build(deps): bump transformers from 4.35.2 to 4.36.0 (#449)

Bumps [transformers](https://github.com/huggingface/transformers) from
4.35.2 to 4.36.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/huggingface/transformers/releases">transformers's
releases</a>.</em></p>
<blockquote>
<h2>v4.36: Mixtral, Llava/BakLlava, SeamlessM4T v2, AMD ROCm, F.sdpa
wide-spread support</h2>
<h2>New model additions</h2>
<h3>Mixtral</h3>
<p>Mixtral is the new open-source model from Mistral AI announced by the
blogpost <a href="https://mistral.ai/news/mixtral-of-experts/">Mixtral
of Experts</a>. The model has been proven to have comparable
capabilities to Chat-GPT according to the benchmark results shared on
the release blogpost.</p>
<!-- raw HTML omitted -->
<p>The architecture is a sparse Mixture of Experts with Top-2 routing
strategy, similar as <code>NllbMoe</code> architecture in transformers.
You can use it through <code>AutoModelForCausalLM</code> interface:</p>
<pre lang="py"><code>&gt;&gt;&gt; import torch
&gt;&gt;&gt; from transformers import AutoModelForCausalLM,
AutoTokenizer
<p>&gt;&gt;&gt; model =
AutoModelForCausalLM.from_pretrained(&quot;mistralai/Mixtral-8x7B&quot;,
torch_dtype=torch.float16, device_map=&quot;auto&quot;)
&gt;&gt;&gt; tokenizer =
AutoTokenizer.from_pretrained(&quot;mistralai/Mistral-8x7B&quot;)</p>
<p>&gt;&gt;&gt; prompt = &quot;My favourite condiment is&quot;</p>
<p>&gt;&gt;&gt; model_inputs = tokenizer([prompt],
return_tensors=&quot;pt&quot;).to(device)
&gt;&gt;&gt; model.to(device)</p>
<p>&gt;&gt;&gt; generated_ids = model.generate(**model_inputs,
max_new_tokens=100, do_sample=True)
&gt;&gt;&gt; tokenizer.batch_decode(generated_ids)[0]
</code></pre></p>
<p>The model is compatible with existing optimisation tools such Flash
Attention 2, <code>bitsandbytes</code> and PEFT library. The checkpoints
are release under <a
href="https://huggingface.co/mistralai"><code>mistralai</code></a>
organisation on the Hugging Face Hub.</p>
<h3>Llava / BakLlava</h3>
<p>Llava is an open-source chatbot trained by fine-tuning LlamA/Vicuna
on GPT-generated multimodal instruction-following data. It is an
auto-regressive language model, based on the transformer architecture.
In other words, it is an multi-modal version of LLMs fine-tuned for chat
/ instructions.</p>
<!-- raw HTML omitted -->
<p>The Llava model was proposed in <a
href="https://arxiv.org/pdf/2310.03744">Improved Baselines with Visual
Instruction Tuning</a> by Haotian Liu, Chunyuan Li, Yuheng Li and Yong
Jae Lee.</p>
<ul>
<li>[<code>Llava</code>] Add Llava to transformers by <a
href="https://github.com/younesbelkada"><code>@​younesbelkada</code></a>
in <a
href="https://redirect.github.com/huggingface/transformers/issues/27662">#27662</a></li>
<li>[LLaVa] Some improvements by <a
href="https://github.com/NielsRogge"><code>@​NielsRogge</code></a> in <a
href="https://redirect.github.com/huggingface/transformers/issues/27895">#27895</a></li>
</ul>
<p>The integration also includes <a
href="https://github.com/SkunkworksAI/BakLLaVA"><code>BakLlava</code></a>
which is a Llava model trained with Mistral backbone.</p>
<p>The mode is compatible with <code>&quot;image-to-text&quot;</code>
pipeline:</p>
<pre lang="py"><code>from transformers import pipeline
from PIL import Image    
import requests
<p>model_id = &quot;llava-hf/llava-1.5-7b-hf&quot;
&lt;/tr&gt;&lt;/table&gt;
</code></pre></p>
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="14666775a2"><code>1466677</code></a>
Release: v4.36.0</li>
<li><a
href="accccdd008"><code>accccdd</code></a>
[<code>Add Mixtral</code>] Adds support for the Mixtral MoE (<a
href="https://redirect.github.com/huggingface/transformers/issues/27942">#27942</a>)</li>
<li><a
href="0676d992a5"><code>0676d99</code></a>
[<code>from_pretrained</code>] Make from_pretrained fast again (<a
href="https://redirect.github.com/huggingface/transformers/issues/27709">#27709</a>)</li>
<li><a
href="9f18cc6df0"><code>9f18cc6</code></a>
Fix SDPA dispatch &amp; make SDPA CI compatible with torch&lt;2.1.1 (<a
href="https://redirect.github.com/huggingface/transformers/issues/27940">#27940</a>)</li>
<li><a
href="7ea21f1f03"><code>7ea21f1</code></a>
[LLaVa] Some improvements (<a
href="https://redirect.github.com/huggingface/transformers/issues/27895">#27895</a>)</li>
<li><a
href="5e620a92cf"><code>5e620a9</code></a>
Fix <code>SeamlessM4Tv2ModelIntegrationTest</code> (<a
