From 57eb12d8f7f0c94243c86f3f8c4537a354ae8b40 Mon Sep 17 00:00:00 2001 From: saschazhu <120802274+saschazhu@users.noreply.github.com> Date: Thu, 11 May 2023 14:52:01 +0200 Subject: [PATCH] Add files via upload --- ...Seminararbeit zu Text Mining Sascha Zhu.md | 45 +++++++++++++++++++ 1 file changed, 45 insertions(+) create mode 100644 documentations/seminararbeiten/Abstract Planung Seminararbeit zu Text Mining Sascha Zhu.md diff --git a/documentations/seminararbeiten/Abstract Planung Seminararbeit zu Text Mining Sascha Zhu.md b/documentations/seminararbeiten/Abstract Planung Seminararbeit zu Text Mining Sascha Zhu.md new file mode 100644 index 0000000..f95640d --- /dev/null +++ b/documentations/seminararbeiten/Abstract Planung Seminararbeit zu Text Mining Sascha Zhu.md @@ -0,0 +1,45 @@ +**Abstract/Planung der Seminararbeit zu "Text Mining"** + +**Sascha Zhu** + +**10.05.2023** + + + +Gliederung + +1. Einleitung und Begriffsbestimmung + +2. Text Mining Prozess + +3. Verwendung von NLP-Methoden für das Text Mining + + 3.1 Morphologische Textanalyse + + 3.2 Syntaktische Textanalyse + + 3.3 Semantische Textanalyse + +4. Ontologien und Text Mining + + 4.1 Verwendung von Ontologien als Grundlage der Textanalyse + + 4.2 Generierung von Ontologien mittels Text Mining ("ontology generation"/"ontology learning" ) + +5. Sentiment-Analyse als Teilgebiet des Text Minings + +6. Zusammenfassung und Ausblick + + + +Die Seminararbeit zu "Text Mining" soll in die oben genannten sechs Abschnitte gegliedert werden. + +Nach einer Einleitung, in der der Begriff "Text Mining" näher definiert wird und gegenüber "Data Mining" und "Computational Linguistics" abgegrenzt wird, folgt der zweite Abschnitt zum Text Mining Prozess, der nach Hippner u. Rentzmann (2006) in die folgenden sechs Schritte eingeteilt wird: (a) Aufgabendefinition; (b) Dokumentenselektion; (c) Dokumentenaufbereitung; (d) Untersuchung mit Text-Mining-Methoden; (e) Interpretation und Evaluation; (f) Anwendung der Ergebnisse. + +Im darauffolgenden dritten Abschnitt zur Verwendung von NLP-Methoden für das Text Mining werden die drei Phasen des Natural Language Processings (NLP), d.h. die morphologische, syntaktische und semantische Textanalyse, näher dargestellt, wobei der Schwerpunkt auf die semantische Analysetechniken wie z.B. "Word Sense Disambiguation" (WSD) und "Named Entity Recognition" (NED) liegen soll. + +Der vierte Abschnitt soll sich dem Thema "Ontologien und Text Mining" widmen. Einerseits können Ontologien, die domänenspezifisches Wissen abbilden, als Grundlage für NLP-Methoden dienen, um etwa die semantische Textanalyse zu verbessern. Andererseits können mittels Text Mining automatisch bzw. semi-automatisch Ontologien als Repräsentation der Text-Mining-Ergebnisse erstellt werden ("ontology generation"/"ontology learning"). + +Im vorletzten, fünften Analyse soll die Sentiment-Analyse als Teilgebiet des Text Mining durchleuchtet werden. Dieser Abschnitt soll den Schwerpunkt der gesamten Seminararbeit darstellen. Die Methodik, Funktionsweise, Varianten und Use Cases der Sentiment Analyse sollen anhand ausgewählter Beispiele erläutert werden. Zudem sollen auch bekannte Sentiment-Analyse-Tools wie z.B. FinBERT, VADER, SentiWS etc. näher beschrieben werden. + +Am Ende der Seminararbeit soll der sechste Abschnitt eine Zusammenfassung liefern und einen Ausblick darüber geben, in welche Richtung die zukünftige Entwicklung auf dem Gebiet des Text Minings gehen wird. \ No newline at end of file