = "Pillow-9.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a5eaf3b42df2bcda61c53a742ee2c6e63f777d0e085bbc6b2ab7ed57deb13db7"}, + {file = "Pillow-9.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01ce45deec9df310cbbee11104bae1a2a43308dd9c317f99235b6d3080ddd66e"}, + {file = "Pillow-9.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:aea7ce61328e15943d7b9eaca87e81f7c62ff90f669116f857262e9da4057ba3"}, + {file = "Pillow-9.1.0-cp310-cp310-win32.whl", hash = "sha256:7a053bd4d65a3294b153bdd7724dce864a1d548416a5ef61f6d03bf149205160"}, + {file = "Pillow-9.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:97bda660702a856c2c9e12ec26fc6d187631ddfd896ff685814ab21ef0597033"}, + {file = "Pillow-9.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:21dee8466b42912335151d24c1665fcf44dc2ee47e021d233a40c3ca5adae59c"}, + {file = "Pillow-9.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b6d4050b208c8ff886fd3db6690bf04f9a48749d78b41b7a5bf24c236ab0165"}, + {file = "Pillow-9.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5cfca31ab4c13552a0f354c87fbd7f162a4fafd25e6b521bba93a57fe6a3700a"}, + {file = "Pillow-9.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ed742214068efa95e9844c2d9129e209ed63f61baa4d54dbf4cf8b5e2d30ccf2"}, + {file = "Pillow-9.1.0-cp37-cp37m-win32.whl", hash = "sha256:c9efef876c21788366ea1f50ecb39d5d6f65febe25ad1d4c0b8dff98843ac244"}, + {file = "Pillow-9.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:de344bcf6e2463bb25179d74d6e7989e375f906bcec8cb86edb8b12acbc7dfef"}, + {file = "Pillow-9.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:17869489de2fce6c36690a0c721bd3db176194af5f39249c1ac56d0bb0fcc512"}, + {file = "Pillow-9.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:25023a6209a4d7c42154073144608c9a71d3512b648a2f5d4465182cb93d3477"}, + {file = "Pillow-9.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8782189c796eff29dbb37dd87afa4ad4d40fc90b2742704f94812851b725964b"}, + {file = "Pillow-9.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:463acf531f5d0925ca55904fa668bb3461c3ef6bc779e1d6d8a488092bdee378"}, + {file = "Pillow-9.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3f42364485bfdab19c1373b5cd62f7c5ab7cc052e19644862ec8f15bb8af289e"}, + {file = "Pillow-9.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:3fddcdb619ba04491e8f771636583a7cc5a5051cd193ff1aa1ee8616d2a692c5"}, + {file = "Pillow-9.1.0-cp38-cp38-win32.whl", hash = "sha256:4fe29a070de394e449fd88ebe1624d1e2d7ddeed4c12e0b31624561b58948d9a"}, + {file = "Pillow-9.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:c24f718f9dd73bb2b31a6201e6db5ea4a61fdd1d1c200f43ee585fc6dcd21b34"}, + {file = "Pillow-9.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fb89397013cf302f282f0fc998bb7abf11d49dcff72c8ecb320f76ea6e2c5717"}, + {file = "Pillow-9.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c870193cce4b76713a2b29be5d8327c8ccbe0d4a49bc22968aa1e680930f5581"}, + {file = "Pillow-9.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69e5ddc609230d4408277af135c5b5c8fe7a54b2bdb8ad7c5100b86b3aab04c6"}, + {file = "Pillow-9.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35be4a9f65441d9982240e6966c1eaa1c654c4e5e931eaf580130409e31804d4"}, + {file = "Pillow-9.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:82283af99c1c3a5ba1da44c67296d5aad19f11c535b551a5ae55328a317ce331"}, + {file = "Pillow-9.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a325ac71914c5c043fa50441b36606e64a10cd262de12f7a179620f579752ff8"}, + {file = "Pillow-9.1.0-cp39-cp39-win32.whl", hash = "sha256:a598d8830f6ef5501002ae85c7dbfcd9c27cc4efc02a1989369303ba85573e58"}, + {file = "Pillow-9.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:0c51cb9edac8a5abd069fd0758ac0a8bfe52c261ee0e330f363548aca6893595"}, + {file = "Pillow-9.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a336a4f74baf67e26f3acc4d61c913e378e931817cd1e2ef4dfb79d3e051b481"}, + {file = "Pillow-9.1.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb1b89b11256b5b6cad5e7593f9061ac4624f7651f7a8eb4dfa37caa1dfaa4d0"}, + {file = "Pillow-9.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:255c9d69754a4c90b0ee484967fc8818c7ff8311c6dddcc43a4340e10cd1636a"}, + {file = "Pillow-9.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5a3ecc026ea0e14d0ad7cd990ea7f48bfcb3eb4271034657dc9d06933c6629a7"}, + {file = "Pillow-9.1.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5b0ff59785d93b3437c3703e3c64c178aabada51dea2a7f2c5eccf1bcf565a3"}, + {file = "Pillow-9.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c7110ec1701b0bf8df569a7592a196c9d07c764a0a74f65471ea56816f10e2c8"}, + {file = "Pillow-9.1.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:8d79c6f468215d1a8415aa53d9868a6b40c4682165b8cb62a221b1baa47db458"}, + {file = "Pillow-9.1.0.tar.gz", hash = "sha256:f401ed2bbb155e1ade150ccc63db1a4f6c1909d3d378f7d1235a44e90d75fb97"}, +] +platformdirs = [ + {file = "platformdirs-2.5.2-py3-none-any.whl", hash = "sha256:027d8e83a2d7de06bbac4e5ef7e023c02b863d7ea5d079477e722bb41ab25788"}, + {file = "platformdirs-2.5.2.tar.gz", hash = "sha256:58c8abb07dcb441e6ee4b11d8df0ac856038f944ab98b7be6b27b2a3c7feef19"}, +] +prometheus-client = [ + {file = "prometheus_client-0.14.1-py3-none-any.whl", hash = "sha256:522fded625282822a89e2773452f42df14b5a8e84a86433e3f8a189c1d54dc01"}, + {file = "prometheus_client-0.14.1.tar.gz", hash = "sha256:5459c427624961076277fdc6dc50540e2bacb98eebde99886e59ec55ed92093a"}, +] +prompt-toolkit = [ + {file = "prompt_toolkit-3.0.29-py3-none-any.whl", hash = "sha256:62291dad495e665fca0bda814e342c69952086afb0f4094d0893d357e5c78752"}, + {file = "prompt_toolkit-3.0.29.tar.gz", hash = "sha256:bd640f60e8cecd74f0dc249713d433ace2ddc62b65ee07f96d358e0b152b6ea7"}, +] +protobuf = [ + {file = "protobuf-3.20.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3cc797c9d15d7689ed507b165cd05913acb992d78b379f6014e013f9ecb20996"}, + {file = "protobuf-3.20.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:ff8d8fa42675249bb456f5db06c00de6c2f4c27a065955917b28c4f15978b9c3"}, + {file = "protobuf-3.20.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cd68be2559e2a3b84f517fb029ee611546f7812b1fdd0aa2ecc9bc6ec0e4fdde"}, + {file = "protobuf-3.20.1-cp310-cp310-win32.whl", hash = "sha256:9016d01c91e8e625141d24ec1b20fed584703e527d28512aa8c8707f105a683c"}, + {file = "protobuf-3.20.1-cp310-cp310-win_amd64.whl", hash = "sha256:32ca378605b41fd180dfe4e14d3226386d8d1b002ab31c969c366549e66a2bb7"}, + {file = "protobuf-3.20.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:9be73ad47579abc26c12024239d3540e6b765182a91dbc88e23658ab71767153"}, + {file = "protobuf-3.20.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:097c5d8a9808302fb0da7e20edf0b8d4703274d140fd25c5edabddcde43e081f"}, + {file = "protobuf-3.20.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e250a42f15bf9d5b09fe1b293bdba2801cd520a9f5ea2d7fb7536d4441811d20"}, + {file = "protobuf-3.20.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:cdee09140e1cd184ba9324ec1df410e7147242b94b5f8b0c64fc89e38a8ba531"}, + {file = "protobuf-3.20.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:af0ebadc74e281a517141daad9d0f2c5d93ab78e9d455113719a45a49da9db4e"}, + {file = "protobuf-3.20.1-cp37-cp37m-win32.whl", hash = "sha256:755f3aee41354ae395e104d62119cb223339a8f3276a0cd009ffabfcdd46bb0c"}, + {file = "protobuf-3.20.1-cp37-cp37m-win_amd64.whl", hash = "sha256:62f1b5c4cd6c5402b4e2d63804ba49a327e0c386c99b1675c8a0fefda23b2067"}, + {file = "protobuf-3.20.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:06059eb6953ff01e56a25cd02cca1a9649a75a7e65397b5b9b4e929ed71d10cf"}, + {file = "protobuf-3.20.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:cb29edb9eab15742d791e1025dd7b6a8f6fcb53802ad2f6e3adcb102051063ab"}, + {file = "protobuf-3.20.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:69ccfdf3657ba59569c64295b7d51325f91af586f8d5793b734260dfe2e94e2c"}, + {file = "protobuf-3.20.1-cp38-cp38-win32.whl", hash = "sha256:dd5789b2948ca702c17027c84c2accb552fc30f4622a98ab5c51fcfe8c50d3e7"}, + {file = "protobuf-3.20.1-cp38-cp38-win_amd64.whl", hash = "sha256:77053d28427a29987ca9caf7b72ccafee011257561259faba8dd308fda9a8739"}, + {file = "protobuf-3.20.