href="https://redirect.github.com/huggingface/transformers/issues/27911">#27911</a>)</li>
<li><a
href="e96c1de191"><code>e96c1de</code></a>
Skip <code>UnivNetModelTest::test_multi_gpu_data_parallel_forward</code>
(<a
href="https://redirect.github.com/huggingface/transformers/issues/27912">#27912</a>)</li>
<li><a
href="8d8970efdd"><code>8d8970e</code></a>
[BEiT] Fix test (<a
href="https://redirect.github.com/huggingface/transformers/issues/27934">#27934</a>)</li>
<li><a
href="235be08569"><code>235be08</code></a>
[DETA] fix backbone freeze/unfreeze function (<a
href="https://redirect.github.com/huggingface/transformers/issues/27843">#27843</a>)</li>
<li><a
href="df5c5c62ae"><code>df5c5c6</code></a>
Fix typo (<a
href="https://redirect.github.com/huggingface/transformers/issues/27918">#27918</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/huggingface/transformers/compare/v4.35.2...v4.36.0">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=transformers&package-manager=pip&previous-version=4.35.2&new-version=4.36.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>
This commit is contained in:
github-actions[bot] 2023-12-12 19:21:28 +01:00 committed by GitHub
commit 1c03fb48da
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

48
poetry.lock generated
View File

@ -6979,19 +6979,19 @@ test = ["argcomplete (>=3.0.3)", "mypy (>=1.6.0)", "pre-commit", "pytest (>=7.0,
[[package]] [[package]]
name = "transformers" name = "transformers"
version = "4.35.2" version = "4.36.0"
description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow" description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow"
optional = false optional = false
python-versions = ">=3.8.0" python-versions = ">=3.8.0"
files = [ files = [
{file = "transformers-4.35.2-py3-none-any.whl", hash = "sha256:9dfa76f8692379544ead84d98f537be01cd1070de75c74efb13abcbc938fbe2f"}, {file = "transformers-4.36.0-py3-none-any.whl", hash = "sha256:e5a9d9424bcbc5008782ddd79ecbc3a50991e168cc730a14c4c89e80c61f419d"},
{file = "transformers-4.35.2.tar.gz", hash = "sha256:2d125e197d77b0cdb6c9201df9fa7e2101493272e448b9fba9341c695bee2f52"}, {file = "transformers-4.36.0.tar.gz", hash = "sha256:64e120d252db4bdcd355288d19e857dac9d89886f9d0ac20244cb9af3142bb50"},
] ]
[package.dependencies] [package.dependencies]
accelerate = {version = ">=0.20.3", optional = true, markers = "extra == \"torch\""} accelerate = {version = ">=0.21.0", optional = true, markers = "extra == \"torch\""}
filelock = "*" filelock = "*"
huggingface-hub = ">=0.16.4,<1.0" huggingface-hub = ">=0.19.3,<1.0"
numpy = ">=1.17" numpy = ">=1.17"
packaging = ">=20.0" packaging = ">=20.0"
pyyaml = ">=5.1" pyyaml = ">=5.1"
@ -7003,30 +7003,30 @@ torch = {version = ">=1.10,<1.12.0 || >1.12.0", optional = true, markers = "extr
tqdm = ">=4.27" tqdm = ">=4.27"
[package.extras] [package.extras]
accelerate = ["accelerate (>=0.20.3)"] accelerate = ["accelerate (>=0.21.0)"]
agents = ["Pillow (<10.0.0)", "accelerate (>=0.20.3)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch (>=1.10,!=1.12.0)"] agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch (>=1.10,!=1.12.0)"]
all = ["Pillow (<10.0.0)", "accelerate (>=0.20.3)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.15)", "tensorflow-text (<2.15)", "tf2onnx", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision"] all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision"]
audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
codecarbon = ["codecarbon (==1.2.0)"] codecarbon = ["codecarbon (==1.2.0)"]
deepspeed = ["accelerate (>=0.20.3)", "deepspeed (>=0.9.3)"] deepspeed = ["accelerate (>=0.21.0)", "deepspeed (>=0.9.3)"]
deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.20.3)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"] deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.21.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"]
dev = ["GitPython (<3.1.19)", "Pillow (<10.0.0)", "accelerate (>=0.20.3)", "av (==9.2.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>=2.6,<2.15)", "tensorflow-text (<2.15)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"]
dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (<10.0.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>=2.6,<2.15)", "tensorflow-text (<2.15)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.14,<0.19)", "urllib3 (<2.0.0)"] dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.14,<0.19)", "urllib3 (<2.0.0)"]
