diff --git a/documentations/index.rst b/documentations/index.rst
index 8e83918..bfc77f1 100644
--- a/documentations/index.rst
+++ b/documentations/index.rst
@@ -32,6 +32,7 @@ This is the documentation for the AKI project group on the german transparenzreg
:caption: Seminararbeiten
seminararbeiten/DevOps/Seminarpräsentation.ipynb
+ seminararbeiten/Datenspeicherung/00_Datenspeicherung.md
.. toctree::
:glob:
diff --git a/documentations/seminararbeiten/3_Datenspeicherung.md b/documentations/seminararbeiten/3_Datenspeicherung.md
deleted file mode 100644
index 1f76b94..0000000
--- a/documentations/seminararbeiten/3_Datenspeicherung.md
+++ /dev/null
@@ -1,68 +0,0 @@
-# Aufgabe: Inhaltliche Skizze für die Seminararbeit zur Thematik Datenspeicherung
-
-# 1. Allgemeine Anforderungen an Datenbank
-- **Speicherung** von strukturierten Daten, wie Kennzahlen, Stammdaten
-- **Skalierbarkeit:** Datenbank sollte skalierbar sein, um zukünftige Daten weiterhin zu speichern und weitere Unternehmen hinzuzufügen
-- **Sicherheit:** Die Datenbank muss Funktionen unterstützen, um die Datenvor unbefugtem Zugriff zu schützen.
-- **Datensicherung- und Wiederherstellung: ** Die Datenbank muss Funktionen zur Sicherung und Wiederherstellung unterstützen.
-- **Leistung:** Die Performance der Datenbank ist eher zweitrangig, da die Abfrage nicht hochdynamisch sein muss. Ausserdem werden nicht viele Anfragen erwartet.
-- **Integration:** Die Datenbank muss sich in ein Python Framework einbinden lassen und mit dem bevorzugten Frontend Daten austauschen können.
-
-# 2. Datenarten
-Welche Daten erwarten wir im Projekt? \
-Cluster, wie z.B. Stammdaten, Stimmungsdaten, Social Graph, Zeitseriendaten/Historien
-
-> Abstimmung mit den Bereichen Textmining und Datenbeschaffung über verwendete Daten und Formulierung von Anforderungen an Daten.
-
-## 2.1 strukturierte Daten
-Was sind strukturierte Daten?
-
-## 2.2 unstrukturierte Daten
-Was sind unstrukturierte Daten?
-
-> Definiere eine Anforderung an die Struktur der Daten.
-
-# 3. Arten von Datenbanken
-## 3.1 Relational
-Was ist eine reltionale Datenbank?
-Wie werden Daten gespeichert?
-Beispiel für relationale Datenbank
-
-## 3.2 Graph
-Was ist eine Graph Datenbank?
-Wie werden Daten gespeichert?
-Beispiel für Graph Datenbank
-
-## 3.3 Zeitserien
-Was ist eine Zeitserien Datenbank?
-Wie werden Daten gespeichert?
-Beispiel für Zeitserien Datenbank
-
-> Kurzvorstellung von Datenbanksystemen
-
-# 4. DBS Transparenzregister
-## 4.1 relationales Datenbankmodell
-
-> Modell zur Abbildung der Relationen im Projekt Transparenzregister
-
-## 4.2 verteilte Datenbank oder ein System
-Ein DBS: Wenn nur ein Datenbanksystem verwendet wird, muss nur ein System gepflegt und integriert werden.
- - Vorteil: einfache Verwaltung und schnelle Abfrage von Datenbeziehungen
-
-verteiltes System: spezialisierte Datenbank für jeden Datenytp, wie z.B. Zeitseriendaten oder Graph Daten
-
-> Definiere eine Empfehlung/Anforderung für das Projekt Transparenzregister.
-
-## 4.3 Analyse zur Auswahl eines Datenbanksystems
-Was sollte bei der Auswahl eines Datenbanksystems beachtet werden?
-
-> Empfehlungen für DBS-Auswahl
-
-## 4.4 Anbindung an Front- und Backend
-Wie kann das DBS an das Front- und Backend angebunden werden?
-> Jupyter Notebook mit Beispiel
-
-## 4.5 Abfragen in der Datenbank
-Wie können Unternehmensdaten abgefragt werden?
-Wie können Verflechtungen abgefragt werden?
-> Jupyter Notebook mit Beispiel
\ No newline at end of file
diff --git a/documentations/seminararbeiten/Datenspeicherung/00_Datenspeicherung.md b/documentations/seminararbeiten/Datenspeicherung/00_Datenspeicherung.md
new file mode 100644
index 0000000..6cddc32
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/00_Datenspeicherung.md
@@ -0,0 +1,748 @@
+
+
+
+
+# Datenspeicherung
+## Inhaltsverzeichnis
+
+- [Datenspeicherung](#datenspeicherung)
+ - [Inhaltsverzeichnis](#inhaltsverzeichnis)
+ - [Motivation: Warum speichern wird Daten?](#motivation-warum-speichern-wird-daten)
+ - [1. Allgemeine Anforderungen an Datenbank](#1-allgemeine-anforderungen-an-datenbank)
+ - [2. Datenarten](#2-datenarten)
+ - [2.1 Welche Daten erwarten wir im Projekt?](#21-welche-daten-erwarten-wir-im-projekt)
+ - [2.2 strukturierte Daten](#22-strukturierte-daten)
+ - [2.3 unstrukturierte Daten](#23-unstrukturierte-daten)
+ - [3. Arten von Datenbanken](#3-arten-von-datenbanken)
+ - [3.1 Relationale Datenbank](#31-relationale-datenbank)
+ - [3.1.1 Anlegen von Tabellen](#311-anlegen-von-tabellen)
+ - [3.1.2 SQL - Abfrage von relationalen Datenbanken](#312-sql---abfrage-von-relationalen-datenbanken)
+ - [3.2 Graphdatenbank](#32-graphdatenbank)
+ - [3.2.1 Erstellung eines Datensatzes](#321-erstellung-eines-datensatzes)
+ - [3.2.2 Cypher - Abfrage von Graphdatenbanken](#322-cypher---abfrage-von-graphdatenbanken)
+ - [3.3 Zeitseriendatenbank](#33-zeitseriendatenbank)
+ - [3.3.1 Erstellung eines Datensatzes](#331-erstellung-eines-datensatzes)
+ - [3.3.2 FluxQuery](#332-fluxquery)
+ - [3.4 Dokumenten Datenbank ](#34-dokumenten-datenbank-)
+ - [3.4.1 Erstellen einer Collection / Ablegen von Dokumenten](#341-erstellen-einer-collection--ablegen-von-dokumenten)
+ - [3.5 Aufbau einer Datenbank](#35-aufbau-einer-datenbank)
+ - [4. Datenbanken Transparenzregister](#4-datenbanken-transparenzregister)
+ - [4.1 Production DB - relationales Datenbankmodell](#41-production-db---relationales-datenbankmodell)
+ - [4.2 Staging DB](#42-staging-db)
+ - [4.3 SQL Alchemy](#43-sql-alchemy)
+ - [5. Proof of Concept](#5-proof-of-concept)
+ - [5.1 Docker](#51-docker)
+ - [5.2 PG Admin](#52-pg-admin)
+ - [5.3 Erstellen von Mock Daten](#53-erstellen-von-mock-daten)
+ - [5.4 Anlegen der relationalen Tabellen](#54-anlegen-der-relationalen-tabellen)
+ - [5.5 Abfragen der Datenbank](#55-abfragen-der-datenbank)
+ - [6. Zusammenfassung](#6-zusammenfassung)
+ - [Quellen](#quellen)
+
+
+
+
+## Motivation: Warum speichern wird Daten?
+Für die Speicherung von Daten gibt es verschiedene Motivationen:
+- **Sammlung:** Zur Aufbewahrung von Wissen und Informationen über Objekte, Ereignisse oder Prozesse werden Daten gespeichert.
+- **Historisierung:** Durch die Speicherung von Daten in einem zeitlichen Zusammenhang, wird eine Historie erstellt, mit welcher Muster, Trends oder Zusammenhänge erkannt werden können. Historische Daten helfen ausserdem bei der Entscheidungsfindung.
+- **Bewertung:** Mit gespeicherten Daten können Systeme, Produkte und Prozesse nachvollzogen, bewertet und verbessert werden.
+
+Im Projekt Transparenzregister ist die Datenspeicherung eine Kernkomponente, da die gesammelten Informationen die Grundlage für Analysen darstellen. \
+Mit geeigneten Pipelines werden aus diesen Daten Erkenntnisse extrahiert, um z.B. Verflechtungen zwischen Personen und Unternehmen oder den wirtschaftlichen Trend eines Unternehmens visualisieren und bewerten zu können.
+
+## 1. Allgemeine Anforderungen an Datenbank
+- **1.1 Speicherung/Integrität**: Das verwendete System muss Daten, wie Unternehmenskennzahlen, Stammdaten und Verflechtungen speichern. Die Daten müssen korrekt und konsistent gespeichert werden. Konsistent bedeutet in einem gültigen und widerspruchsfreien Zustand und die Transaktionen sollen den ACID-Eigenschaften entsprechen.
+ - **Atomarity:** Eine Transaktion wird atomar betrachte, d.h. es ist die kleinste unteilbare Einheit, wodurch eine Transaktion entweder vollständig durchgeführt und übernommen wird (Commit) oder bei einem Fehler rückgängig gemacht wird (Rollback).
+ - **Consistency:** Konsistenz bedeutet, dass eine Transaktion den Datenbankzustand von einem gültigen in einen anderen gültihgen Zustand überführt. Sollte eine Transaktion eine Konsitenzverletzung verursachen, wird diese abgebrochen und die Änderungen zurückgesetzt.
+ - **Isolation:** Isolation sorgt dafür, dass alle Transaktion unabhängig voneinander ausgeführt werden, damit sich diese bei der Ausführung nicht gegenseitig beeinflussen.
+ - **Durability:** Dauerhaftigkeit bedeutet, dass die Ergebnisse einer Transaktion dauerhaft in der Datenbank gespeichert werden und auch nach einem Systemneustart oder Systemfehler erhalten bleiben.
+- **1.2 Skalierbarkeit:** Das System soll skalierbar sein, um zukünftige Daten weiterhin zu speichern und weitere Unternehmen hinzuzufügen. Durch Hinzufügen von Ressourcen kann das System an steigende Datenmengen und Benutzeranforderungen angepasst werden. Man spricht von horizontaler Skalierung, da die Last auf mehrere Datenbankserver verteilt wird.
+- **1.3 Sicherheit:** Die Datenbank muss Mechanismen bereitstellen, um die Daten vor unbefugtem Zugriff zu schützen.
+ - **Authentifizierung:** Überprüfung der Identität eines Benutzers, durch Benutzername und Passwort. Meist wird eine Zwei-Faktor-Authentifizierung verwendet, um das Sicherheitslevel zu erhöhen.
+ - **Autorisierung:** Der authentifizierte Benutzer erhält bei der Autorisierung Zugriffsrechte und Ressourcen, welche auf seiner Benutzerrolle basieren. Ein Benutzer mit Administratorrechten, erhält Zugriff auf alle Systemressourcen, wohingegen ein normaler Benutzer nur beschränkten Zugriff erhält.
+ - **Verschlüsselung:** Durch Verschlüsselung werden Daten in ein nicht interpretierbaren Code umgewandelt, um den Inhalt vor unbefugtem Zugriff zu schützen. Dafür wird ein Algorithmus verwendet, welcher einen Schlüssel generiert und die Daten mit diesem verschlüsselt. Um die Daten wieder lesen zu können, müssen diese mit dem Schlüssel dechiffriert werden.
+- **1.4 Datensicherung- und Wiederherstellung:** Die Datenbank muss Funktionen zur Sicherung und Wiederherstellung unterstützen. Im Falle eines Ausfalls oder Fehlers muss sichergestellt sein, dass Mechanismen die Daten schützen und wiederherstellen.
+Die meisten Daten in einer Datenbank ändern sich nur langsam, manche allerdings schnell. Je nach Anwendungsfall muss eine geeignete Sicherungsstrategie ausgewählt werden, um nur die Daten zu sichern, die sich tatsächlich ändern.
+Jedes Datenbankmanagementsystem bietet unterschiedliche Mechanismen zur Datensicherung und Wiederherstellung, dessen Möglichkeiten nach Auswahl eines Systems
+ - **vollständiges Backup:** Das vollständige Backup ist eine komplette Kopie der Datenbank inkl. aller Daten, Indizes, Tabellen und Metadaten. Es benötigt viel Speicherplatz und Zeit zur Erzeugung der Sicherung und auch zur Wiederherstellung.
+ - **inkrementelles Backup:** Ein inkrementelles Backup sichert nur die Änderungen seit dem letzten vollständigem bzw. inkrementellen Backup. Durch den verringerten Datenbestand ist es deutlich schneller und datensparsamer, als das vollständige Backup. Zur Wiederherstellung wird das letzte vollständige und alle inkrementellen Backups benötigt. Allerdings entsteht eine Abhängigkeitskette, da jedes Backup seine Vorgänger zur Wiederherstellung benötigt.
+ - **differentielles Backup:** Beim differentiellen Backup werden alle Änderungen seit dem letzten vollständigem Backup gesichert. D.h. je weiter die letzte vollständige Sicherung zurückliegt, desto größer und langsamer wird das Backup. Zur Wiederherstellung werden das letzte vollständige und differentielle Backup benötigt.
+
+
+
+
+**Backuphäufigkeit:**
+Die Backuphäufigkeit ist eine Abwägung aus Risiken, Kosten und Arbeitsaufwand. Dieses muss individuell abgeschätzt werden aufgrund des Datenbankumfangs und der Änderungshäufigkeit der Daten, um eine geeignete Backup-Strategie zu entwerfen. \
+*Beispiel:*
+- Vorgabe: Datenbank mit 500GB Größe
+ - Anforderungen
+ - min. vierfache Backupkapazität --> 2 TB
+ - Backupdauer vollständig: \
+ USB 2.0:$\frac {500GB}{\frac{60MB/s}{1024}} = 8533 sec. \approx 142Min. \approx 2,37 Std.$ \
+ USB 3.0:$\frac {500GB}{\frac{625MB/s}{1024}} = 820 sec. \approx 13,6Min. \approx 0,23 Std.$ \
+ VDSL 100:$\frac {500GB}{\frac{5MB/s}{1024}} = 102400 sec. \approx 1706Min. \approx 28,4 Std.$ \
+ Glasfaser:$\frac {500GB}{\frac{62,5MB/s}{1024}} = 8192 sec. \approx 136,5Min. \approx 2,3 Std.$
+
+- **1.5 Leistung:** Die Performanceanforderungen an die Datenbank ergibt sich aus verschiedenen Merkmalen. Diese können kombiniert gestellt werden und sind abhängig von den Anforderungen an das System. Eine Analyse der Anwendungsfälle ist notwendig, um die Anforderungen zu spezifizieren.
+ - **Latenz:** Die Datenbank soll Anfragen effizient und in einer akzeptablen Antwortzeit verarbeiten. Typische Datenbankapplikationen, wie z.B. ein Webshop benötigen viele einzelne Zugriffe, wofür jedes Mal ein Kommunikationsprotokoll angewendet wird. Durch viele kleine Datenbankzugriffe wird die Applikation verlangsamt, da auf die Netzwerkkommunikation gewartet wird. Für das Benutzererlebnis eines Webshops ist die Latenz ein wichtiges Merkmal.
+ - **Durchsatz:** Ist eine Metrik für die Anzahl an Transaktionen pro Zeiteinheit. Der Durchsatz ist wichtig bei großen Benutzeraufkommen in einem Webshop.
+ - **Verfügbarkeit:** Eine hohe Verfügbarkeit, also Erreichbarkeit der Datenbank, wird durch Redundanz (mehrfaches Vorhandensein) und Wiederherstellungsmechanismen gewährleistet, damit Daten koninuierlich verfügbar sind.
+ - **Wartbarkeit:** Eine einfach zu wartende Datenbank muss Funktionen zur Überwachung, Diagnose, Wartung, Datensicherung und Wiederherstellung bereitstellen. Durch diese automatisierten Pipelines können andere Eigenschaften, wie z.B. die Verfügbarkeit negativ beeinflusst werden, weil Prozesse die Datenbank blockieren.
+- **1.6 Integration:** Die Datenbank muss Schnittstellen bereitstellen, um die gespeicherten Daten für eine Anwendung bzw. Systeme zur Verfügung zu stellen.
+ - **API:** Das *Application Programming Interface* ist eine definierte Schnittstelle, welche Methoden und Funktionen bereit stellt, um auf die Datenbank zuzugreifen bzw. um diese zu verwalten.
+ - **REST:** REpresential State Transfer beschreibt eine Schnittstelle, die das http-Protokoll verwendet, wo mit den Methoden GET, POST, PUT, DELETE die Kommunikation realisiert wird.
+ - **SOAP:** Simple Object Access Protocol ist eine Schnittstelle, welche auf XML basiert.
+ - **ODBC:** Open Database Connectivity ist eine standardisierte Schnittstelle zum Austausch zwischen Anwendungen und Datenbanken.
+ - **JDBC:** Java Database Connectivity
+
+
+## 2. Datenarten
+
+Zur Beschreibung von Unternehmen, werden verschiedene Datenarten verwendet.
+Die folgenden Datenarten sind eine allgemeine Zusammenfassung und sollen das Brainstorming für die projektspezifischen Daten unterstützen.
+- **Stammdaten:** Stammdaten beinhalten die grundsätzlichen Eigenschaften und
+Informationen von realen Objekten, welche für die periodische Verarbeitung notwendig sind. Ein Stammsatz für Personal besteht z.B. aus einer Personalnummer, dem Mitarbeiternamen, Anschrift und Bankverbindung. \
+Je nach Anwendungsfall bzw. Geschäftsprozess muss der Inhalt definiert werden, wie z.B. bei Unternehmens-, Kunden-, Material- oder Patientenstammdaten.
+
+- **Metadaten:** Mit Metadaten werden weitere Daten beschrieben und vereinfachen das Auffinden und Arbeiten mit diesen. Metadaten beinhalten beispielsweise den Verfasser, das Erstellungs- oder Änderungsdatum, die Dateigröße oder den Ablageort. \
+Mit Metadaten können Datenbestände einfacher und effizienter verwaltet und abgefragt werden.
+
+- **Transaktionsdaten:** Transaktionsdaten beschreiben eine Veränderung des Zustands, wie z.B. eine Kapitalbewegung oder eine Ein-/Auslieferung aus einem Lager.
+
+- **Referenzdaten:** Referenzdaten sind eine Teilmenge von Stammdaten und beschreiben die zulässigen Daten. Diese werden nur selten geändert oder angepasst und gelten als konstant. Beispiele für Referenzdaten sind: Postleitzahlen, Kostenstellen, Währungen oder Finanzhierarchien.
+
+- **Bestandsdaten:** Bestandsdaten sind dauerhafter Veränderung ausgesetzt, da diese z.B. die Artikelmenge in einem Lager oder das Guthaben auf einem Konto beschreiben. Diese korrelieren mit den Transaktionsdaten.
+
+Diese Datenarten müssen im Kontext des Projektes betrachtet werden und sollen das Brainstorming unterstützen. \
+*Stammdaten:* Unternehmensname, Anschrift, Branche \
+*Metadaten:* Verfasser einer Nachricht - Veröffentlichungsdatum; Prüfungsunternehmen - Prüfdatum \
+*Transaktionsdaten:* Wer hat wann wo gearbeitet? \
+*Referenzdaten:* Einheit von Metriken (Umsatz, EBIT usw.) \
+*Bestandsdaten:* Vorstand, Geschäftsführer, Aufsichtsrat
+
+### 2.1 Welche Daten erwarten wir im Projekt?
+Aus den vorangehenden, allgemeinen Datenarten haben wir Cluster identifiziert, welche im Projekt benötigt werden.
+Die Kombination aus den folgend aufgeführten Datenclustern ermöglicht eine ganzheitliche Betrachtung und Bewertung der Unternehmen.
+
+- **Unternehmensstammdaten:** Die Stammdaten beinhalten grundlegende Informationen zu einem Unternehmen, wie z.B. Name, Anschrift, Gesellschaftsform und Branche.
+
+- **Sentimentdaten:** Die Sentiment- oder Stimmungsdaten beschreiben die Aussenwahrnehmung des Unternehmens hinsichtlich der Mitarbeiterzufriedenheit, Nachhaltigkeit und Umweltfreundlichkeit.
+> Mit Sentimentdaten können folgende Fragen beantwortet werden:
+>- Welchen Ruf hat das Unternehmen?
+>- Wie ist die Aussenwahrnehmung?
+>- Wie ist die Kundenbindung?
+- **Finanzdaten:** Die Finanzdaten sind Metriken bzw, Indikatoren, um den wirtschaftlichen Erfolg des Unternehmens zu bewerten. Hierzu zählen z.B. Umsatz, EBIT, EBIT Marge, Bilanzsumme, Eigenkapitalanteil, Fremdkapitalanteil, Verschuldungsgrad, Eigenkapitalrentabilität, Umschlaghäufigkeit des Eigenkapitals.
+> Mit Finanzdaten können folgende Fragen beantwortet werden:
+>- Wie rentabel wirtschaftet das Unternehmen?
+>- Wie ist der wirtschaftliche Trend?
+>- Bewerten anhand verschiedender Metriken.
+
+- **Verflechtungsdaten/Social Graph:** Die Verbindungen bzw. Beziehungen zu Personen oder Unternehmen wird in den Verflechtungsdaten abgelegt. Beziehungen entstehen, wenn eine Person Geschäftsführer, Vorstand, Aufsichtsratmitglied, Prokurist oder Auditor ist und Unternehmen z.B. gemeinsam arbeiten, beliefert wird oder Anteile an einem anderen Unternehmen besitzt.
+> Mit Verflechtungsdaten können folgende Fragen beantwortet werden:
+>- Gibt es strategische Partnerschaften?
+>- Wie sind die Lieferketten aufgebaut?
+>- Wie ist die Qualität der Geschäftsbeziehungen?
+>- Ist das Unternehmen widerstandsfähig aufgestellt?
+>- Gibt es Zusammenhänge zu Personen?
+
+Die abgebildete Mind Map ist nicht vollständig und bildet nicht den finalen Datenumfang des Projekts ab. Es ist eine Momentaufnahme, bevor das relationale Schema entwickelt und die Implementierung begonnen wurde.
+
+
+
+
+### 2.2 strukturierte Daten
+
+Strukturierte Daten liegen in einem definierten Format. Vorab wird ein Schema definiert, um Felder, Datentypen und Reihenfolgen festzulegen und die Daten entsprechend abzulegen.
+Diese Art von Daten wird z.B. in relationalen Datenbanken verwendet, wobei jede Zeile einer Tabelle einen Datensatz repräsentiert. Die Beziehungen untereinander sind über die Entitäten definiert.
+Das Beispiel unten zeigt ein einfaches Beispiel, wie die Daten für die Klasse *Company* definiert sind. Mit diesem Schema kann die Datenaufbereitung umgesetzt werden.
+
+
+
+```mermaid
+---
+title: Structured Data
+---
+classDiagram
+ class Company:::styleClass {
+ int ID
+ string Name
+ string Street
+ int ZipCode
+ }
+
+
+```
+|Vorteile|Nachteile|
+|:-----:|:------:|
+|einfach nutzbar, da organisiert |Einschränkung der Verwendungsmöglichkeit durch Schema |
+| bei bekannten Schema sind Werkzeuge vorhanden|begrenze Speichermöglichkeit, da starre Schemata vorgegeben sind |
+|gut automatisierbar | |
+
+### 2.3 unstrukturierte Daten
+Unstrukturierte Daten unterliegen keinem Schema, wie z.B. E-Mails, Textdokumente, Blogs, Chats, Bilder, Videos oder Audiodateien.
+- **Textanalyse:** Aus unstrukturierten Texten werden z.B. durch Analyse und Mining Informationen gewonnen, um diese zu extrahieren. Es wird das Vorkommen von bestimmten Wörtern mittels Named Entity Recognition ermittelt oder die Stimmung bzw. das Thema in einem Artikel.
+- **Audio-/Videoanalyse:** Bei der Verarbeitung unstrukturierter Audio- oder Videodateien werden Objekte, Gesichter, Stimmen oder Muster erkannt, um diese für Sprachassistenten oder autonome Fahrzeuge nutzbar zu machen.
+
+Eine wichtige Informationsquelle sind unstrukturierte Daten für Explorations- und Analyseaufgaben. Dabei werden Datenquellen wie z.B. E-Mails, RSS-Feeds, Blogs durchsucht, um bestimmte Informationen zu finden oder Zusammenhänge zwischen verschiedenen Quellen hherzustellen. Dies ermöglicht tiefe Einsicht in die Daten zu erhalten und unterstützt die Entscheidungsfindung bei unklaren Sachverhalten und die Entdeckung neuer Erkenntnisse.
+
+|Vorteile|Nachteile|
+|:-----:|:------:|
+|großes Potenzial Erkenntnisse zu erlangen |aufwändige Bearbeitung notwendig, um Daten nutzbar zu machen|
+|unbegrenzte Anwendungsmöglichkeiten, da kein Schema vorhanden ist|spezielle Tools zur Aufbereitung notwendig|
+| |Expertenwissen über die Daten und Datenaufbereitung notwendig |
+
+## 3. Arten von Datenbanken
+### 3.1 Relationale Datenbank
+Eine relationale Datenbank speichert und verwaltet strukturierte Daten. Dabei werden die Daten in Tabellen organisiert, welche aus Zeilen und Spalten bestehen. \
+In den Zeilen der Tabellen sind die Datensätze gespeichert, d.h. jede Zeile repräsentiert einen Datensatz. Durch logisches Verbinden der Tabellen können die Beziehungen zwischen den Daten abgebildet werden. \
+Die wichtigsten Elemente einer relationalen Datenbank werden folgend erklärt:
+
+**Tabelle:** Eine Tabelle repräsentiert eine Entität bzw. Objekt , wie z.B. Unternehmen, Kunde oder Bestellung. Die Tabelle besteht aus Spalten, welche die Attribute der Entität speichern. \
+Jede Zeile ist eine Instanz des Objekts und enthält konkrete Werte.
+
+
+**Table_Person**
+|**ID**|**Name**|**Age**|**Salary**|**Height**|
+|---|---|---|---|---|
+|1|Tim|31|300.00|191.20|
+|2|Tom|21|400.00|181.87|
+|3|Tam|51|500.00|176.54|
+
+https://www.sqlservercentral.com/articles/creating-markdown-formatted-text-for-results-from-sql-server-tables
+
+**Primärschlüssel:** Der Primärschlüssel ist ein eindeutiger Bezeichner für jede einzelne Zeile einer Tabelle und wird zur Identifikation einer einzelnen Zeile benötigt. Im oberen Beispiel ist die Spalte *ID* der Primärschlüssel.