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6f50601512a3d23625d8a85b1638d914a0970f17920ff39cec63aaef80a93fb7"}, + {file = "protobuf-3.20.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:284f86a6207c897542d7e956eb243a36bb8f9564c1742b253462386e96c6b78f"}, + {file = "protobuf-3.20.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:7403941f6d0992d40161aa8bb23e12575637008a5a02283a930addc0508982f9"}, + {file = "protobuf-3.20.1-cp39-cp39-win32.whl", hash = "sha256:db977c4ca738dd9ce508557d4fce0f5aebd105e158c725beec86feb1f6bc20d8"}, + {file = "protobuf-3.20.1-cp39-cp39-win_amd64.whl", hash = "sha256:7e371f10abe57cee5021797126c93479f59fccc9693dafd6bd5633ab67808a91"}, + {file = "protobuf-3.20.1-py2.py3-none-any.whl", hash = "sha256:adfc6cf69c7f8c50fd24c793964eef18f0ac321315439d94945820612849c388"}, + {file = "protobuf-3.20.1.tar.gz", hash = "sha256:adc31566d027f45efe3f44eeb5b1f329da43891634d61c75a5944e9be6dd42c9"}, +] +psutil = [ + {file = "psutil-5.9.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:55ce319452e3d139e25d6c3f85a1acf12d1607ddedea5e35fb47a552c051161b"}, + {file = "psutil-5.9.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:7336292a13a80eb93c21f36bde4328aa748a04b68c13d01dfddd67fc13fd0618"}, + {file = "psutil-5.9.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:cb8d10461c1ceee0c25a64f2dd54872b70b89c26419e147a05a10b753ad36ec2"}, + {file = "psutil-5.9.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:7641300de73e4909e5d148e90cc3142fb890079e1525a840cf0dfd39195239fd"}, + {file = "psutil-5.9.0-cp27-none-win32.whl", hash = "sha256:ea42d747c5f71b5ccaa6897b216a7dadb9f52c72a0fe2b872ef7d3e1eacf3ba3"}, + {file = "psutil-5.9.0-cp27-none-win_amd64.whl", hash = "sha256:ef216cc9feb60634bda2f341a9559ac594e2eeaadd0ba187a4c2eb5b5d40b91c"}, + {file = "psutil-5.9.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90a58b9fcae2dbfe4ba852b57bd4a1dded6b990a33d6428c7614b7d48eccb492"}, + {file = "psutil-5.9.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ff0d41f8b3e9ebb6b6110057e40019a432e96aae2008951121ba4e56040b84f3"}, + {file = "psutil-5.9.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:742c34fff804f34f62659279ed5c5b723bb0195e9d7bd9907591de9f8f6558e2"}, + {file = "psutil-5.9.0-cp310-cp310-win32.whl", hash = "sha256:8293942e4ce0c5689821f65ce6522ce4786d02af57f13c0195b40e1edb1db61d"}, + {file = "psutil-5.9.0-cp310-cp310-win_amd64.whl", hash = "sha256:9b51917c1af3fa35a3f2dabd7ba96a2a4f19df3dec911da73875e1edaf22a40b"}, + {file = "psutil-5.9.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:e9805fed4f2a81de98ae5fe38b75a74c6e6ad2df8a5c479594c7629a1fe35f56"}, + {file = "psutil-5.9.0-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c51f1af02334e4b516ec221ee26b8fdf105032418ca5a5ab9737e8c87dafe203"}, + {file = "psutil-5.9.0-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32acf55cb9a8cbfb29167cd005951df81b567099295291bcfd1027365b36591d"}, + {file = "psutil-5.9.0-cp36-cp36m-win32.whl", hash = "sha256:e5c783d0b1ad6ca8a5d3e7b680468c9c926b804be83a3a8e95141b05c39c9f64"}, + {file = "psutil-5.9.0-cp36-cp36m-win_amd64.whl", hash = "sha256:d62a2796e08dd024b8179bd441cb714e0f81226c352c802fca0fd3f89eeacd94"}, + {file = "psutil-5.9.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3d00a664e31921009a84367266b35ba0aac04a2a6cad09c550a89041034d19a0"}, + {file = "psutil-5.9.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7779be4025c540d1d65a2de3f30caeacc49ae7a2152108adeaf42c7534a115ce"}, + {file = "psutil-5.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:072664401ae6e7c1bfb878c65d7282d4b4391f1bc9a56d5e03b5a490403271b5"}, + {file = "psutil-5.9.0-cp37-cp37m-win32.whl", hash = "sha256:df2c8bd48fb83a8408c8390b143c6a6fa10cb1a674ca664954de193fdcab36a9"}, + {file = "psutil-5.9.0-cp37-cp37m-win_amd64.whl", hash = "sha256:1d7b433519b9a38192dfda962dd8f44446668c009833e1429a52424624f408b4"}, + {file = "psutil-5.9.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c3400cae15bdb449d518545cbd5b649117de54e3596ded84aacabfbb3297ead2"}, + {file = "psutil-5.9.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b2237f35c4bbae932ee98902a08050a27821f8f6dfa880a47195e5993af4702d"}, + {file = "psutil-5.9.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1070a9b287846a21a5d572d6dddd369517510b68710fca56b0e9e02fd24bed9a"}, + {file = "psutil-5.9.0-cp38-cp38-win32.whl", hash = "sha256:76cebf84aac1d6da5b63df11fe0d377b46b7b500d892284068bacccf12f20666"}, + {file = "psutil-5.9.0-cp38-cp38-win_amd64.whl", hash = "sha256:3151a58f0fbd8942ba94f7c31c7e6b310d2989f4da74fcbf28b934374e9bf841"}, + {file = "psutil-5.9.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:539e429da49c5d27d5a58e3563886057f8fc3868a5547b4f1876d9c0f007bccf"}, + {file = "psutil-5.9.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58c7d923dc209225600aec73aa2c4ae8ea33b1ab31bc11ef8a5933b027476f07"}, + {file = "psutil-5.9.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3611e87eea393f779a35b192b46a164b1d01167c9d323dda9b1e527ea69d697d"}, + {file = "psutil-5.9.0-cp39-cp39-win32.whl", hash = "sha256:4e2fb92e3aeae3ec3b7b66c528981fd327fb93fd906a77215200404444ec1845"}, + {file = "psutil-5.9.0-cp39-cp39-win_amd64.whl", hash = "sha256:7d190ee2eaef7831163f254dc58f6d2e2a22e27382b936aab51c835fc080c3d3"}, + {file = "psutil-5.9.0.tar.gz", hash = "sha256:869842dbd66bb80c3217158e629d6fceaecc3a3166d3d1faee515b05dd26ca25"}, +] +ptyprocess = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] +pure-eval = [ + {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, + {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, +] +py = [ + {file = "py-1.11.0-py2.py3-none-any.whl", hash = "sha256:607c53218732647dff4acdfcd50cb62615cedf612e72d1724fb1a0cc6405b378"}, + {file = "py-1.11.0.tar.gz", hash = "sha256:51c75c4126074b472f746a24399ad32f6053d1b34b68d2fa41e558e6f4a98719"}, +] +pyasn1 = [ + {file = "pyasn1-0.4.8-py2.4.egg", hash = "sha256:fec3e9d8e36808a28efb59b489e4528c10ad0f480e57dcc32b4de5c9d8c9fdf3"}, + {file = "pyasn1-0.4.8-py2.5.egg", hash = "sha256:0458773cfe65b153891ac249bcf1b5f8f320b7c2ce462151f8fa74de8934becf"}, + {file = "pyasn1-0.4.8-py2.6.egg", hash = "sha256:5c9414dcfede6e441f7e8f81b43b34e834731003427e5b09e4e00e3172a10f00"}, + {file = "pyasn1-0.4.8-py2.7.egg", hash = "sha256:6e7545f1a61025a4e58bb336952c5061697da694db1cae97b116e9c46abcf7c8"}, + {file = "pyasn1-0.4.8-py2.py3-none-any.whl", hash = "sha256:39c7e2ec30515947ff4e87fb6f456dfc6e84857d34be479c9d4a4ba4bf46aa5d"}, + {file = "pyasn1-0.4.8-py3.1.egg", hash = "sha256:78fa6da68ed2727915c4767bb386ab32cdba863caa7dbe473eaae45f9959da86"}, + {file = "pyasn1-0.4.8-py3.2.egg", hash = "sha256:08c3c53b75eaa48d71cf8c710312316392ed40899cb34710d092e96745a358b7"}, + {file = "pyasn1-0.4.8-py3.3.egg", hash = "sha256:03840c999ba71680a131cfaee6fab142e1ed9bbd9c693e285cc6aca0d555e576"}, + {file = "pyasn1-0.4.8-py3.4.egg", hash = "sha256:7ab8a544af125fb704feadb008c99a88805126fb525280b2270bb25cc1d78a12"}, + {file = "pyasn1-0.4.8-py3.5.egg", hash = "sha256:e89bf84b5437b532b0803ba5c9a5e054d21fec423a89952a74f87fa2c9b7bce2"}, + {file = "pyasn1-0.4.8-py3.6.egg", hash = "sha256:014c0e9976956a08139dc0712ae195324a75e142284d5f87f1a87ee1b068a359"}, + {file = "pyasn1-0.4.8-py3.7.egg", hash = "sha256:99fcc3c8d804d1bc6d9a099921e39d827026409a58f2a720dcdb89374ea0c776"}, + {file = "pyasn1-0.4.8.tar.gz", hash = "sha256:aef77c9fb94a3ac588e87841208bdec464471d9871bd5050a287cc9a475cd0ba"}, +] +pyasn1-modules = [ + {file = "pyasn1-modules-0.2.8.tar.gz", hash = "sha256:905f84c712230b2c592c19470d3ca8d552de726050d1d1716282a1f6146be65e"}, + {file = "pyasn1_modules-0.2.8-py2.4.egg", hash = "sha256:0fe1b68d1e486a1ed5473f1302bd991c1611d319bba158e98b106ff86e1d7199"}, + {file = "pyasn1_modules-0.2.8-py2.5.egg", hash = "sha256:fe0644d9ab041506b62782e92b06b8c68cca799e1a9636ec398675459e031405"}, + {file = "pyasn1_modules-0.2.8-py2.6.egg", hash = "sha256:a99324196732f53093a84c4369c996713eb8c89d360a496b599fb1a9c47fc3eb"}, + {file = "pyasn1_modules-0.2.8-py2.7.egg", hash = "sha256:0845a5582f6a02bb3e1bde9ecfc4bfcae6ec3210dd270522fee602365430c3f8"}, + {file = "pyasn1_modules-0.2.8-py2.py3-none-any.whl", hash = "sha256:a50b808ffeb97cb3601dd25981f6b016cbb3d31fbf57a8b8a87428e6158d0c74"}, + {file = "pyasn1_modules-0.2.8-py3.1.egg", hash = "sha256:f39edd8c4ecaa4556e989147ebf219227e2cd2e8a43c7e7fcb1f1c18c5fd6a3d"}, + {file = "pyasn1_modules-0.2.8-py3.2.egg", hash = "sha256:b80486a6c77252ea3a3e9b1e360bc9cf28eaac41263d173c032581ad2f20fe45"}, + {file = "pyasn1_modules-0.2.8-py3.3.egg", hash = "sha256:65cebbaffc913f4fe9e4808735c95ea22d7a7775646ab690518c056784bc21b4"}, + {file = "pyasn1_modules-0.2.8-py3.4.egg", hash = "sha256:15b7c67fabc7fc240d87fb9aabf999cf82311a6d6fb2c70d00d3d0604878c811"}, + {file = "pyasn1_modules-0.2.8-py3.5.egg", hash = "sha256:426edb7a5e8879f1ec54a1864f16b882c2837bfd06eee62f2c982315ee2473ed"}, + {file = "pyasn1_modules-0.2.8-py3.6.egg", hash = "sha256:cbac4bc38d117f2a49aeedec4407d23e8866ea4ac27ff2cf7fb3e5b570df19e0"}, + {file = "pyasn1_modules-0.2.8-py3.7.egg", hash = "sha256:c29a5e5cc7a3f05926aff34e097e84f8589cd790ce0ed41b67aed6857b26aafd"}, +] +pycparser = [ + {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, + {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, +] +pygments = [ + {file = "Pygments-2.12.0-py3-none-any.whl", hash = "sha256:dc9c10fb40944260f6ed4c688ece0cd2048414940f1cea51b8b226318411c519"}, + {file = "Pygments-2.12.0.tar.gz", hash = "sha256:5eb116118f9612ff1ee89ac96437bb6b49e8f04d8a13b514ba26f620208e26eb"}, +] +pyparsing = [ + {file = "pyparsing-3.0.8-py3-none-any.whl", hash = "sha256:ef7b523f6356f763771559412c0d7134753f037822dad1b16945b7b846f7ad06"}, + {file = "pyparsing-3.0.8.tar.gz", hash = "sha256:7bf433498c016c4314268d95df76c81b842a4cb2b276fa3312cfb1e1d85f6954"}, +] +pyrsistent = [ + {file = "pyrsistent-0.18.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:df46c854f490f81210870e509818b729db4488e1f30f2a1ce1698b2295a878d1"}, + {file = "pyrsistent-0.18.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d45866ececf4a5fff8742c25722da6d4c9e180daa7b405dc0a2a2790d668c26"}, + {file = "pyrsistent-0.18.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4ed6784ceac462a7d6fcb7e9b663e93b9a6fb373b7f43594f9ff68875788e01e"}, + {file = "pyrsistent-0.18.1-cp310-cp310-win32.whl", hash = "sha256:e4f3149fd5eb9b285d6bfb54d2e5173f6a116fe19172686797c056672689daf6"}, + {file = "pyrsistent-0.18.1-cp310-cp310-win_amd64.whl", hash = "sha256:636ce2dc235046ccd3d8c56a7ad54e99d5c1cd0ef07d9ae847306c91d11b5fec"}, + {file = "pyrsistent-0.18.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e92a52c166426efbe0d1ec1332ee9119b6d32fc1f0bbfd55d5c1088070e7fc1b"}, + {file = "pyrsistent-0.18.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7a096646eab884bf8bed965bad63ea327e0d0c38989fc83c5ea7b8a87037bfc"}, + {file = "pyrsistent-0.18.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cdfd2c361b8a8e5d9499b9082b501c452ade8bbf42aef97ea04854f4a3f43b22"}, + {file = "pyrsistent-0.18.1-cp37-cp37m-win32.whl", hash = "sha256:7ec335fc998faa4febe75cc5268a9eac0478b3f681602c1f27befaf2a1abe1d8"}, + {file = "pyrsistent-0.18.1-cp37-cp37m-win_amd64.whl", hash = "sha256:6455fc599df93d1f60e1c5c4fe471499f08d190d57eca040c0ea182301321286"}, + {file = "pyrsistent-0.18.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fd8da6d0124efa2f67d86fa70c851022f87c98e205f0594e1fae044e7119a5a6"}, + {file = "pyrsistent-0.18.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bfe2388663fd18bd8ce7db2c91c7400bf3e1a9e8bd7d63bf7e77d39051b85ec"}, + {file = "pyrsistent-0.18.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0e3e1fcc45199df76053026a51cc59ab2ea3fc7c094c6627e93b7b44cdae2c8c"}, + {file = "pyrsistent-0.18.1-cp38-cp38-win32.whl", hash = "sha256:b568f35ad53a7b07ed9b1b2bae09eb15cdd671a5ba5d2c66caee40dbf91c68ca"}, + {file = "pyrsistent-0.18.1-cp38-cp38-win_amd64.whl", hash = "sha256:d1b96547410f76078eaf66d282ddca2e4baae8964364abb4f4dcdde855cd123a"}, + {file = "pyrsistent-0.18.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:f87cc2863ef33c709e237d4b5f4502a62a00fab450c9e020892e8e2ede5847f5"}, + {file = "pyrsistent-0.18.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6bc66318fb7ee012071b2792024564973ecc80e9522842eb4e17743604b5e045"}, + {file = "pyrsistent-0.18.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:914474c9f1d93080338ace89cb2acee74f4f666fb0424896fcfb8d86058bf17c"}, + {file = "pyrsistent-0.18.1-cp39-cp39-win32.whl", hash = "sha256:1b34eedd6812bf4d33814fca1b66005805d3640ce53140ab8bbb1e2651b0d9bc"}, + {file = "pyrsistent-0.18.1-cp39-cp39-win_amd64.whl", hash = "sha256:e24a828f57e0c337c8d8bb9f6b12f09dfdf0273da25fda9e314f0b684b415a07"}, + {file = "pyrsistent-0.18.1.tar.gz", hash = "sha256:d4d61f8b993a7255ba714df3aca52700f8125289f84f704cf80916517c46eb96"}, +] +python-dateutil = [ + {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, + {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, +] +pytz = [ + {file = "pytz-2022.1-py2.py3-none-any.whl", hash = "sha256:e68985985296d9a66a881eb3193b0906246245294a881e7c8afe623866ac6a5c"}, + {file = "pytz-2022.1.tar.gz", hash = "sha256:1e760e2fe6a8163bc0b3d9a19c4f84342afa0a2affebfaa84b01b978a02ecaa7"}, +] +pywin32 = [ + {file = "pywin32-303-cp310-cp310-win32.whl", hash = "sha256:6fed4af057039f309263fd3285d7b8042d41507343cd5fa781d98fcc5b90e8bb"}, + {file = "pywin32-303-cp310-cp310-win_amd64.whl", hash = "sha256:51cb52c5ec6709f96c3f26e7795b0bf169ee0d8395b2c1d7eb2c029a5008ed51"}, + {file = "pywin32-303-cp311-cp311-win32.whl", hash = "sha256:d9b5d87ca944eb3aa4cd45516203ead4b37ab06b8b777c54aedc35975dec0dee"}, + {file = "pywin32-303-cp311-cp311-win_amd64.whl", hash = "sha256:fcf44032f5b14fcda86028cdf49b6ebdaea091230eb0a757282aa656e4732439"}, + {file = "pywin32-303-cp36-cp36m-win32.whl", hash = "sha256:aad484d52ec58008ca36bd4ad14a71d7dd0a99db1a4ca71072213f63bf49c7d9"}, + {file = "pywin32-303-cp36-cp36m-win_amd64.whl", hash = "sha256:2a09632916b6bb231ba49983fe989f2f625cea237219530e81a69239cd0c4559"}, + {file = "pywin32-303-cp37-cp37m-win32.whl", hash = "sha256:b1675d82bcf6dbc96363fca747bac8bff6f6e4a447a4287ac652aa4b9adc796e"}, + {file = "pywin32-303-cp37-cp37m-win_amd64.whl", hash = "sha256:c268040769b48a13367221fced6d4232ed52f044ffafeda247bd9d2c6bdc29ca"}, + {file = "pywin32-303-cp38-cp38-win32.whl", hash = "sha256:5f9ec054f5a46a0f4dfd72af2ce1372f3d5a6e4052af20b858aa7df2df7d355b"}, + {file = "pywin32-303-cp38-cp38-win_amd64.whl", hash = "sha256:793bf74fce164bcffd9d57bb13c2c15d56e43c9542a7b9687b4fccf8f8a41aba"}, + {file = "pywin32-303-cp39-cp39-win32.whl", hash = "sha256:7d3271c98434617a11921c5ccf74615794d97b079e22ed7773790822735cc352"}, + {file = "pywin32-303-cp39-cp39-win_amd64.whl", hash = "sha256:79cbb862c11b9af19bcb682891c1b91942ec2ff7de8151e2aea2e175899cda34"}, +] +pywinpty = [ + {file = "pywinpty-2.0.5-cp310-none-win_amd64.whl", hash = "sha256:f86c76e2881c37e69678cbbf178109f8da1fa8584db24d58e1b9369b0276cfcb"}, + {file = "pywinpty-2.0.5-cp37-none-win_amd64.whl", hash = "sha256:ff9b52f182650cfdf3db1b264a6fe0963eb9d996a7a1fa843ac406c1e32111f8"}, + {file = "pywinpty-2.0.5-cp38-none-win_amd64.whl", hash = "sha256:651ee1467bd7eb6f64d44dbc954b7ab7d15ab6d8adacc4e13299692c67c5d5d2"}, + {file = "pywinpty-2.0.5-cp39-none-win_amd64.whl", hash = "sha256:e59a508ae78374febada3e53b5bbc90b5ad07ae68cbfd72a2e965f9793ae04f3"}, + {file = "pywinpty-2.0.5.tar.gz", hash = "sha256:e125d3f1804d8804952b13e33604ad2ca8b9b2cac92b27b521c005d1604794f8"}, +] +pyzmq = [ + {file = "pyzmq-22.3.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:6b217b8f9dfb6628f74b94bdaf9f7408708cb02167d644edca33f38746ca12dd"}, + {file = "pyzmq-22.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:2841997a0d85b998cbafecb4183caf51fd19c4357075dfd33eb7efea57e4c149"}, + {file = "pyzmq-22.3.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f89468059ebc519a7acde1ee50b779019535db8dcf9b8c162ef669257fef7a93"}, + {file = "pyzmq-22.3.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ea12133df25e3a6918718fbb9a510c6ee5d3fdd5a346320421aac3882f4feeea"}, + {file = "pyzmq-22.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c532fd68b93998aab92356be280deec5de8f8fe59cd28763d2cc8a58747b7f"}, + {file = "pyzmq-22.3.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:f907c7359ce8bf7f7e63c82f75ad0223384105f5126f313400b7e8004d9b33c3"}, + {file = "pyzmq-22.