Bug fixes

This commit is contained in:
Tim 2023-11-02 14:28:30 +01:00
parent deee0cd09d
commit 4fe97dfd86
4 changed files with 113 additions and 30 deletions

View File

@ -11,7 +11,10 @@ from sqlalchemy.orm import Session
from aki_prj23_transparenzregister.ui import data_elements, finance_elements from aki_prj23_transparenzregister.ui import data_elements, finance_elements
from aki_prj23_transparenzregister.ui.networkx_dash import networkx_component from aki_prj23_transparenzregister.ui.networkx_dash import networkx_component
from aki_prj23_transparenzregister.utils.networkx.network_2d import create_2d_graph
from aki_prj23_transparenzregister.utils.networkx.network_base import initialize_network
from aki_prj23_transparenzregister.utils.networkx.networkx_data import ( from aki_prj23_transparenzregister.utils.networkx.networkx_data import (
create_edge_and_node_list_for_company,
find_company_relations, find_company_relations,
) )
@ -378,14 +381,17 @@ def network_layout(selected_company_id: int) -> html.Div:
""" """
person_relations, company_relations = find_company_relations(selected_company_id) person_relations, company_relations = find_company_relations(selected_company_id)
# Create Edge and Node List from data # Create Edge and Node List from data
# nodes, edges = create_edge_and_node_list_for_company(company_relations) nodes, edges = create_edge_and_node_list_for_company(company_relations)
# Initialize the Network and receive the Graph and a DataFrame with Metrics # Initialize the Network and receive the Graph and a DataFrame with Metrics
# print(nodes) # print(nodes)
# print(edges)
# print(pd.DataFrame(edges)) # print(pd.DataFrame(edges))
# graph, metrics = initialize_network(nodes=nodes, edges=edges) if nodes != {}:
# metric = None graph, metrics = initialize_network(nodes=nodes, edges=edges)
# figure = create_2d_graph(graph, nodes, edges, metrics, metric) metric = "None"
figure = create_2d_graph(graph, nodes, edges, metrics, metric, layout="Spring", edge_annotation=True, node_annotation=False, edge_thickness=1)
# selected_company_id # selected_company_id
# print(company_relations) # print(company_relations)
return networkx_component(selected_company_id) return html.Div( children=[dcc.Graph(figure=figure, id="company-graph", className="graph-style")])
# return html.Div([f"Netzwerk von Unternehmen mit ID: {selected_company_id}"]) # return networkx_component(selected_company_id)
return html.Div([html.H3(f"Leider gibt es keine Verbindungen vom Unternehmen mit ID: {selected_company_id}")])