+
+**Fremdschlüssel:** Ein Fremdschlüssel verweist auf einen Primärschlüssel einer anderen Tabelle, um eine Beziehung zwischen den Tabellen herzustellen. \
+Im Beispiel ist bezieht sich die Spalte *customer_id* auf den Primärschlüssel der Tabelle *Table_Person*.
+
+**Table_Orders**
+|**ID**|**Product**|**total**|**customer_id**|
+|---|---|---|---|
+|1|Paper|12|2|
+|2|Book|3|2|
+|3|Marker|5|3|
+
+**Beziehungen:** Wie bereits beschrieben, können mit der Verwendung von Fremdschlüsseln Beziehungen zwischen den Tabellen hergestellt werden. \
+Es gibt verschiedene Beziehungstypen:
+
+|**Typ**|**Beschreibung**|
+|---|---|
+|1:1|Jeder Primärschlüsselwert bezieht sich auf nur einen Datensatz. **Beispiel:** Jede Person hat genau eine Bestellung. |
+|1:n|Der Primärschlüssel ist eindeutig, tritt in der bezogenen Tabelle 0..n mal auf. **Beispiel:** Jede Person kann keine, eine oder mehrere Bestellungen haben. |
+|n:n|Jeder Datensatz von beiden Tabellen kann zu beliebig vielen Datensätzen (oder auch zu keinem Datensatz) stehen. Meist wird für diesen Typ eine dritte Tabelle verwendet, welche als Zuordnungs- bzw. Verknüpfungstabelle angelegt wird, da andernfalls keine direkte Verbindung hergestellt werden kann. |
+
+https://www.ibm.com/docs/de/control-desk/7.6.1.2?topic=structure-database-relationships
+
+#### 3.1.1 Anlegen von Tabellen
+Der Umgang von relationalen Datenbanken erfolgt mittels SQL. Folgend ein Beispiel zum Anlegen einer Tabelle mit Attributen.
+
+```
+CREATE TABLE Bildungsstaette (
+ ID INT PRIMARY KEY NOT NULL,
+ Name VARCHAR(255) NOT NULL,
+ Anschrift VARCHAR(255),
+ Art VARCHAR(100)
+);
+```
+
+#### 3.1.2 SQL - Abfrage von relationalen Datenbanken
+
+Für die Verwaltung und Abfrage wird SQL (Structured Query Language) verwendet.
+Mit dieser Syntax können Tabellen erstellt, Daten eingefügt, aktualisiert und gelöscht und Daten abgefragt werden.
+
+**Anzeige aller Attribute einer Tabelle:**
+```
+SELECT * FROM table_name;
+```
+
+**Anzeige definierter Attribute einer Tabelle:**
+```
+SELECT column1, column2 FROM table_name;
+```
+
+**Gefilterte Anzeige einer Tabelle:**
+```
+SELECT * FROM table_name WHERE condition;
+```
+
+**Daten aus mehreren Tabellen abrufen (Join):**
+```
+SELECT t1.column1, t2.column2
+FROM table1 t1
+JOIN table2 t2 ON t1.id = t2.id;
+```
+
+### 3.2 Graphdatenbank
+Eine Graphdatenbank basiert auf dem Graphenkonzept. \
+Ein Graph besteht aus Knoten und Kanten (Beziehungen), welche die Verbindungen zwischen den Knoten darstellen. \
+Die Stärke der Graphdatenbank liegt in der Darstellung von komplexen Beziehungen.
+
+**Knoten:** Jeder Knoten repräsentiert eine Entität bzw. Objekt. Jeder Knoten hat eine eindeutige ID oder Bezeichner, um auf diesen zugreifen zu können. Es können auch Attribute hinterlegt werden, um zusätzliche Informationen zu speichern, wie z.B. Geburtsjahr, Wohnort einer Person.
+
+**Kanten:** Die Kanten verbinden die Knoten und repräsentieren damit die Beziehungen unter den Objekten. Die Kanten können gerichtet und ungerichtet sein. Bei einer gerichteten Beziehung muss die Richtung vom Quell- zum Zielknoten beachtet werden, wohingegen eine ungerichtete Kante eine symmetrische Beziehung darstellt. \
+*gerichtete Beziehung:* Ein Unternehmen ist abhängig vom Bericht des Wirtschaftsprüfers. \
+*ungerichtete Beziehung:** Unternehmen A arbeitet gemeinsam mit Unternehmen B an einem Projekt.
+
+**Label:** Label werden verwendet, um die Knoten zu kategorisieren/gruppieren. Ein Knoten kann auch mehrere Label besitzen, um die Zugehörigkeit an verschiedenen Kategorien darzustellen (z.B. Unternehmensbranche).
+
+#### 3.2.1 Erstellung eines Datensatzes
+1. Knotenerstellung: Es wird zuerst ein Knoten erstellt, der die Entität repräsentiert.
+2. ID: Der Knoten benötigt eine eindeutige Identifikationsnummer, welche automatisch erzeugt oder manuell festgelegt werden kann.
+3. Knoten einfügen: Wenn die beiden notwendigen Elemente (Knoten und ID) festgelegt sind, kann der Knoten eingefügt werden.
+4. Beziehungen/Kanten festlegen: Wenn der Knoten Beziehungen zu anderen Knoten hat, können diese hinzugefügt werden.
+
+**Beispiel:**
+Folgender Code legt in neo4j zwei Knoten und die entsprechenden Beziehungen an.
+
+```
+CREATE (:University {id: 4711, name: 'FH SWF - Iserlohn'}),
+ (:University {id: 1234, name: 'FH SWF - Meschede'})
+WITH *
+MATCH (u1:University {id: 4711}), (u2:University {id: 1234})
+CREATE (u1)-[:cooparates_with]->(u2),
+ (u2)-[:cooparates_with]->(u1)
+```
+
+
+#### 3.2.2 Cypher - Abfrage von Graphdatenbanken
+Um Daten abzufragen wird die Abfragesprache Cypher verwendet.\
+Es werden folgend nur einige grundlegende Befehle gezeigt.\
+
+**Abfrage aller Knoten**
+```
+MATCH (n)
+RETURN n
+```
+**Abfrage aller Kanten/Beziehungen**
+```
+MATCH ()-[r]-()
+RETURN r
+```
+
+**Abfrage von Knoten mit definierten Eigenschaften**
+```
+MATCH (n:Label)
+WHERE n.property = value
+RETURN n
+```
+
+**Beziehung zwischen zwei Knoten abfragen**
+```
+MATCH (n1)-[r]->(n2)
+WHERE n1.property = value1 AND n2.property = value2
+RETURN r
+```
+
+### 3.3 Zeitseriendatenbank
+
+Zeitserien fallen überall dort an, wo eine Metrik zeitlich betrachtet wird, wie z.B. Umsatz oder EBIT.
+D.h. zu jedem Messwert gibt es einen zeitlich zugeordneten Zeitstempel, wobei die einzelnen Zeitpunkte zu einer Serie zusammengefasst werden, um den Zusammenhang zu betrachten. \
+Diese Datenbanken sind spezialisiert auf die Speicherung, Verwaltung und Abfrage von Zeitserien. \
+Die folgenden Erklärungen beziehen sich auf die InfluxDB.
+
+**Bucket:** Der Bucket separiert Daten in verschiedene Speicher und ist mit der Datenbank bei relationalen Datenbanken vergleichbar.
+
+**Datapoint:** Unter dem Bucket werden die Datenpunkte gespeichert. Ein Datapoint setzt sich aus mehreren Elementen zusammen, welche erorderlihc oder optional sind:
+
+|**Element**|**Eigenschaft**|
+|---|---|
+|Measurement |Datentyp: String
Leerzeichen sind verboten
Max. 64kB|
+|Tags| Sind optional
Bestehen aus einem Key/Value-Paar
Datentyp: String
Leerzeichen sind verboten
Max. 64 kB|
+|Fields| Min. 1 Field=value Paar wird benötigt
Nicht alle Felder müssen in jedem Punkt vorhanden sein
Datentypen: Float, String, Integer, Boolean|
+|Timestamp| Sind optional
Influx schreibt standardmäßig die Systemzeit als Zeitstempel
Genauigkeit kann eingestellt werden (Default: Nanosekunden)|
+
+#### 3.3.1 Erstellung eines Datensatzes
+Die Einrichtung von Zeitseriendatenbanken erfolgt mit der CLI von Influx.
+
+**Anlegen eines Buckets:**
+```
+CREATE DATABASE finance
+```
+
+#### 3.3.2 FluxQuery
+Zur Abfrage von Datenpunkten gibt es FluxQuery, welche sich stark an SQL orientiert. \
+
+**Abrufen aller Daten aus Bucket:**
+```
+from(bucket: "my-bucket")
+```
+
+**Festlegen des Zeitbereich:**
+```
+range(start: -1h, stop: now())
+```
+
+**Filtern nach Bedingungen:**
+```
+filter(fn: (r) => r._measurement == "temperature")
+```
+
+**Transformieren von Datenpunkten:**
+```
+map(fn: (r) => ({r with temperatureF: r.temperature * 2.34 + 123}))
+```
+### 3.4 Dokumenten Datenbank
+
+Eine Dokumentendatenbank ist ein System, welches für das Speichern von Dokumenten entwicklet wurde. Es gibt verschiedene Arten von Dokumenten, wie z.B. Textdateien (JSON, HTML, XML) oder PDF.
+Es muss kein Schema für die Dokumente festgelegt werden, dadurch ist es möglich Dokumente mit verschiedenen Datenfeldern zu speichern.
+Gleiche oder ähnliche Dokumente werden gemeinsam in *Collections* gespeichert.
+Die wichtigsten Elemente einer Dokumenten-Datenbank sind:
+
+**Database:** Unter Database versteht man einen Container, unter welchem Dokumente gespeichert werden. Dies dient der Isolierung bzw. logischen Trennung von Daten.
+
+**Collection:** Collections werden verwendet, um Dokumente mit ähnlichen Eigenschaften zusammenzufassen. Da Dokumenten-Datenbanken schemenlos sind, dienen die Collections der Organisation.
+
+**Document:** Das Dokument ist ein einzelnes Datenobjekt und die kleinste Einheit in einer Dokumenten-DB. Ein Dokument kann z.B. ein JSON mit einer eigenen internen Struktur.
+
+
+
+#### 3.4.1 Erstellen einer Collection / Ablegen von Dokumenten
+Folgend ein Code-Snippet zum Verbinden mit der Datenbank, Anlegen einer Collection und ablegen von Dokumenten.
+
+``` python
+from pymongo import MongoClient
+
+# Verbindung zur MongoDB-Datenbank herstellen
+client = MongoClient('mongodb://localhost:27017')
+
+# erstelle ein Cleint-Objekt zur Datenbank
+db = client['transparenz']
+
+# Collection erstellen
+collection = db['Tagesschau_API']
+
+# Beispiel-Dokumente einfügen
+doc1 = {
+ 'title': 'BASF wird verkauft!',
+ 'content': 'BASF wird an Bayer AG verkauft',
+ 'date': '2023-06-22'
+}
+
+doc2 = {
+ 'title': 'Bayer Aktie erreicht Rekordniveau',
+ 'content': 'Aufgrund des Zukaufs von BASF.....',
+ 'date': '2023-06-23'
+}
+
+# Dokumente in die Collection einfügen
+collection.insert_one(doc1)
+collection.insert_one(doc2)
+
+# Verbindung zur Datenbank schließen
+client.close()
+
+```
+
+
+
+### 3.5 Aufbau einer Datenbank
+Vor dem Aufbau einer relationalen Datenbank sollten planerische Schritte durchgeführt werden, um ein System zu entwerfen, dass den Anforderungen gerecht wird. \
+Die wichtigsten Schritte sind:
+
+**Anforderungsanalyse:** Identifikation und Definition von Anforderungen an die Datenbank durch Betrachtung des Anwendungsfalls.
+
+**Datenmodell:** Analysieren der Strukturen und Beziehungen, die sich aus der Anforderungsanalyse ergeben. Auswahl eines Datenbankmodells, welches am besten geeignet ist.
+
+**Tabellenentwurf:** Basierend auf den identifizierten Anforderungen wird die Tabellenstruktur der Datenbank entworfen. Für jede Tabelle werden Spaltennamen, Datentyp und mögliche Einschränkungen wie Primärschlüssel und Fremdschlüssel definiert.
+
+**Erstellung der Tabellen:** Wenn der Tabellenentwurf schlüssig ist und bereits diskutiert wurde, können die Tabellen erstellt werden. Es werden die zuvor festgelegten Bezeichner, Datenytpen und Constraints hinzugefügt.
+
+**Beziehungen festlegen:** Um die Beziehungen zwischen Tabellen festzulegen, werden Fremdschlüssel verwendet. Mit Fremdschlüsseln verknüpft man Tabellen mit den Primärschlüsseln anderer, abhängiger Tabellen.
+
+## 4. Datenbanken Transparenzregister
+Nachdem die Datencluster identifiziert wurden, welche für das Transparenzregister notwendig sind, wurde Rechereche zu den benötigten Datenquellen betrieben. \
+Es gibt verschiedene Quellen, mit unterschiedlichen Schnittstellen bzw. Zugriff auf die Daten, z.B. mit API´s oder über Web Scrapping.
+
+Es wurde eine Architektur definiert, welche den Aufbau der späteren Software skizziert:
+
+
+Mittels geeigneter Techniken werden Daten aus diversen Quellen extrahiert (Data Extraction) und in der Staging DB gespeichert.
+Mit unterschiedlichen Daten-Extraktionspipelines (Dazta Loader, Sentiment Analysis, Graph Analysis) werden die Daten aus der Staging DB verarbeitet und die strukturierten und aufbereiteten Daten in der Production DB abgelegt. \
+Das Frontend kann auf diese strukturierten Daten zugreifen, um diese zu visualisieren.
+
+### 4.1 Production DB - relationales Datenbankmodell
+
+Für die Production DB ist eine relationale Datenbank vorgesehen, da diese die Daten organisiert und durch Verwendung von definierten Schemata strukturiert. \
+Diese Strukturen erleichtern die Wartung und Integration zwischen Back- und Frontend.
+
+
+Zentrales Element ist die Stammdatentabelle **company**, welche einen zusammengesetzten Primärschlüssel aus der Nummer des Handelsregister und dem zuständigen Amtsgericht bildet. \
+Die Handelsregisternummer ist nicht eindeutig und wird deutschlandweit mehrfach vergeben, allerdings nur einfach unter einem Amtsgericht.
+
+Es schließt sich die Tabelle **finance** an, in welcher die Finanzdaten persisitiert werden. Diese steht in einer 1:n Beziehung zur Unternehmenstabelle, da ein Unternehmen viele Finanzdaten haben kann und jeder Datensatz genau einem Unternehmen zugewiesen ist. \
+Die einzelnen Metriken wurden als Attribute definiert, wodurch es viele NULL-Werte in jeder Zeile gibt. Vorteilhaft bei dieser Notation ist allerdings, dass die Metriken durch den Spalztenbezeichner eindeutig sind.
+
+Die Tabelle **Sentiment** speichert die Stimmungsdaten zu einem Unternehmen. Auch hier besteht eine 1:n Beziehung zu der Unternehmenstabelle. Es gibt einen eigenen Enumeration-Typ, der die Art der Stimmungsdaten festlegt.
+
+Die Tabelle **district_court** speichert die Amtsgericht, unter welchen die Unternehmen registriert sind. Diese Information ist wichtig, um mit der Handelsregisternummer und dem Amtsgericht ein Unternehmen eindeutig zu identifizieren.
+
+Die Tabelle **person** speichert Personen, welche unterschiedliche Beziehungen zu Unternehmen haben können. Daraus ergibt sich eine n:m Beziehung (many-to-many), da jede Person mehrere Beziehungen zu einem Unternehmen haben kann bz. jedes Unternehmen mehrfach mit einer Person in Verbindung steht. \
+Um diese Relation aufzulösen, wird eine Beziehungstabelle **person_relation** benötigt, um die n:m Beziehung auf zwei 1:n Beziehungen zu reduzieren. Diese enthält die Fremdschlüssel der bezogenen Tabellen, um die Beziehung zu modellieren.
+
+Abschließend gibt es noch die Tabelle **company_relation**, welche die Verbindung zwischen Unternehmen modelliert. Hierfür wurde ein Enumaration-Typ erzeugt, welcher die Art der Beziehung angibt (wird_beliefert_von, arbeitet_mit, ist_beteiligt_an, hat_Anteile_an).
+
+### 4.2 Staging DB
+
+Die Staging DB ist eine dokumentbasierte Datenbank zu Speicherung von unstrukturierten und semi-strukturierten Daten. Sie dient als Zwischenspeicher oder "Rohdatenbank" für die Extraktions-Pipelines. \
+Aufgaben der Staging-DB:\
+**1. Datenvorbereitung:** Sammlung und Speicherung von Rohdaten aus verschiedenen Quellen\
+**2. Überprüfung:** Entsprechen die Daten den Anforderungen ggfs. Ermittlung von Fehlern oder Inkonsistenzen\
+**3. Testumgebung:** Die Rohdaten aus der Staging DB können mehrfach verwendet werden, um verschiedene Szenarien und Funktionalitäten der Extraktionspipelines zu erproben\
+**4. Backup:** Wenn sich im Laufe des Projekts eine Datenquelle ändert (z.B. Struktur oder Zugang zum Bundesanzeiger) sind die Daten weiterhin verfügbar oder wenn es Änderungen am Schema der Production DB gibt, kann durch eine Änderung am Data Loader das neue Tabellenschema implementiert werden
+
+Die Staging DB erhält Collections der unterschiedlichen Quellen, unter welchen die Dokumente gespeichert werden.
+
+
+
+
+### 4.3 SQL Alchemy
+
+SQL Alchemy ist eine Python Bibliothek, um mit relationalen Datenbanken zu kommunizieren.
+Dieses ORM (Object-Relational-Mapping) Framework bildet die Datenbanktabellen als Pythonklassen an und vereinfacht damit das Erstellen, Lesen, Aktualsieren und Löschen von Daten aus Pythonanwendungen.\
+Wichtige Eigenschaften:
+- erleichterte Entwicklung: durch die Abbildung von Datenbanktabellen als Pythonklassen wird durchgängig Pythoncode verwendet
+- Flexibilität: Durch Verwendung eines Backend-Treibers für die unterschiedlichen Datenbanken, muss der Code nicht geändert werden. Wenn eine andere Datenbank zum Einsatz kommt, muss nur der Treiber ausgetauscht werden (Plattformunabhängigkeit)
+- Erhöhung der Produktivität: Es werden keine Kompetenzen für SQL Programierung und Wartung benötigt.
+
+## 5. Proof of Concept
+### 5.1 Docker
+
+Für die Umsetzung der bisher vorgestellten theoretischen Betrachtungen wird ein Docker Container verwendet. Dieser Container beinhaltet eine relationale und eine dokumentbasierte Datenbank. \
+Mit Jupyter Notebooks soll die Implementierung und Befüllung der Datenbank erprobt werden, um als Startpunkt für die anstehende Softwareentwicklung zu dienen.
+```yaml
+version: "3.8"
+services:
+ db:
+ image: postgres:14.1-alpine
+ container_name: postgres
+ restart: always
+ ports:
+ - "5432:5432"
+ environment:
+ POSTGRES_USER: postgres
+ POSTGRES_PASSWORD: postgres
+ volumes:
+ - ./PostgreSQL:/var/lib/postgresql/data
+ pgadmin:
+ image: dpage/pgadmin4:7.2
+ container_name: pgadmin4_container
+ restart: always
+ ports:
+ - "5050:80"
+ environment:
+ PGADMIN_DEFAULT_EMAIL: admin@fh-swf.de
+ PGADMIN_DEFAULT_PASSWORD: admin
+ volumes:
+ - ./pgadmin:/var/lib/pgadmin
+
+ mongodb:
+ image: mongo:7.0.0-rc4
+ ports:
+ - '27017:27017'
+ volumes:
+ - ./mongo:/data/db
+
+```
+|Eintrag|Beschreibung|
+|---|---|
+|version|Version von docker-compose|
+|services|Definition der Services, welche gestartet werden|
+
+|Option|Beschreibung|
+|---|---|
+|image|Angabe des zu verwendenden Image|
+|restart|Option, um Container erneut zu starten, falls dieser gestoppt wurde|
+|environment|Umgebungsvariablen, wie z.B. Username und Passwort|
+|Ports|Mapping des Containerports zum Port der Hostmaschine|
+|volumes|Angabe eines Volumes zum Persistieren der Containerdaten|
+
+Beim Ausführen der docker-compose werden in diesem Verzeichnis Ordner für die Datenablage angelegt. Da zum Verfassungszeitpunkt noch nicht feststeht, wie im Projekt der Datenaustausch stattfindet, könnten diese Ordner bzw. die Volumes einfach untereinander ausgetauscht werden.
+
+Zum Starten des Containers den folgenden Befehl ausführen:
+```
+docker-compose -f docker-compose.yml up
+```
+
+### 5.2 PG Admin
+PG Admin ist ein grafisches Administartionstool für Postgres. Wenn der Container gestartet ist, kann man sich über http://localhost:5050/browser/ mit dem Web-UI verbinden. \
+Dieses Tool dient lediglich der Überprüfung von Commits der Tabellen und daten.
+
+Die Anmeldedaten lauten:
+>User: admin@fh-swf.de \
+>Passwort: admin
+
+
+
+Zuerst muss der Server angelegt werden, dafür einen Rechtsklick auf Server und den Button „Register“ auswählen. Im geöffneten Dialog muss die Konfiguration festgelegt werden.
+
+|Reiter|Parameter|Wert|
+|---|---|---|
+|General|Name|postgres|
+|Connection|Host name/address|postgres (siehe docker-compose)|
+|Connection|Username|postgres (siehe docker-compose)|
+|Connection|Password|postgres (siehe docker-compose)|
+
+
+
+### 5.3 Erstellen von Mock Daten
+**Unternehmensstammdaten:**\
+Um das Konzept und den Umgang mit den ausgewählten Datenbanken zu überprüfen, sollen Daten in die Datenbank geschrieben werden. Hier für wurde auf Statista recherchiert, welches die größten deutschen Unternehmen sind, um einen kleinen Stamm an Unternehmensdaten zu generieren (01_Stammdaten_Unternehmen_HR.csv). /
+Die Relation zu den Amtsgerichten ist frei erfunden und wurde nicht recherchiert.
+
+
+**Amtsgerichte:**
+Die Amtsgerichte sind aus https://www.gerichtsverzeichnis.de/ extrahiert, wobei lediglich 12 Amstgerichte eingefügt wurden (Amtsgerichte.csv).
+
+**Finanzdaten:** Es wurden für drei Unternehmen (EON, Telekom, BASF) die Finanzdaten bezüglich Umsatz, Ebit und Ebitda auf Statista ermittelt und als separate Dateien gespeichert (BASF_data.csv, Telekom_data.csv, EON_data.csv).
+
+**Personen:** Die Personentabelle ist frei erfunden. Mit einer Onlinebibliothek wurde 1000 Vor- und Nachnamen erzeugt und gespeichert (Person1000.csv).
+
+**Personen-Unternehmens-Beziehung:** Diese Tabelle ist zufällig erzeugt und dient lediglich für weitere Experimente. Hierfür wurde ein Python-Skript erstellt, welches mit der mehreren Random-Funktionen die Beziehungen zufälloig generiert.
+
+**Sentiment:** keine Mock-Daten vorhanden
+
+**Unternehmens-Unternehmens-Beziehung:** keine Mock-Daten vorhanden
+
+
+### 5.4 Anlegen der relationalen Tabellen
+Für das Verbinden zu der Postgre Datenbank und das Anlegen der Tabellen wird ein Jupyter Notebooks verwendet (11_Create_Tables_with_SQL-Alchemy.ipynb). \
+Die benötigten Bibliotheken werden importiert und das Erstellen von Tabellen als Python-Objekte beschrieben. \
+Nach dem Anlegen der Tabellen werden die Mock-Daten in die Datenbank geschrieben. \
+Eine Überprüfung, ob die Daten abgelegt wurden ist sehr einfach mit PGAdmin möglich.
+
+
+Das grundsätzliche Vorgehen bei der Verwendung von SQLAlchemy ist:
+1. Verbindung zur Datenbank herstellen
+ ```python
+ from sqlalchemy import create_engine
+ # Connection URL für postgres
+ url = URL.create(
+ drivername="postgresql",
+ username="postgres",
+ password="postgres",
+ host="localhost",
+ database="postgres")
+
+ #Verbindung zur Datenbank
+ engine = create_engine(database_url)
+ ```
+2. Erstellen einer Klasse als Repräsentation der Tabelle.
+ > Es ist üblich und empfehlenswert die Klassendefinitionen in einer separaten Datei vorzunehmen (model.py), damit diese auch in andere Modulen importiert und verwendet werden können
+ ```python
+ from sqlalchemy.ext.declarative import declarative_base
+ from sqlalchemy import Column, Integer, String
+
+ Base = declarative_base()
+
+ class MyClass(Base):
+ __tablename__ = 'company'
+
+ id = Column(Integer, primary_key=True)
+ name = Column(String)
+ city = Column(String)
+ ```
+3. Starten einer Session/Verbindung, um Daten lesen und schreiben zu können
+ ```python
+ from sqlalchemy.orm import sessionmaker
+
+ #starte die Verbindung
+ Session = sessionmaker(bind=engine)
+ session = Session()
+ ```
+4. Daten abfragen
+ ```python
+ # Alle Daten der Klasse/Tabelle abrufen
+ data = session.query(MyClass).all()
+ ```
+5. Daten speichern, wenn z.B. Datensätze in die Datenbank geschrieben werden, muss dies mit der **commit()**-Funktion ausgeführt werden. Das folgende Snippet iteriert durch einen Dataframe, um jede Zeile in die Datenbank zu schreiben.
+ ```python
+ for i in range(len(df)):
+ #get data from dataframe
+ myNewData=MyClass(
+ name = str(df['Name'].iloc[i]),
+ city = str(df['Surname'].iloc[i])
+ )
+ session.add(myNewData)
+ session.commit()
+ ```
+
+### 5.5 Abfragen der Datenbank
+Der folgende Code-Snippet zeigt, wie man eine Abfrage gestaltet.
