On branch feature/visualize-verflechtungen

This commit is contained in:
Tim 2023-09-26 18:16:42 +02:00
parent d3158c4592
commit 6585a0ee11
8 changed files with 370 additions and 0 deletions

View File

@ -76,6 +76,9 @@ torchvision = {version = "*", source = "torch-cpu"}
tqdm = "^4.66.1" tqdm = "^4.66.1"
transformers = {version = "*", extras = ["torch"]} transformers = {version = "*", extras = ["torch"]}
xmltodict = "^0.13.0" xmltodict = "^0.13.0"
dash_cytoscape = "^0.2.0"
dashvis = "^0.1.3"
[tool.poetry.extras] [tool.poetry.extras]
ingest = ["selenium", "deutschland", "xmltodict"] ingest = ["selenium", "deutschland", "xmltodict"]

View File

@ -0,0 +1,25 @@
import dash_cytoscape as cyto
from dash import Dash, html
app = Dash(__name__)
app.layout = html.Div(
[
html.P("Dash Cytoscape:"),
cyto.Cytoscape(
id="cytoscape",
elements=[
{"data": {"id": "ca", "label": "Canada"}},
{"data": {"id": "on", "label": "Ontario"}},
{"data": {"id": "qc", "label": "Quebec"}},
{"data": {"source": "ca", "target": "on"}},
{"data": {"source": "ca", "target": "qc"}},
],
layout={"name": "breadthfirst"},
style={"width": "400px", "height": "500px"},
),
]
)
if __name__ == "__main__":
app.run_server(debug=True)

View File

@ -0,0 +1,11 @@
# https://pypi.org/project/dashvis/
import dash
from dash import html
from dashvis import DashNetwork
app = dash.Dash()
app.layout = html.Div([DashNetwork(1)])
if __name__ == "__main__":
app.run_server(debug=True)

View File

@ -0,0 +1,139 @@
import pandas as pd
import networkx as nx
import plotly.graph_objects as go
from dash import Dash, Input, Output, dcc, html
from aki_prj23_transparenzregister.config.config_providers import JsonFileConfigProvider
from aki_prj23_transparenzregister.utils.sql import connector, entities
test_company = 13 #2213 # 13
def find_company_relations(company_id: int) -> pd.DataFrame:
session = connector.get_session(JsonFileConfigProvider("./secrets.json"))
query_companies = session.query(entities.Company)
query_relations = session.query(entities.CompanyRelation)
companies_df: pd.DataFrame = pd.read_sql(str(query_companies), session.bind) # type: ignore
companies_relations_df: pd.DataFrame = pd.read_sql(str(query_relations), session.bind) # type: ignore
companies_relations_df = companies_relations_df.loc[companies_relations_df["relation_id"] == company_id,:][["relation_id","company_relation_company2_id"]]
company_name = []
connected_company_name = []
for _, row in companies_relations_df.iterrows():
# print(companies_df.loc[companies_df["company_id"] == row["relation_id"]]["company_name"].values[0])
company_name.append(companies_df.loc[companies_df["company_id"] == row["relation_id"]]["company_name"].values[0])
connected_company_name.append(companies_df.loc[companies_df["company_id"] == row["company_relation_company2_id"]]["company_name"].values[0])
# print(company_name)
companies_relations_df["company_name"] = company_name
companies_relations_df["connected_company_name"] = connected_company_name
# print(companies_relations_df)
return companies_relations_df
# Plotly figure
def networkGraph(EGDE_VAR: None) -> go.Figure:
# df = find_company_relations(test_company)
edges = []
for index, row in find_company_relations(test_company).iterrows():
edges.append([row["company_name"], row["connected_company_name"]])
# print(row["company_name"], row["connected_company_name"])
# print(edges)
# edges = df[["relation_id","company_relation_company2_id"]]
# edges = [[EGDE_VAR, "B"], ["B", "C"], ["B", "D"]]
network_graph = nx.Graph()
network_graph.add_edges_from(edges)
pos = nx.spring_layout(network_graph)
# edges trace
edge_x = []
edge_y = []
for edge in network_graph.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.append(x0)
edge_x.append(x1)
edge_x.append(None)
edge_y.append(y0)
edge_y.append(y1)
edge_y.append(None)
edge_trace = go.Scatter(
x=edge_x,
y=edge_y,
line={"color": "black", "width": 1},
hoverinfo="none",
showlegend=False,
mode="lines",
)
# nodes trace
node_x = []
node_y = []
text = []
for node in network_graph.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
text.append(node)
node_trace = go.Scatter(
x=node_x,
y=node_y,
text=text,
mode="markers+text",
showlegend=False,
hoverinfo="none",
marker={"color": "pink", "size": 50, "line": {"color": "black", "width": 1}},
)
# layout
layout = {
"plot_bgcolor": "white",
"paper_bgcolor": "white",
"margin": {"t": 10, "b": 10, "l": 10, "r": 10, "pad": 0},
"xaxis": {
"linecolor": "black",
"showgrid": False,
"showticklabels": False,
"mirror": True,
},
"yaxis": {
"linecolor": "black",
"showgrid": False,
"showticklabels": False,
"mirror": True,
},
}
# figure
return go.Figure(data=[edge_trace, node_trace], layout=layout)
# Dash App
app = Dash(__name__)
app.title = "Dash Networkx"
app.layout = html.Div(
[
html.I("Write your EDGE_VAR"),
html.Br(),
dcc.Input(id="EGDE_VAR", type="text", value="K", debounce=True),
dcc.Graph(id="my-graph"),
]
)
@app.callback(
Output("my-graph", "figure"),
[Input("EGDE_VAR", "value")],
)
def update_output(EGDE_VAR: None) -> None:
return networkGraph(EGDE_VAR)
if __name__ == "__main__":
app.run(debug=True)