View File

@ -66,7 +66,7 @@ graph, metrics = initialize_network(nodes=nodes, edges=edges)
metric = "None" metric = "None"
layout = "Spring" layout = "Spring"
switch_node_annotaion_value = False switch_node_annotaion_value = False
switch_edge_annotaion_value = True switch_edge_annotaion_value = False
egde_thickness = 1 egde_thickness = 1
network = create_3d_graph(graph, nodes, edges, metrics, metric, layout, switch_node_annotaion_value, switch_edge_annotaion_value, egde_thickness) network = create_3d_graph(graph, nodes, edges, metrics, metric, layout, switch_node_annotaion_value, switch_edge_annotaion_value, egde_thickness)
@ -119,6 +119,28 @@ layout = html.Div(
html.H1(className="header", children=["Social Graph"]), html.H1(className="header", children=["Social Graph"]),
html.Div( html.Div(
className="filter-wrapper", className="filter-wrapper",
children=[
html.Div(
className="filter-wrapper-item",
children=[
html.H5(
className="filter-description",
children=["Data Source:"],
),
dcc.Dropdown(
["Company Data only", "Person Data only", "Company & Person Data"],
"Company Data only",
id="dropdown_data_soruce_filter",
className="dropdown_style",
),
],
),
],
),
html.Div(
className="filter-wrapper",
id= "company_dropdown",
# style="display: inline;",
children=[ children=[
html.Div( html.Div(
className="filter-wrapper-item", className="filter-wrapper-item",
@ -137,6 +159,7 @@ layout = html.Div(
), ),
html.Div( html.Div(
className="filter-wrapper-item", className="filter-wrapper-item",
# style="display: None;",
children=[ children=[
html.H5( html.H5(
className="filter-description", className="filter-description",
@ -184,12 +207,12 @@ layout = html.Div(
# "Bipartite", # "Bipartite",
"Circular", "Circular",
"Kamada Kawai", "Kamada Kawai",
"Planar", # "Planar",
"Random", "Random",
"Shell", "Shell (only 2D)",
"Spectral", # "Spectral",
"Spiral", "Spiral (only 2D)",
"Multipartite" # "Multipartite"
], ],
"Spring", "Spring",
id="dropdown_layout", id="dropdown_layout",
@ -292,19 +315,22 @@ def update_graph_data(
# Get Data # Get Data
person_df = get_all_person_relations() person_df = get_all_person_relations()
company_df = get_all_company_relations() company_df = get_all_company_relations()
# print(company_df)
person_relation = filter_relation_type(person_df, person_relation_type) person_relation = filter_relation_type(person_df, person_relation_type)
company_relation = filter_relation_type(company_df, company_relation_type) company_relation = filter_relation_type(company_df, company_relation_type)
# company_relation = filter_relation_with_more_than_one_connection(company_relation, "id_company_to", "id_company_from") # company_relation = filter_relation_with_more_than_one_connection(company_relation, "id_company_to", "id_company_from")
# print(company_relation)
# print(len(company_relation))
# Create Edge and Node List from data # Create Edge and Node List from data
nodes, edges = create_edge_and_node_list(person_relation, company_relation) nodes_tmp, edges_tmp = create_edge_and_node_list(person_relation, company_relation)
# node_count = len(nodes) node_count = len(nodes_tmp)
# edge_count = len(edges) edge_count = len(edges_tmp)
# print(edges_tmp)
graph, metrics = initialize_network(nodes=nodes, edges=edges) graph, metrics = initialize_network(nodes=nodes_tmp, edges=edges_tmp)
return graph, metrics return graph, metrics, nodes_tmp, edges_tmp
@callback( @callback(
@ -351,7 +377,9 @@ def update_figure(
# print(selected_value) # print(selected_value)
# print(metrics) # print(metrics)
# print(graph) # print(graph)
graph, metrics = update_graph_data(person_relation_type= p_relation_filter_value, company_relation_type= c_relation_filter_value) graph, metrics, nodes, edges = update_graph_data(person_relation_type= p_relation_filter_value, company_relation_type= c_relation_filter_value)
node_count = len(nodes)
edge_count = len(edges)
if switch_value: if switch_value:
@ -373,4 +401,22 @@ def update_table(metric_dropdown_value: str) -> dict:
columns =[{"name": i, "id": i} for i in table_df.columns] columns =[{"name": i, "id": i} for i in table_df.columns]
# print(columns) # print(columns)
return table_df.to_dict("records") return table_df.to_dict("records")
@callback(
Output("company_dropdown", "style"),
[
Input("dropdown_data_soruce_filter", "value"),
],
)
def update_Dropdown(datasource_value: str) -> str:
style = ""
match datasource_value:
case "Company Data only":
style = "display: inline"
case "Person Data only":
style = "display: none"
case "Company & Person Data":
style = "display: inline"
return style