+
+```python
+from sqlalchemy import create_engine
+from sqlalchemy.orm import sessionmaker
+from sqlalchemy.ext.declarative import declarative_base
+from sqlalchemy import Column, Integer, String
+
+# Erstelle eine SQLite-Datenbankdatei oder gib den Pfad zur vorhandenen Datei an
+url = URL.create(
+ drivername="postgresql",
+ username="postgres",
+ password="postgres",
+ host="localhost",
+ database="postgres"
+)
+
+#Erstelle eine Engine zur Verbindung mit der Datenbank
+engine = create_engine(url)
+
+#Erstelle eine Klasse, die eine Tabelle repräsentiert
+Base = declarative_base()
+class Company(Base):
+ __tablename__ = 'company'
+
+ hr = Column(Integer(), nullable=False, primary_key=True)
+ court_id = Column(Integer, ForeignKey("district_court.id"), nullable=False, primary_key=True)
+ name = Column(String(100), nullable=False)
+ street = Column(String(100), nullable=False)
+ zip = Column(Integer(), nullable=False)
+ city = Column(String(100), nullable=False)
+ sector = Column(String(100), nullable=False)
+
+ __table_args__ = (
+ PrimaryKeyConstraint('hr', 'court_id', name='pk_company_hr_court'),
+ )
+
+#starte die Verbindung zur Datenbank
+Session = sessionmaker(bind=engine)
+session = Session()
+
+#Abfrage aller Spalten der Tabelle/Klasse Company
+Comps = session.query(Company).all()
+
+#Gebe die Spalten name, hr und court_id der Tabelle company aus
+for comp in Comps:
+ print(comp.name, comp.hr, comp.court_id)
+```
+
+
+## 6. Zusammenfassung
+
+Die vorliegende Seminararbeit behandelt das Thema der Datenspeicherung mit Fokus auf dem Projekt Transparenzregister. Es wurde erläutert, warum Daten gespeichert werden und welche Art von Daten es gibt.\
+Für das Projekt sind Daten und die Speicherung eine Kernkomponente, um die geforderten Analysen bezüglich Verflechtungen, unternehmerischen Erfolgs und Aussenwahrnehmung zu ermöglichen.
+
+Es wurden Datencluster definiert und entsprechende Quellen gefunden, welche über geeignete Extraktionspipelines die erforderlichen Informationen extrahieren. Zum Speichern dieser extrahierten Daten wurde ein relationales Modell erarbeitet, um ein Konzept für die folgende Implementierung zu haben.
+
+Um das Konzept zu überprüfen, wurde ein Proof of Concept durchgeführt, um geeignete Werkzeuge zu erproben und das Modell auf seine Tauglichkeit zu überprüfen. \
+Hierbei wurde ein Dockercontainer eingesetzt, um die Datenbankumgebung bereitzustellen. Mithilfe der SQL-Alchemy-Bibliothek, wurden die Tabellen innerhalb der Datenbank erstellt.\
+Anschließend wurden die Tabellen mit eigenen Mock-Daten befüllt, um die Funktionalität der Datenbank zu testen.
+
+Insgesamt bietet die Seminararbeit einen umfassenden Überblick über die Bedeutung der Datenspeicherung und die verschiedenen Arten von Datenbanken.
+Es wurde ein erstes relationales Modell und ein High level design für die Softwarearchitektur erarbeitet.
+Diese Arbeit hat grundsätzliche Fragen geklärt und Verständnis für die Datenspeicherung im Zusammenhang mit dem Projekt Transparenzregister geschaffen und unterstützt die weitere Entwicklung.
+
+
+
+## Quellen
+Klug, Uwe: SQL-Der Einstieg in die deklarative Programmierung, 2. Auflage, Dortmund, Springer, 2017\
+Steiner, Rene: Grundkurs relationale Datenbanken, 10. Auflage, Wiesbaden, Springer, 2021\
+https://backupchain.de/daten-backup-tipps-3-wie-oft-daten-sichern/ \
+https://www.talend.com/de/resources/strukturierte-vs-unstrukturierte-daten/ \
+https://www.sqlservercentral.com/articles/creating-markdown-formatted-text-for-results-from-sql-server-tables \
+https://www.sqlalchemy.org/ \
+https://medium.com/@arthurapp98/using-sqlalchemy-to-create-and-populate-a-postgresql-database-with-excel-data-eb6049d93402
+
diff --git a/documentations/seminararbeiten/Datenspeicherung/00_Datenspeicherung.pdf b/documentations/seminararbeiten/Datenspeicherung/00_Datenspeicherung.pdf
new file mode 100644
index 0000000..b56efb9
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/00_Datenspeicherung.pdf differ
diff --git a/documentations/seminararbeiten/Datenspeicherung/01_Actionlist.md b/documentations/seminararbeiten/Datenspeicherung/01_Actionlist.md
new file mode 100644
index 0000000..4ea2db5
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/01_Actionlist.md
@@ -0,0 +1,18 @@
+### Action List "Datenspeicherung
+
+- [x] Erstelle ein relationales Schema für Unternehmens- und Finanzdaten, bei welchem die Jahre berücksichtigt werden
+- [x] Erstelle docker-compose für postgresgl, pgadmin, neo4j
+- [x] Erstelle eine Kurzanleitung für die Handhabung von Docker
+- [x] erstelle Jupyter Notebook zum Verbinden mit Datenbank und Anlegen von Tabellen
+- [x] Recherchiere nach den 10 größten deutschen Unternehmen und ermittel Finanzdaten (Umsatz, Ebit, Ebitda)
+- [x] Erstelle ein Jupyter Notebook um diese Daten in die Datenbank zu übertragen
+- [x] Erstelle ein Jupyter Notebook, um die Daten abzufragen
+- [x] Erstelle ein Schema für Stimmungsdaten
+- [x] Erstelle ein Schema für Verflechtungen
+- [ ] Erzeuge Beispieldaten für Stimmung
+- [x] Erzeuge Beispieldaten für Verflechtung
+- [ ] Erstelle eine Prototypen GUI in Mercury zur einfachen Abfrage von Daten
+- [ ] Verwende SQLalchemy, um eine Verbindung zur Datenbank aufzubauen, Tabellen anzulegen und Daten zu schreiben -->
+- [x] Ersetze den enumeration type in den Finanzdaten gegen einzelne (eindeutig bezeichnete) Spalten
+- [x] Lade das DB Schema hoch, um es den anderen Teammitgliedern bereitzustellen
+- [ ]
\ No newline at end of file
diff --git a/documentations/seminararbeiten/Datenspeicherung/2023-06-21_Datenspeicherung.pptx b/documentations/seminararbeiten/Datenspeicherung/2023-06-21_Datenspeicherung.pptx
new file mode 100644
index 0000000..5487c1c
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/2023-06-21_Datenspeicherung.pptx differ
diff --git a/documentations/seminararbeiten/Datenspeicherung/DB_Scheme_19-06-2023.drawio b/documentations/seminararbeiten/Datenspeicherung/DB_Scheme_19-06-2023.drawio
new file mode 100644
index 0000000..5ae62f3
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/DB_Scheme_19-06-2023.drawio
@@ -0,0 +1 @@
+7V1tc5u4Fv41nuneGWd4tZ2PTpps97bpzU3azfaTRzayzS0GF3AS99dfCRA2SBAUY4yRdrqtkbEQ5xw950g6j9TTr1evf/pgvbzzLOj0NMV67ekfe5qmjYY6+geXbOMSVVFHccnCt624TNkVPNq/IbkxKd3YFgwyN4ae54T2OilU48KZ57pwFmbKgO97L9nb5p5jZQrWYAEzteOCxxlwIHXbk22Fy7h0ZO7d/QnaiyV5sqok36wAuTkpCJbA8l4yRfA1vPXcMGniPfRXwIVuiL65A/5P6PfMm2UY4jcd97Rb9GeO775YeN7CgWBtBxczb4WKZwG65XYOVraD5bxX0VVSEXqcftPTr33PC+NPq9dr6GBlZdVwW/BtKgcf11vhB/A1eHoc/ZiaL79+f/K/P/V/rdR+UsszcDaJfNELrIG7TUQUbonckbTW+GMIprjoKgiBHybmoSuoACk8BLaL3k3/qEbXjgPWgR3dHpcsbcf6ArbeJiQVkauruf0KrYfYOvC9yFC+oMrwJa4cy/kxaQz+Gjj2wkWfZ+jl8ROvfBigtnwBQZjcMbcd59pzPD9qvm6ZcGQZUbt97yfc+2akTfXBAH1DC5RIB/ohfN0rSgT8J/RWMPSRrJTk2z7qTvFvku5lEMt62dlq2pWWe3aKCi+Uvf+0pJ+CxBYX6bN2KkYfEi1zaFyjNF6oaiSK0AbOA+rGwF1EWs8qFWvG8r31N+AvYJgUrD0b6+TmGcYdSckpw/VcSG6LXs68Qn+QSK6VC7NnogZco2t1d43+4Nv98NpzkfaQjeFHQaTqF4jVfRV66+Q5DpyTZviJbPHnqReGqF/GhkGrubRnvK37RNV6RU2T+2rXrE5p9vr+M49yPfSycyeCxKVtWdCNezWGcbBTOEOXTAWkQs9rI9+XKypEq6yQPQ3onApIKttJhbs24CDjd0EIr7yNawWUVtN2vl/RBqXoTw/4N5Gj+vqfb/jv71++9FJH1ybtE+SO770K1mBmu4sv8S8HOfMwj2Eer4X9VR3Vai6VqqvXXqyrsfX08m9r/P1/xt3j19uH0WfQ1wwJ8bVA/KBBiGdr0uwMxpdaqlggzxbFgBGab/xwgn7FwvrWmUANQH+ojXQZ6ZmIRsODQMivHBH5L08d3NNo0MIuX1H6ZmXpdwjkmZIYUlp1wQo3dbYE/gdT+ePsQb52kxAO08n8rMTwAzFcrToXdzQQVy9b2IWrinskUZtMNSgUbCOzhzAkwK0qGLlbp+m6wJrDFIRDa7JmINH6ULQ2T43W5xxicyxddR6t6XWR3/Y6nUP5YHYZqvmXMAWCapGmxY8K1aOTQ7XZwj5ctYsKOefNFgVjztsOt1GJL0JkLee240fObv7rKYu//5rDoQnMp+3Hr0NGqtLcdoE7g4X2cKapSlC1TDjsMVKVLgdDHdSUqqSZSWfbEsCmMdxkaD7NaKpoScROiRUljzMZkzHDdhiaRhmaQHECe7G2tEMelCHFMrE6wgRmi+mRwJkunpfarVBxBFMSdIJU4irw4vm11huLkyt1oKUURxlpznQ9llOpugZMR66gHwn8WblTjYI/Pba4/cw1WXuyYWOpoUq0pxfREw5Dd1KlarcJ4XBdlesy9eA4KxOqURxXz2NZptQKJWr3VXowZqEHopLkHyEQm8MghINssnAnIftAyGYmPjWK2XxLbe3C7HT9WGI2g34SeiFwJs+es4nyVpHaQBhPsbRQ43WhNodJiIfaXIqXqM2XANUsap/x9EiaoylRm0xh7qE2nNqhOGhd3RSEQ2t1KNG6HrRm5UA1Oy/CxRNpF1oTM5RonXJEcmhtgRSv26fl2mZDqptBl5H687UxtxxTu7J+3G8fp/fGYDTv63I2pB6kTjNTm0BqtirPYzak1AzFQmq2KOjZEIzUkxXqZbbbLbg+1BbEg+uBhOt64No4OVxzjZFaBteDyvLuPFwT1mp+8noKnDiNvPuAXd0ahANsjYubLwG7GLCHJwfsNs5mVuyixAwlYPd1mvEDf21iPljXkZrDDMRDahla18XHOTVSa2ccWmsytE5FQYfWFpyGIuC0jKiLZSNnrGvC6SaJk2xVnvGMtZj5e2xR0DPWGKcnPghtTwS0lhPWxbKReXs1oXWTTEe2Ks8jb6/UDCVas/L2fBhufHfiuRNxZkJk9l6hbGT2Xl2Y3SSrka3K88jeKzVDidms7L0ZWNt4mREjN9YbjrZFWGyUyXzFAEUeuWcma+gHnltoD2e6l9l8DgezWY+xl5k1vJwqBZjOazj9EVncJ2uQlxV3M0tJNp3dzYyxiiZQ0MCxfZZePdBszX5m9AihSxua6dWBoENxBVsU9G4JscOQO5rxmopwwYbBZQhnDvgco0R+wD/5HmbGeczslZqhRPO+Qfvt5NyvzD7XCTFXjJ1wOMxDPASXK+k1IfjJdy8zzmMlvdQMJYL3DXolPdj4LBAXBb7l0nqhbFRFRuA14ffptzJTlTOOwVNLlBCOZEFH4S+e/zOYzJEeUhRHnzp06szBViEceJu0p09m3nzo4Lw5vjUbQ67ZxN/2TbJWmhJ99WrQnlpGZ9dszMNOez/zAIJjhcCsvuN5ovUm2eTsJtPb1XdpzcYUkhXDFgXNioHWAgZFxxKItF7DYSbiRRx0DpFA6M8xmuFH/yap6exDaOjEn/M+hUZIujpbtXSijbDn0Ej2erGZcB1VLMG8ZC6wSfo6W5cdO1NsIA8VS0VBD9N2CVdCgTmHUYgH5jIyrwvMT55MO+BKsmgZcGuV5d154KYP/8UHik3mPhKwWIeLcViFcMitKpI7WRd0nzwtVlXOgz1ZbokSvJEs6LnPCL1DL8Xu1um5vmV4yZgsFo7kuteG1ydPglXPhO1ebokSr5EsaLzepcUo6OMk3K6FCbh5TEM4BL9kLWsOHCzwdcYgBr82Hi5NztHQx+hbY/2K/lbSv7FKFCTisJ/oDt+UZjjt6kCfFsm/0ZOmzCcx7werNTYf+gq6mxX0ExtPvsj+KPNIJKxpvhmobJ0va58QSPedkL0J+F5o6XO+YvxO8WU/7ovjUfKe+bbdvMLZJrSfYfpS6dPGG8sOcQrnu2XN0xBSJQINt6JcHzdIoM924PnbyZUHfGuvqXE1OX1RgjzyO90BF6DbFpOPto9Apc2yHG/Cpefbv6E1eYBrHwbI/Pesoi0SvbVd4ExKLTPnFbELsWfAGSe+KfJoeU+15x+xE+wl+ThxqqmqJde3YGU7OPj7BJ1niGvFvTNcOb3C1C5eN9Yfkh03SJBJiE57niidKMjswGEcL8qkky0oMeOMLJK/hE0n3D4k8cvN7htKqnvCg6419v1IBUns4WMXCq3k+2wSrQXnYBPbOE4KJr+8eVgBd0tKbyNVRpEJqn3/6tUO/yHPRZ9/4PILM7n6+Lp328dtWgOS5T/7F3u/wpe7n0VX5HeFRhF4G38GS+ROph1DMtrCYn4Nnh5HP6bmy6/fn/zvT/1fK7WfjFywCqpG0emab8aESGEcej7DTHtLIqZ7L17HI0asXuoZIzbzthm/e/KznXnSNeUqGuQrimVDVVRfXE4no9Dr0ljwX8AUOlmLphLG81C0QqF41C2iTPK9QDw7Vv7IEzgXMRBQQJOJ93tJOFuIRMrF0DCNLBbVYh1qVqX9y2wF3nwewCMpU6OUqVxc/EsMffaVi9FoMDpMhURnqtmc0ugdW47qfG4ekPf55t3FfqSaD0r9yYWi6BmfopmDcq+CLu6hbyMxRSyW03gawhjZ9zSlLqk9rmZgZncsM/IbkVV2NWauJj1f09F9Dc2QarevKaIqvwubLsmcDxF/PfaR9WD9YXO4Ree0td7Z1KZQFDwMRscIHnKxg2o0pk+NjgRJWrIkMB5GYCQTqwTCh/SQV1ACo0qCHTE5LBx8OZXD8NpCYVQ1OrbtEodxZ71yhU/V6Hy6mMWIvYikMvJZi3CLfirjyCGBHAFPWgG/Izg5m1HVOkaA2ZmrRH5VoykwychBFY4Ew2MYAoI8VzqXxPRWkxpVjU7UOXNQH1XWQudBnXHySALqmoCgXt0wxAN1navLS1BvNblRJUeFtKojV5W4PAhkTxb03Juo/EYeuxAQv7l2Gpf43W6Go861bUzb8NuoLPHu4zc9ZSYOw5HDEAQEbMlwrA2wT09x1M+Z4qhLiuNOFpUojtFyqDiBt+Q5FgsnPclKEh3PjeiYTIUeznTkYLClwnSnwTp+1QghZvYa2WkwebGRhZfT2Wokqi1BMEFA5aMHe/OT0eVs1IjNeu3Y0JpMtw09ND78IyfuYz4QYDpgyRvm/MeZMQIHhPCdJ1O9yQg8XlDGOLaLErNkBNbO00gXWt6kBJIq20PU0PJUvmHOOisTNYbZii6HOTLSsXkaBj3zwLb+lqT1G0UpF5ITiIRDJ+e0naZRnz7PlRNo0EPJaL+CFUy6fIdIGBaAozmThDGYjeB0Xk+UoZlZ9pVBrEJyMFSTNQ4VZoKRJ98/7ZdnxMEwaV5XpzgYqfXKKUjV1Ir9hqRg8BmLePORZoWdCLrrB3iWPfj9wOkpGCbNzzrvbF2ziM0tIvDT81WininFYxcCYvylhPSaIL0FDIxBG4O3yv1UHgm4UyQ9SEsSdIXK05XnAZbZiDwQsDboPj3PghwJ2KqOXFXi8vy/PVnQCyzJVva7qReh9raX5wBGtX2+NuaWY2pX1o/77eP03hiM5n1JlasNwpukWjB1yTU5djIALzNDseCbKQl6yjP+qCl/ff3WQcg+0By6DNgF3kxOmNQG2acnW5Bp+FZ148qBlZww2SmSnjBJsgtxmT9bAv+Dqih/tFDd9QXacrakRDgjykDayyuQ5ArcEXLD5RYdIvUOtoYayweu1o63hXDy7IWol7/BzyisfwpmPxdRdnh/FmMPrtx2bYxh5dKn5FLw7CNzGN4hQi1+y2AT4PRFMLUdO9zSLJj3SbSTEtMTo3Ofbd9zcV8CzgQEa4TVQdtez4jbuobIaa8TdKtEIso59PNiu5i5Hd5Nhktmk13K8lAPDIo1hqvMSfksyS7kMxfZRe01RXYhq11vk12S1J32kF10JWvGIzVnnZXJLqqRq6npU0mG9BRQq08lSXtre9ku6bEVKXVikK3iiNSJIZ3m1na+S30abT/fhTn/SKvsqP6n6ASsjBtQ+NzAe/iVlVxH2YGIbx5nRU73a43jUJXcIUhaDhmq+g0tV5GWr6g+t8E0WTrfsj0oU9rHavAa1FFWZCnsULdh5rzGqCkAogmvLQkBjqtK5C4uVfM4ulRzumzMmdDpGHsTUdznle8Go397Php1uBaqu4/+T88Vz57MTQ9eC4fv+am0ZKhKj5SfbD8MZkswD4O1v4FzZGZxG3LHRFce2R/epPFmHtizZRj4IEwaw3tY+eGNOMF7/wmxItC3wXwDl36qCXIQOvpo5Y5Cb7B192gIvfHtIEzto/TM8ybtZYrk5myCnAHnTzuvZWbvGPaT8wUvSzuEj2sQBWkvPljnfEI049bDc02vOLKsY+Kob5BZIcIoYiXAkIFXhsGcP0SwtgyY4iWWGpVDgXaFvZd2GkWdYTKFIbTRI8NJ1Kh+r2TjpAb7xBKEk7GLmwZ3Dau+rdJxGvVi+xYSmGPjXhpOnr2kYQ13Tfa+Tg3KAfhTiPr4ZGUTMGXu+iSBSesP1dYBE/NM7ViClv2MA2UHBEFGOcmMcz8W5ttw9Bm67m+wdCDW9Yc7YONGqXpfMfqaoul/4Cbir+5sx7FRNBTd17vReiOtN74uAy9UFjUyW/r+duc3jWMUAdzc76sAhL8Taw89vHT07DmbFTxKw6b4kTdXf31LHginuKcdRQJK/Ge298Q7PDuw9+RJsoTF6Hjxr4/QMAu358p2gPs72KxWMCP5KUDlM2aodrQGwUhA9gK6P8HaDnELsHfC9r1fGj3+Ntv2P4gsf23iNdrmWj3Hz7714cqiWr1fWtZqC06PbHsL/Ki/0Whzttw41sZdBAsfWIVt3Bf3fiMnUR5Io+Jd5o0Cu4p4Lb53rffGRhjZR9Stblnt9mG48d2J505OYBx2Amxo8AEWy7jBm7m9+Akjv27BAP2NBnVgFSbNxgUfUigsNJlZfPeE3Wr8xnjJGeuL3qc9O+P8hsuuwUPrl287aIMcF5Jx0MboSA6anDLzruwsJZeYpClvpVCkPvawHKM6m3aHzCeOMf0ANWmFMCEC0MJ8oaO25s3YlT8B6SuYLZfACUlnq2cEwd+O2gYv/I8+KHPp5Cqnf/J99QKdcO5DJAPHni0TFD2hhEsznTgEG7sXniwxtpt6R7oZ/6NrlN94EyBIfAFL34VLjEGnVSedDFasQ4b06x4dU2s7NTjjYYXBMmFQZnzxwDzcF1tXY+vp5d/W+Pv/jLvHr7cPo8+gT2fSW3YQ+vYsnMy8jc+34aSOQ5p2bzg5n8PBjLnhpDW8nCqlK/Mc0yLpjo8ksaki+aU00Y+RfN/qDSeZBseK/QpMrHsUK3ZMX9oxKxOsmtzVgNlietrtTLeaLLVboehXTEnQCVuRp8B7jV1rvbE4u0weaCddpmUxRVPhWIXuQj87sqgH+pvcDYHZYjqFqoU9vqL0hdzdhikJOplqFs1k5Di2ndsm4UCzEA7XVTpfUuL4e3C8yS0S2C0+Y9xWq4u768DNyID4Clb07ghiIDeHYYgH3ayE6Zwl1Mu+WZ0F8aZsaPc2YzO+rzW8m76Wm41MDybhJ2zmalLzNdXHvGHbK5112hKyRnn3qoetoQwywq+JrWFealnrIHuo10rXYMuHPupKHHXq5uAw/aX0GrUpfZHe30rm25FVhjSWpsS0QWPo0vfwAurudh+sl3eehcV+838=
\ No newline at end of file
diff --git a/documentations/seminararbeiten/Datenspeicherung/Data_Clusters_25-04-2023.drawio b/documentations/seminararbeiten/Datenspeicherung/Data_Clusters_25-04-2023.drawio
new file mode 100644
index 0000000..6d40d61
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Data_Clusters_25-04-2023.drawio
@@ -0,0 +1 @@
+5Vxbc9o4G/41zOxepOMTxr4MadI9tZMt7e52b74RtrDV2BIrywnh13+SLYOFFIITDITeJFjyied93rPEwL3KFx8omKcfSQyzgWPFi4H7fuA4juXa/J8YeaxHbMf165GEorges9YDE7SE8sRmtEQxLJQTGSEZQ3M5KB8QEYxhxJQxQCl5UE+bkSxWBuYggcrdxcAkAhnUTvsbxSyVo7Yfrid+gShJ5aMDZ1RP5KA5Wd64SEFMHlpD7vXAvaKEsPpTvriCmUBPxeXmidnVi1GI2S4XfL/BX6KhxW4W/+GbICK/f/jwy4Ut3/YeZKX8xvJt2WMDQUJJOdefJl/gHlIGFyZZgGkGN78uJwokOWT0kZ/XXCUfKSkyrI8e1mg7nnzLtAW0HcgTgZRwsrrxGgT+QeLQBRP/eUw4JDiG4i72wB0/pIjByRxEYvaBawIfS1meyekZwUwym39Xfoyy7IpkhFb3cuMhDGKPjxeMkjvYmgmcqev7fEZHf7s0N2WiY38QeOc3C6f4CuPfbuH1n39ef7v963/lha2h+xUzSDFMc4g1oIsHlGcAw15AaMyU/26oUtDXOGiHlgEky+oJJEcD6RPI4cDxM/7o8ZTyT4n49IEOrtzB+ArHJU6K7yCl+jkTBnBMKNNnxhTgKDXdFhb8JYsoBTNWzAjNNblwaJnKcpChBPPPGZyJGQE/4nb0Ug7nKI7FxWMKC7SUtsHix3OCMKvwG44Hw/fiTiUjhdQXTS0wqcjQ1iE5pPNjK/92pkfjiiQ5HFcnh+Xr5Bh5Pdkn3TxxCed5DJhBf3Q57QpnI88ICvXcJlGT+VsbSKuxgPKlNi2i16dqh+6Gagea8HyDYrt70GvjN2ief0x/63oqoUe6tXNDVwdl2IRu+/e43oE9LoDBLDJ5XD8K4HTGZxIKYsSxf9bGbBdzJ0d8YNRdDfSPiAE6hRxauixnFMEYYv4ubA9euQMicjYIN1S3Majt0MUJDYiFPQGms/RfFSVLuDAewHIv5lg8F+L+1JpUsc3b9J9bafNS/+mGuv/0jRFoT2LUU54JQ3kuAijpQzfDoWZEmBVFjP5/JWkmLmrIL/kJtjNf1JfJ+eZGP+3tThMuJMQDZh7bgeyxWMVwHJH63vVpPz8xft5xQndjY4/UJNTRSXrQOEEPEz6BKE1BxlBydyyL7KoY2UNHDxwcQyRs9wZTqMF0wQ85Dgm3ywXHClYWmHK1TpAhzxFnl/kDzNiMQk7EDFXpkHVLSVzesSeumIi8aCYMhXVPxN/LymkW80wkY5ceW5qMiLjyV4zJPWCIaw6uFRzDUjyQJ1xRWl/NM65c1NEyMc7fif/9AqMUc63j3+GJG38BFM2mqEoDzWdcIyzoU82rr0353Q3JobioyswLVueYbNm+uCBLBLIKBI7Wd3hXWc4bbkpn4iE7pSJvxeV11hQ1cHEMAbZt0hPL6SvAtjRF+bpB+6NZFS3Oc0I9w3ZsQ6Bn225feOlFKqEOn2FcLhGktR6IujTXKwwp10v+facUlFFaGDTpU9noDo8FS34mR5GurzXp9EeEUb56lNRXnplUJiLLnrIDpsuuc1QUtclxfJALr4unxXy3KOCtqOiK4S/V0ZGBc47OOb+3yoBe1rksiwLiB5BWxdFKpEfQT99WgPJsg3aODNbM7yt+d/QA/pYzi6H7ddaFYQLqAZAJLf0M8B2qdAKU4lhEU5Rbvd1KZm9FCVYceqESNIUhRbS2wfD2JdomUGxJA8YJbFICQllKEsIznuv16EYKsT7nD0LmEufvkLFHmUgIEajihQvE/ml9/iZu9W40lIfvF/LW1cFjO1VplZhqUTY9wqFRaBLKgpQ0gtuMmZQjAzSBW62eLEkIkLaKm8JM6ANU3mP/BZLhMcVnvRu2BGhvlR4XCX38p33QFro4Xl9XHZ2U2Juu+qmI/QSayIHlKaYs0BN4xzN4qTDoy5bZw+dR2WdRG9rxEI5MRe3QH7mgQxvZe2EbuS94jW08vRj7N6JMtiznsi06E8HAq2OmDng0HWWVjEPXsKjBMtSTRn31k3Uu/mbsFZu7zG8zRNpKmxd3f3W7MuypMGh8fz1L+JoXgC1PgebBsVmu+yEzyydlnr/RlsxWUry4JaOndH1Vu43vr1e7r8e/fjkFStujY3NaL3H/GJzu3sI5LU4bSq5jxNm7LIyCOgK3Hf/Y3DaUWX8McnevVp4aux3dZKME4jswRwxwIjOIsm0kL3iS22QzjntA1rvDo7NeX3jzg7De6Sq7U2O9nnRe4iVIxYWttVMnyXvPOzrvd01Cz473r006D8h7cylLE9xfhBZiWfkpxDG+ob/eG7PNfZcdiS2qK+fUb3rtUvpmQVFLcJ6hz9+ctne56QbpX7EgBlIE8Q+wnL675oVqL9jR5XfY1fR6jnVKRWBXAWtk62gd2Eztmm6dm51yXp1uHdlQNYqmLA6ZFWIBQ0HBPtZtvZ7eoaHjdlh675pXnR29X51XHZveel415piy5WlY7qBxe8ejdpf+3VlR+9Wp05Gp7QWaNI62osnZvqJpvSbm3WoVzLf23CkviWmKCyeyJMbVQy2NB/tc/DGbQT8y7miMR+HUsrYJocMGkI2do76hG+41i9gV9Qp7A1qPjH7nUFGSZVO4RDB9ZtmsKoRNlHfeBdoZSs8KVChHBh8zMliqZqvc/pHUwyexovxSlvKtemHtGIpDlNQLzAGu/vCpaiOI8kMOpuXpl3gJ60059d2UC67EsNilIx8id5FYKZh28mnPZ9i9ebVN/uzo5VYk3pk+FxutPENtNzBsJu7Nzbl6BFf1g1iZF6eth56K5MgzpTEGk9bbz8+4eqx3oSpepRXiIY12PrFP7WPJuCJUe9zqbWRELHjnjnT94x7nrlidw0c18nf1Led2GBxSr/QlTepWwdNWLt9X4Aw8ww/r+AY71Z+T05caCf1IYA4RLqrFj6vtjGal+gPBGaSiwY05EFIQGcOoOG9N6pxE2xu1YoMquQd1UfpKqltIi3pf3OnpjhuoAWJo8PGuaVdkb7rj6dX2z0RsU642Mj9VeL+qfFdTzBFHauVSjDzZTTwrDQp3pkDjffSUwDX90lRv27E8PYudkAgBcWH1g487COxt9Me6u7bAUdTTN/To7cYEvrIZxg/XPxNZzbV+bdO9/j8=
\ No newline at end of file
diff --git a/documentations/seminararbeiten/Datenspeicherung/Docker_get_started.md b/documentations/seminararbeiten/Datenspeicherung/Docker_get_started.md
new file mode 100644
index 0000000..7be0986
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Docker_get_started.md
@@ -0,0 +1,70 @@
+https://geshan.com.np/blog/2021/12/docker-postgres/
+https://belowthemalt.com/2021/06/09/run-postgresql-and-pgadmin-in-docker-for-local-development-using-docker-compose/
+https://thibaut-deveraux.medium.com/how-to-install-neo4j-with-docker-compose-36e3ba939af0
+https://towardsdatascience.com/how-to-run-postgresql-and-pgadmin-using-docker-3a6a8ae918b5
+
+# Installation Docker Desktop
+## Starten eines Containers:
+
+> docker run --name basic-postgres --rm -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=4y7sV96vA9wv46VR -e PGDATA=/var/lib/postgresql/data/pgdata -v /tmp:/var/lib/postgresql/data -p 5432:5432 -it postgres:14.1-alpine
+
+Dieser Befehl startet einen Container mit dem Postgres14.1-alpine Image, welches von Dockerhub geladen wird. Der Container läuft unter dem Namen basic-postgres
+
+| Syntax | Attribut | Beschreibung |
+| ----------- | ----------- | ----------- |
+| basic-postgres | --name | Angabe des Containernamens|
+| | --rm | Bei Beendigung des Containers wird das erstellte Dateisystem entfernt|
+| |-e| Verwende Umgebungsvariablen |
+| POSTGRES_USER | | Umgebungsvariable für den anzulegenden Benutzer: postgres|
+|POSTGRES_PASSWORD| | Umgebungsvariable für das anzulegende Passwort: 4y7sV96vA9wv46VR |
+| PGDATA | | Umgebungsvariable für den Ort der Datenbank|
+| | -v | Einzubindendes Volumen: /tmp:/var/lib/postgresql/data |
+| |-p | Angabe des Containerports und des öffentlich zugänglichen Ports |
+| | -it | Interactive: der Container bleibt aktiv, damit mit diesem interagiert werden kann |
+
+Mit einem zweiten Terminalfenster kann man auf die Bash des Containers öffnen und auf die Datenbank zugreifen.