View File

@ -0,0 +1,173 @@
import pandas as pd
import networkx as nx
import plotly.graph_objects as go
from dash import Dash, Input, Output, dcc, html
from aki_prj23_transparenzregister.config.config_providers import JsonFileConfigProvider
from aki_prj23_transparenzregister.utils.sql import connector, entities
test_company = 13 #2213 # 13
def find_all_company_relations() -> pd.DataFrame:
session = connector.get_session(JsonFileConfigProvider("./secrets.json"))
query_companies = session.query(entities.Company) #.all()
query_relations = session.query(entities.CompanyRelation) # .all()
companies_df: pd.DataFrame = pd.read_sql(str(query_companies), session.bind) # type: ignore
companies_relations_df: pd.DataFrame = pd.read_sql(str(query_relations), session.bind) # type: ignore
# print(companies_relations_df)
companies_relations_df = companies_relations_df[["relation_id","company_relation_company2_id"]]
# print(companies_relations_df)
company_name = []
connected_company_name = []
companies_relations_df = companies_relations_df.head()
# print(companies_relations_df)
for _, row in companies_relations_df.iterrows():
# print(companies_df.loc[companies_df["company_id"] == row["relation_id"]]["company_name"].values[0])
# print("TEst")
company_name.append(companies_df.loc[companies_df["company_id"] == row["relation_id"]]["company_name"].values[0])
connected_company_name.append(companies_df.loc[companies_df["company_id"] == row["company_relation_company2_id"]]["company_name"].values[0])
# print(connected_company_name)
# print(company_name)
companies_relations_df["company_name"] = company_name
companies_relations_df["connected_company_name"] = connected_company_name
# print("Test")
# print(companies_relations_df)
return companies_relations_df
# Plotly figure
def networkGraph(EGDE_VAR: None) -> go.Figure:
# find_all_company_relations()
edges = []
for index, row in find_all_company_relations().iterrows():
edges.append([row["company_name"], row["connected_company_name"]])
# print(row["company_name"], row["connected_company_name"])
# print(edges)
# edges = df[["relation_id","company_relation_company2_id"]]
# edges = [[EGDE_VAR, "B"], ["B", "C"], ["B", "D"]]
network_graph = nx.Graph()
network_graph.add_edges_from(edges)
pos = nx.spring_layout(network_graph)
# edges trace
edge_x = []
edge_y = []
for edge in network_graph.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.append(x0)
edge_x.append(x1)
edge_x.append(None)
edge_y.append(y0)
edge_y.append(y1)
edge_y.append(None)
edge_trace = go.Scatter(
x=edge_x,
y=edge_y,
line={"color": "black", "width": 1},
hoverinfo="none",
showlegend=False,
mode="lines",
)
# nodes trace
node_x = []
node_y = []
text = []