View File

@ -35,11 +35,11 @@ def create_2d_graph(
# pos = nx.planar_layout(graph) # pos = nx.planar_layout(graph)
case "Random": case "Random":
pos = nx.random_layout(graph) pos = nx.random_layout(graph)
case "Shell": case "Shell only 2D)":
pos = nx.shell_layout(graph) pos = nx.shell_layout(graph)
# case "Spectral": # case "Spectral":
# pos = nx.spectral_layout(graph) # pos = nx.spectral_layout(graph)
case "Spiral": case "Spiral only 2D)":
pos = nx.spiral_layout(graph) pos = nx.spiral_layout(graph)
# case "Multipartite": # case "Multipartite":
# pos = nx.multipartite_layout(graph) # pos = nx.multipartite_layout(graph)
@ -60,15 +60,15 @@ def create_2d_graph(
x1, y1 = pos[edge[1]] x1, y1 = pos[edge[1]]
edge_x.append(x0) edge_x.append(x0)
edge_x.append(x1) edge_x.append(x1)
edge_x.append(None) # edge_x.append(None)
edge_y.append(y0) edge_y.append(y0)
edge_y.append(y1) edge_y.append(y1)
edge_y.append(None) # edge_y.append(None)
edge_weight_x.append(x0 + ((x1 - x0) / 2)) edge_weight_x.append(((x1 + x0) / 2))
edge_weight_y.append(y0 + ((y1 - y0) / 2)) edge_weight_y.append(((y1 + y0) / 2))
edge_weight_y.append(None) # edge_weight_y.append(None)
# Add the Edges to the scatter plot according to their Positions. # Add the Edges to the scatter plot according to their Positions.
edge_trace = go.Scatter( edge_trace = go.Scatter(
x=edge_x, x=edge_x,
@ -82,10 +82,10 @@ def create_2d_graph(
x=edge_weight_x, x=edge_weight_x,
y=edge_weight_y, y=edge_weight_y,
mode="text", mode="text",
marker_size=1, marker_size=0.5,
text=[0.45, 0.7, 0.34], text=[0.45, 0.7, 0.34],
textposition="top center", textposition="top center",
hovertemplate="weight: %{text}<extra></extra>", hovertemplate="Relation: %{text}<extra></extra>",
) )
# Getting the Positions from NetworkX and assign it to the variables. # Getting the Positions from NetworkX and assign it to the variables.
@ -139,6 +139,7 @@ def create_2d_graph(
edge_type_list.append(row["type"]) edge_type_list.append(row["type"])
edge_weights_trace.text = edge_type_list edge_weights_trace.text = edge_type_list
# print(edge_type_list)
if node_annotation: if node_annotation:
print("Test") print("Test")

View File

@ -54,6 +54,11 @@ def create_3d_graph(
node_y = [] node_y = []
node_z = [] node_z = []
# Initialize Position Variables for the Description Text of the edges.
edge_weight_x = []
edge_weight_y = []
edge_weight_z = []
# Getting the Positions from NetworkX and assign them to the variables. # Getting the Positions from NetworkX and assign them to the variables.
for edge in graph.edges(): for edge in graph.edges():
x0, y0, z0 = pos[edge[0]] x0, y0, z0 = pos[edge[0]]
@ -67,6 +72,11 @@ def create_3d_graph(
edge_z.append(z0) edge_z.append(z0)
edge_z.append(z1) edge_z.append(z1)
# Calculate edge mid
edge_weight_x.append((x0+x1)/2)
edge_weight_y.append((y0+y1)/2)
edge_weight_z.append((z0+z1)/2)
# Add the Edges to the scatter plot according to their Positions. # Add the Edges to the scatter plot according to their Positions.
edge_trace = go.Scatter3d( edge_trace = go.Scatter3d(
@ -78,6 +88,18 @@ def create_3d_graph(
hoverinfo="none", hoverinfo="none",
) )
# Add the Edgedescriptiontext to the scatter plot according to its Position.
edge_weights_trace = go.Scatter3d(
x=edge_weight_x,
y=edge_weight_y,
z=edge_weight_z,
mode="text",
marker_size=1,
text=[0.45, 0.7, 0.34],
textposition="top center",
hovertemplate="weight: %{text}<extra></extra>",
)
# Getting the Positions from NetworkX and assign it to the variables. # Getting the Positions from NetworkX and assign it to the variables.
for node in graph.nodes(): for node in graph.nodes():
x, y, z = pos[node] x, y, z = pos[node]
@ -163,6 +185,14 @@ def create_3d_graph(
edge_colors.append("rgb(255,105,180)") edge_colors.append("rgb(255,105,180)")
edge_trace.line = {"color": edge_colors, "width": edge_thickness} edge_trace.line = {"color": edge_colors, "width": edge_thickness}
# Add Relation_Type as a Description for the edges.
if edge_annotation:
edge_type_list = []
for row in edges:
edge_type_list.append(row["type"])
edge_weights_trace.text = edge_type_list
# Return the Plotly Figure # Return the Plotly Figure
data = [edge_trace, node_trace] data = [edge_trace,edge_weights_trace, node_trace]
return go.Figure(data=data, layout=layout) return go.Figure(data=data, layout=layout)