+
+> docker exec -it basic-postgres /bin/sh
+
+Die folgenden Befehle starten die Postgres CLI, Ausgabe aller Datenbanken und beendet die CLI.
+> Psql –username postgres \
+> \l \
+Exit
+
+Der Container kann durch Betätigung von STRG + C beendet werden.
+
+## Docker Compose
+Das oben erklärte Vorgehen zum Starten eines Containers, festlegen der Umgebungsvariablen und zusätzliche verlinken zu einer Anwendung wird nun in einer yml-Datei beschrieben, um die Verwaltung und das Erstellen zu vereinfachen.
+| | | Beschreibung |
+| ----------- | ----------- | ----------- |
+|Version | | Version von docker-compose |
+|Services| |Definition der Services, wobei jeder ein eigenen docker-run Befehl ausführt.|
+| | image | Angabe des zu verwendenden Images |
+| | restart | Option um Container erneut zu starten, falls dieser gestoppt wird |
+| | Environment | Umgebungsvariablen: Username und Passwort |
+| | Ports | Mapping des Containerports zum Port der Hostmaschine |
+| | Volumes | Angabe eines Volumes zum Persistieren der Containerdaten, damit nach einem Neustart die Daten wieder verfügbar sind |
+
+
+Nun kann der Container mittels Docker-Compose gestartet werden.
+> docker-compose -f /.../docker-compose-postgres.yml up
+
+## pgAdmin
+pgAdmin ist ein grafisches Administrationswerkezug für postgreSQL und macht die oben gezeigte Administration komfortabler. \
+Erreichbar ist das Interface über: http://localhost:5050 \
+Als Login werden die Daten aus der docker-compose verwendet:
+>User: admin@fh-swf.de
+>Passwort: admin
+
+### Anlegen eines Servers
+Zuerst muss der Server angelegt werden, dafür einen Rechtsklick auf Server und den Button „Register“ auswählen. \
+Im geöffneten Dialog muss die Konfiguration festgelegt werden.
+
+| Reiter | Parameter | Wert |
+| ----------- | ----------- | ----------- |
+| General| Name | postgres_docker |
+| Connection | Host name/address | local_pgdb (siehe docker-compose) |
+| Connection | Username | postgres (siehe docker-compose) |
+| Connection | Password | postgres (siehe docker-compose) |
+
+
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/01_Stammdaten_Unternehmen_HR.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/01_Stammdaten_Unternehmen_HR.csv
new file mode 100644
index 0000000..957253e
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/01_Stammdaten_Unternehmen_HR.csv
@@ -0,0 +1,13 @@
+HR;Amtsgericht;Name;Strasse;PLZ;Stadt;Branche
+12334;2;Volkswagen;Berliner Ring 2;38440;Wolfsburg;Automobil
+64566;2;Mercedes-Benz Group;Mercedesstraße 120;70372;Stuttgart;Automobil
+5433;3;Allianz;Reinsburgstraße 19;70178;Stuttgart;Versicherung, Finanzdienstleistung
+12435;4;BMW Group;Petuelring 130;80809;München;Automobil
+12336;5;Deutsche Telekom;Landgrabenweg 151;53227;Bonn;Telekommunikation, Informationstechnologie
+559;6;Deutsche Post DHL Group;Charles-de-Gaulle-Str. 20;53113;Bonn;Logistik
+555;7;Bosch Group;Robert-Bosch-Platz 1;70839;Gerlingen-Schillerhöhe;Kraftfahrzeugtechnik, Industrietechnik, Gebrauchsgüter, Energie- und Gebäudetechnik
+12384;8;BASF;Carl-Bosch-Straße 38;67056;Ludwigshafen;Chemie
+64345;9;E.ON;Arnulfstraße 203;80634;München;Energie
+4344;10;Munich Re Group;Königinstr. 107;80802;München;Versicherung
+866;11;Siemens;Werner-von-Siemens-Straße 1;80333;München;Automatisierung, Digitalisierung
+9875;12;Deutsche Bahn;Potsdamer Platz 2;10785;Berlin;Transport, Logistik
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/01_Stammdaten_Unternehmen_HR2.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/01_Stammdaten_Unternehmen_HR2.csv
new file mode 100644
index 0000000..1243d08
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/01_Stammdaten_Unternehmen_HR2.csv
@@ -0,0 +1,13 @@
+HR;Amtsgericht;Name;Strasse;PLZ;Stadt;Branche
+12334;2;Volkswagen;Berliner Ring 2;38440;Wolfsburg;Automobil
+64566;2;Mercedes-Benz Group;Mercedesstraße 120;70372;Stuttgart;Automobil
+5433;3;Allianz;Reinsburgstraße 19;70178;Stuttgart;Versicherung, Finanzdienstleistung
+12334;4;BMW Group;Petuelring 130;80809;München;Automobil
+12336;5;Deutsche Telekom;Landgrabenweg 151;53227;Bonn;Telekommunikation, Informationstechnologie
+555;6;Deutsche Post DHL Group;Charles-de-Gaulle-Str. 20;53113;Bonn;Logistik
+555;7;Bosch Group;Robert-Bosch-Platz 1;70839;Gerlingen-Schillerhöhe;Kraftfahrzeugtechnik, Industrietechnik, Gebrauchsgüter, Energie- und Gebäudetechnik
+12384;8;BASF;Carl-Bosch-Straße 38;67056;Ludwigshafen;Chemie
+64345;9;E.ON;Arnulfstraße 203;80634;München;Energie
+4344;1;Munich Re Group;Königinstr. 107;80802;München;Versicherung
+866;1;Siemens;Werner-von-Siemens-Straße 1;80333;München;Automatisierung, Digitalisierung
+9875;1;Deutsche Bahn;Potsdamer Platz 2;10785;Berlin;Transport, Logistik
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/11_Create_Tables_with_SQL-Alchemy.ipynb b/documentations/seminararbeiten/Datenspeicherung/Jupyter/11_Create_Tables_with_SQL-Alchemy.ipynb
new file mode 100644
index 0000000..16b162b
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/11_Create_Tables_with_SQL-Alchemy.ipynb
@@ -0,0 +1,1130 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "a768e970",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sqlalchemy import create_engine, PrimaryKeyConstraint, UniqueConstraint\n",
+ "from sqlalchemy.engine import URL\n",
+ "from sqlalchemy import Column, Integer, String, DateTime, Text, Float, null\n",
+ "from sqlalchemy.orm import declarative_base\n",
+ "from sqlalchemy.orm import relationship, backref\n",
+ "from datetime import datetime\n",
+ "from sqlalchemy.orm import Mapped\n",
+ "from sqlalchemy.orm import mapped_column\n",
+ "from sqlalchemy import ForeignKey, ForeignKeyConstraint\n",
+ "from sqlalchemy.orm import ColumnProperty\n",
+ "from sqlalchemy.orm import sessionmaker\n",
+ "import enum\n",
+ "from sqlalchemy import Integer, Enum\n",
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c345bbc4",
+ "metadata": {},
+ "source": [
+ "# Verbindung zur Datenbank\n",
+ "Vorbedingung: Datenbank muss vorhanden sein"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "61af408e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "url = URL.create(\n",
+ " drivername=\"postgresql\",\n",
+ " username=\"postgres\",\n",
+ " password=\"postgres\",\n",
+ " host=\"localhost\",\n",
+ " database=\"postgres\"\n",
+ ")\n",
+ "\n",
+ "engine = create_engine(url)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "e0849ec8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#connect to database\n",
+ "connection = engine.connect()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "61f23c95",
+ "metadata": {},
+ "source": [
+ "### Erstelle **Company** für Stammdaten\n",
+ "Folgend wird ein Objekt erstellt, welches die Tabelle **company** repräsentiert"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "4d5a7e71",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#create an object *district_court* which inherits attributes from Base-class\n",
+ "Base = declarative_base()\n",
+ "\n",
+ "class DistrictCourt(Base):\n",
+ " __tablename__ = 'district_court'\n",
+ " \n",
+ " id = Column(Integer(), primary_key=True)\n",
+ " city = Column(String(100), nullable=False)\n",
+ " name = Column(String(100), nullable=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "aeef9fd4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Base.metadata.create_all(engine)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "0f6a3866",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Company(Base):\n",
+ " __tablename__ = 'company'\n",
+ "\n",
+ " hr = Column(Integer(), nullable=False, primary_key=True)\n",
+ " court_id = Column(Integer, ForeignKey(\"district_court.id\"), nullable=False, primary_key=True)\n",
+ " name = Column(String(100), nullable=False)\n",
+ " street = Column(String(100), nullable=False)\n",
+ " zip = Column(Integer(), nullable=False)\n",
+ " city = Column(String(100), nullable=False)\n",
+ " sector = Column(String(100), nullable=False)\n",
+ "\n",
+ " __table_args__ = (\n",
+ " PrimaryKeyConstraint('hr', 'court_id', name='pk_company_hr_court'),\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "3d649e2e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Table('company', MetaData(), Column('hr', Integer(), table=, primary_key=True, nullable=False), Column('court_id', Integer(), ForeignKey('district_court.id'), table=, primary_key=True, nullable=False), Column('name', String(length=100), table=, nullable=False), Column('street', String(length=100), table=, nullable=False), Column('zip', Integer(), table=, nullable=False), Column('city', String(length=100), table=, nullable=False), Column('sector', String(length=100), table=, nullable=False), schema=None)"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#check if table-object is created\n",
+ "Company.__table__"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "21ff2ec4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Finance(Base):\n",
+ " __tablename__ = 'finance'\n",
+ "\n",
+ " id = Column(Integer, primary_key=True)\n",
+ " company_hr = Column(Integer)\n",
+ " company_court = Column(Integer)\n",
+ " date = Column(DateTime, default=datetime.now)\n",
+ " total_volume = Column(Float)\n",
+ " ebit = Column(Float)\n",
+ " ebitda = Column(Float)\n",
+ " ebit_margin = Column(Float)\n",
+ " total_balance = Column(Float)\n",
+ " equity = Column(Float)\n",
+ " debt = Column(Float)\n",
+ " return_on_equity = Column(Float)\n",
+ " capital_turnover_rate = Column(Float)\n",
+ "\n",
+ " company = relationship(\"Company\")\n",
+ "\n",
+ " __table_args__ = (\n",
+ " ForeignKeyConstraint([company_hr, company_court], [Company.hr, Company.court_id]),\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "1a87ffa9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#create own enumeration type and sentiment object\n",
+ "sentiment_type=Enum(\"employee_voting\",\"sustainability\",\"environmental_aspects\",\"perception\", name=\"sentiment_type\", create_type=False)\n",
+ "\n",
+ "class Sentiment(Base):\n",
+ " __tablename__ = 'sentiment'\n",
+ "\n",
+ " id = Column(Integer(), primary_key=True)\n",
+ " #company_hr = mapped_column(ForeignKey(\"company.hr\"))\n",
+ " #company_court = mapped_column(ForeignKey(\"company.court_id\"))\n",
+ " company_hr = Column(Integer)\n",
+ " company_court = Column(Integer)\n",
+ " date = Column(DateTime(), default=datetime.now)\n",
+ " type = Column(sentiment_type,nullable=False)\n",
+ " value =Column(Float(),nullable=False)\n",
+ " source=Column(String(100))\n",
+ " \n",
+ " sentiment = relationship('Company')\n",
+ " __table_args__ = (\n",
+ " ForeignKeyConstraint([company_hr, company_court], [Company.hr, Company.court_id]),\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "8e958000",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#create person object\n",
+ "class Person(Base):\n",
+ " __tablename__ = 'person'\n",
+ "\n",
+ " id = Column(Integer(), primary_key=True)\n",
+ " name=Column(String(100), nullable=False)\n",
+ " surname=Column(String(100), nullable=False)\n",
+ " works_for=Column(String(100))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "f8e998e9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#create own relation type and person_relation object\n",
+ "rel_type=Enum(\"Executive\",\"Auditor\",\"Supervisory_Board\",\"Managing_Director\",\"Authorized_Representive\",\"Final_Auditor\", name=\"rel_type\", create_type=False)\n",
+ "\n",
+ "class Person_Relation(Base):\n",
+ " __tablename__ = 'person_relation'\n",
+ "\n",
+ " id = Column(Integer(), primary_key=True)\n",
+ " #company_hr = mapped_column(ForeignKey(\"company.hr\"))\n",
+ " #company_court = mapped_column(ForeignKey(\"company.court_id\"))\n",
+ " company_hr = Column(Integer)\n",
+ " company_court = Column(Integer)\n",
+ " person_id = mapped_column(ForeignKey(\"person.id\"))\n",
+ " date_from = Column(DateTime(), default=datetime.now)\n",
+ " date_to = Column(DateTime(), default=datetime.now) \n",
+ " relation=Column(rel_type, nullable=False)\n",
+ " \n",
+ " #company = relationship(\"Company\")\n",
+ " #person = relationship(\"Person\", foreign_keys=[person_id])\n",
+ " #company = relationship('Company', foreign_keys=[company_hr,company_court])\n",
+ " __table_args__ = (\n",
+ " ForeignKeyConstraint([company_hr, company_court], [Company.hr, Company.court_id]),\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "6e5665fb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#create own relation type and company_relation object\n",
+ "rel_type_comp=Enum(\"participates_with\",\"has_shares_of\",\"is_supplied_by\",\"works_with\", name=\"rel_type_comp\", create_type=False)\n",
+ "\n",
+ "class Company_Relation(Base):\n",
+ " __tablename__ = 'company_relation'\n",
+ "\n",
+ " id = Column(Integer(), primary_key=True)\n",
+ " company1_id = Column(Integer,nullable=False)\n",
+ " company2_id= Column(Integer,nullable=False)\n",
+ " date_from = Column(DateTime(), default=datetime.now)\n",
+ " date_to = Column(DateTime(), default=datetime.now) \n",
+ " relation=Column(rel_type_comp, nullable=False)\n",
+ " \n",
+ " #company = relationship(\"Company\")\n",
+ "\n",
+ " __table_args__ = {'extend_existing': True}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "901f33c0",
+ "metadata": {},
+ "source": [
+ "# Erstelle die Tabellen"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "2cfbe6a8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Base.metadata.create_all(engine)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "f8ee6287",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "Session = sessionmaker(bind=engine)\n",
+ "session = Session()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c0d962f0",
+ "metadata": {},
+ "source": [
+ "# Befülle die Tabellen *district_court*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "21c9db99",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df=pd.read_csv('Amtsgerichte.csv', sep=';') \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "09fb47ea",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for i in range(len(df)):\n",
+ " #get data from dataframe\n",
+ " court=DistrictCourt( \n",
+ " city = str(df['Stadt'].iloc[i]),\n",
+ " name = str(df['Name'].iloc[i]))\n",
+ " \n",
+ " session.add(court)\n",
+ " session.commit()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0efda914",
+ "metadata": {},
+ "source": [
+ "# Befülle die Tabellen *company*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "ba5c15ef",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df=pd.read_csv('01_Stammdaten_Unternehmen_HR2.csv', sep=';',encoding=\"ISO-8859-1\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "fc8afa09",
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "IntegrityError",
+ "evalue": "(psycopg2.errors.UniqueViolation) duplicate key value violates unique constraint \"pk_company_hr_court\"\nDETAIL: Key (hr, court_id)=(12334, 2) already exists.\n\n[SQL: INSERT INTO company (hr, court_id, name, street, zip, city, sector) VALUES (%(hr)s, %(court_id)s, %(name)s, %(street)s, %(zip)s, %(city)s, %(sector)s)]\n[parameters: {'hr': 12334, 'court_id': 2, 'name': 'Volkswagen', 'street': 'Berliner Ring 2', 'zip': 38440, 'city': 'Wolfsburg', 'sector': 'Automobil'}]\n(Background on this error at: https://sqlalche.me/e/20/gkpj)",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[1;31mUniqueViolation\u001b[0m Traceback (most recent call last)",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\engine\\base.py\u001b[0m in \u001b[0;36m_exec_single_context\u001b[1;34m(self, dialect, context, statement, parameters)\u001b[0m\n\u001b[0;32m 1967\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mevt_handled\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1968\u001b[1;33m self.dialect.do_execute(\n\u001b[0m\u001b[0;32m 1969\u001b[0m \u001b[0mcursor\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstr_statement\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0meffective_parameters\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\engine\\default.py\u001b[0m in \u001b[0;36mdo_execute\u001b[1;34m(self, cursor, statement, parameters, context)\u001b[0m\n\u001b[0;32m 919\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mdo_execute\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcursor\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstatement\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparameters\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 920\u001b[1;33m \u001b[0mcursor\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexecute\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstatement\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparameters\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 921\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;31mUniqueViolation\u001b[0m: duplicate key value violates unique constraint \"pk_company_hr_court\"\nDETAIL: Key (hr, court_id)=(12334, 2) already exists.\n",
+ "\nThe above exception was the direct cause of the following exception:\n",
+ "\u001b[1;31mIntegrityError\u001b[0m Traceback (most recent call last)",