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:902319cfe23366595d3fa769b5b751e6ee6750a0a64c5d9f757d624b2ac3519e"}, + {file = "pyzmq-22.3.0-cp310-cp310-win32.whl", hash = "sha256:67db33bea0a29d03e6eeec55a8190e033318cee3cbc732ba8fd939617cbf762d"}, + {file = "pyzmq-22.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:7661fc1d5cb73481cf710a1418a4e1e301ed7d5d924f91c67ba84b2a1b89defd"}, + {file = "pyzmq-22.3.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:79244b9e97948eaf38695f4b8e6fc63b14b78cc37f403c6642ba555517ac1268"}, + {file = "pyzmq-22.3.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ab888624ed68930442a3f3b0b921ad7439c51ba122dbc8c386e6487a658e4a4e"}, + {file = "pyzmq-22.3.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:18cd854b423fce44951c3a4d3e686bac8f1243d954f579e120a1714096637cc0"}, + {file = "pyzmq-22.3.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:de8df0684398bd74ad160afdc2a118ca28384ac6f5e234eb0508858d8d2d9364"}, + {file = "pyzmq-22.3.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:62bcade20813796c426409a3e7423862d50ff0639f5a2a95be4b85b09a618666"}, + {file = "pyzmq-22.3.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:ea5a79e808baef98c48c884effce05c31a0698c1057de8fc1c688891043c1ce1"}, + {file = "pyzmq-22.3.0-cp36-cp36m-win32.whl", hash = "sha256:3c1895c95be92600233e476fe283f042e71cf8f0b938aabf21b7aafa62a8dac9"}, + {file = "pyzmq-22.3.0-cp36-cp36m-win_amd64.whl", hash = "sha256:851977788b9caa8ed011f5f643d3ee8653af02c5fc723fa350db5125abf2be7b"}, + {file = "pyzmq-22.3.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b4ebed0977f92320f6686c96e9e8dd29eed199eb8d066936bac991afc37cbb70"}, + {file = "pyzmq-22.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42abddebe2c6a35180ca549fadc7228d23c1e1f76167c5ebc8a936b5804ea2df"}, + {file = "pyzmq-22.3.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c1e41b32d6f7f9c26bc731a8b529ff592f31fc8b6ef2be9fa74abd05c8a342d7"}, + {file = "pyzmq-22.3.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:be4e0f229cf3a71f9ecd633566bd6f80d9fa6afaaff5489492be63fe459ef98c"}, + {file = "pyzmq-22.3.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:08c4e315a76ef26eb833511ebf3fa87d182152adf43dedee8d79f998a2162a0b"}, + {file = "pyzmq-22.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:badb868fff14cfd0e200eaa845887b1011146a7d26d579aaa7f966c203736b92"}, + {file = "pyzmq-22.3.0-cp37-cp37m-win32.whl", hash = "sha256:7c58f598d9fcc52772b89a92d72bf8829c12d09746a6d2c724c5b30076c1f11d"}, + {file = "pyzmq-22.3.0-cp37-cp37m-win_amd64.whl", hash = "sha256:2b97502c16a5ec611cd52410bdfaab264997c627a46b0f98d3f666227fd1ea2d"}, + {file = "pyzmq-22.3.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d728b08448e5ac3e4d886b165385a262883c34b84a7fe1166277fe675e1c197a"}, + {file = "pyzmq-22.3.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:480b9931bfb08bf8b094edd4836271d4d6b44150da051547d8c7113bf947a8b0"}, + {file = "pyzmq-22.3.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7dc09198e4073e6015d9a8ea093fc348d4e59de49382476940c3dd9ae156fba8"}, + {file = "pyzmq-22.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ca6cd58f62a2751728016d40082008d3b3412a7f28ddfb4a2f0d3c130f69e74"}, + {file = "pyzmq-22.3.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:468bd59a588e276961a918a3060948ae68f6ff5a7fa10bb2f9160c18fe341067"}, + {file = "pyzmq-22.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c88fa7410e9fc471e0858638f403739ee869924dd8e4ae26748496466e27ac59"}, + {file = "pyzmq-22.3.0-cp38-cp38-win32.whl", hash = "sha256:c0f84360dcca3481e8674393bdf931f9f10470988f87311b19d23cda869bb6b7"}, + {file = "pyzmq-22.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:f762442bab706fd874064ca218b33a1d8e40d4938e96c24dafd9b12e28017f45"}, + {file = "pyzmq-22.3.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:954e73c9cd4d6ae319f1c936ad159072b6d356a92dcbbabfd6e6204b9a79d356"}, + {file = "pyzmq-22.3.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f43b4a2e6218371dd4f41e547bd919ceeb6ebf4abf31a7a0669cd11cd91ea973"}, + {file = "pyzmq-22.3.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:acebba1a23fb9d72b42471c3771b6f2f18dcd46df77482612054bd45c07dfa36"}, + {file = "pyzmq-22.3.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cf98fd7a6c8aaa08dbc699ffae33fd71175696d78028281bc7b832b26f00ca57"}, + {file = "pyzmq-22.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d072f7dfbdb184f0786d63bda26e8a0882041b1e393fbe98940395f7fab4c5e2"}, + {file = "pyzmq-22.3.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:53f4fd13976789ffafedd4d46f954c7bb01146121812b72b4ddca286034df966"}, + {file = "pyzmq-22.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d1b5d457acbadcf8b27561deeaa386b0217f47626b29672fa7bd31deb6e91e1b"}, + {file = "pyzmq-22.3.0-cp39-cp39-win32.whl", hash = "sha256:e6a02cf7271ee94674a44f4e62aa061d2d049001c844657740e156596298b70b"}, + {file = "pyzmq-22.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:d3dcb5548ead4f1123851a5ced467791f6986d68c656bc63bfff1bf9e36671e2"}, + {file = "pyzmq-22.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3a4c9886d61d386b2b493377d980f502186cd71d501fffdba52bd2a0880cef4f"}, + {file = "pyzmq-22.3.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:80e043a89c6cadefd3a0712f8a1322038e819ebe9dbac7eca3bce1721bcb63bf"}, + {file = "pyzmq-22.3.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:1621e7a2af72cced1f6ec8ca8ca91d0f76ac236ab2e8828ac8fe909512d566cb"}, + {file = "pyzmq-22.3.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:d6157793719de168b199194f6b6173f0ccd3bf3499e6870fac17086072e39115"}, + {file = "pyzmq-22.3.0.tar.gz", hash = "sha256:8eddc033e716f8c91c6a2112f0a8ebc5e00532b4a6ae1eb0ccc48e027f9c671c"}, +] +qtconsole = [ + {file = "qtconsole-5.3.0-py3-none-any.whl", hash = "sha256:75f2ded876444454edcb5a53262149e33b53db3a4a53116b7c3df52830905b0f"}, + {file = "qtconsole-5.3.0.tar.gz", hash = "sha256:8e3520fdc75e46abc4cc6cffeca16fa2652754109b8ae839fa28e27d1eba5625"}, +] +qtpy = [ + {file = "QtPy-2.0.1-py3-none-any.whl", hash = "sha256:d93f2c98e97387fcc9d623d509772af5b6c15ab9d8f9f4c5dfbad9a73ad34812"}, + {file = "QtPy-2.0.1.tar.gz", hash = "sha256:adfd073ffbd2de81dc7aaa0b983499ef5c59c96adcfdcc9dea60d42ca885eb8f"}, +] +requests = [ + {file = "requests-2.27.1-py2.py3-none-any.whl", hash = "sha256:f22fa1e554c9ddfd16e6e41ac79759e17be9e492b3587efa038054674760e72d"}, + {file = "requests-2.27.1.tar.gz", hash = "sha256:68d7c56fd5a8999887728ef304a6d12edc7be74f1cfa47714fc8b414525c9a61"}, +] +requests-oauthlib = [ + {file = "requests-oauthlib-1.3.1.tar.gz", hash = "sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a"}, + {file = "requests_oauthlib-1.3.1-py2.py3-none-any.whl", hash = "sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5"}, +] +rsa = [ + {file = "rsa-4.8-py3-none-any.whl", hash = "sha256:95c5d300c4e879ee69708c428ba566c59478fd653cc3a22243eeb8ed846950bb"}, + {file = "rsa-4.8.tar.gz", hash = "sha256:5c6bd9dc7a543b7fe4304a631f8a8a3b674e2bbfc49c2ae96200cdbe55df6b17"}, +] +scipy = [ + {file = "scipy-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:87b01c7d5761e8a266a0fbdb9d88dcba0910d63c1c671bdb4d99d29f469e9e03"}, + {file = "scipy-1.8.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:ae3e327da323d82e918e593460e23babdce40d7ab21490ddf9fc06dec6b91a18"}, + {file = "scipy-1.8.0-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl", hash = "sha256:16e09ef68b352d73befa8bcaf3ebe25d3941fe1a58c82909d5589856e6bc8174"}, + {file = "scipy-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c17a1878d00a5dd2797ccd73623ceca9d02375328f6218ee6d921e1325e61aff"}, + {file = "scipy-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:937d28722f13302febde29847bbe554b89073fbb924a30475e5ed7b028898b5f"}, + {file = "scipy-1.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:8f4d059a97b29c91afad46b1737274cb282357a305a80bdd9e8adf3b0ca6a3f0"}, + {file = "scipy-1.8.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:38aa39b6724cb65271e469013aeb6f2ce66fd44f093e241c28a9c6bc64fd79ed"}, + {file = "scipy-1.8.0-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:559a8a4c03a5ba9fe3232f39ed24f86457e4f3f6c0abbeae1fb945029f092720"}, + {file = "scipy-1.8.0-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl", hash = "sha256:f4a6d3b9f9797eb2d43938ac2c5d96d02aed17ef170c8b38f11798717523ddba"}, + {file = "scipy-1.8.