for node in network_graph.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
text.append(node)
node_trace = go.Scatter(
x=node_x,
y=node_y,
text=text,
mode="markers+text",
showlegend=False,
hoverinfo="none",
marker={"color": "pink", "size": 50, "line": {"color": "black", "width": 1}},
)
# layout
layout = {
"plot_bgcolor": "white",
"paper_bgcolor": "white",
"margin": {"t": 10, "b": 10, "l": 10, "r": 10, "pad": 0},
"xaxis": {
"linecolor": "black",
"showgrid": False,
"showticklabels": False,
"mirror": True,
},
"yaxis": {
"linecolor": "black",
"showgrid": False,
"showticklabels": False,
"mirror": True,
},
}
print(nx.eigenvector_centrality(network_graph))
measure_vector = {}
network_metrics_df = pd.DataFrame()
measure_vector = nx.eigenvector_centrality(network_graph)
network_metrics_df["eigenvector"] = measure_vector.values()
measure_vector = nx.degree_centrality(network_graph)
network_metrics_df["degree"] = measure_vector.values()
measure_vector = nx.betweenness_centrality(network_graph)
network_metrics_df["betweeness"] = measure_vector.values()
measure_vector = nx.closeness_centrality(network_graph)
network_metrics_df["closeness"] = measure_vector.values()
# measure_vector = nx.pagerank(network_graph)
# network_metrics_df["pagerank"] = measure_vector.values()
# measure_vector = nx.average_degree_connectivity(network_graph)
# network_metrics_df["average_degree"] = measure_vector.values()
print(network_metrics_df)
# figure
return go.Figure(data=[edge_trace, node_trace], layout=layout)
# Dash App
app = Dash(__name__)
app.title = "Dash Networkx"
app.layout = html.Div(
[
html.I("Write your EDGE_VAR"),
html.Br(),
# dcc.Dropdown(['eigenvector', 'degree', 'betweeness', 'closeness'], 'eigenvector', id='metric-dropdown'),
dcc.Input(id="EGDE_VAR", type="text", value="K", debounce=True),
dcc.Graph(id="my-graph"),
]
)
@app.callback(
Output("my-graph", "figure"),
# Input('metric-dropdown', 'value'),
[Input("EGDE_VAR", "value")],
)
def update_output(EGDE_VAR: None) -> None:
return networkGraph(EGDE_VAR)
if __name__ == "__main__":
app.run(debug=True)

View File

@ -0,0 +1,6 @@
"""Test for the NetworkX Component."""
# def networkGraph(Edges) -> None:
# """Checks if an import co company_stats_dash can be made."""
# assert networkx_dash is not None

View File

@ -0,0 +1,6 @@
"""Test for the NetworkX Component."""
# def networkGraph(Edges) -> None:
# """Checks if an import co company_stats_dash can be made."""
# assert networkx_dash is not None

View File

@ -0,0 +1,7 @@
"""Test for the NetworkX Component."""
from aki_prj23_transparenzregister.ui import networkx_dash
def networkGraph(Edges: None) -> None:
"""Checks if an import co company_stats_dash can be made."""
assert networkx_dash is not None