+ "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 10\u001b[0m sector=str(df['Branche'].iloc[i]))\n\u001b[0;32m 11\u001b[0m \u001b[0msession\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0madd\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcomp\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 12\u001b[1;33m \u001b[0msession\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcommit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\session.py\u001b[0m in \u001b[0;36mcommit\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 1904\u001b[0m \u001b[0mtrans\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_autobegin_t\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1905\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1906\u001b[1;33m \u001b[0mtrans\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcommit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_to_root\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1907\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1908\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mprepare\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m->\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\session.py\u001b[0m in \u001b[0;36mcommit\u001b[1;34m(self, _to_root)\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\state_changes.py\u001b[0m in \u001b[0;36m_go\u001b[1;34m(fn, self, *arg, **kw)\u001b[0m\n\u001b[0;32m 135\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_next_state\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_StateChangeStates\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mCHANGE_IN_PROGRESS\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 136\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 137\u001b[1;33m \u001b[0mret_value\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 138\u001b[0m \u001b[1;32mexcept\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 139\u001b[0m \u001b[1;32mraise\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\session.py\u001b[0m in \u001b[0;36mcommit\u001b[1;34m(self, _to_root)\u001b[0m\n\u001b[0;32m 1219\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_state\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mSessionTransactionState\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mPREPARED\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1220\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_expect_state\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mSessionTransactionState\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mPREPARED\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1221\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_prepare_impl\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1222\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1223\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_parent\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnested\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\session.py\u001b[0m in \u001b[0;36m_prepare_impl\u001b[1;34m(self)\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\state_changes.py\u001b[0m in \u001b[0;36m_go\u001b[1;34m(fn, self, *arg, **kw)\u001b[0m\n\u001b[0;32m 135\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_next_state\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0m_StateChangeStates\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mCHANGE_IN_PROGRESS\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 136\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 137\u001b[1;33m \u001b[0mret_value\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0marg\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkw\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 138\u001b[0m \u001b[1;32mexcept\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 139\u001b[0m \u001b[1;32mraise\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\session.py\u001b[0m in \u001b[0;36m_prepare_impl\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 1194\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msession\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_is_clean\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1195\u001b[0m \u001b[1;32mbreak\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1196\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msession\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mflush\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1197\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1198\u001b[0m raise exc.FlushError(\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\session.py\u001b[0m in \u001b[0;36mflush\u001b[1;34m(self, objects)\u001b[0m\n\u001b[0;32m 4152\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4153\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_flushing\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mTrue\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 4154\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_flush\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobjects\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4155\u001b[0m \u001b[1;32mfinally\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4156\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_flushing\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\session.py\u001b[0m in \u001b[0;36m_flush\u001b[1;34m(self, objects)\u001b[0m\n\u001b[0;32m 4289\u001b[0m \u001b[1;32mexcept\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4290\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mutil\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msafe_reraise\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 4291\u001b[1;33m \u001b[0mtransaction\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrollback\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0m_capture_exception\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4292\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4293\u001b[0m def bulk_save_objects(\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\util\\langhelpers.py\u001b[0m in \u001b[0;36m__exit__\u001b[1;34m(self, type_, value, traceback)\u001b[0m\n\u001b[0;32m 145\u001b[0m \u001b[1;32massert\u001b[0m \u001b[0mexc_value\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 146\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_exc_info\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mNone\u001b[0m \u001b[1;31m# remove potential circular references\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 147\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mexc_value\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mwith_traceback\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mexc_tb\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 148\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 149\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_exc_info\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mNone\u001b[0m \u001b[1;31m# remove potential circular references\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\session.py\u001b[0m in \u001b[0;36m_flush\u001b[1;34m(self, objects)\u001b[0m\n\u001b[0;32m 4249\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_warn_on_events\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mTrue\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4250\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 4251\u001b[1;33m \u001b[0mflush_context\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexecute\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4252\u001b[0m \u001b[1;32mfinally\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4253\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_warn_on_events\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\unitofwork.py\u001b[0m in \u001b[0;36mexecute\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 465\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 466\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mrec\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mtopological\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msort\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdependencies\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpostsort_actions\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 467\u001b[1;33m \u001b[0mrec\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexecute\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 468\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 469\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mfinalize_flush_changes\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m->\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\unitofwork.py\u001b[0m in \u001b[0;36mexecute\u001b[1;34m(self, uow)\u001b[0m\n\u001b[0;32m 642\u001b[0m \u001b[1;33m@\u001b[0m\u001b[0mutil\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpreload_module\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"sqlalchemy.orm.persistence\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 643\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mexecute\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0muow\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 644\u001b[1;33m util.preloaded.orm_persistence.save_obj(\n\u001b[0m\u001b[0;32m 645\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmapper\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 646\u001b[0m \u001b[0muow\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstates_for_mapper_hierarchy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmapper\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\persistence.py\u001b[0m in \u001b[0;36msave_obj\u001b[1;34m(base_mapper, states, uowtransaction, single)\u001b[0m\n\u001b[0;32m 91\u001b[0m )\n\u001b[0;32m 92\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 93\u001b[1;33m _emit_insert_statements(\n\u001b[0m\u001b[0;32m 94\u001b[0m \u001b[0mbase_mapper\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 95\u001b[0m \u001b[0muowtransaction\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\orm\\persistence.py\u001b[0m in \u001b[0;36m_emit_insert_statements\u001b[1;34m(base_mapper, uowtransaction, mapper, table, insert, bookkeeping, use_orm_insert_stmt, execution_options)\u001b[0m\n\u001b[0;32m 1038\u001b[0m \u001b[0mmultiparams\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mrec\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mrec\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrecords\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1039\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1040\u001b[1;33m result = connection.execute(\n\u001b[0m\u001b[0;32m 1041\u001b[0m \u001b[0mstatement\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmultiparams\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mexecution_options\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mexecution_options\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1042\u001b[0m )\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\engine\\base.py\u001b[0m in \u001b[0;36mexecute\u001b[1;34m(self, statement, parameters, execution_options)\u001b[0m\n\u001b[0;32m 1411\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mexc\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mObjectNotExecutableError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstatement\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1412\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1413\u001b[1;33m return meth(\n\u001b[0m\u001b[0;32m 1414\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1415\u001b[0m \u001b[0mdistilled_parameters\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\sql\\elements.py\u001b[0m in \u001b[0;36m_execute_on_connection\u001b[1;34m(self, connection, distilled_params, execution_options)\u001b[0m\n\u001b[0;32m 481\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mTYPE_CHECKING\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 482\u001b[0m \u001b[1;32massert\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mExecutable\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 483\u001b[1;33m return connection._execute_clauseelement(\n\u001b[0m\u001b[0;32m 484\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdistilled_params\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mexecution_options\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 485\u001b[0m )\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\engine\\base.py\u001b[0m in \u001b[0;36m_execute_clauseelement\u001b[1;34m(self, elem, distilled_parameters, execution_options)\u001b[0m\n\u001b[0;32m 1635\u001b[0m \u001b[0mlinting\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdialect\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcompiler_linting\u001b[0m \u001b[1;33m|\u001b[0m \u001b[0mcompiler\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mWARN_LINTING\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1636\u001b[0m )\n\u001b[1;32m-> 1637\u001b[1;33m ret = self._execute_context(\n\u001b[0m\u001b[0;32m 1638\u001b[0m \u001b[0mdialect\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1639\u001b[0m \u001b[0mdialect\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexecution_ctx_cls\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_init_compiled\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\engine\\base.py\u001b[0m in \u001b[0;36m_execute_context\u001b[1;34m(self, dialect, constructor, statement, parameters, execution_options, *args, **kw)\u001b[0m\n\u001b[0;32m 1844\u001b[0m )\n\u001b[0;32m 1845\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1846\u001b[1;33m return self._exec_single_context(\n\u001b[0m\u001b[0;32m 1847\u001b[0m \u001b[0mdialect\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstatement\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparameters\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1848\u001b[0m )\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\engine\\base.py\u001b[0m in \u001b[0;36m_exec_single_context\u001b[1;34m(self, dialect, context, statement, parameters)\u001b[0m\n\u001b[0;32m 1985\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1986\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mBaseException\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1987\u001b[1;33m self._handle_dbapi_exception(\n\u001b[0m\u001b[0;32m 1988\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstr_statement\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0meffective_parameters\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcursor\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1989\u001b[0m )\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\engine\\base.py\u001b[0m in \u001b[0;36m_handle_dbapi_exception\u001b[1;34m(self, e, statement, parameters, cursor, context, is_sub_exec)\u001b[0m\n\u001b[0;32m 2342\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0mshould_wrap\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2343\u001b[0m \u001b[1;32massert\u001b[0m \u001b[0msqlalchemy_exception\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2344\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0msqlalchemy_exception\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mwith_traceback\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mexc_info\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2345\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2346\u001b[0m \u001b[1;32massert\u001b[0m \u001b[0mexc_info\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\engine\\base.py\u001b[0m in \u001b[0;36m_exec_single_context\u001b[1;34m(self, dialect, context, statement, parameters)\u001b[0m\n\u001b[0;32m 1966\u001b[0m \u001b[1;32mbreak\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1967\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mevt_handled\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1968\u001b[1;33m self.dialect.do_execute(\n\u001b[0m\u001b[0;32m 1969\u001b[0m \u001b[0mcursor\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstr_statement\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0meffective_parameters\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1970\u001b[0m )\n",
+ "\u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\sqlalchemy\\engine\\default.py\u001b[0m in \u001b[0;36mdo_execute\u001b[1;34m(self, cursor, statement, parameters, context)\u001b[0m\n\u001b[0;32m 918\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 919\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mdo_execute\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcursor\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstatement\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparameters\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 920\u001b[1;33m \u001b[0mcursor\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexecute\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstatement\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparameters\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 921\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 922\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mdo_execute_no_params\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcursor\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstatement\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;31mIntegrityError\u001b[0m: (psycopg2.errors.UniqueViolation) duplicate key value violates unique constraint \"pk_company_hr_court\"\nDETAIL: Key (hr, court_id)=(12334, 2) already exists.\n\n[SQL: INSERT INTO company (hr, court_id, name, street, zip, city, sector) VALUES (%(hr)s, %(court_id)s, %(name)s, %(street)s, %(zip)s, %(city)s, %(sector)s)]\n[parameters: {'hr': 12334, 'court_id': 2, 'name': 'Volkswagen', 'street': 'Berliner Ring 2', 'zip': 38440, 'city': 'Wolfsburg', 'sector': 'Automobil'}]\n(Background on this error at: https://sqlalche.me/e/20/gkpj)"
+ ]
+ }
+ ],
+ "source": [
+ "for i in range(len(df)):\n",
+ " #get data from dataframe\n",
+ " comp=Company( \n",
+ " hr= int(df['HR'].iloc[i]),\n",
+ " court_id= int(df['Amtsgericht'].iloc[i]),\n",
+ " name = str(df['Name'].iloc[i]),\n",
+ " street = str(df['Strasse'].iloc[i]),\n",
+ " zip = int(df['PLZ'].iloc[i]),\n",
+ " city = str(df['Stadt'].iloc[i]),\n",
+ " sector=str(df['Branche'].iloc[i]))\n",
+ " session.add(comp)\n",
+ " session.commit()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bc23ecab",
+ "metadata": {},
+ "source": [
+ "# Befülle die Tabellen *company*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "d4547b1d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['Company_HR', 'Company_Court', 'Jahr', 'Umsatz', 'Ebit', 'EBITDA'], dtype='object')"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df=pd.read_csv('BASF_Data.csv', sep=';', decimal=\",\",encoding=\"ISO-8859-1\") \n",