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:92b2c2af4183ed09afb595709a8ef5783b2baf7f41e26ece24e1329c109691a7"}, + {file = "scipy-1.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a279e27c7f4566ef18bab1b1e2c37d168e365080974758d107e7d237d3f0f484"}, + {file = "scipy-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad5be4039147c808e64f99c0e8a9641eb5d2fa079ff5894dcd8240e94e347af4"}, + {file = "scipy-1.8.0-cp38-cp38-win32.whl", hash = "sha256:3d9dd6c8b93a22bf9a3a52d1327aca7e092b1299fb3afc4f89e8eba381be7b59"}, + {file = "scipy-1.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:5e73343c5e0d413c1f937302b2e04fb07872f5843041bcfd50699aef6e95e399"}, + {file = "scipy-1.8.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:de2e80ee1d925984c2504812a310841c241791c5279352be4707cdcd7c255039"}, + {file = "scipy-1.8.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:c2bae431d127bf0b1da81fc24e4bba0a84d058e3a96b9dd6475dfcb3c5e8761e"}, + {file = "scipy-1.8.0-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl", hash = "sha256:723b9f878095ed994756fa4ee3060c450e2db0139c5ba248ee3f9628bd64e735"}, + {file = "scipy-1.8.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:011d4386b53b933142f58a652aa0f149c9b9242abd4f900b9f4ea5fbafc86b89"}, + {file = "scipy-1.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e6f0cd9c0bd374ef834ee1e0f0999678d49dcc400ea6209113d81528958f97c7"}, + {file = "scipy-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3720d0124aced49f6f2198a6900304411dbbeed12f56951d7c66ebef05e3df6"}, + {file = "scipy-1.8.0-cp39-cp39-win32.whl", hash = "sha256:3d573228c10a3a8c32b9037be982e6440e411b443a6267b067cac72f690b8d56"}, + {file = "scipy-1.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:bb7088e89cd751acf66195d2f00cf009a1ea113f3019664032d9075b1e727b6c"}, + {file = "scipy-1.8.0.tar.gz", hash = "sha256:31d4f2d6b724bc9a98e527b5849b8a7e589bf1ea630c33aa563eda912c9ff0bd"}, +] +send2trash = [ + {file = "Send2Trash-1.8.0-py3-none-any.whl", hash = "sha256:f20eaadfdb517eaca5ce077640cb261c7d2698385a6a0f072a4a5447fd49fa08"}, + {file = "Send2Trash-1.8.0.tar.gz", hash = "sha256:d2c24762fd3759860a0aff155e45871447ea58d2be6bdd39b5c8f966a0c99c2d"}, +] +setuptools-scm = [ + {file = "setuptools_scm-6.4.2-py3-none-any.whl", hash = "sha256:acea13255093849de7ccb11af9e1fb8bde7067783450cee9ef7a93139bddf6d4"}, + {file = "setuptools_scm-6.4.2.tar.gz", hash = "sha256:6833ac65c6ed9711a4d5d2266f8024cfa07c533a0e55f4c12f6eff280a5a9e30"}, +] +shapely = [ + {file = "Shapely-1.8.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7c9e3400b716c51ba43eea1678c28272580114e009b6c78cdd00c44df3e325fa"}, + {file = "Shapely-1.8.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ce0b5c5f7acbccf98b3460eecaa40e9b18272b2a734f74fcddf1d7696e047e95"}, + {file = "Shapely-1.8.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3a40bf497b57a6625b83996aed10ce2233bca0e5471b8af771b186d681433ac5"}, + {file = "Shapely-1.8.2-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6bdc7728f1e5df430d8c588661f79f1eed4a2728c8b689e12707cfec217f68f8"}, + {file = "Shapely-1.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a60861b5ca2c488ebcdc706eca94d325c26d1567921c74acc83df5e6913590c7"}, + {file = "Shapely-1.8.2-cp310-cp310-win32.whl", hash = "sha256:840be3f27a1152851c54b968f2e12d718c9f13b7acd51c482e58a70f60f29e31"}, + {file = "Shapely-1.8.2-cp310-cp310-win_amd64.whl", hash = "sha256:c60f3758212ec480675b820b13035dda8af8f7cc560d2cc67999b2717fb8faef"}, + {file = "Shapely-1.8.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:56413f7d32c70b63f239eb0865b24c0c61029e38757de456cc4ab3c416559a0b"}, + {file = "Shapely-1.8.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:256bdf8080bb7bb504d47b2c76919ecebab9708cc1b26266b3ec32b42448f642"}, + {file = "Shapely-1.8.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c0a0d7752b145343838bd36ed09382d85f5befe426832d7384c5b051c147acbd"}, + {file = "Shapely-1.8.2-cp36-cp36m-win32.whl", hash = "sha256:62056e64b12b6d483d79f8e34bf058d2fe734d51c9227c1713705399434eff3b"}, + {file = "Shapely-1.8.2-cp36-cp36m-win_amd64.whl", hash = "sha256:8e3ed52a081da58eb4a885c157c594876633dbd4eb283f13ba5bf39c82322d76"}, + {file = "Shapely-1.8.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:7c8eda45085ccdd7f9805ea4a93fdd5eb0b6039a61d5f0cefb960487e6dc17a1"}, + {file = "Shapely-1.8.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:beee3949ddf381735049cfa6532fb234d5d20a5be910c4f2fb7c7295fd7960e3"}, + {file = "Shapely-1.8.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e07b0bd2a0e61a8afd4d1c1bd23f3550b711f01274ffb53de99358fd781eefd8"}, + {file = "Shapely-1.8.2-cp37-cp37m-win32.whl", hash = "sha256:78966332a89813b237de357a03f612fd451a871fe6e26c12b6b71645fe8eee39"}, + {file = "Shapely-1.8.2-cp37-cp37m-win_amd64.whl", hash = "sha256:8fe641f1f61b3d43dd61b5a85d2ef023e6e19bf8f204a5160a1cb1ec645cbc09"}, + {file = "Shapely-1.8.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:cec89a5617c0137f4678282e983c3d63bf838fb00cdf318cc555b4d8409f7130"}, + {file = "Shapely-1.8.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:68c8e18dc9dc8a198c3addc8c9596f64137101f566f04b96ecfca0b214cb8b12"}, + {file = "Shapely-1.8.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f12695662c3ad1e6031b3de98f191963d0f09de6d1a4988acd907405644032ba"}, + {file = "Shapely-1.8.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:15a856fbb588ad5d042784e00918c662902776452008c771ecba2ff615cd197a"}, + {file = "Shapely-1.8.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d74de394684d66e25e780b0359fda85be7766af85940fa2dfad728b1a815c71f"}, + {file = "Shapely-1.8.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3f3fac625690f01f35af665649e993f15f924e740b5c0ac0376900655815521"}, + {file = "Shapely-1.8.2-cp38-cp38-win32.whl", hash = "sha256:1d95842cc6bbbeab673061b63e70b07be9a375c15a60f4098f8fbd29f43af1b4"}, + {file = "Shapely-1.8.2-cp38-cp38-win_amd64.whl", hash = "sha256:a58e1f362f2091743e5e13212f5d5d16251a4bb63dd0ed587c652d3be9620d3a"}, + {file = "Shapely-1.8.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5254240eefc44139ab0d128faf671635d8bdd9c23955ee063d4d6b8f20073ae0"}, + {file = "Shapely-1.8.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:75042e8039c79dd01f102bb288beace9dc2f49fc44a2dea875f9b697aa8cd30d"}, + {file = "Shapely-1.8.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0c0fd457ce477b1dced507a72f1e2084c9191bfcb8a1e09886990ebd02acf024"}, + {file = "Shapely-1.8.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6fcb28836ae93809de1dde73c03c9c24bab0ba2b2bf419ddb2aeb72c96d110e9"}, + {file = "Shapely-1.8.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:44d2832c1b706bf43101fda92831a083467cc4b4923a7ed17319ab599c1025d8"}, + {file = "Shapely-1.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:137f1369630408024a62ff79a437a5657e6c5b76b9cd352dde704b425acdb298"}, + {file = "Shapely-1.8.2-cp39-cp39-win32.whl", hash = "sha256:2e02da2e988e74d61f15c720f9f613fab51942aae2dfeacdcb78eadece00e1f3"}, + {file = "Shapely-1.8.2-cp39-cp39-win_amd64.whl", hash = "sha256:3423299254deec075e79fb7dc7909d702104e4167149de7f45510c3a6342eeea"}, + {file = "Shapely-1.8.2.tar.gz", hash = "sha256:572af9d5006fd5e3213e37ee548912b0341fb26724d6dc8a4e3950c10197ebb6"}, +] +six = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] +soupsieve = [ + {file = "soupsieve-2.3.2.post1-py3-none-any.whl", hash = "sha256:3b2503d3c7084a42b1ebd08116e5f81aadfaea95863628c80a3b774a11b7c759"}, + {file = "soupsieve-2.3.2.post1.tar.gz", hash = "sha256:fc53893b3da2c33de295667a0e19f078c14bf86544af307354de5fcf12a3f30d"}, +] +stack-data = [ + {file = "stack_data-0.2.0-py3-none-any.whl", hash = "sha256:999762f9c3132308789affa03e9271bbbe947bf78311851f4d485d8402ed858e"}, + {file = "stack_data-0.2.0.tar.gz", hash = "sha256:45692d41bd633a9503a5195552df22b583caf16f0b27c4e58c98d88c8b648e12"}, +] +tensorboard = [ + {file = "tensorboard-2.8.0-py3-none-any.whl", hash = "sha256:65a338e4424e9079f2604923bdbe301792adce2ace1be68da6b3ddf005170def"}, +] +tensorboard-data-server = [ + {file = "tensorboard_data_server-0.6.1-py3-none-any.whl", hash = "sha256:809fe9887682d35c1f7d1f54f0f40f98bb1f771b14265b453ca051e2ce58fca7"}, + {file = "tensorboard_data_server-0.6.1-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:fa8cef9be4fcae2f2363c88176638baf2da19c5ec90addb49b1cde05c95c88ee"}, + {file = "tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl", hash = "sha256:d8237580755e58eff68d1f3abefb5b1e39ae5c8b127cc40920f9c4fb33f4b98a"}, +] +tensorboard-plugin-wit = [ + {file = "tensorboard_plugin_wit-1.8.1-py3-none-any.whl", hash = "sha256:ff26bdd583d155aa951ee3b152b3d0cffae8005dc697f72b44a8e8c2a77a8cbe"}, +] +tensorflow = [ + {file = "tensorflow-2.8.0-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:78c3ba2e0c952aa9eb388200f1923e40287f9357492a464188ca3043e35edc52"}, + {file = "tensorflow-2.8.0-cp310-cp310-manylinux2010_x86_64.whl", hash = "sha256:2a520538e77a52fb428acb05e300c960844fd1d2c3918ca8ca14127edba6f83b"}, + {file = "tensorflow-2.8.0-cp310-cp310-win_amd64.whl", hash = "sha256:b7170844ae6b048d82a9d7a61b2fa627f2e16cb829267bf0ce4b3a0de0a61054"}, + {file = "tensorflow-2.8.