dev-torch = ["GitPython (<3.1.19)", "Pillow (<10.0.0)", "accelerate (>=0.20.3)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"] dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"]
docs = ["Pillow (<10.0.0)", "accelerate (>=0.20.3)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "hf-doc-builder", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.15)", "tensorflow-text (<2.15)", "tf2onnx", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision"] docs = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "hf-doc-builder", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision"]
docs-specific = ["hf-doc-builder"] docs-specific = ["hf-doc-builder"]
flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)"] flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)"]
flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
ftfy = ["ftfy"] ftfy = ["ftfy"]
integrations = ["optuna", "ray[tune]", "sigopt"] integrations = ["optuna", "ray[tune] (>=2.7.0)", "sigopt"]
ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0,<1.3.1)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"] ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0,<1.3.1)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"]
modelcreation = ["cookiecutter (==1.7.3)"] modelcreation = ["cookiecutter (==1.7.3)"]
natten = ["natten (>=0.14.6)"] natten = ["natten (>=0.14.6)"]
onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"] onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"]
onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"] onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"]
optuna = ["optuna"] optuna = ["optuna"]
quality = ["GitPython (<3.1.19)", "black (>=23.1,<24.0)", "datasets (!=2.5.0)", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "ruff (>=0.0.241,<=0.0.259)", "urllib3 (<2.0.0)"] quality = ["GitPython (<3.1.19)", "datasets (!=2.5.0)", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "ruff (==0.1.5)", "urllib3 (<2.0.0)"]
ray = ["ray[tune]"] ray = ["ray[tune] (>=2.7.0)"]
retrieval = ["datasets (!=2.5.0)", "faiss-cpu"] retrieval = ["datasets (!=2.5.0)", "faiss-cpu"]
sagemaker = ["sagemaker (>=2.31.0)"] sagemaker = ["sagemaker (>=2.31.0)"]
sentencepiece = ["protobuf", "sentencepiece (>=0.1.91,!=0.1.92)"] sentencepiece = ["protobuf", "sentencepiece (>=0.1.91,!=0.1.92)"]
@ -7034,18 +7034,18 @@ serving = ["fastapi", "pydantic (<2)", "starlette", "uvicorn"]
sigopt = ["sigopt"] sigopt = ["sigopt"]
sklearn = ["scikit-learn"] sklearn = ["scikit-learn"]
speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"]
testing = ["GitPython (<3.1.19)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "parameterized", "protobuf", "psutil", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "tensorboard", "timeout-decorator"] testing = ["GitPython (<3.1.19)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "parameterized", "protobuf", "psutil", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "tensorboard", "timeout-decorator"]
tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>=2.6,<2.15)", "tensorflow-text (<2.15)", "tf2onnx"] tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"]
tf-cpu = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>=2.6,<2.15)", "tensorflow-text (<2.15)", "tf2onnx"] tf-cpu = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx"]
tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"] tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
timm = ["timm"] timm = ["timm"]
tokenizers = ["tokenizers (>=0.14,<0.19)"] tokenizers = ["tokenizers (>=0.14,<0.19)"]
torch = ["accelerate (>=0.20.3)", "torch (>=1.10,!=1.12.0)"] torch = ["accelerate (>=0.21.0)", "torch (>=1.10,!=1.12.0)"]
torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"] torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"]
torch-vision = ["Pillow (<10.0.0)", "torchvision"] torch-vision = ["Pillow (>=10.0.1,<=15.0)", "torchvision"]
torchhub = ["filelock", "huggingface-hub (>=0.16.4,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "tqdm (>=4.27)"] torchhub = ["filelock", "huggingface-hub (>=0.19.3,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "tqdm (>=4.27)"]
video = ["av (==9.2.0)", "decord (==0.6.0)"] video = ["av (==9.2.0)", "decord (==0.6.0)"]
vision = ["Pillow (<10.0.0)"] vision = ["Pillow (>=10.0.1,<=15.0)"]
[[package]] [[package]]
name = "trio" name = "trio"