+ "df.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "d1d86e88",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from datetime import datetime\n",
+ "\n",
+ "for i in range(len(df)):\n",
+ " #get data from dataframe\n",
+ " fin=Finance( \n",
+ " company_hr = int(df['Company_HR'].iloc[i]),\n",
+ " company_court = int(df['Company_Court'].iloc[i]),\n",
+ " date=datetime.strptime(str(df['Jahr'].iloc[i]), '%Y'),\n",
+ " total_volume=str(df['Umsatz'].iloc[i]),\n",
+ " ebit=str(df['Ebit'].iloc[i]) ,\n",
+ " ebitda=str(df['EBITDA'].iloc[i]),\n",
+ " ebit_margin=null(),\n",
+ " total_balance=null(),\n",
+ " equity=null(),\n",
+ " debt=null(),\n",
+ " return_on_equity=null(),\n",
+ " capital_turnover_rate=null())\n",
+ " \n",
+ " session.add(fin)\n",
+ " session.commit()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "bdae69a9",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "0e9ebfae",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['Company_HR', 'Company_Court', 'Jahr', 'Umsatz', 'Ebit', 'EBITDA'], dtype='object')"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df=pd.read_csv('Telekom_Data.csv', sep=';',decimal=',',encoding=\"ISO-8859-1\") \n",
+ "df.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "id": "01fae1da",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for i in range(len(df)):\n",
+ " #get data from dataframe\n",
+ " fin=Finance( \n",
+ " company_hr = int(df['Company_HR'].iloc[i]),\n",
+ " company_court = int(df['Company_Court'].iloc[i]), \n",
+ " date=datetime.strptime(str(df['Jahr'].iloc[i]), '%Y'),\n",
+ " total_volume=str(df['Umsatz'].iloc[i]),\n",
+ " ebit=str(df['Ebit'].iloc[i]) ,\n",
+ " ebitda=str(df['EBITDA'].iloc[i]),\n",
+ " ebit_margin=null(),\n",
+ " total_balance=null(),\n",
+ " equity=null(),\n",
+ " debt=null(),\n",
+ " return_on_equity=null(),\n",
+ " capital_turnover_rate=null())\n",
+ " \n",
+ " session.add(fin)\n",
+ " session.commit()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "bc29367e",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "id": "f48deb0e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['Company_HR', 'Company_Court', 'Jahr', 'Umsatz', 'Ebit', 'EBITDA'], dtype='object')"
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df=pd.read_csv('EON_Data.csv', sep=';',decimal=',',encoding=\"ISO-8859-1\") \n",
+ "df.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "id": "a01ba01b",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "for i in range(len(df)):\n",
+ " #get data from dataframe\n",
+ " fin=Finance( \n",
+ " company_hr = int(df['Company_HR'].iloc[i]),\n",
+ " company_court = int(df['Company_Court'].iloc[i]),\n",
+ " date=datetime.strptime(str(df['Jahr'].iloc[i]), '%Y'),\n",
+ " total_volume=str(df['Umsatz'].iloc[i]),\n",
+ " ebit=str(df['Ebit'].iloc[i]) ,\n",
+ " ebitda=str(df['EBITDA'].iloc[i]),\n",
+ " ebit_margin=null(),\n",
+ " total_balance=null(),\n",
+ " equity=null(),\n",
+ " debt=null(),\n",
+ " return_on_equity=null(),\n",
+ " capital_turnover_rate=null())\n",
+ " \n",
+ " session.add(fin)\n",
+ " session.commit()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f47963f1",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "id": "41a3312d",
+ "metadata": {},
+ "source": [
+ "# Befülle die Tabelle Person"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "id": "8dcd4c4f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['Name', 'Surname'], dtype='object')"
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df=pd.read_csv('person1000.csv', sep=';',decimal=',',encoding=\"ISO-8859-1\") \n",
+ "df.columns"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "id": "a2307a07",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for i in range(len(df)):\n",
+ " #get data from dataframe\n",
+ " per=Person( \n",
+ " name = str(df['Name'].iloc[i]),\n",
+ " surname = str(df['Surname'].iloc[i])\n",
+ ")\n",
+ " \n",
+ " session.add(per)\n",
+ " session.commit()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "933b3ec6",
+ "metadata": {},
+ "source": [
+ "# Erzeuge die Tabelle Person-Beziehungen"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "id": "3f38817a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import random\n",
+ "\n",
+ "relation=['Executive',\n",
+ "'Auditor',\n",
+ "'Supervisory_Board',\n",
+ "'Managing_Director',\n",
+ "'Authorized_Representive',\n",
+ "'Final_Auditor'\n",
+ "]\n",
+ "\n",
+ "hr_court=[\n",
+ "(12334,2),\n",
+ "(64566,2),\n",
+ "(5433,3),\n",
+ "(12334,4),\n",
+ "(12336,5),\n",
+ "(555,6),\n",
+ "(555,7),\n",
+ "(12384,8),\n",
+ "(64345,9),\n",
+ "(4344,1),\n",
+ "(866,1),\n",
+ "(9875,1)\n",
+ "]\n",
+ "\n",
+ "edges=[]\n",
+ "\n",
+ "#create amount of combinations\n",
+ "for i in range(2000):\n",
+ " rand_comp=random.randint(0,11)\n",
+ " comp_hr=hr_court[rand_comp][0]\n",
+ " comp_court=hr_court[rand_comp][1]\n",
+ " \n",
+ " rand_person=random.randint(1,999)\n",
+ " rand_relation=random.randint(0,5)\n",
+ " rand_year_start=random.randint(2005,2023)\n",
+ " if rand_year_start<2023:\n",
+ " year_to=rand_year_start+1\n",
+ " else:\n",
+ " pass\n",
+ " # year_to=None\n",
+ " \n",
+ " #edges.append((rand_company,df['Name'].iloc[rand_person],rand_year_start,year_to,relation[rand_relation])) \n",
+ " edges.append((comp_hr,comp_court,rand_person,int(rand_year_start),year_to,relation[rand_relation])) \n",
+ " \n",
+ "#edges.to_csv('edges.csv')\n",
+ "col=['Company_HR','Company_Court','Person_ID','Year_From','Year_To','Relation_Type']\n",
+ "dfEdges=pd.DataFrame(edges,columns=col)\n",
+ "dfEdges.to_csv('edges.csv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7d0063c7",
+ "metadata": {},
+ "source": [
+ "# Befülle die Tabelle Person-Beziehungen"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "id": "5ba301ea",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Unnamed: 0 | \n",
+ " Company_HR | \n",
+ " Company_Court | \n",
+ " Person_ID | \n",
+ " Year_From | \n",
+ " Year_To | \n",
+ " Relation_Type | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 9875 | \n",
+ " 1 | \n",
+ " 877 | \n",
+ " 2005 | \n",
+ " 2006 | \n",
+ " Managing_Director | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 5433 | \n",
+ " 3 | \n",
+ " 203 | \n",
+ " 2008 | \n",
+ " 2009 | \n",
+ " Auditor | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 64345 | \n",
+ " 9 | \n",
+ " 336 | \n",
+ " 2007 | \n",
+ " 2008 | \n",
+ " Executive | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 555 | \n",
+ " 7 | \n",
+ " 63 | \n",
+ " 2012 | \n",
+ " 2013 | \n",
+ " Executive | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 64345 | \n",
+ " 9 | \n",
+ " 646 | \n",
+ " 2016 | \n",
+ " 2017 | \n",
+ " Auditor | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 1995 | \n",
+ " 1995 | \n",
+ " 555 | \n",
+ " 6 | \n",
+ " 296 | \n",
+ " 2023 | \n",
+ " 2012 | \n",
+ " Supervisory_Board | \n",
+ "
\n",
+ " \n",
+ " 1996 | \n",
+ " 1996 | \n",
+ " 64566 | \n",
+ " 2 | \n",
+ " 643 | \n",
+ " 2015 | \n",
+ " 2016 | \n",
+ " Auditor | \n",
+ "
\n",
+ " \n",
+ " 1997 | \n",
+ " 1997 | \n",
+ " 64345 | \n",
+ " 9 | \n",
+ " 257 | \n",
+ " 2011 | \n",
+ " 2012 | \n",
+ " Auditor | \n",
+ "
\n",
+ " \n",
+ " 1998 | \n",
+ " 1998 | \n",
+ " 64345 | \n",
+ " 9 | \n",
+ " 277 | \n",
+ " 2009 | \n",
+ " 2010 | \n",
+ " Authorized_Representive | \n",
+ "
\n",
+ " \n",
+ " 1999 | \n",
+ " 1999 | \n",
+ " 866 | \n",
+ " 1 | \n",
+ " 369 | \n",
+ " 2010 | \n",
+ " 2011 | \n",
+ " Final_Auditor | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
2000 rows × 7 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Unnamed: 0 Company_HR Company_Court Person_ID Year_From Year_To \\\n",
+ "0 0 9875 1 877 2005 2006 \n",
+ "1 1 5433 3 203 2008 2009 \n",
+ "2 2 64345 9 336 2007 2008 \n",
+ "3 3 555 7 63 2012 2013 \n",
+ "4 4 64345 9 646 2016 2017 \n",
+ "... ... ... ... ... ... ... \n",
+ "1995 1995 555 6 296 2023 2012 \n",
+ "1996 1996 64566 2 643 2015 2016 \n",
+ "1997 1997 64345 9 257 2011 2012 \n",
+ "1998 1998 64345 9 277 2009 2010 \n",
+ "1999 1999 866 1 369 2010 2011 \n",
+ "\n",
+ " Relation_Type \n",
+ "0 Managing_Director \n",
+ "1 Auditor \n",
+ "2 Executive \n",
+ "3 Executive \n",
+ "4 Auditor \n",
+ "... ... \n",
+ "1995 Supervisory_Board \n",
+ "1996 Auditor \n",
+ "1997 Auditor \n",
+ "1998 Authorized_Representive \n",
+ "1999 Final_Auditor \n",
+ "\n",
+ "[2000 rows x 7 columns]"
+ ]
+ },
+ "execution_count": 65,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df=pd.read_csv('edges.csv', sep=',') \n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "id": "64e79d92",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for i in range(len(df)):\n",
+ " #get data from dataframe\n",
+ " edges=Person_Relation( \n",
+ " company_hr = int(df['Company_HR'].iloc[i]),\n",
+ " company_court = int(df['Company_Court'].iloc[i]),\n",
+ " person_id = int(df['Person_ID'].iloc[i]),\n",
+ " date_from=datetime.strptime(str(df['Year_From'].iloc[i]), '%Y'),\n",
+ " date_to=datetime.strptime(str(df['Year_To'].iloc[i]), '%Y'),\n",
+ " relation = str(df['Relation_Type'].iloc[i])\n",
+ ")\n",
+ " \n",
+ " session.add(edges)\n",
+ " session.commit()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e83da6d1",
+ "metadata": {},
+ "source": [
+ "# Abfragen in SQL Alchemy"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1c7ecb06",
+ "metadata": {},
+ "source": [
+ "Der folgende Code-Snippet zeigt, wie man eine Abfrage gestaltet.\n",
+ "\n",
+ "```python\n",
+ "from sqlalchemy import create_engine\n",
+ "from sqlalchemy.orm import sessionmaker\n",
+ "from sqlalchemy.ext.declarative import declarative_base\n",
+ "from sqlalchemy import Column, Integer, String\n",
+ "\n",
+ "# Erstelle eine SQLite-Datenbankdatei oder gib den Pfad zur vorhandenen Datei an\n",
+ "url = URL.create(\n",
+ " drivername=\"postgresql\",\n",
+ " username=\"postgres\",\n",
+ " password=\"postgres\",\n",
+ " host=\"localhost\",\n",
+ " database=\"postgres\"\n",
+ ")\n",
+ "\n",
+ "#Erstelle eine Engine zur Verbindung mit der Datenbank\n",
+ "engine = create_engine(url)\n",
+ "\n",
+ "#Erstelle eine Klasse, die eine Tabelle repräsentiert\n",
+ "Base = declarative_base()\n",
+ "class Company(Base):\n",
+ " __tablename__ = 'company'\n",
+ "\n",
+ " hr = Column(Integer(), nullable=False, primary_key=True)\n",
+ " court_id = Column(Integer, ForeignKey(\"district_court.id\"), nullable=False, primary_key=True)\n",
+ " name = Column(String(100), nullable=False)\n",
+ " street = Column(String(100), nullable=False)\n",
+ " zip = Column(Integer(), nullable=False)\n",
+ " city = Column(String(100), nullable=False)\n",
+ " sector = Column(String(100), nullable=False)\n",
+ "\n",
+ " __table_args__ = (\n",
+ " PrimaryKeyConstraint('hr', 'court_id', name='pk_company_hr_court'),\n",
+ " )\n",
+ "\n",
+ "#starte die Verbindung zur Datenbank\n",
+ "Session = sessionmaker(bind=engine)\n",
+ "session = Session()\n",
+ "\n",
+ "#Abfrage aller Spalten der Tabelle/Klasse Company\n",
+ "Comps = session.query(Company).all()\n",
+ "\n",
+ "#Gebe die Spalten name, hr und court_id der Tabelle company aus\n",
+ "for comp in Comps:\n",
+ " print(comp.name, comp.hr, comp.court_id)\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "id": "daacb128",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Volkswagen 12334 2\n",
+ "Mercedes-Benz Group 64566 2\n",
+ "Allianz 5433 3\n",
+ "BMW Group 12334 4\n",
+ "Deutsche Telekom 12336 5\n",
+ "Deutsche Post DHL Group 555 6\n",
+ "Bosch Group 555 7\n",
+ "BASF 12384 8\n",
+ "E.ON 64345 9\n",
+ "Munich Re Group 4344 1\n",
+ "Siemens 866 1\n",
+ "Deutsche Bahn 9875 1\n"
+ ]
+ }
+ ],
+ "source": [
+ "Comps = session.query(Company).all()\n",
+ "\n",
+ "for comp in Comps:\n",
+ " print(comp.name, comp.hr, comp.court_id)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "36b76760",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "id": "83a869b2",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total_volume|ebit|ebitda\n",
+ "29473.0 nan nan\n",
+ "35946.0 nan nan\n",
+ "32500.0 nan nan\n",
+ "32216.0 nan nan\n",
+ "33361.0 nan nan\n",
+ "37537.0 nan nan\n",
+ "42745.0 5830.0 nan\n",
+ "52610.0 6750.0 nan\n",
+ "57951.0 7316.0 nan\n",
+ "62304.0 6463.0 9562.0\n",
+ "50693.0 3677.0 7388.0\n",
+ "63873.0 7761.0 11131.0\n",
+ "73497.0 8586.0 11993.0\n",
+ "72129.0 6742.0 10009.0\n",
+ "73973.0 7160.0 10432.0\n",
+ "74326.0 7626.0 11043.0\n",
+ "70449.0 6248.0 10649.0\n",
+ "57550.0 6275.0 10526.0\n",
+ "61223.0 7587.0 10765.0\n",
+ "60220.0 5974.0 8970.0\n",
+ "59316.0 4201.0 8185.0\n",
+ "59149.0 -191.0 6494.0\n",
+ "78598.0 7677.0 11355.0\n",
+ "87327.0 6548.0 10748.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "Fin = session.query(Finance).filter(Finance.company_hr == 12384).all()\n",
+ "\n",
+ "print(\"total_volume|ebit|ebitda\")\n",
+ "for n in Fin:\n",
+ " print(n.total_volume, n.ebit, n.ebitda)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1b807a00",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "users = session.query(User).filter(User.name == 'John').all()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d31ed85f",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Amtsgerichte.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Amtsgerichte.csv
new file mode 100644
index 0000000..6f74641
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Amtsgerichte.csv
@@ -0,0 +1,15 @@
+Stadt;Name
+Aschaffenburg;Amtsgericht Aschaffenburg
+Bamberg;Amtsgericht Bamberg
+Bayreuth;Amtsgericht Bayreuth
+Duesseldorf;Amtsgericht Duesseldorf
+Duisburg;Amtsgericht Duisburg
+Duisburg;Amtsgericht Duisburg-Hamborn
+Duisburg;Amtsgericht Duisburg-Ruhrort
+Oberhausen;Amtsgericht Oberhausen
+Wuppertal;Amtsgericht Wuppertal
+Berlin;Amtsgericht Mitte
+Berlin;Amtsgericht Ost
+Berlin;Amtsgericht West
+Berlin;Amtsgericht Nord
+Berlin;Amtsgericht Sued
\ No newline at end of file
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/BASF_Data.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/BASF_Data.csv
new file mode 100644
index 0000000..3447e50
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/BASF_Data.csv
@@ -0,0 +1,25 @@
+Company_HR;Company_Court;Jahr;Umsatz;Ebit;EBITDA
+;12384;8;1999;29473;;
+;12384;8;2000;35946;;
+;12384;8;2001;32500;;
+;12384;8;2002;32216;;
+;12384;8;2003;33361;;
+;12384;8;2004;37537;;
+;12384;8;2005;42745;5830;
+;12384;8;2006;52610;6750;
+;12384;8;2007;57951;7316;
+;12384;8;2008;62304;6463;9562
+;12384;8;2009;50693;3677;7388
+;12384;8;2010;63873;7761;11131
+;12384;8;2011;73497;8586;11993
+;12384;8;2012;72129;6742;10009
+;12384;8;2013;73973;7160;10432
+;12384;8;2014;74326;7626;11043
+;12384;8;2015;70449;6248;10649
+;12384;8;2016;57550;6275;10526
+;12384;8;2017;61223;7587;10765
+;12384;8;2018;60220;5974;8970
+;12384;8;2019;59316;4201;8185
+;12384;8;2020;59149;-191;6494
+;12384;8;2021;78598;7677;11355
+;12384;8;2022;87327;6548;10748
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/EON_Data.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/EON_Data.csv
new file mode 100644
index 0000000..ecbe861
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/EON_Data.csv
@@ -0,0 +1,17 @@
+Company_HR;Company_Court;Jahr;Umsatz;Ebit;EBITDA
+;64345;9;2007;66912;;
+;64345;9;2008;84873;;
+;64345;9;2009;79974;;
+;64345;9;2010;92863;;
+;64345;9;2011;112954;;
+;64345;9;2012;132093;7010;
+;64345;9;2013;119615;5640;
+;64345;9;2014;113095;4700;
+;64345;9;2015;42656;3600;
+;64345;9;2016;38173;3100;
+;64345;9;2017;37965;3100;
+;64345;9;2018;30084;2990;4840
+;64345;9;2019;41284;3220;5558
+;64345;9;2020;60944;3780;6905
+;64345;9;2021;77358;4720;7889
+;64345;9;2022;115660;5200;8059
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/01_Connect_to_Database.ipynb b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/01_Connect_to_Database.ipynb
new file mode 100644
index 0000000..6c14e0c
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/01_Connect_to_Database.ipynb
@@ -0,0 +1,203 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "68f82dc2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#pip install psycopg2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "db00bbea",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#pip install --user ipython-sql"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "74ae19d0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import psycopg2\n",
+ "import sql"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "29fdd335",
+ "metadata": {},
+ "source": [
+ "## Verbinde zur Postgre Datenbank im Docker"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "183d5c5f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Database connected successfully\n"
+ ]
+ }
+ ],
+ "source": [
+ "conn = psycopg2.connect(\n",
+ " host=\"localhost\",\n",
+ " database=\"transparenz\",\n",
+ " user=\"postgres\",\n",
+ " password=\"postgres\")\n",
+ "\n",
+ "print(\"Database connected successfully\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e299175a",
+ "metadata": {},
+ "source": [
+ "## Anlegen der Tabelle **Company**\n",
+ "- Erstellen eines Cursors\n",
+ "- für einen Primary key benötigt man den Typ \"Serial\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "4ae6b45d",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Table Created successfully\n"
+ ]
+ }
+ ],
+ "source": [
+ "conn.autocommit = True\n",
+ "#create a table\n",
+ "cur = conn.cursor() # creating a cursor\n",
+ " \n",
+ "# executing queries to create table\n",
+ "cur.execute(\"\"\"\n",
+ "CREATE TABLE company\n",
+ "(\n",
+ " ID SERIAL PRIMARY KEY NOT NULL,\n",
+ " NAME TEXT NOT NULL,\n",
+ " STREET TEXT NOT NULL,\n",
+ " ZIP INT NOT NULL,\n",
+ " CITY VARCHAR(100) NOT NULL,\n",
+ " SECTOR VARCHAR(200) NOT NULL)\n",
+ "\"\"\")\n",
+ " \n",
+ "# commit the changes\n",
+ "conn.commit() # <--- makes sure the change is shown in the database\n",
+ "#conn.close()\n",
+ "#cur.close()\n",
+ "print(\"Table Created successfully\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0d59c0e9",
+ "metadata": {},
+ "source": [