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:fa4a723368d5f748b6f4ec305cf7c26b98e4a6a8c2ce1425f8ae10383a37bcfc"}, + {file = "tensorflow-2.8.0-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:05fb161c6b2a6c4b8317a703a0a6d7f7aa6b5e3c6ea31bbc4f44ef96b89c3344"}, + {file = "tensorflow-2.8.0-cp37-cp37m-win_amd64.whl", hash = "sha256:291fa84f1022914580810ad76732fb254e44a8a609128e1c58873a12b2f81559"}, + {file = "tensorflow-2.8.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:dd0f9f113ebc21b73fcd349db1629e187b8686395b8146d100eb1706a943bbc0"}, + {file = "tensorflow-2.8.0-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:8489b4f1771e146f752b0eaeb57acf183bd07357e4550464e7dff18b3b656b5d"}, + {file = "tensorflow-2.8.0-cp38-cp38-win_amd64.whl", hash = "sha256:da38d4043185267e7316ae5dc98d18e89c8af4170859f64798e7a3607fd606e3"}, + {file = "tensorflow-2.8.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:52f225fecc688281b3ae2cba2b52d3ed6215ed4a3ffb686b9cfd09885ca65563"}, + {file = "tensorflow-2.8.0-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:9d91a989e5455ae713c03fd7236071ab3f232ad8ff2831f2658072933546091f"}, + {file = "tensorflow-2.8.0-cp39-cp39-win_amd64.whl", hash = "sha256:b360c13b3e58b9a5c0780cbdb6b549eea73f620275fa203f8508fe418ae02735"}, +] +tensorflow-io-gcs-filesystem = [ + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:b7aeae64dd4db1c8c0a4a7581af421fe16fd7704385017c6e4b89c041cef9830"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cbcf8c973637140dceaacfe04b0e4a010f6d41d468cccfbf2e328fed7c6b3c46"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4307f25069f6afd7ecebbecd8603491b379af39b98ed74e5395282ef017ca5b2"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp310-cp310-win_amd64.whl", hash = "sha256:5ade6c5fadc067d576ff6b8b2d125ed7f60f4ecb6f9e6480b3cf28037cd74030"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:f62edcf9a44ebf178233a189cc8f8d7f07ae156a87123a29530e803159cc0a27"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:30b7489472d1f635df202b7f9910a00354dc791d3f4c8d99ae517f58e0cdbd12"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ae065451e915dcf00c730355ecd5a954e47593d71df5865f5224cd915fd8cb3"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp37-cp37m-win_amd64.whl", hash = "sha256:1d1de2dbed94fb3763b020cc31b79dc9185aafc3855976ac5d0ad10967143d3c"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:8cab4ecb376a871bc98124dfee9be53a7387808a7f65438f8adecc1b31e4d228"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:a6ce3f487b43b2e8e3e5e0cf9bdeb5cd67c68f5932ea74be0cdba099e3f13050"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7cfa39909e9e7f408ec2ed19ced70566ef10211eb18dec63e5ad6d42f88a3976"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp38-cp38-win_amd64.whl", hash = "sha256:643dd1b3e8942d381efc04013d8b4cd694ba558446eea9a9877096182bdb85e5"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:3da161baf459980960c2130a5085d8fb3391d4d69f52bc1787c45210218a8576"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:660e4e837057c0ab96661f56a401bb14e8bc58c3a0d57c54383c3dc7c1a06119"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:53611b66d7604976af2410502c05e1230fd1d856a18c5b391266d0bc9a1a14a6"}, + {file = "tensorflow_io_gcs_filesystem-0.25.0-cp39-cp39-win_amd64.whl", hash = "sha256:e7b15047cce35cd16fe4708ebe384c3a0077201cd2745e20df4204683c84e464"}, +] +termcolor = [ + {file = "termcolor-1.1.0.tar.gz", hash = "sha256:1d6d69ce66211143803fbc56652b41d73b4a400a2891d7bf7a1cdf4c02de613b"}, +] +terminado = [ + {file = "terminado-0.13.3-py3-none-any.whl", hash = "sha256:874d4ea3183536c1782d13c7c91342ef0cf4e5ee1d53633029cbc972c8760bd8"}, + {file = "terminado-0.13.3.tar.gz", hash = "sha256:94d1cfab63525993f7d5c9b469a50a18d0cdf39435b59785715539dd41e36c0d"}, +] +tf-estimator-nightly = [ + {file = "tf_estimator_nightly-2.8.0.dev2021122109-py2.py3-none-any.whl", hash = "sha256:0065a04e396b2890bd19761fc1de7559ceafeba12839f8db2c7e7473afaaf612"}, +] +tinycss2 = [ + {file = "tinycss2-1.1.1-py3-none-any.whl", hash = "sha256:fe794ceaadfe3cf3e686b22155d0da5780dd0e273471a51846d0a02bc204fec8"}, + {file = "tinycss2-1.1.1.tar.gz", hash = "sha256:b2e44dd8883c360c35dd0d1b5aad0b610e5156c2cb3b33434634e539ead9d8bf"}, +] +tokenize-rt = [ + {file = "tokenize_rt-4.2.1-py2.py3-none-any.whl", hash = "sha256:08a27fa032a81cf45e8858d0ac706004fcd523e8463415ddf1442be38e204ea8"}, + {file = "tokenize_rt-4.2.1.tar.gz", hash = "sha256:0d4f69026fed520f8a1e0103aa36c406ef4661417f20ca643f913e33531b3b94"}, +] +tomli = [ + {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, + {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, +] +tornado = [ + {file = "tornado-6.1-cp35-cp35m-macosx_10_9_x86_64.whl", hash = "sha256:d371e811d6b156d82aa5f9a4e08b58debf97c302a35714f6f45e35139c332e32"}, + {file = "tornado-6.1-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:0d321a39c36e5f2c4ff12b4ed58d41390460f798422c4504e09eb5678e09998c"}, + {file = "tornado-6.1-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:9de9e5188a782be6b1ce866e8a51bc76a0fbaa0e16613823fc38e4fc2556ad05"}, + {file = "tornado-6.1-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:61b32d06ae8a036a6607805e6720ef00a3c98207038444ba7fd3d169cd998910"}, + {file = "tornado-6.1-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:3e63498f680547ed24d2c71e6497f24bca791aca2fe116dbc2bd0ac7f191691b"}, + {file = "tornado-6.1-cp35-cp35m-manylinux2014_aarch64.whl", hash = "sha256:6c77c9937962577a6a76917845d06af6ab9197702a42e1346d8ae2e76b5e3675"}, + {file = "tornado-6.1-cp35-cp35m-win32.whl", hash = "sha256:6286efab1ed6e74b7028327365cf7346b1d777d63ab30e21a0f4d5b275fc17d5"}, + {file = "tornado-6.1-cp35-cp35m-win_amd64.whl", hash = "sha256:fa2ba70284fa42c2a5ecb35e322e68823288a4251f9ba9cc77be04ae15eada68"}, + {file = "tornado-6.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:0a00ff4561e2929a2c37ce706cb8233b7907e0cdc22eab98888aca5dd3775feb"}, + {file = "tornado-6.1-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:748290bf9112b581c525e6e6d3820621ff020ed95af6f17fedef416b27ed564c"}, + {file = "tornado-6.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:e385b637ac3acaae8022e7e47dfa7b83d3620e432e3ecb9a3f7f58f150e50921"}, + {file = "tornado-6.1-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:25ad220258349a12ae87ede08a7b04aca51237721f63b1808d39bdb4b2164558"}, + {file = "tornado-6.1-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:65d98939f1a2e74b58839f8c4dab3b6b3c1ce84972ae712be02845e65391ac7c"}, + {file = "tornado-6.1-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:e519d64089b0876c7b467274468709dadf11e41d65f63bba207e04217f47c085"}, + {file = "tornado-6.1-cp36-cp36m-win32.whl", hash = "sha256:b87936fd2c317b6ee08a5741ea06b9d11a6074ef4cc42e031bc6403f82a32575"}, + {file = "tornado-6.1-cp36-cp36m-win_amd64.whl", hash = "sha256:cc0ee35043162abbf717b7df924597ade8e5395e7b66d18270116f8745ceb795"}, + {file = "tornado-6.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:7250a3fa399f08ec9cb3f7b1b987955d17e044f1ade821b32e5f435130250d7f"}, + {file = "tornado-6.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:ed3ad863b1b40cd1d4bd21e7498329ccaece75db5a5bf58cd3c9f130843e7102"}, + {file = "tornado-6.