update data based on selected company (#122)

Added UI elements to select a company and update shown data depending on chosen company



---------

Co-authored-by: Philipp Horstenkamp <philipp@horstenkamp.de>
This commit is contained in:
KM-R
2023-09-19 23:45:10 +02:00
committed by GitHub
parent 80f077ee7a
commit 487b2f42d1
15 changed files with 900 additions and 732 deletions

View File

@ -168,7 +168,7 @@ def test_get_person_id_value_check(
data_transfer.get_person_id(
firstname,
surname,
date.fromisoformat(date_str) if date_str else None, # type: ignore
date.fromisoformat(date_str) if date_str else None,
full_db,
)
@ -941,7 +941,11 @@ def test_add_annual_report_to_unknown_company(
@pytest.mark.parametrize("year", [2023, 2025, 2020])
@pytest.mark.parametrize("short_term_debt", [2023.2, 2025.5, 2020.5, float("NaN")])
def test_add_annual_report(
short_term_debt: float, company_id: int, year: int, full_db: Session
short_term_debt: float,
company_id: int,
year: int,
finance_statements: list[dict[str, Any]],
full_db: Session,
) -> None:
"""Tests the addition of annual financial records."""
data_transfer.add_annual_report(
@ -961,34 +965,38 @@ def test_add_annual_report(
df_prior = pd.read_sql_table(
entities.AnnualFinanceStatement.__tablename__, full_db.bind # type: ignore
)
expected_results = pd.DataFrame(
finance_statements
+ [
{
"id": 3,
"company_id": company_id,
"date": pd.to_datetime(date(year, 1, 1)),
"total_volume": float("NaN"),
"ebit": 123.0,
"ebitda": 235.0,
"ebit_margin": float("NaN"),
"total_balance": float("NaN"),
"equity": float("NaN"),
"debt": float("NaN"),
"return_on_equity": float("NaN"),
"capital_turnover_rate": float("NaN"),
"current_liabilities": float("NaN"),
"dividends": float("NaN"),
"net_income": float("NaN"),
"assets": float("NaN"),
"long_term_debt": float("NaN"),
"short_term_debt": short_term_debt,
"revenue": float("NaN"),
"cash_flow": float("NaN"),
"current_assets": float("NaN"),
}
]
)
expected_results["date"] = pd.to_datetime(expected_results["date"])
pd.testing.assert_frame_equal(
pd.DataFrame(
[
{
"id": 1,
"company_id": company_id,
"date": pd.to_datetime(date(year, 1, 1)),
"total_volume": float("NaN"),
"ebit": 123.0,
"ebitda": 235.0,
"ebit_margin": float("NaN"),
"total_balance": float("NaN"),
"equity": float("NaN"),
"debt": float("NaN"),
"return_on_equity": float("NaN"),
"capital_turnover_rate": float("NaN"),
"current_liabilities": float("NaN"),
"dividends": float("NaN"),
"net_income": float("NaN"),
"assets": float("NaN"),
"long_term_debt": float("NaN"),
"short_term_debt": short_term_debt,
"revenue": float("NaN"),
"cash_flow": float("NaN"),
"current_assets": float("NaN"),
}
]
),
expected_results,
df_prior,
)