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:dcef026f608f678c118779cd6591c8af6e9b4155c44e0d1bc0c87c036fb8c8c4"}, + {file = "tornado-6.1-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:70dec29e8ac485dbf57481baee40781c63e381bebea080991893cd297742b8fd"}, + {file = "tornado-6.1-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:d3f7594930c423fd9f5d1a76bee85a2c36fd8b4b16921cae7e965f22575e9c01"}, + {file = "tornado-6.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:3447475585bae2e77ecb832fc0300c3695516a47d46cefa0528181a34c5b9d3d"}, + {file = "tornado-6.1-cp37-cp37m-win32.whl", hash = "sha256:e7229e60ac41a1202444497ddde70a48d33909e484f96eb0da9baf8dc68541df"}, + {file = "tornado-6.1-cp37-cp37m-win_amd64.whl", hash = "sha256:cb5ec8eead331e3bb4ce8066cf06d2dfef1bfb1b2a73082dfe8a161301b76e37"}, + {file = "tornado-6.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:20241b3cb4f425e971cb0a8e4ffc9b0a861530ae3c52f2b0434e6c1b57e9fd95"}, + {file = "tornado-6.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:c77da1263aa361938476f04c4b6c8916001b90b2c2fdd92d8d535e1af48fba5a"}, + {file = "tornado-6.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:fba85b6cd9c39be262fcd23865652920832b61583de2a2ca907dbd8e8a8c81e5"}, + {file = "tornado-6.1-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:1e8225a1070cd8eec59a996c43229fe8f95689cb16e552d130b9793cb570a288"}, + {file = "tornado-6.1-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:d14d30e7f46a0476efb0deb5b61343b1526f73ebb5ed84f23dc794bdb88f9d9f"}, + {file = "tornado-6.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:8f959b26f2634a091bb42241c3ed8d3cedb506e7c27b8dd5c7b9f745318ddbb6"}, + {file = "tornado-6.1-cp38-cp38-win32.whl", hash = "sha256:34ca2dac9e4d7afb0bed4677512e36a52f09caa6fded70b4e3e1c89dbd92c326"}, + {file = "tornado-6.1-cp38-cp38-win_amd64.whl", hash = "sha256:6196a5c39286cc37c024cd78834fb9345e464525d8991c21e908cc046d1cc02c"}, + {file = "tornado-6.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f0ba29bafd8e7e22920567ce0d232c26d4d47c8b5cf4ed7b562b5db39fa199c5"}, + {file = "tornado-6.1-cp39-cp39-manylinux1_i686.whl", hash = "sha256:33892118b165401f291070100d6d09359ca74addda679b60390b09f8ef325ffe"}, + {file = "tornado-6.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:7da13da6f985aab7f6f28debab00c67ff9cbacd588e8477034c0652ac141feea"}, + {file = "tornado-6.1-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:e0791ac58d91ac58f694d8d2957884df8e4e2f6687cdf367ef7eb7497f79eaa2"}, + {file = "tornado-6.1-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:66324e4e1beede9ac79e60f88de548da58b1f8ab4b2f1354d8375774f997e6c0"}, + {file = "tornado-6.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:a48900ecea1cbb71b8c71c620dee15b62f85f7c14189bdeee54966fbd9a0c5bd"}, + {file = "tornado-6.1-cp39-cp39-win32.whl", hash = "sha256:d3d20ea5782ba63ed13bc2b8c291a053c8d807a8fa927d941bd718468f7b950c"}, + {file = "tornado-6.1-cp39-cp39-win_amd64.whl", hash = "sha256:548430be2740e327b3fe0201abe471f314741efcb0067ec4f2d7dcfb4825f3e4"}, + {file = "tornado-6.1.tar.gz", hash = "sha256:33c6e81d7bd55b468d2e793517c909b139960b6c790a60b7991b9b6b76fb9791"}, +] +traitlets = [ + {file = "traitlets-5.1.1-py3-none-any.whl", hash = "sha256:2d313cc50a42cd6c277e7d7dc8d4d7fedd06a2c215f78766ae7b1a66277e0033"}, + {file = "traitlets-5.1.1.tar.gz", hash = "sha256:059f456c5a7c1c82b98c2e8c799f39c9b8128f6d0d46941ee118daace9eb70c7"}, +] +typing-extensions = [ + {file = "typing_extensions-4.2.0-py3-none-any.whl", hash = "sha256:6657594ee297170d19f67d55c05852a874e7eb634f4f753dbd667855e07c1708"}, + {file = "typing_extensions-4.2.0.tar.gz", hash = "sha256:f1c24655a0da0d1b67f07e17a5e6b2a105894e6824b92096378bb3668ef02376"}, +] +urllib3 = [ + {file = "urllib3-1.26.9-py2.py3-none-any.whl", hash = "sha256:44ece4d53fb1706f667c9bd1c648f5469a2ec925fcf3a776667042d645472c14"}, + {file = "urllib3-1.26.9.tar.gz", hash = "sha256:aabaf16477806a5e1dd19aa41f8c2b7950dd3c746362d7e3223dbe6de6ac448e"}, +] +wcwidth = [ + {file = "wcwidth-0.2.5-py2.py3-none-any.whl", hash = "sha256:beb4802a9cebb9144e99086eff703a642a13d6a0052920003a230f3294bbe784"}, + {file = "wcwidth-0.2.5.tar.gz", hash = "sha256:c4d647b99872929fdb7bdcaa4fbe7f01413ed3d98077df798530e5b04f116c83"}, +] +webencodings = [ + {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, + {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, +] +werkzeug = [ + {file = "Werkzeug-2.1.1-py3-none-any.whl", hash = "sha256:3c5493ece8268fecdcdc9c0b112211acd006354723b280d643ec732b6d4063d6"}, + {file = "Werkzeug-2.1.1.tar.gz", hash = "sha256:f8e89a20aeabbe8a893c24a461d3ee5dad2123b05cc6abd73ceed01d39c3ae74"}, +] +widgetsnbextension = [ + {file = "widgetsnbextension-3.6.0-py2.py3-none-any.whl", hash = "sha256:4fd321cad39fdcf8a8e248a657202d42917ada8e8ed5dd3f60f073e0d54ceabd"}, + {file = "widgetsnbextension-3.6.0.tar.gz", hash = "sha256:e84a7a9fcb9baf3d57106e184a7389a8f8eb935bf741a5eb9d60aa18cc029a80"}, +] +wrapt = [ + {file = "wrapt-1.14.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:5a9a1889cc01ed2ed5f34574c90745fab1dd06ec2eee663e8ebeefe363e8efd7"}, + {file = "wrapt-1.14.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:9a3ff5fb015f6feb78340143584d9f8a0b91b6293d6b5cf4295b3e95d179b88c"}, + {file = "wrapt-1.14.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:4b847029e2d5e11fd536c9ac3136ddc3f54bc9488a75ef7d040a3900406a91eb"}, + {file = "wrapt-1.14.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:9a5a544861b21e0e7575b6023adebe7a8c6321127bb1d238eb40d99803a0e8bd"}, + {file = "wrapt-1.14.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:88236b90dda77f0394f878324cfbae05ae6fde8a84d548cfe73a75278d760291"}, + {file = "wrapt-1.14.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:f0408e2dbad9e82b4c960274214af533f856a199c9274bd4aff55d4634dedc33"}, + {file = "wrapt-1.14.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:9d8c68c4145041b4eeae96239802cfdfd9ef927754a5be3f50505f09f309d8c6"}, + {file = "wrapt-1.14.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:22626dca56fd7f55a0733e604f1027277eb0f4f3d95ff28f15d27ac25a45f71b"}, + {file = "wrapt-1.14.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:65bf3eb34721bf18b5a021a1ad7aa05947a1767d1aa272b725728014475ea7d5"}, + {file = "wrapt-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:09d16ae7a13cff43660155383a2372b4aa09109c7127aa3f24c3cf99b891c330"}, + {file = "wrapt-1.14.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:debaf04f813ada978d7d16c7dfa16f3c9c2ec9adf4656efdc4defdf841fc2f0c"}, + {file = "wrapt-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:748df39ed634851350efa87690c2237a678ed794fe9ede3f0d79f071ee042561"}, + {file = "wrapt-1.14.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1807054aa7b61ad8d8103b3b30c9764de2e9d0c0978e9d3fc337e4e74bf25faa"}, + {file = "wrapt-1.14.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763a73ab377390e2af26042f685a26787c402390f682443727b847e9496e4a2a"}, + {file = "wrapt-1.14.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:8529b07b49b2d89d6917cfa157d3ea1dfb4d319d51e23030664a827fe5fd2131"}, + {file = "wrapt-1.14.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:68aeefac31c1f73949662ba8affaf9950b9938b712fb9d428fa2a07e40ee57f8"}, + {file = "wrapt-1.14.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59d7d92cee84a547d91267f0fea381c363121d70fe90b12cd88241bd9b0e1763"}, + {file = "wrapt-1.14.0-cp310-cp310-win32.whl", hash = "sha256:3a88254881e8a8c4784ecc9cb2249ff757fd94b911d5df9a5984961b96113fff"}, + {file = "wrapt-1.14.0-cp310-cp310-win_amd64.whl", hash = "sha256:9a242871b3d8eecc56d350e5e03ea1854de47b17f040446da0e47dc3e0b9ad4d"}, + {file = "wrapt-1.14.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:a65bffd24409454b889af33b6c49d0d9bcd1a219b972fba975ac935f17bdf627"}, + {file = "wrapt-1.14.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:9d9fcd06c952efa4b6b95f3d788a819b7f33d11bea377be6b8980c95e7d10775"}, + {file = "wrapt-1.14.0-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:db6a0ddc1282ceb9032e41853e659c9b638789be38e5b8ad7498caac00231c23"}, + {file = "wrapt-1.14.0-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:14e7e2c5f5fca67e9a6d5f753d21f138398cad2b1159913ec9e9a67745f09ba3"}, + {file = "wrapt-1.14.0-cp35-cp35m-win32.whl", hash = "sha256:6d9810d4f697d58fd66039ab959e6d37e63ab377008ef1d63904df25956c7db0"}, + {file = "wrapt-1.14.0-cp35-cp35m-win_amd64.whl", hash = "sha256:d808a5a5411982a09fef6b49aac62986274ab050e9d3e9817ad65b2791ed1425"}, + {file = "wrapt-1.14.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b77159d9862374da213f741af0c361720200ab7ad21b9f12556e0eb95912cd48"}, + {file = "wrapt-1.14.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36a76a7527df8583112b24adc01748cd51a2d14e905b337a6fefa8b96fc708fb"}, + {file = "wrapt-1.14.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a0057b5435a65b933cbf5d859cd4956624df37b8bf0917c71756e4b3d9958b9e"}, + {file = "wrapt-1.14.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a0a4ca02752ced5f37498827e49c414d694ad7cf451ee850e3ff160f2bee9d3"}, + {file = "wrapt-1.14.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:8c6be72eac3c14baa473620e04f74186c5d8f45d80f8f2b4eda6e1d18af808e8"}, + {file = "wrapt-1.14.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:21b1106bff6ece8cb203ef45b4f5778d7226c941c83aaaa1e1f0f4f32cc148cd"}, + {file = "wrapt-1.14.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:493da1f8b1bb8a623c16552fb4a1e164c0200447eb83d3f68b44315ead3f9036"}, + {file = "wrapt-1.14.0-cp36-cp36m-win32.whl", hash = "sha256:89ba3d548ee1e6291a20f3c7380c92f71e358ce8b9e48161401e087e0bc740f8"}, + {file = "wrapt-1.14.0-cp36-cp36m-win_amd64.whl", hash = "sha256:729d5e96566f44fccac6c4447ec2332636b4fe273f03da128fff8d5559782b06"}, + {file = "wrapt-1.14.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:891c353e95bb11abb548ca95c8b98050f3620a7378332eb90d6acdef35b401d4"}, + {file = "wrapt-1.14.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:23f96134a3aa24cc50614920cc087e22f87439053d886e474638c68c8d15dc80"}, + {file = "wrapt-1.14.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6807bcee549a8cb2f38f73f469703a1d8d5d990815c3004f21ddb68a567385ce"}, + {file = "wrapt-1.14.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6915682f9a9bc4cf2908e83caf5895a685da1fbd20b6d485dafb8e218a338279"}, + {file = "wrapt-1.14.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f2f3bc7cd9c9fcd39143f11342eb5963317bd54ecc98e3650ca22704b69d9653"}, + {file = "wrapt-1.14.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:3a71dbd792cc7a3d772ef8cd08d3048593f13d6f40a11f3427c000cf0a5b36a0"}, + {file = "wrapt-1.14.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:5a0898a640559dec00f3614ffb11d97a2666ee9a2a6bad1259c9facd01a1d4d9"}, + {file = "wrapt-1.14.0-cp37-cp37m-win32.whl", hash = "sha256:167e4793dc987f77fd476862d32fa404d42b71f6a85d3b38cbce711dba5e6b68"}, + {file = "wrapt-1.14.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d066ffc5ed0be00cd0352c95800a519cf9e4b5dd34a028d301bdc7177c72daf3"}, + {file = "wrapt-1.14.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d9bdfa74d369256e4218000a629978590fd7cb6cf6893251dad13d051090436d"}, + {file = "wrapt-1.14.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2498762814dd7dd2a1d0248eda2afbc3dd9c11537bc8200a4b21789b6df6cd38"}, + {file = "wrapt-1.14.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f24ca7953f2643d59a9c87d6e272d8adddd4a53bb62b9208f36db408d7aafc7"}, + {file = "wrapt-1.14.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b835b86bd5a1bdbe257d610eecab07bf685b1af2a7563093e0e69180c1d4af1"}, + {file = "wrapt-1.14.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b21650fa6907e523869e0396c5bd591cc326e5c1dd594dcdccac089561cacfb8"}, + {file = "wrapt-1.14.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:354d9fc6b1e44750e2a67b4b108841f5f5ea08853453ecbf44c81fdc2e0d50bd"}, + {file = "wrapt-1.14.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1f83e9c21cd5275991076b2ba1cd35418af3504667affb4745b48937e214bafe"}, + {file = "wrapt-1.14.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:61e1a064906ccba038aa3c4a5a82f6199749efbbb3cef0804ae5c37f550eded0"}, + {file = "wrapt-1.14.0-cp38-cp38-win32.whl", hash = "sha256:28c659878f684365d53cf59dc9a1929ea2eecd7ac65da762be8b1ba193f7e84f"}, + {file = "wrapt-1.14.0-cp38-cp38-win_amd64.whl", hash = "sha256:b0ed6ad6c9640671689c2dbe6244680fe8b897c08fd1fab2228429b66c518e5e"}, + {file = "wrapt-1.14.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b3f7e671fb19734c872566e57ce7fc235fa953d7c181bb4ef138e17d607dc8a1"}, + {file = "wrapt-1.14.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87fa943e8bbe40c8c1ba4086971a6fefbf75e9991217c55ed1bcb2f1985bd3d4"}, + {file = "wrapt-1.14.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4775a574e9d84e0212f5b18886cace049a42e13e12009bb0491562a48bb2b758"}, + {file = "wrapt-1.14.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9d57677238a0c5411c76097b8b93bdebb02eb845814c90f0b01727527a179e4d"}, + {file = "wrapt-1.14.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00108411e0f34c52ce16f81f1d308a571df7784932cc7491d1e94be2ee93374b"}, + {file = "wrapt-1.14.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d332eecf307fca852d02b63f35a7872de32d5ba8b4ec32da82f45df986b39ff6"}, + {file = "wrapt-1.14.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:01f799def9b96a8ec1ef6b9c1bbaf2bbc859b87545efbecc4a78faea13d0e3a0"}, + {file = "wrapt-1.14.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47045ed35481e857918ae78b54891fac0c1d197f22c95778e66302668309336c"}, + {file = "wrapt-1.14.0-cp39-cp39-win32.whl", hash = "sha256:2eca15d6b947cfff51ed76b2d60fd172c6ecd418ddab1c5126032d27f74bc350"}, + {file = "wrapt-1.14.0-cp39-cp39-win_amd64.whl", hash = "sha256:bb36fbb48b22985d13a6b496ea5fb9bb2a076fea943831643836c9f6febbcfdc"}, + {file = "wrapt-1.14.0.tar.gz", hash = "sha256:8323a43bd9c91f62bb7d4be74cc9ff10090e7ef820e27bfe8815c57e68261311"}, +] +zipp = [ + {file = "zipp-3.8.0-py3-none-any.whl", hash = "sha256:c4f6e5bbf48e74f7a38e7cc5b0480ff42b0ae5178957d564d18932525d5cf099"}, + {file = "zipp-3.8.0.tar.gz", hash = "sha256:56bf8aadb83c24db6c4b577e13de374ccfb67da2078beba1d037c17980bf43ad"}, +] diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..e8c5e54 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,23 @@ +[tool.poetry] +name = "ml-programmiereprojekt" +version = "0.1.0" +description = "" +authors = ["Philipp Horstenkamp "] + +[tool.poetry.dependencies] +python = ">=3.9, <3.11" +pandas = "^1.4.2" +numpy = "^1.22.3" +tensorflow = "^2.8.0" +scipy = "^1.8.0" +Shapely = "^1.8.2" + +[tool.poetry.dev-dependencies] +black = {extras = ["jupyter"], version = "^22.3.0"} +jupyter = "^1.0.0" +matplotlib = "^3.5.1" + +[build-system] +requires = ["poetry-core>=1.0.0"] +build-backend = "poetry.core.masonry.api" + diff --git a/pyrate b/pyrate new file mode 160000 index 0000000..1415645 --- /dev/null +++ b/pyrate @@ -0,0 +1 @@ +Subproject commit 1415645163062bcdabd81226cb4a1281f9ca8735 diff --git a/ros-nodes b/ros-nodes new file mode 160000 index 0000000..69495ee --- /dev/null +++ b/ros-nodes @@ -0,0 +1 @@ +Subproject commit 69495ee41d8cb8f0a9df2874442be2745986b542 diff --git a/ros.dockerfile b/ros.dockerfile new file mode 100644 index 0000000..8eff1bd --- /dev/null +++ b/ros.dockerfile @@ -0,0 +1,26 @@ +FROM ros:humble-ros-base-jammy + +# Resolve APT dependencies +RUN apt-get update -qq +RUN apt-get install apt-utils software-properties-common -yqq +RUN add-apt-repository ppa:antiprism/ppa -y +RUN apt-get install apt-utils software-properties-common python3-pip g++ python3-dev python3-gdal libgdal-dev libsqlite3-mod-spatialite antiprism git libqt5gui5 libqt5core5a qtbase5-dev qtchooser qt5-qmake qtbase5-dev-tools libxtst6 libasound2 -yqq + +# Clone and install Pyrate +COPY pyrate/ pyrate +RUN pip3 install ./pyrate + +# Clone and install Model +COPY model/ model +RUN pip3 install ./model + +# Clone ROS nodes and install requirements +COPY ros-nodes/ ros-nodes + +WORKDIR ros-nodes +RUN pip3 install -r requirements.txt +RUN rosdep update -q +RUN rosdep install -q -y -i --from-path src --as-root pip:false +RUN pip install jupyter +SHELL ["/bin/bash", "-c", "source /opt/ros/humble/setup.bash && colcon build --symlink-install"] +RUN source install/setup.bash