+ "## Anlegen der Tabelle **finance**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "32e46d88",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Table Created successfully\n"
+ ]
+ }
+ ],
+ "source": [
+ "conn.autocommit = True\n",
+ "#create a table\n",
+ "cur = conn.cursor() # creating a cursor\n",
+ " \n",
+ "# executing queries to create table\n",
+ "cur.execute(\"\"\"\n",
+ "CREATE TABLE finance\n",
+ "(\n",
+ " FINANCE_ID SERIAL PRIMARY KEY NOT NULL,\n",
+ " COMPANY_ID INT NOT NULL,\n",
+ " KIND_OF VARCHAR(50) NOT NULL,\n",
+ " DATE DATE NOT NULL,\n",
+ " SUM FLOAT NOT NULL)\n",
+ "\"\"\")\n",
+ " \n",
+ "# commit the changes\n",
+ "conn.commit() # <--- makes sure the change is shown in the database\n",
+ "#conn.close()\n",
+ "#cur.close()\n",
+ "print(\"Table Created successfully\")"
+ ]
+ },
+ {
+ "attachments": {
+ "grafik.png": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcsAAAPNCAYAAADmxEFzAAAgAElEQVR4XuydCVxUVfvHf6aUmGAKuSvuqEi+LoSmvFIuaIJLKYFm7hsuU4ppufuqYaL/KMV9ywVFTQtMCUwSNQ3FCnEXt8QNVHCZbDT/59yZO94ZZrnDDDjAcz4fPwj3rN9z5/7mec5zzi1x7969ZygE6cCBA2jbtq1d9LREiRJ49qxQYLMLXtQJIkAEiEBhJ1Di8WMVPfUL+yxS/4kAESACRCBfCZBY5iteqpwIEAEiQASKAgESy6IwizQGIkAEiAARyFcCJJb5ipcqJwJEgAgQgaJAgMSyKMwijaHIEvj332d48uQJnj79t8iOkQZGBAoDARLLwjBL1MdiSYAL5ePH/xTLsdOgiYC9ESCxtLcZof4QAQ2Bf/5RkUVJdwMRsBMCJJZ2MhHUDSKgT0CpfExQiAARsBMCJJZ2MhHUDSJAYkn3ABGwXwIklvY7N9SzYk6ALMtifgPQ8O2KAImlXU0HdYYIPCdAYkl3AxGwHwIklvYzF9QTIqBDgMSSbggiYD8ESCztZy6oJ0TAarF8+PAh4uMTkBAfL9TVoWNH9OjRncgSASJgJQESSysBUnEikF8ELLUsDxw4iO93fo9Hjx4huE8w+/mQ/f4DypQpg+5MMNu2bWOTrp4+fRqrVq5GVlaWwfratHkLQcFBePXVV23SHlVCBOyBQL6JZWbmHfYhLS18UO0p8dNQnjx5itKlX3kh3eIPsvj4RKSk/I6rV68JfahRoxqaN/8POnb0FXhdufIXvv/+R4wZM+yF9JEatQ8CcsXy2LEUbI7aLIhkx04d2X3UQStUoqUZ/1M8Xn/dVRCxhg0bWjXACaGfsjrc0caA+H45b75Qd82aNTDh0wkkmFaRpsL2RCBfxJI/7L/88it0796VfXDftqfx4q+/MnD58hU0beqJsmUL9pvvgQO/YvPm7UyoS8PPrz17oFQT2Fy5cg1xcXvx999/C8y+/34Xe/ApsXr1YrtiR50pWAJyxHLVylU4ePAQOnTowKzHbkbF6fbtTPzw/fdCXm75DR4yOM+DGTRwMD6dOMGg6PJrYiLBzDNiKmiHBGwulqJQNmvWFIMH97PDIQOnT58TXEgFKZhcKFev3oDg4F5Gv0Bs2rQVCQmJWmYklnZ5+xRYp8yJJf/SN3PGTKPCZaij3IXKrb95X84TLM28JLliyevOqzDXr9cA586fzUv3ZJWR1h8Y+AHmz58PN7eassraKtP58+cR/9NPOtW1bNkSXm++qf1b3J49SE9PF36vU6cO/Dp31l6ztry0Yd5O3Xr1hP6MDAmx1RBfeD3iuOqxsVmbbCqWhUEoRWAFKZjcPfbpp9NMWto8z7x5X2lds7yfJJbW3t6Fu7xcsbRE+LhbdszosZg+Y3qexcGUWE6fNoPdw1d1wK9es8riiSgKYvnLL7+wQKu9+N/sWQbHn/zbb8LfpeIozciv37lzRyuQ/MFfoUIFbX5ry4tt8Ta2bN4siOSSyMgiI5bScVl8AxooYDOxLExCWdCCuXPnLnDLMjx8ttE5W7VqPXORHdZed3R0xOLF4baYY6qjkBIwJ5Z8WKaEy9CwRcsyLwIm1ie3TWvaIrFELuHSf/ibE0t94TMmHtJ6ipJYmuNj6WPBJmJZGIWyIAVz+vS5LBKxtd2t31p6s1D+giUgRyznhX0JdxZsI3d7yE4WLXvm9BlMnPRpngfzIsSSu0qPpxwX+tyseTNER2/R6b/0Or/AXbjcshsyeKg2X8LeBK01bcgN26F9B21efRewqfbXrl2LObPn6pTV/9vKVSvg6ekpWHAfBAUJFiJ/mJdnPw25CLmw/RQXxwKygnXGuTkqCp38/GxSXqxYWqcolvynmMT+8t953pZeXlr3seiy5X+/e/euUKR8+fLafhuyhi9cuKC9zl3JF9g/7l7mPI4ePaptV+oOlvanY6dOWmbG+iP2VWSV55tdUtAmYjlqVCiUSqVF/SlTxhGLFuWP5XTgwGH2toYnFvWnVKlSbH2llUVl5GYeNGgUJk5UwN29gdwilI8IsM+U+YPUeYAPDwYbM3a0LGLffL2IRVw75luAj7QTtrIsuVC5N3DXujO5EP34426tYBq6PmDAAPB8/CdPXDgXL47UltEXSy7EokBOnTJNKCO6T021z9eNuciKZXk77dq107YpdcOKlp0oPtL1SF5AuiYpFREpU6mwWVue18vbOZqcrBUvUZREoRLXRaWiyMtJRZz3iQukuJ7KRU8URP1x8LzS8uKaIv/yILqCxX6JXyJ4mbp162rdz7yPIkP9+kRW+uOS9eEwk8kmYikGr3CxadvWW1a/HB3LsGjQ6rLyWprpwYOHwgtz5aQbN27h5s2bTMjqo3LlSnKKWJzHUrEULfX8+jJh8QCowAshIEcs+d5K/sBYtHiRrD6OChmNQYMHoUWL5rLyG8pUkJalvhiJ/RGDci5duihYj3KCgaQCaSrAh7c5YcIEQVjNtc/7w8VSarWKfTS3ZqnPVio6csTSFuX1A2CkQiTWL1pvXLyk/+fXjbl2DVmrPK/oGuXBRLw+0ZLV/yJhSvSk1qp+f8RytgzsEeu0iVjyykTBHDToQ8HlWBjSjRs3cebMuXwVSs7BUjcsX+M8fvwPzJz5eWHASH3MJwJyxJIH7Hw6YaJwCIG5Qwe4sEZtisKX8+dZtf+xIMVS3yI0JJZSi1E6FaLQSf8miqpcsTTXPo+glbbD3a3GLEtzt4nUipPjhtWvLy/l9dcoDa1Z6ouT1LVpzIKTiqUoaHeZWPLEXc/8/1wwpa5mUTB5HtHVaijil18Xo4al7Uh55Mfaq83EsrAJZkEJJefCxe/gwSMsPN1wVJz+TR8aOkX4wtGjR1dzny+6XoQJyBFL9f31vXC83fQZM4xuB+H7LGey67Y4/q6gxdKQ5Si1LA2JpbheKbU482JZGqqHMze23YS3IQqmpZalvsvTUICOoXVM8SNgaXn9aFtejxzLUl8sDW030V9b5XVzMRQjf/k4uGuVJ0PRwLwfXDB5krqJ9T/uhsTS0Lhs8ZiwqVgWFsEsSKHkTPi2kAkTpgniZ+6Qhvj4fYK4cmG1t9OPbHHDUR3yCcgVS14jD/RRKtl9ZuDUHG59zv9yPvjShzWBPWLPC1IsRWHSX7O8cD5du6bIBWrylM+165N8rbJ27do6a5RiwI2llqW59rkg8iRak1xER40KEX7XF0tDa5bSfZNcIKT7LLlFx5OYRz9Yhv9uTXlDQsP7IF07la4/8r4YKmNozVK65UW0knl5ca1TXGsUhZcLPU/SdUoeSCS6avX3n4r3orH+2DKwR2zL5mIpFczRo4exY9yayn86FEDOzMwspKWdynfXq/5Q5BxKwIUyKmobCpMruwCmrNg2YYlYckHkhw2UKAEMHDRIG/XJXYRrVq/Gs2cQDi+wxXmtfN2zOYtINXTcnXSyDjK372kWeTs//EuL51B/6wj/XUyGomENXZdGsHIx5RGreRFL3q6x9vVdvUEs0lW6r1IsZygaVhpBytswJAjSPPrXrSlvzM0rWnTSwxKkUamm3J7i/EijYaWiJg3S0RdhqQuWl9E/gEEaDcuvSwOOpMJobFwW34AGCuSLWPJ2UlL+YB9MR7uLAL13L1sI/nF1dbEFP4vq4IIZFbVdsBg7dXpbG+DEA3p++mmf+gDs4PcLzZqvRYOnzBYTsEQseeVcMFevWsPW4U8LB6c/fPhIcM+6uzdkQT0DbSKUvB1zB6mLA3VxcWFRt4OsPovWYnBUwCwBfSvVbIFCkiE/x5VvYllI2BZ4N7kgcmHkATzSg9T58YBcQMn1WuBTYrcNWiqW4kB+YkeW8beN8MTPi+2kWfux24FSxwqcQH4EwBT4IAw0mJ/jIrG0hxmmPhABAwTyKpYEkwgQAdsTILG0PVOqkQjYhACJpU0wUiVEwCYESCxtgpEqIQK2J0BiaXumVCMRyCsBEsu8kqNyRCCfCZBY5jNgqp4IWECAxNICWJSVCBQkARLLgqRNbREB0wRILOkOIQJ2SuCff1TshQD/2mnvqFtEoHgRILEsXvNNoy1EBP799xkeP/6nEPWYukoEii4BEsuiO7c0siJAgAsmP0SDLMwiMJk0hEJNgMSyUE8fdZ4IEAEiQAQKggCJZUFQpjaIABEgAkSgUBMgsSzU00edJwJEgAgQgYIgQGJZEJSpDSJABIgAESjUBEocPXqUvbyHEhEgAkSACBABImCMQInmw74isSwu9wefafa+wyKdLBmjJXmLNDSZg7OElyV5ZTZf6LNZwsSSvIUejN4A7HTsJJZF7UYzNB47vfnyFb2pMRdHHraETWyto0n85PGzs88piaW8aaNcRIAIEAEiUIwJkFgW9cm3s29nBYrb0NiLMw9bwie21tEkfvL42dHnVZZYOpV5BTP6d4Tvf+rKG6AVuY6e/QsLo/fjzNXbVtRCRYkAESACRIAI2I6ALLFcPr4XWjSoZrtWzdSUkZWDgM/XFFh71BARIAJEgAgQAVMEzIoltyoT/29EgVMctmA7jjErs7CmFg2qI6B1I9xXPkbU3t/BvwBQIgJEgAgQgcJJwKxY8of+8vHvF/jo8kssufgHv/Mf7Xiifv4d9x89tun43Gu8jk1T+mjr5C7lPrM32bQNqowIEAEiQAQKjoDNxPLM1UxUdXECFyNbJH2x5OulDaq7aqv+5Y/0PK1rDg9ohWH+3tp68kOU+7RvhvGB/9XB0GJ4hC2wUB1EgAgQASLwAghYLJZDF36HlHMZQleb16+Klszy3MSsswdK9Xv3qjDBHM7EKKBVQ6uGoy9iv3w1AmUdnwsxDwQazly1lqaCEMuqLs6ImtpH29/YX09h+tqfLO2q3ef3HzEUM+tex/QJsYi1+95SB4sbAbo/Zcz4+8E41glYPzwKX8nIXpyzWCWWpsAFtG6IGR91ELJsYmt2m/b9getZ97WCOqzrm4hhIiIV3hXj3jNo8QW81ViIxtVPPAjI0rXAghBL3k9uYXNrOCMzp3CsvQofmooGp/TUTxH4kH0vad6pMwZUu4lla44jjeUs6g+jSo29MKF3c7xVuTReeYm9iPnhHRyK34/5u6/gpoaUHAbNA/wxwPEM5kSf05Yrrg+djz9XoJ+bidFfPoYWcw/YBI+cubFJQwVciTCuZg8MCpzAt/wF+V9gSSxlz57NxLJs6Zfx4O/nb3XnYjjc/01MX5eA2MOnDXaorCMro7FIuZVqTCyjpvbVccGKlZmz2Lhg+bMgGyeNRcrzc+E15IaVunm5i5eLcLumdZhr2VloTur25fUauyb2jbti+fikZaXrpWLgD1/f5HXxxP/2y+/qtgs8CR+asvh1RwI2X9Nt/cHti/j9BjBgXAjG1LqJb8Zux9qiLpb122LDmBaolX0J0fF/IuVuWTT3bY7AJq/i0k/fsy8PakhyHsgjJ47BwLKn8MnUBBy00cQKD0XYTlhs1C2z1dSqVxvVHTXZqjXF9J6v44z0nlPew4Hzd83WIyeDnLmRU4+95SGxfDEzYrVY+jN368z+agvyByZGM7/dK/w/ccFQ7GOiI/5ubnjGxFI/wOjsX5la4eSBOQGT1xgM0DG0bsj7wINtuECJSXT3SrfHcLHiAqu//hpz6CR4QNCyce/nupb4+wWMX/LcGXlsmULbxrGz1zBswTboW7Wb9h4H76c08TEt2LofvK0CTRqx3Ld2BUJ/lddyUX0YMb8Ahn/6EYZVvoYF/9uJTdpntxP6KPpgfP07WD51K5axv78oBoVVLHXurNb++GlAFfxpwT0n785U53pRc2NJH/OSl8QyL9SsL2O1WHJRlIpK0OzNQqDPwpFd0XXyOty4o3a98jS+V1smDv8RxC18a5KOxWlMLGcO6CRYhzxxN+74JTE6kaYL2AEGXHSkyZjb1hAuQ2KZV6zLY49gWcxhobgcsTTVTl5czHntt1BOhljqP3xyP4yc0KrHO/isXU1UL/MSnjy+j5MHkjDJiPuRf2nhc8vn0FAKDWzHXPUn8xTIZRULvIkVi1qj0rHv0W3NJd2qhAe8Gy5/vxhDfxQfyFnYeaEM3nnDBc4l/0VOxkWs2RSLb8+pi+Z2jZnn1LyTPyZ1dkOtV0uh5NPHuPBnMsKWHkOK0H5duGh79QjGvuDYL19N502IZa12HTDnXXfUf42PX4Wbl09g4fL9SJB8cZHea09Vf+PSiaNqRprqc92f5Wti1MAOCK7nBMeSGrf6nn0I/UnPlaIpb6/8LBNLM/eanhtWzSwLe66/hnYCp9z3s/5ny145WfcMyF3aarE8tmS0Tq08AIgH/XAXbIuRi7TX9MWQX2j3yXKt61b/OhcL7paU7vHk+xXDo39hwTPP3bKGDjDQDwbilh3fs8mtVP3DFYyJ5QPWtjrC11kIWtJPvE79a9ItInLFkn8B4GNwr+GqE8AkFV5bT7rB+mwglpXe7YXtAeXwx64DiLr8D8o2aIEJHSoiPWY9E5bnX5rE9kVrnlvRM9bF63RL/JIkWuUFwkBsxOtd7B5SH1matVrdtpl7dlkLvLJ/M3pvvKm2Xpo54t7FPxG56zJulq+Lsb08UCvrDwycmSis7eqLpTlOldr6Y23fmvj7j2NYdvAW4NYUiq41gePx6LL81HMBNuOGtVu+IlBjYtma8f+oHnD6CCJ+voUHGqZVbxzDWLaeycXQo8cHWNbFBRkHk/D18QcoKzL642cMWHpCWBvWF8vAMcMxsf5D7Nx2EPvuvoxG77TF0IaPsX3eBszT+07Eu2iv/CwRS3P3mvpL8vMAH/F+vnVSzR5uHhjeqS6qSe5n/c+ivXKy9TPDarHUtyy5NdmNWQtyxFJqeUrF0pjbUrS29C1HaeSsvts2kbmCx0fGaLnpn0ZkTCzFv3OrOXbuQB0hE61Zfi1qSl8dMRW3iMgRS6kQ6Pe7wEXCWICPJODCtGVZCzPndIfvrf1oFyFa+k4YP2UQPniSjDfDDuW6dzk/Ph98S5BUMEWh5C537r629T5Ysx8ijfV2y4RYVjz+EzotPaV+INe7gf+FxmCnpuJKjGVMp1ew+5u1mH5CXyzNcxo9aSwGljmJodMSnltJQ/ojtHoGZs2Ix8+iAJsRS7vla0Ysh4SOwsgKbFnj8z1IFJl2eg/R77sgWXDZqhl2zD6Cnl8e1gZNNf/oI6xorcL6z1lkpwEXeS6utTww0rsC7p1IQhT/VqOX7JWfWtDKGL+Nc8QAH/P3mkGx1LufPYI/xBrfEtj5xXrMNfClwl45mf2cW5jBarH0ZcEpMz5qL7hil8X+huW7foO4jim1HHmwy/JP3hMsKJ72sUCW0GXMj6VJUrHkVgZ/eMbOHaQVIm59zdBsv+BbSBaGBGjLSgVRf62SryPy9UQxGYuGlYootyrbfbzUqMBK90wuYP3gDMRkiVjq982QwFo4n3nPbizARxJwYVos38K6JV5o8pKBLpiIcNT/oJUoUUJwzb4woeTdt9Sy1N8+o2cx6VqW5jhlIXx+JzS9uBcdI5nSGkly1yztkq9JsWxkZPxqix7CFxj1/1/auxp9oiUeCz3u+vdrpbbvYnWf+nj9379x/cYNnDh+DhvYc+aUiXgie+SnFstH2LnoEPbp3R9v9+iGHs6iWJq711jUsUE3rN52MBlry/bIKe8PQ8MlrRZLQ9Vyt2Xs7P7MZcq+sbEtI2LigsldtNy9yi0naRLFkrsl/T9fLUStGtouYgyAaHXqi6X+fk1j16ViqW/V6VujUrHUF19LxFK/b/YglqYCfEyLpfoB5pQcj/lHlLrTZCbCUfpB4wVfqFAKPVevWVY5Hgv/Vc+/aAmXDK5ZGn64nFi/AuPY80hXLM1xqmxTseRdtj++mtvD4EM4/8RSaLV8RbRvUR/vNKqDFu7lUeHxNSz/ZjtWXjL+aLU3fvLdsObuNfYtwUZiadf3mY1UM1/EkvctfPi7TBirIWjOZp0gH2P9FsVSXKuz9PB2cT1T352pv71EjhuWxNLwLJkWS3fMm9cZPtnHMJStK2m9WuWdUOnufbP7C8UHEm/5hbhedYZsYTSsQbdVKSNuWPOcBHdh6RP4aMbPWo5tenbD0GpZTMQPCttP5FqW4rDsi68psQTyxw3riakTGqNsWiIm/qjZJVu/A74L9cAjg+523c+APfGTL5bm7zVbuGGlpOyJk400UluN1WLJRZFHtopRr5Ur8BN83hTWLXni7lO+11I8fEBsmYtjBrMixXKiWPp+slQInJGerSoGwegPXhoUI91Goh/gw126/MSft9khAfqvGTO0ZklimRexZIcWsG+pX3cqj9vH1YEpDxwronfPlqhzLg4Bq8+bvXfFqOoCX6M01DNL9lkaCPCpzoJRxC8N+gE+5jhpA3yOHsaC3+6y4BUeZFEHpU88D/ARBKXqdSxdcxQH/rpi0pUoFUz+f7vgyzsiO8DHDUO7v4G6WSkmAnw0jE4aC/CphNGT3sfAinexeedh/MqMqkrN2uCTNq/iWNQyKBLN3p7aqP8XzU++WMr4TBoM8HHAFfEzrAmukt7P5kjZ1efYXGctuG61WIrRsPwGMnUuLI8sPfPXbTxg+bj1x7eX+I5foe1quzdq453/1BGOhZNuF1FbGobfQKLvAhXXOo3tsTTEhcRSQ8UG0bB8f2KHwE4Y07qqsHUEbMvDX6f+xBcbDuGwbfaZW3BrW59V/gk+LNT+ijPealROs3XkHBYv24Nt7CAHngxtHTHHSbp1BAa2RaB1B2wPaoxapR8iYeUqTEy2frwFXkOBbx2pj/HDfNDTjW+JAJ48ysaRX37GnJ3PT2QqcAZ5aNASsTT7mTQklvXuID6jHNpqt47o3s956HKRKGIzsTRGgwf9XL+Tg+C3/6MN7hE23m9LYnvonp/sw/dgxrI9ddwSjZkzUCu84hqmofq5BRrDIlXFJN1GwvfoBbM9nfpJeqiBVIiL/Zplkbid7XMQFh9BZp/DoF4VAwJF9SAHW0xdvoulNCKWd5gH/4hnxIoD4EflrQp9Dx/M2iiIpPRUG753URrNqj9oHggkHknHr4mHAvD/882y3O3KLVlhzyaLiuX/pPXzAw0EF66kHkGwJSfo8DrEU394XukhCLzulu7Vtd0S2+dWr5iOnvlL2Ocp9kf8u9i2+Dvvl2idmxu3LSaf6shnAiyYxLt6dfT5yAetswxvn8nnHlD1RMAiAiSWxnFZLJbcUuTrf2KSnueq34z+9hBD3eBCOYMdl/c2c8GOY/sh+bYNnrgF+KLXBiy6yygzEdAnoNmC4qLKwb7N2zDxQO6DGQgaEbAnAiSWNhRLSyf2KNsiwt8uwn9Kj77jgUA8WpYHA0ktQ7H+/HjPpKV9p/xEgAgQASJABDgBs5YldwtKj5wrKGwklgVFmtohAkSACBABcwTMiiWvwNI9j+YaNXfdVFCPubJ0nQgQASJABIiArQnIEktuXc5gb/+QHutm646I9fGj65azN3fwABdKRIAIEAEiQATsgYAssbSHjlIf8kjgGStXIo9lC3sxQ2MvzjxsOZ/E1jqaxE8ePzv6vJJYypsyykUEiAARIALFmACJZXGYfDv6dlZguE2NuTjysCV4YmsdTeInj5+dfU5JLOVNW9HIZWc3X75AtWSMluTNl84Wskot4WVJ3kKGIc/dtYSJJXnz3CE7LWinYy/xjCU7RUbdIgJEgAgQASLwQgikX76OOm5VtG2TWL6QaaBGiQARIAJEwJ4JkFja8+xQ34gAESACRMAuCJBY2sU0UCeIABEgAkTAngmQWNrz7FDfiAARKFQEHv+jwt179/FI8wIIW3W+jOMrKP+aE1552cFgldSubUib4kxiaRvGVAsRIALFnAAXrGvXM+FawRnOTq/alEbO/YfIZO8BrlbFNZdgUru2Q22KM4ml7ThTTUSACBRjAjdu3QG3TGwtlCJS/iDnFmvlihV0KFO7tr3pjHEmsbQtZ6qNCBCBYkpA/2GaHxgMtUHt2p60HM60dcT23KlGIkAEigEBEi3bT7Ic0dJtVYkz30cgbPFWJF+6B+VToKTja6jl1RujJinQ3d1RVifltGt7sTwZBt+Ac1BcWIWehrqpSscv26+ixvvtUMfw2rWswb3wTMI496BzTCImNX7hvaEOEAEiUMAETImlKucmTvy2D0n7E3HyFuvY3XSkow7qlGf/f7UWvLxaonmnNmhWwfTDXM5DPD+GXSjaVaYgIngQvk69bwSBEzzHrkaUojnMSaac8VoslllJYRg1cQNSbirxtKQj3NoMxcxwBXxcNP01J5b7Q/GfIakY8GMcPq5n5TTvGIy6oUC4MWHGDgxmGRJzNVMDQ60VORJLKyePihOBwk3AoFjyB/jAkViSnAmV2eGVhKNbNyzYGg4/8fmpV0bOQ9xsM3nIYPftqlIR1uV9rLjITEmWSjq6oVnbBuDfRXD3LA4cvyxYmewKag/djt2TPGHKNpMzXovEUrVXAa9hv6DW0PmY368xyjw6ifUTJmB1Znes3zcT3rw35sQyDxNntIhMsWRqilUGzVwrOkNiaQU8KkoECj8BQw/Y8+Ed4LfkokWDqzE0BolG3FNyHuK8sazjKxGx7Ci4EWtRqtgSwxVD0ExPrGW1m7Eavd6Zg+PmvxVouuSAZpN/xrZBVY12UVa7rPTlyAB0XHASXA+dvKfhu3X9dTyVqvR16P/eLBzhRmfJxhgfH4MQN+Nk5LRrgVheRkTndxDVYhOS5ng/V2lVHEY3D8HlkUmICWEQBBE5hQ7jHyPm62Rkqhzg6jUWK9eHwFMrplL3pQqpa4ZBseAgLishfNOat+kLdK2s/h6gSo+GYsgsJLCLTx1c4TUgHIsn+WD/4LoITXw+eF+Dgqi2LA2LJWt3dkf02NYUy5Mj0J41l7UuEK3nKPExB/vQwDjafYaoZZpJySWWKtzY9T8MmxWNtEwVHFw9EDhrDWZpvjKeDPNFwKkOGJm1GctPeWOeYA2bGLvIcWQWNi8/BW8fxIsAACAASURBVO95+SD4Fn2qKDMRIAJSAoYesMLnfMVVi0BZLZYZK9DDNwypaiPL4lTScxISdw6FVMLkiAd7YiJp8gcYvPmiIFrmUsnyHTAvbhl6GrGieXl57R7D9FaB2HCbFagxEDvjp6i1RS+pUmejY4814LPx+ofRODyzhdEuymlXvlhmRCLAZzXe2HQUTCt10l6FJ4bdm4rTTGwchIf8Ctzz/gwbl/ZFjayd+KTnFKR113RWT2SyovvDd24pfB6zCMGumYif1g8jkjsjJnESGmfHYni7cbjQaz2+m8gEOn0lBn/wJTAhGZv6lgOstSxVRzDZpw8O9mDf7MZfh8JrJNI+3ImEULYIKfRzNUoFLcaKiW3hcnUjRvT9AulGxqE6Mhk+/fYxUduCsJ6uyIwajYApaei6KYnxcmDV8Q/RPXgrIjHz/YaoXq0CHpkau5ajApEz30fD6tVgZnnD3L1K14kAEbAhAYNu2Kw4hPZUYMc1eeaWQ7WeiNhhpRtW86ywTKIlIGoMVT9vJX+SIx7q7DIF08kX4XuZgWBCKGWLpaBFC3CSFWg8XmOkGZzXDEQG+IAZoDwjkmJCdL4QSIvIGa98sTThdhSEYI9G4DQWUcjpdQjUqH02E9Hm4VWwPJVZcDr1nESYbwBSBqYguj8TP56yWbnm6/FmXAKGHmTlvqmPTUfnQNTny99NxRe3u2Pp8JayxTJRH6RvOC5o/LKCa3nkdXTtfgubkzs8/5ZiYByXIzrjnfUt1P3RGYeK6bYHpjl+g5RFfhqrW4W40c0xRjkLaaytc5xRykCkMIFUj9T02EP/4WKdgoEp0RDR2PBzTlURASJgJQFDD9iMI4m428ibGQnH8UvMHuw6eQbpx9JxV9tWedRpUQfujbuic0A7NCl1BDv+qI3+/oYDOOQ8xEVvnvSZy9xm8OlxEeOk8RzcuFhYGzuTmCWm6Y+KPY8aRjayQiyNCKZTPXQKCkS7WvywhldR17czvDTeQlPY5Y93hWAxGvYoPm9hh+iBNPCFwE7EUi8aVjpxOiJjOgCn2w/cdRmitlgNEbbWslSrMxO6tsylWxL+y5MRwf2xgpYZiOo1Og4DwseqyGB+dZ/oNsKNyL4VIOCcQivSTOlNBx/BTFSxlR90Kk4EiIB1BIy7YW+gbN2maN2qDXwbN4a7TyNUZE2VcqqISo9PY9fuXfj50HGk/voHLjxQwWo3rKFnlaG/8edlRH1dYTT0N9ZXWaKlg0/XwuRjig+8je2/XTcK+VX3jgjQWyyV1a7dW5YWuWEtEctpKLs8lYlUbqbqdb78FsssrAtsjVnHyqBDxC9Y5q+xcA3dbMzV2rLPDUzm39bMWchsOMJif2wHE2JpfOwFGihl3TODShOBYknAsjXL8gjiS1hvKJGTfQSRo0Ox+vhdYa3PNmK5Ga/4tELt0pqpuP0nfv79XzTs+J/nrseM3xF/+iX855038Lom298XDyPpcZCVlqU4/UwwJ7yPAd+xrYFMLBXnAnTiSnLdJHl2/9r7miWMBfio1/3+/Eg3wEeeG1Y96Dg/6eKrCioWFOTADDzBfavnhs06zr6xPGqKoDY1ZbthTUXDCmum/yuFIX1vYfHmOizkWx3sY0isdPqTFzesjmVpeuwklsXy+UuDLkQEDLphuTdJWCTTT3y72kqUGuuHlfe9MGDefPTFRnwSuhr3gn5kcRLWumHtQSzZmAVvX6JWLKddao029ctyPxt+j7+IV1u3gfpXJtw5PfIs0nYeDcsiU41sHVlxqZ02olT9kJcf4CMM+islei/fgBm+5XAjfjYGTrmPiT9/jY5PzAT4CG7RA+gRF42hFR3h7KzvrDUVDcsmTLVXCOpJHxaPmKE5mN2xBxI67ET8FLYnRxLgs2ZKR7hmRmF0wBRcCNKEeeut4aoDfI6g/eI1mNKRBfjsmIDeoUfRXhrgoyOWmvBnY2O/TG7YQvTcpK4WQwIGA3xUN5C44GN8viEFN9Ub/TSJi2UkEBIAdbBsSZRvNgjh/6dAmxqORvcAynJL2oUbVjNMPbGMqC9ui+HP4gjUF/e3W+v+lb3PkvWrfFtMWLEQI/T3x0hmRw5n+QE+morlHUqgt3XE5JYLJVIiBmL0CvXN5eDKvnWFL8YkzSkH0q0jbF8J2ijCETlUPJHhJFb0+gjzmTuj5sg4A9/OjK0L8oXh0xh21Ad99rbHpiQWsMN0Vh3sk4ag7bsxqeQCJvq/wWvoy9i/Vr0FpprfLKyNCFTv5zG4deQzfPR5rLAOIWwdmbYcU7tWFj4IgktZTywBE2MvyP2qxfBBR0MmAtYSMOiG/Wog5v/dA6EhnVBD+Rc7xecYrjzkLTmjSZdaiO0uiqWm9ZLl0WxQOBaN94Wh+Bc5D/EXH+AjIaknlhOPvIZyji+xDP/g/h0lSr1WDupf7+NO+QF5tiyFFmWc4OPkdB/3hb2WleD/TQwijJz+IIezxWJp7Q2WW2SsrjF/KiCxyh+uVCsRKCIEzK1Z8jNKyzm6CNGv5VEFXaf1RlofPbHUaqYfFu6NhBgyISKS8xAXvXkvZuuI3mTqieXCyquxOYS7mPfg0/+uRa3Vm6H+9VP8d72ndWKpVkyTZ8PWjwlAD3ZIhPowH+OCKYdzgYqlSqWEMvYTtAlVYqpka4ldfnZILO1yWqhTRMBeCJgTS91+6rthJVcF6/L/sIwdtqK/DVHOQ1w0QHy/3YihtdT1Ptr7Od6beR/D93yDnmU0f9sxBp2XOWH6d3PRXvO3Syv64qNEzbY/SZdktWtoIgpcLM3dDVmIUwRgTOxNk4IpZ7wFKpaxwxtAse9lNBoWhR2hps/qM4cg36+TWOY7YmqACBRmAoYesKq9oWg9cgfu5jrSxpBYatYtF42Hr5E9iHIe4gaDAQt864hmJpVnEDV+JKIaLGeb30bhvW/OGzkjl43dbyH2Rvpr9p2ry8sar8U3jZ5g1h6JuIRQSEOq5LRboGJp8RipABEgAkTATgkYDPBhfVXdSMb2tauxaddvSL+pfm0U2yCiE+BTsnwzDApfhPG+6pgGY0nOQ1wtlr+hl8SKxB8L0H3MJQzQtyzX1sI3349HU02Dj7i1ue1NG7hDbTNJssabp6Y0gvlLI8zesxSBel9O5LRLYpkn8FSICBCB4k7AmFga4qK8cxMqp9JInjYM29+YhrBeHsgVvG+goJyHOD8NTAx0lHNGq04z3AU84VtsG6r7nkF57dr+DrDndkksbT/fVCMRIALFgMCNW3dQxvEVODvxI91sn3LuP8Qj5WNUrlhBp3Jq17asjXHWF24SS9typ9qIABEoJgQe/6PCteuZcK3gbHPB5A/wzDs5qFbFFa+8rOuopXZtd4OZ4kxiaTvOVBMRIALFnAAXrrv37gsWoC0Tt1jLv+aUSyjFNqhd29A2xZnE0jaMqRYiQASIABEowgRILIvw5NLQiAARIAJEwDYESCxtw5FqIQJEgAgQgSJMIJdYXriU8awIj5eGRgSIABEgAkTAagIUDWs1QqqACBABIkAEihoBblk6Oztph0ViWdRmmMZDBIgAESACVhMwKpaZdx/AtTx/KyclIkAEiAARIALFmwCJZfGefxo9ESACRIAIyCBAYikDEmUhAkSACBCB4k3A7sTy4sUMWTNShR37VLr0y7LyUiYiQASIABEgAtYQsBuxvM7OVFy16gdUrFhe1nhych6ib9/O4KJJiQgQASJABIhAfhKwG7FMSEhGmTIvM7F8DQ8e/I2SJUugVq0qRseempqOO3fuw9+/bX7yobqJABEgAkSACAgvoja4daSgo2G5WFapUh63bt1FRkYmHBxKoUuXVkan6MqVmzh+/Bw+/LBLkZ7GrLhQDDzQDT/877/Gx3lyPt6PcMPiRYEw8oL1Is2IBkcEiAARyG8CdiOWhw79ibS0dLz1VhNZYz506AQ8POqw/G8Yza9Kj4ZixBz8fOEBVCUdUan5h5j71Xj4FhZFORmODh+dwqi4VejpAijvnMPxn7Zj/aYfkFRlAk4s66kZuwqpYV0w8Ppn+DWivck3rcuCS5mIABEgAkRAh4DdiCXv1e7dh3D69GU8eWL6/d6lSpVE06b18c47LY1Pp2ovFF4f4/qIzVg5mL2FHDeQOONDDNvbBlGHZ6KF3d8IlxEZ0B3HBv2CVT3Lsd7uwPAm83Hdpxu8lduwuuRkXFgliiW7rDqCyT4KlFp8GDPtf3B2T586SASIABGQErCJWKrS05BexQPujvpwVUhn1mIVD3fkuqSX9eTJi0hI+A3169eQNUPnz/+F9u290LhxbcP5T4bBNyAFA1Oi0Z9rDU+qWIx9aw3co7ZjVD32K7c8h8xCwmUl4OiGbgu2ItyPmXBC2d/QpGcmEna8hAHLeyJx2EEEa+u6jIjOHXGkXzI29S0nv56YREyqlISwUaFYm5wpWLtu3RZga7gfWKu6iffhg+uYmhqB9rku+SLgnEJXLFmeY9NbYcC9OUhl1iUlIkAEiAARsB0BG4hlLIY3UGBfzSCs2jIHPtqnPnMNhvuj95KLaDL5ALYNqmiy13zNsnz5V4U8d+/ex0svvQQvr4ZGy5w9exUXL15Hr17GhOEkwjv0wMp/OiA0bAICvWrDWfqCccHyHIm0XpsRM8UT2bvGoccnWRiTvAl9r3GxXI1SQYuxJOQNVKr4FBve80FirxREc+XNiESA7wEE8bxlLKmnEpJDPfHxvc8RvzIYLlnRGNF5CpQT1KIrTRmRAfA50g+n1wXmcqueDDMsltirgOfEslh5dA68bXePUE1EgAgQgWJPwAZiCWTtGIz2oYl4VFsUTFEoz6O09zR8t64/6kiFygD252L5jEW5PhCiYb28GlkhltySTMeuBf/Dgg0Hcfmfl3XXLGOHo8EMV6zXCstJhPkG4JziAla5c7E8hZDT6xCo6Xc2E63mu7oiJbo/HjIh8z0QhORNfVHOwnq49Rd8sDXmz5+KTs0qAHeuIadURVTSUXIgdngDzKuxHUlMyHMbnUbEUrCIz0Fxga1xFvtbmwAQASJABGxHwCZiybuTtWM4/CYmIIdZmJ+2OYrwDfKFkpd/7oatLmt0589fM+2G1atFefUQNs4OxZdHvLAkmbk2YwejLhN4/VR7ZBwS3t2WW3SyN6KP9y50PbIET4Z6YX9wGltLZErKvihYVI+KrZ1Gfoa53ybj0n2geodpWBkRmOvLxI7BdRFRPwaJkxrLF0sVczk3jEQj7u7NXUwWV8pEBIgAESACuQnYTCylgnmXxec4ybQopV36+eejuHr1JlQq0wE+Dg4lUbNmJbz9tvEAn0vLPkDvn/6LqO2jwJYn1UkqJunMspxXA9uTpiCX7WbQQsvGxj7e2OUTgieRZzE4ZRH8uNXJLUvZ9aiQc/MWnjhXQwW2iKvKOYI53frggD8T6FBtL4WukmVJH1ciQASIgP0QsKlYqgUzBMEx3li6zLzrVYohJeUMkpPT0LJlQ7PH2P399z84duwMy9sYzZu7G6Z5ma0rdlwOp083Yml/Hg2bg7R1I9D3S2ACX2sEW2ttNwU3By7DtyHecFQeQaRiIyrP/Rof3DXszlQxK9JzYhIcOn2DlEV+6rXEbEvq4YLrhW9c/g87F3ZF5ScpmNGlt0GxpDVL+/mQUE+IABEgAjYXy7wiFQ8luH37+aEEnTtbdyiB8kwUxo8JU++zZNJWtm5rDJoaDoUmCkkaDfvUwRVeA8KxeJIPXIyt/aniMLp5KEp+lQppwKlF9WTFYdrAaYhO00TDthmPiOUD4am/ppuHaFge+PPB9akUDZvXm5DKEQEiQASMELArseTRsOXKvcqOu1MK0bC1axs/7o5Hw16/fqcIH3eXhXWB7dnaqLjP0tw9fAzTW40CaJ+lOVB0nQgQASJgMQG7EUt+kPqGDbvx2mtOsgZx79594ai7In2QunCCzyVMSGLroyY3qqpP8Bl5fw72zfGmE3xk3UGUiQgQASIgn4DdiCXvMl+L5KIpJxWXV3TJOhs27Uu893UtRNLZsHJuHcpDBIgAEbCYgF2JpcW9pwJEgAgQASJABAqAAIllAUCmJogAESACRKBwEyCxLNzzR70nAkSACBCBAiBAYlkAkKkJIkAEiAARKNwESCwL9/xR74kAESACRKAACOQSy9t37j9zLV82z01n3n0Aa8rnuWEqSASIABEgAkQgnwiQWOYTWKqWCBABIkAEig6BIi2Wz54BJUqoJ+u+8jFeLf0yXhL/UHTmkEZCBIgAESAC+Uyg0IvlY9UTLI39DcfPXUPl8k6o+roz2nq4YesvqbjBXMIO7L2YmdkP8crLL+PJ06fwcKuE0EAflHV8JZ/RUvVEgAgQASJQVAgUarF8wKzFjyN3wdfbA9UrlWeC6IBd+//AvfuPENylFV6v4IRrt+5i595jqOjijCD2t9MXM7Ap5hB7w0h3lHu1dFGZRxoHESACRIAI5COBQi2W4Vv3o17dmmjqXlNAdIdZkDOX7kTExL65kG3efQTKx/9gYA8fXLyWiaTDf2L6Rx3yES1VTQSIABEgAkWFQKEWy89WxqHrOy1RjVmVPO0+8CcesfNlvZrURs3KLjpzdP+hEhEb4tH9neYoz95skrD/OGb2J7GUQuKv+Ao4p8CFVT2tuL9PIsw3AOcUF2BVNVb0gIoSASJABGxNoFCL5dS18ejo0ww1KlcQuETH/YbU838J7tWaVVwR6Pem8Hfull0clSAIabOGbqhRxQW3b9zCmB5v2Zqnyfp2DK6LiPoxSJzUuEDbldsYiaVcUpSPCBCB4kagUItleHQSe+dlNTRvXEuYt6XRP6NezcrsXZgl8PvpK+j2djPUq1ERvxw7jTPpN4Q1zL//UUGp/Af/bVQVHVs2KND5JrEsUNzUGBEgAkTAZgReqFiq0tOQXsUD7rne1ahCelo6qni4w9RrHLexiNe/ch4LrlWeFjHrkbtgvT3rYsX2RLT0qMMsyZpIv3ob2xOOolHdqvj36b/4Mel3xM0bbBjiyTD4BvyGJj3vIfGHy1CyHjQKXoJ1M32gduxmISlsFELXJiNT5YCydf0x99sv0LWyA7vG+h2twJBZCbisfAoHVy+MXbkeIZ6xGFw3FIliizWGIiZxEhpnJSFs+CdYffwu4OiGbr6vYceJN9XXdgxG3YVP4F8pDbuPN8W8C6vQU5WOaMUQzEpQ98ut2wJsDfcT+qVKj4ZiyCwkXFbiqYMrvMauxPoQT9PvtmTtT+8/ElGn2Mu2WV/buZ1HgtNkrRs2KykMo0LXIjlTBYeydeE/91t80bWyuk5VKiL7DUdkyk1NX+Zh0xddUdlB1w2bFadAgCIN726KwZTmjtCpU8uH1ajlnomEHS9hQEwi7NQAt9mHjyoiAkSg8BB4gWIZi+ENFNhXMwirtsyBj3aJkb3IONwfvZdcRJPJB7BtUEWjNM/+dRsr9hxDSHAnIc+3MQfRtEENIeBn4bd70Ju5YWtUUrtoF2/ey7aVvIbDf5xHaO+2eLNhDRNiuREVJ2zDuhHuQMpsBARtQcNvUrDIzwGXIwPQcXlFzIxZhODK2Uic8SGGHeyAnVzgMiIR4BONFlt3YwbT75TZAQiKbYOowzPRgrWma1mqEDe6OcZcGYiYLePgjhTMDgjCmieDnotl6DF4f7YG87u4oUI1JxxSeGFkWi9sjpkCz+xdGNfjE2SNScamvg8RGeCD6BZbsVvdMOtzLNpEHcZM3rDBlM360xbT7o/CtnUjUEd1BPPe64c1bvPUYnmZjaXjclScGYNFwZWRnTgDHw47iA47uYhlI3Z4O0y5PxpbVg3Rlj0QEI89iofaNcul9cLQpXcCfDVCqa1z9h4sDSyH9IUfICC6mZqPIJarUSpoMZaEvIFKFSvBWVBlSkSACBCBF0/gBYols9GY9dQ+NBGPaouCKQrleZT2nobv1vVHHTMPzM9X/4Sefq3g+lpZ5m49g/OXbqBjmyZYFr0Pc8b20hI+ce4v/N+GPfBr6Y6JQe2Mkxce2ueg4JacJteRyS0x5ME8pEa4IbyDH37rl4Lo/uXUV1VxGN18MsqtPIo5DTeij9d8YHQk5gzwQm1HJW7eegLnahUEC1lXLPmXhc9QekkqItqrqxLWDPd0lliWtbEziQmjcJXnnwHX9awdb0l+ISDnHWzs44X5GI3IOQPgVdsRypu38MS5GioYNc1N1dcT58M7wO+3fkiJ7g/1SNXiPrncShydc5v1ZR5qbE/CFHXnkH3iR+zOboKgNg/UYvlhODP1ZwLT97JAH/U3odx17mAWdwTqcysSnPsphJxeh0ASyRf/ZKAeEAEioEPghYol70nWjuHwm5iAHGZhftrmKMI3yBdKXn7r/lRcynqIXp3UwTxLmCs2K/sBOrVtijeZS1ZMV69n4bOIrdgfMRIl2Zqm0WRALJ8HvrgbiPTUdTsqz0Rh6oRIxJ/NwONyXhgQvhiTNGazrlhKhEIT75NLLCPqq4VT6CzPL3HligOoPRJxCaGopzyDqKkTEBl/FhmPy8FrQDgWTxJdx4ZGa6R9TTSsoWAf7d+mXoZf+51426CrVM1j4z9vwb3MKZQbFacVS6H8iqt6nSmJDhFnsaxO7i8p9FklAkSACNgLgRcullLBvPsUcJJpUUoB9p61EUN7v4P4g39iiF8zxB89j5hfT+F/zLJ8nZ3qw9MJFiWbcOAPODu+jH6dWqBBdVfDc5AnyzIUJb9iFuJbd3AtpxQqVnJm63pKXP12BN6dXRpfnF0Gfy53OtGwe6HwnIiy3CKVWopSy1JHLLklqGvNPR+AEneu5aCUxnWpvPotRrw7G6W/YCLEGzaY8mZZhpb8ilnYylx9UeXcxK0nzqhW4aIglqdCTmNdkwh0eO839DsYjf7MuBQsy9RhOL0uMPdaqgHu9vIhoX4QASJABOxCLNWCGYLgGG8sXWbe9ao/bf88+RdTVsXh0+B2KO1QEkMXfIdePk2Qdj0b/QLU20MOHj8HZXY2alUujz8uXGdH3v3XhFhuRtXPtmDVEHHNchs8liQzd6n+mqUKR+a9h37iuuSx6WgVfByBMVswzr0UbkQNQcfpumI5p8Ja/Drfh4mFCnv5GuTFj4yvWeqIpWad8OZALPs2BN7MxXskUoGNlefi6w8yML1VMI4HxmDLOHeUuhGFIR2nmxFLy9YsVUfm4b1+4jqopi9PJiJmUTBqCOutfZDY+TswI1fH+j7JBPK9PR2wdfckeJ4LZ+L5HTy+2IKwnmzN+OoOTJ12GsGLP0OLS2RZ0uOICBAB+yVgN2JpK0SzN+wV9k+m37iL6EOnMOz9t4Wqdyf9gRrOryDgLTN7HHNFw5ZHs0H/h2Val6bpaNjUNcOgWHBQEw3rgcBZazDLT71mlx07Fp1CdyGzuug6TUHEwJFYkpyJf1k07Bu1c3D8fq/na5Y6YskqkEbDPnWAq9cAhC+eJARHqVLXYJhiAQ5qomE9AmdhzSx1pKzRpBON24gdEfgyNtzpZ3k07EtlUdf/S0QJkbn6hxKcZOu8PRDrux3xbIEzRxJhW5KNucO0lYgIrAMHsixt9RGgeogAEcgHAkVOLEVGR89cxfdH0zGIHW/H07od++HvVQ8t3aubxliQD22VCioHB61LUljTOxVi2E2Zx8nnrl8WQ6WXamAobc3II1EqRgSIQHEkUGTF8q/b2Zi7eT8mDOqKvx+rEL46Fss+6YlSJV+yG7E89Jk3pr00Dxtm+MIlKxojOk/BrWHxiAlxK473Io2ZCBABImC3BIqsWHLiv6ReQuTOX1HBuQwWjngXjq/I2JNQkJYld4OOCsVa5oZVOUhdmXZ7v1DHiAARIALFkkCRFks+o3fuK1HBydQ5QMVy3mnQRIAIEAEiYAGBIi+WFrCgrESACBABIkAEDBIgsaQbgwgQASJABIiAGQIklnSLEAEiQASIABEgsaR7gAgQASJABIiAdQTszrLMvPsAruXLWjcqKk0EiAARIAJEwIYESCxtCJOqIgJEgAgQgaJJgMSyaM4rjYoIEAEiQARsSIDE0oYwqSoiQASIABEomgRILA3M662/klACz4/Fe716m6I5+zQqIkAEiAARkEWAxJJh4uJ46eT3yLz2J5QPbhsE51j2dbhWewO1GndHxerqw9kpEQEiQASIQPEgUOzF8sSv4ThzdKNFs+3esh+atB5nUZn8yqz7Qun8asWKelWpiAyOQOnIlRhU0Vg9j/DdyCCcHboFk5rT0YRW0KaiRIAI5BOBYi+W+7b1xZ3rJy3CW6FKY7zdy5jA7sDguqFIFGvkB6S3HoSp4QrhvZNykiUCaEleOW3bNg9/SXR7fFV7DXZP8hReeJ0ercCQWQnq932WrQv/L6MQzt/3mcW4+a1Gi+0xoJeu2HYWqDYiQASsJ1DsxTI761ccT/waWRmnZdF0qdoQzXzHopxLayP51WKJ8AtY1ZO9lDnnIhLnDcWoXR7sJc8RaC/jxSeWCKAleWUN0IaZVHsV8PpfFWxKnAT+ym3h94+vY8S2dRjhDlyNGo2A6VkYlbgTQ6syvVwXiDZx3XFkU1+Us2E/qCoiQASIgLUECrVYqtLTkF7FA+65PHfMgklLRxUPd5hz6qUemos6nm9D9fgRsq6fxqP7mcJPaXKp0hBlnFzBfzq8Ugbpqfvg+dbnssRSnekyIjq/g91dfsYeBX9XpZ6F5eqFsSvXI8QzVtcqrTEUMVxopK/yKukIt24LsDXcD9xQ5WK50GEgPM9uRsJlJV7S1qVW5aykMIwKXYvkTBVKOrqh24KtakuO9yI9Goohs4RyTx1c4TV2JdaHcAtQuIhoxRDMSrgMJaMobdNkOS0VFeubB1a3SGTv52RKyNL5xe8jOH0Ikhd00eTiXywiUF98EXX2RvTx2oy2icy6VBehRASIABGwCwKFWCxjMbyBAvtqBmHVljkSF6cKqeH+6L3kIppMPoBtxhfKhAngYnn22FbUcPcR1YRcIwAAIABJREFUxFAQRWY9SlNmxiko72cJInr1TBI83hqAhi0URiZQ17IUM50M80XAOQUucHPz2HS0Cj4I/80xmNIcSJnRBb0TO6uFUSOAEfVjkDiJ/5aNjX28MN9xNvYsDWQviY7CkI7TUWpWGrNcHQSxDD3miy/2LEWgSxYSPw/C4GRNXYL4zIfj7D1YGuiCrKgh6Di9FGalrUJPhwxEBvggusVW7J7BOzEbAUGxaBN1GDNbqLBX4YWRab2wOWYKPLN3YVyPT5A1Jhmb+j40UU6KZC8UnjPw+qYkTPE0jEp1ZDJ8hj/AHK3Fre5TYq8URPcn29IunhDUCSJABAQChVgs+TLXYLQPTcSj2qJgikJ5HqW9p+G7df1Rx4zbk7thH96/gr/OHNBalobuDdGyrO7eFq861ZTthtURy309sDfuY9RS3sG1nFKoWMlZbcWlzoZPj4sYd4GJWC6xVCHn5i08ca6GCoKZrGJC0hCRjdRimssNm70Ogc3X4824BIS65eDmrSdwrlZBbWGrotG/YSQaCZacRoQxGpFzBsCrtiOU2nb4F5EZcF1/FHO81SN4LvbvqMXbYDkJufPh6OCXimGnWX8MzQFfo2w/E5i+l4n+88Vce3Yr0zODCBCB4kugUIsln7asHcPhNzEBOczC/LTNUYRvkC+UvDwP8CnnWgN1mnREGefXhTuBW5LS5Fq1kfDro5zbSD8Rz37eQdtuy43cNTIsS2QhKWwUJm5IwU0W6KJOvmyZ05BYatylI+bg5wsPmFSqU42hRsQSUtem2t07Ys7PuPBAWxJDRben8gyipk5AZPxZZDwuB68B4Vg8iVnYQh2SICVxpLVHIi4hFPWMlpMgORkG34BzUGjGpAMrKw6KgPE4/V4UYkM1bl9NhtTZPuhxcZzaAqdEBIgAEbATAoVeLDlHUTDvMt1xkmlRivylAT7ceizj9HouNywP/nl0/7awnmlpgI+6Hd01y+yNfeD1jQvmb/0S3Wswm09PWHStq2OY3ioYxwN3YMMYDzgzK0163aRlmc3dvccRuGMDxnhwK1YqpErcuZaDUhUrCXUqr36LEe/ORukvzmKZP7cs56HGdkMuVFPlJHe1MctSmYLZAX2Q2IG5f4UIWd1ElqWdPBmoG0SACOgQKBJiqRbMEATHeGPpMvOuVymB/A7wUeWkYduEoZh+xEsbDZsRGQCf6BbY9MNkeDvcQPzsgRi12Q3zJJblnApr8et8HyYmfO3vY9yb8COWflQZqjQWSdr3C2QEPbcs+Zrl7JhFCK6crbtmyaJPPT++hwk/LsVHlVVIWzcCfb/IQJBgWYoiHIMt49xR6oZ6LVQtlnzLRztMuTkQy74NgbejEkciFdhYeS6+/iBDI96GyknJGlizZHsuw7r0RoIRoQRozZKeT0SACNgngSIjlnnFKx5KYEmAT5M2I+DefLiRJmXss+Qb9fsNwdfJmVCxKNR2H7yJ9A03MTCFrSmyuJbs2LHoFLoLmdXVbs/ycaHoPf4HtjcRcGwUjO5lohBXfz2OsgXF3NGw7fBZ1DL0FxZrsxAX2hvjf1BHtDYK7o4yUXGor1mLVKWuwTDFAhzURMN6BM7CmlnqKFudaNinDnD1GoDwxZOEQCqT5bRUckfDss6iLltjzpV8w9VuVxVj58H2WlI0bF5vZypHBIhAPhEo9mLJuQrH3aXtZGuVf7Dj7rIMonYs6wLXqk1Ry6MHHXcn82YUol0nOmG1JsrXXDHunvbe1ZX2WZoDRdeJABEocAIklgaQc/GUJjoLNq/3pfoEn2WNN+M7Rb1c65M6tQon+EThv3HMupZ50lFee0XliAARIAKWEuBiKU0lbt+5/8y1fFlL69Hmz7z7AC+yfJ47TgXzh4Css2EfYvuIYJwbRmfD5s8kUK1EgAhYS4CLZR23KtpqSCytJUrliQARIAJEoMgRILEsclNKAyICRIAIEAFbEyCxtDVRqo8IEAEiQASKHAESyyI3pTQgIkAEiAARsDUBEktbE6X6iAARIAJEoMgRKHJiaW00bpGbYRoQESACRIAIWE2AxNJqhFQBESACRIAIFHUCJJZFfYZpfESACBABImA1ARJLqxFSBUSACBABIlDUCZBY5sMM8+PySuAlbc2vV2+TD61QlUSACBABIlBQBEgsbUBaOIj95PfIvPYnO4j9tsEaHcu+Dtdqb6BW4+50ELsNmFMVRIAIEIGCJEBiaSVt8RVfllTj3rIfmrQeZ0kRyksEiAARIAIvkACJpZXw923rizvXT1pUS4UqjfF2r40WlbFFZv7uy4j66pdGUyICRIAIEAH5BIq9WGbvDUWXUb+j29bdmOTJX5hsWcrO+hXHE79GVsZpWQVdqjZEM9+xKOfSWlZ+W2YisbQlTaqLCBCB4kSg2Isl+HsU24ci8VFtDN1uuWCqVBfw7NlDPMq5jazrp/HofqbwU5pcqjREGSdXCD+dX0eJEq/CwaGu4fvsZBh8A35Dk573kPjDZSjhiEbBS7Bupg/Ur3nMQlLYKISuTUamygFl6/pj7rdfoGtlLvQqpEcrMGRWAi4rn8LB1QtjV65HiGcsBtdlYxRbrDEUMfyFzFlJCBv+CVYfvws4uqGb72vYceJN9bUdg1F34RP4V0rD7uNNMe/CKvRUpSNaMQSzEtT9cuu2AFvD/YR+qdKjoRgyCwmXlXjq4AqvsSuxPsTT9Dssi9MnjcZKBIhAoSZAYik86Neh/3uzcOTvehi5NRahFliYV85uQuVaTSy6CW5cOoGaDfqYEMuNqDhhG9aNcAdSZiMgaAsafpOCRX4OuBwZgI7LK2JmzCIEV85G4owPMexgB+zkApcRiQCfaLRgVvKM5rxoAIJi2yDq8Ey0YK3pWpYqxI1ujjFXBiJmyzi4IwWzA4Kw5smg52IZegzen63B/C5uqFDNCYcUXhiZ1gubY6bAM3sXxvX4BFljkrGp70NEBvggusVW7FY3zPocizZRhzGTN0yJCBABIlDICZBYaiYwr4J54IdhLAL2Fup4dmKWo7tgORpKasvzDNJTf2Iu2Fp40+8rE2J5DgpuyWlyHJncEkMezENqhBvCO/jht34piO5fTn1VFYfRzSej3MqjmNNwI/p4zQdGR2LOAC/UdlTi5q0ncK5WgdmB+mIZi+ENPkPpJamIaK+u6mSYLwL2dJZYlrWxM4kJo3CV558B1/WsHW9J/nMKXFj1Djb28cJ8jEbknAHwqu0I5c1beOJcDRV4w5SIABEgAoWcAImldgKzkDiuBwZ/fxPlA1fi6Bf/lTW13A17OnkD/jp7QHDB8uRatZFO2cyMU8Lv3BVbvUFbNPT60IwbVlcsBRETRMkdYb4BOKe4gFWikuKkzt+UZ6IwdUIk4s9m4HE5LwwIX4xJPmoHrq5lydzPdSNQPyYRYrxPLrGMqK8WTnVpXVeuOMLaIxGXEIp6yjOImjoBkfFnkfG4HLwGhGPxJNF1LAslZSICRIAI2C0BEkthatg64OQPMHjzFTh3mIe4ZT0164Pm501cs+Q5ufX46AFbs9QL9uFBPWXKumqtTvNrlpZalqEo+RWzEN+6g2s5pVCxkjNbK1Ti6rcj8O7s0vji7DL45xLLvVB4TkRZbpFKLUWpZakjltyynIca25MwRW1qSpISd67loFTFSnBmS6fKq99ixLuzUfqLs1jGG6ZEBIgAESjkBEgsmagIa3trLqKMbzj2MpNNbYfJS6mH5jIX7NtweOVVWQVUjx8yV+w+eL71ueH8QoDPZlT9bAtWDRHXLLfBY0kyc5fqr1mqcGTee+gnrksem45WwccRGLMF49xL4UbUEHScriuWcyqsxa/zfZiYqrCXr0Fe/Mj4mqWOWGYjdng7TLk5EMu+DYE3c/EeiVRgY+W5+PqDDExvFYzjgTHYMs4dpW5EYUjH6SSWsu4IykQEiEBhIFDsxfLW6l5oO+d4noSST7B4KEENd+ZyFKNemSUpTdwNq7yfJUTJXj2ThCZtRsC9+XATYimNhi2PZoP+D8u0Lk3T0bCpa4ZBseCgJhrWA4Gz1mCWn1r+s2PHolPoLmRWF12nKYgYOBJLkjPxL4uGfaN2Do7f7/V8zVJHLFkF0mjYpw5w9RqA8MWTwL28qtQ1GKZYgIOaaFiPwFlYM0sdKUuJCBABIlDYCRR7seQCsGv7NbQKyvv6mnDcXdpOZGb8wYJ9sgzeE45lXdhaZlPU8uhh+rg7wbLUdcPm202mUkHl4KDd3iGsWZ4Kwel1gbTlI9+gU8VEgAgURgIklvkwa1w8palidR/5rRSgWB76zBvTXpqHDTN84ZIVjRGdp+DWsHjEhLjJ7y/lJAJEgAgUAwIklvY2yQUoluCHEowKxVrmhlU5lEVd/y8RpTlkwN6wUH+IABEgAi+SAInli6RPbRMBIkAEiEChIEBiWSimiTpJBIgAESACL5IAieWLpE9tEwEiQASIQKEgwMWy99xobV9L3L5z/5lr+bJ57nzm3QcozOXzPHAqSASIABEgAkWWAIllkZ1aGhgRIAJEgAjYigCJpa1IUj1EgAgQASJQZAlwsZQmcsMW2ammgREBIkAEiEBeCXCxdHZ2ojXLvAKkckSACBABIlD0CZBYFv05phESASJABIiAlQRILK0EaKg4P+6uBF7SXnq9ept8aIWqJAJEgAgQgYIiQGJpA9LCQeonv0fmtT/ZQeq3DdboWPZ1uFZ7A7Uadzd9kLoN+kNVEAEiQASIgG0JkFhayVN8RZcl1bi37IcmrcdZUoTyEgEiQASIwAskQGJpJfx92/rizvWTFtVSoUpjvN1ro9EyOwbXRUT9GCROamxRvZSZCBABIkAE8ocAiaWVXLOzfsXxxK+RlXFaVk0u7MXQzXzHopxLaxJLWcQoExEgAkTgxRMo1mKpSk9DehUPuDvqT4QK6WnpqOLhjlyX9LKqVBfw7NlDPMq5jazrp/HofqbwU5pcqjREGSdXCD+dX0eJEq/CwaGugdnfgcF1Q5EoXqkxFDGJk3CGWZoLn/ijUtpuHG86DxdW+SM9WoEhsxJwWfkUDq5eGLtyPUI8HQDhFV+n0GH8Y8R8nYzMfx3h1m0BtmpevaVKj4ZiyCwkXFbiqYMrvMauxPoQT/ay55MI8w3Ab0164l7iD6xewLFRMJasmwkfF9Yh9pLsaMUQzEq4DOVTB7h6jcXK9SHgTWLHYNRd+AT+ldKw+3hTzLuwCj2l+RnF531Qt3Oqw3g8jvkayZn/wtGtGxZsDYcfa0d4AfWKq7psfMPZmHu++E8L9YAIEIFiS6AYi2UshjdQYF/NIKzaMkctCEJSITXcH72XXESTyQewbVBFkzfHlbObULlWE4tuoBuXTqBmgz6yLUvulg095o3P1sxHF7cKqHYxDK2CD8J/cwymNAdSZnRB78TOgrA2FsRyNUoFLRde6lwudQa69E5E55hETGqcgcgAH0S32IrdM3jB2QgIikWbqMOY2UItYhsrTsC2dSPgjhTMDgjClobfIGWRH/6c3grBB/2xOWYKmrNrM7r0RmJnjauYi2XoMXh/tgbzu7ihQjUnHFJ4YWRaLyG/Z/YujOvxCbLGJGNT32tCO6tLBWH5hhnwLZeqW5eEiio1jPU9AR227sYkQZUpEQEiQAReDIFiLJZAFnvItw9NxKPaomCKQnkepb2n4bt1/VHHzDP6wA/DWATsLdTx7MQsR3fBcjSU1JbnGaSn/sRcsLXwpt9XFonlwto7kTTFU11GeQfXckqhYiVnZhGylDobPj0uYhy36HK9PFotgucUF7CqZzY29vHCfIxG5JwB8KrtCOXNW3jiXA0VHKX5NF07MhkthzzAvNQIvHXnGnJKVUQlZzWQ1Nk+6HFxnNriEyzL2tiZxIRRuMq/iMyA6/qjmOOtrkuwGM8pWH53SX/0r0msx2xWRztW/4c7kRBKa7cv5vFArRIBIiASKNZiySFk7RgOv4kJyGEW5qdtjiJ8g3yh5OW5G/Z08gb8dfaA4ILlybVqI507LDPjlPA7d8VWb9AWDb0+NOKGVRfTD/DJHfCThaSwUZi4IQU3mRtWnXwRblYsWTblGURNnYDI+LPIeFwOXgPCsXiSD1w0bli1qGqqlApvVhLCRk3EhpSbzA0rNqlxj3KxjKivtmzVI9B1J4s0ao9EXMK72KYVb/WF50IqNpzFGLTHTEzHXtYZrdGvQ5V+IQJEgAgUHIFiL5YctSiYd5kIOMm0KMUpEtcs+e/cenz0gK1Z6gX78KCeMmVdtVan8TVLeWKZvbEPvL5xwfytX6J7DbaqKhU1k5alEneu5aBUxUrgBqLy6rcY8e5slP7iLJb5m7IsZ+EGs0i/cZmPrV92h7pJ0VLUWJY6Yskty3mosT0JojH8/JbO3Y6+WF6ODEDH5VWx8Jdl8C9XcB8GaokIEAEiYIwAiaWGTNaOEATHeGPpMvOuVynM1ENzmQv2bTi88qqsu0z1+CFzxe6D51ufG83PLck5Fdbi1/k+gptV37LMYGLiE90Cm36YDG+HG4ifPRCjNrupA2tMiuUxTG8VjOOBMdgyzh2lbkRhSMfpOmK5uepn2LJqiHbNcpvHEiRHNMIKYa1zE36Y7A2HG/GYPXAUNrvxYCNDYpmN2OHtMOXmQCz7NgTejkociVRgY+W5+PqDuybdsLROKes2okxEgAgUMAESSyuBi4cS1HBnrkwx6pVZktLE3bDK+1lClOzVM0lo0oYF0DQfbrTl7Nix6BS6C5nVudsyFKn6+y5VqYjsNwRfJ2dCxSJa233wJtI33MTAlGj0v8YDfM5BwYVTaEHXklOlrsEwxQIc1ETDegTOwppZflo3rDQatnyzQfi/ZZOE4CdVaiT6DeHRqyoWfdsOH7yZjg1MDFOi+6NcLjcsazZX9OwAhC/mdZm2LIVgpkQ9NJqoYFq5tPJmpeJEgAjkmQCJZZ7RPS8oHHeXthOZGX+wYJ8sgzU6lnVha5lNUcujh50ed2fADWsDNlQFESACRKAoECCxzIdZ5OIpTRWr++RDK7auksTS1kSpPiJABIoOARLLojOXVo6ExNJKgFScCBCBIkyAxLIITy4NjQgQASJABGxDgMTSNhypFiJABIgAESjCBEgsi/Dk0tCIABEgAkTANgRILG3DkWohAkSACBCBIkyAxLIITy4NjQgQASJABGxDgMRSj2Pm3QdwLV/WNnSpFiJABIgAESgSBEgsSSyLxI1MgyACRIAI5CcBEksSy/y8v6huIkAEiECRIEBi+QLF8uHDJ0hMyMDDB09k30yVKpdGu/ZVZeenjESACBABImA9ARLLFyiWu3ZewYMHQNlyL+NB9j+yZvNS+j38952KaN22sqz8lIkIEAEiQASsJ0Bi+QLFcsuGC0woX8Xh/X+hboPysmczK/MRWni5wLcDWZiyoVFGIkAEiIAVBEgsX7BYPivhgL8fqeDnX9fgNJ74/Rb277siXHN0LIVOXeuiWg0n7N97AR98aLiMFfcDFSUCRIAIEAEDBEgs7VQsnzz5F6VKvYTIhUeZ27UmSpdRi+r+n68gZFxLM2KZhaSwUZi4IQU3lU9R0tENbRThiBzaHI5WfQzosHWr8FFhIkAECi0BEks7E8tnz4CY784i46/7aNK0Iv5MuSmIo5i4eJoWSxVSw7qg9w8e+GJLGHrWKIWctHUY0fdLYEIyNvUtZ8XNSmJpBTwqSgSIQCEmQGJphViq0tOQXsUD7rnMNRXS09JRxcPdpCXH1yz13bA/fn8eL5UsgfZ+tXHvzt/YuvGkZWKp2oHBHnNQYdWvmO/joB3dyTBfBBwMRFJMCKqC9S9agSGzEnCZWZ4Orl4Yu3I9Qjx5frVVGro2GZmqknB064YFW8PhdzMMvgErcFWs0TccF1b1hCo9Goohs5BwWYmnDq7wGrsS60M88bzlQvzpoK4TASJABDQESCzzLJaxGN5AgX01g7Bqyxz4uIgVMcsu3B+9l1xEk8kHsG1QRaM3m75Y7k24hN07z8O1chlMmvKWUG5n9Bmkn7+L0my98m/lE9SpVx49At2Nu2FPclE7B8WFVehprOVj09Eq+CD8N8dgSnMgZQazRBM7IyZxEhrvVcDz43v4PH4lgl2yED2iM6YoJyB5U1+Ug75lmYHIAB9Et9iK3TN4RbMREBSLNlGHMbMFfcaIABEgAkWHAIllnsWS2WA7BqN9aCIe1RYFUxTK8yjtPQ3freuPOiZMLH2x5C7YqZ8m4r3eDdH8zedbQ65ezsb6Van4fFZbbW+NBviwPtUNBcJNiaXyDq7llELFSs5qCzB1Nnx6XMQ4XkYjpK3nz8fUTs1QAdK8+mKZjY19vDAfoxE5ZwC8ajtCefMWnjhXQwXrFkeLzieMRkIEiECRIEBiaYVY8qJZO4bDb2ICcpiF+WmbowjfIE8oeVmpWFar7oSd287gbub/s3cucFFVax/+J4yJISQQeIkIEe/UCUIsJUkxMMHbpwiaqYGKWFI2piShckBB0cSKRPEuopCXBI9yxJoOWiKCFYGmgqFBgKCCl1EH9Ft7zwwOt2GGQR3g3ed3fiGz915rPXvteXjXevde96D3nA7sB3XDmIm9+dp983UGcs9ew1vDX8LY8dLfNShLVSJL2VCrPAFIisBJJlgJikRRCFi+Hel/3QRedEZQTCQ8eOvXM2cp/hNxXyxA1FE2z3rPEPbTI/DNIkdUB9qt4jahRhABItDWCZAsNZSlojCvVwGdVIgo5UUqyjL3/HU+63XAv6TDtp/OOYqVXztDh81f/s4eH8k4WQiv6QPQoYOuclmWx2Ky/ZformTO8rnYybD/yhirElZijDkLARUE61ZRjJJKA3TnQkNJBdJCR2PycTckpwjRs44sxbhWUAFdUzMYMJeKr2yH77sh6LDiPKLd2vqtRe0nAkSgNREgWTaDLKXC9INXogPWRysfelUsrrYs32HPWvaUvZyAk+XIMT1xJb8CpSV3MOdjO+h3al99eMPPWcqyYVMc8NWWQIyozoaNhN6S49g0zhCFUe5wjLfDroOL4SAowtGQGZi72wLhbBh2mEykXx5Yg1FdKqXzmbVkeeq9U9jnw8WOGVgyyAtnPBKxZ35v6BbFwWfEEpJla/qGoLYQASLAEyBZNpMsm9KfFGVZcOUmBr7RjY8s79ypxBef/ojV347AP4W30LVb3SXDlL+UoOZzlgJ9KwxbvB6RHj2kc5SSLERN9cG69FJIWAbr0EkDkbezGDMy4zHNsAzJQTMQFJ8ty4YdjE8jN2AGnynLgtC1bvCIOov7b0fiPAsfJVlbMMt/NU7IsmH7ewRjS7ALDcM2pUPQMUSACGgtAZLlU5Ql9xL1kz9fRZeu+ux1d0b4b1JudW2419819FYfbid6g4/W3lNUMSJABFohAZLlU5QlV/Qvx4vwc+pVOLz5osrd61qZGDrtKjFq7EsqH0M7EgEiQASIQNMJkCyfsiy54rkIs7hIrPJV1NcXwGlENzz3nDTZhzYiQASIABF4vARIllogy8d7iensRIAIEAEioCkBkiXJUtM+RMcTASJABFo9AZIlybLVd3JqIBEgAkRAUwIkS5Klpn2IjicCRIAItHoCJEuSZavv5NRAIkAEiICmBEiWJEtN+xAdTwSIABFo9QRIliTLVt/JqYFEgAgQAU0JkCxJlpr2ITqeCBABItDqCZAstUSW4luVyMu6jv5vvFBvpyvMvYXOZh2gp08vImj1dyU1kAgQAa0jQLLUAllyotywKBP/5N3CxE/6wm5E1xq14kQZ/VkGjLrqYVaYLQlT624jqhARIAKtnQDJ8inLUi5KYzN92LHFnXevzsBo317VwuREuXXZ7xjn+woyjl1GWfEtEmZrvyupfUSACGgdAZLlU5SloiiHefTC5QvXYcgWXZYLs2uPTtWiLL8mxkvWnfFD/HmtEmZOmBPcL/gjd9M4revcVCEiQASIQHMRIFk+JVnWFuXuNZkouXIL707rixfMO2HXygy019PBhI/+hatsrcv/bDsLU3N9eM63VUGYNdez1NGzwGD/CETNZEO4jfacHIQ5ueOCfy5bKLrRnUGybJwR7UEEiEDLJ0Cy1FCW5ceEGDn3V4xOOIxFsgWSVe0WeyJyUHnvGbw9wZpFk0yWfz+SZcJXv6LqXhWGT+rFy5OLNg2N9eD5qVSWAma9ScJ+9RQlQVbYSEw82B8r9oRhnLkuKrK3wXfKSmBBOnZNMWykeiRLVa8f7UcEiEDbIUCy1FCWKNsP7+FCiO5YYuZezYQpH4bdv/53eC6QinDb0t8wnA3RcsI0NO7QiCjZARJWn/6hMNr0C1Y5Cqpbx0eAJzyQmuiHbpAgL94fPsEpyBdXQWBij3kxO+CnsxpO7htxRX6UU4R0eLUsFWFzhdiaXgqJjh4sRq9GQoQLjNl+tSPLstQwzBVuRXqpBAJ9K7gt344Vo7qAr4kkD/H+0xGUXACJwAT2Ln1QkKSL+bmbMA7SaFi4NR2lEh3oWYzG6oQIuHCF0EYEiAAReMoESJaaypJ3wDZMGx+MtLs9MSchCcImRpi2b5tDLsqD68/zNeOSfeTCvHz+upKIUtaQnDAmvAvw5wXUwJaxBIO8TsBtdyICbYHMpSwSFbkiUbQI/VA7sixH7GR7rNILwZH1HjAui4PPiCXQDc5mw7SCmrLMj4L7iA0wXZaIr726oFy0FO/NOgHnAyIsYu7Pj3TFsDhrrDuwBqOMyxDv64oAkR0iuLoe84fNxzfw+dEYeMk+CxQvQPquKWgsFn7K9xAVTwSIQBsgQLJsBllKgybNhZnzy1VMW/oqDn57Hq8NNedr9utPV+A+RyrMfuwZzPqHXhUasd8bVkJIBdRQBxZfQ0GFLkzNDKQRX1YIHMdekkV4tWUpQUVxCSoNuoPlHnEtRfy0PojqmwgRM6BiZHkxwhkup6YiM36aTHASJH9oi8WGMTgdaowIZxf8ND4ViX7dpDVTrKtM4G+sWoVcbgT4AAAgAElEQVQv3nkNRqhVxzZwM1ITiQAR0F4CJMtmkiUbq4Ro/lh4f1+Mzh5MDiveUvuqc89ZcvOYnCit//UCysvusqSfm7wwPdj8ZNce+o2fU5XIUjbkuXBnJorZMKx0c5IJtu6cpSQvHv6+ofiBPcYike1tPrOuLOtL9nn0u951E4dqiF2CIlEUAtiwbfpfN4EXnREUEwmPHo+GkhtvPO1BBIgAEXg8BEiWzSJLNt+2eBK8d1+GgXM4kqPH8fN56mxcdmz0Z5nVouSyYzlZctmvcmHOWqnCCwnKYzHZ/kt0VzJn+VzsZNh/ZYxVCSsxxpyFizUEW1uWGVgyyAtnPPZj50f9YcDctd/bCpHWqkeWQp21yIrsiyh3R4gmZLLIVDawqiBLt4pilFQaoDsXvkoqkBY6GpOPuyE5RYie6oCkfYkAESACj4EAyVJjWYqRGeIOzy2X0JElxBxjCTHqipKrAvfygQ3sLT1vs2QeU1n2K/d7z0/teFn+yDJgZ620QzerxqJLWTZsigO+2hKIEdXZsJHQW3KczTMaojDKHY7xdth1cDEcBEU4GjIDc3dbIJwfupXK8tR7p7DPh2vJMfjbfIwbC/6D9e93gYTPrF2BQs+6skStOUtJWjjGT03C4LiTWGbH5ixZuSO2v4wv65mzHCYTOP9Zl0rpPCrJ8jHc8nRKIkAEmkKAZKmhLEs2T8CQ0DMaiVJehdrC5H6vnijlZ6r5nCWXlTps8XpEevSQZaVmIWqqD9Zx2a0sK3XopIHI21mMGZnx4IK+nLVu8Ig6i/tvR+J8tBvKkoWY+OlBljkL6PX1wpiOcUi23sHmIR3UzIYtwqGAyVh4MB/idiwbto8e0rOsZMO/ZUgOmoGg+GxZNuxgfBq5ATPUTJZqyk1AxxABIkAEGiNAstRQltzjEIf2FmCQp2OTIsraF0hRmNxnqkeUjV1qbfhcAolEAIF8GpIbhl1jiQOpgbDRhupRHYgAESACDRAgWWoqy8fQteTC5E6t2tDrY6jEYzglF4W/m+KK2E0+6I1MhLh74rv+3yI9crg04qWNCBABIqClBEiWWihLrkqcMLmt8TlKLe1Z9VWLfymBD4JT2DAse/Gema0fonf4gUZaW9A1pKoSgTZKgGSppbJso/2Rmk0EiAAR0EoCJEuSpVZ2TKoUESACRECbCJAsSZba1B+pLkSACBABrSRAsiRZamXHpEoRASJABLSJAMmSZKlN/ZHqQgSIABHQSgIkS5KlVnZMqhQRIAJEQJsIkCxJltrUH6kuRIAIEAGtJECyJFlqZcekShEBIkAEtIkAyVILZCmurES5+H6D/cJQrz30dHW1qd9QXYgAESACbYoAyfIpy/Ls1Wv49w9puCepbLDj6bUX4Ithg9Db5Pk21TmpsUSACBABbSFAsnzKspy5PwX/dh+K9ro6fE0qHzyAbrt2NWp1v7IKQYk/IWrMsDqfaUtHonoQASJABFozAZLlU5blkPV7cNB3IqoePsQ3P2Ug80oRrt1ma2HV2jhhvtrdFO59rDC6r2Ur7pNi/PnzHzC0t0cXert6K77O1DQi0LIIkCy1RJa7M3Jw574EH7zxqtIe9O/Dx+E5wBoO5l0b2G8/vK2EENX+1HwmEkWL0O9x9E9uqa1I63rPv9/bCsI6lZFWwnymdAHpGlvJZkwYEgXrraex4s3HUVk6JxEgAkRAfQIkSw1lWX5MiJFzf8XohMNY1ITlM+SRZeSP6ejf7QU4935Z6VXk9nPoZop3ezcUXUplyVZUxqZx6neIJh2hRJaK5+PEGWldjyCbVCgdRASIABF4cgRIlhrKEmVMTsNZJHfHEjP3qi/MJyrL/Ei4DjsBr8x4TDPkGp6PSNcRSJuajl1TDFGWGoa5wq1IL5VAYGKPeTE74Mf9AcDL0AjzXs/AxoNsea12JrCfF4MdfjZIqhE5mmNmogi1g0U54vpkyf1uTaUbzLIP48yr4cjdBCb7SFjLz1OWirDZn2DzmeuAngVGOz2P/X8MlEWxEuTF+2N6UDIK2KLSJvYu6FOQBN35sj8Uai0JZjF6NRIiXNgi3TkIc3LHqQHjUJqyH+2mcwI3Q2rYXAi3pqNUosOKGo3VCRFwMX5yNyOVRASIgPYSIFlqKkt2vCRvG6aND0ba3Z6Yk5AEoRoRprqyTM7JQ7/Ohni16wsN9CplkWUhotwdIZqQiXjOloVRcHdiw7rpuzDlBvt5xAaYhhzBeg9D5K2ZBPf41xB3chnsOFkKM+AQsAebfHqgPM4HI5boIjh7E8Zx84oaRJb8MG2GAwK2rMJICyN0NzqiIEsJkj+0xUeXZyBxz/zqBaO3VH4glSUv/zhYrzuANaOMURbvC9cAEez4qFqCY/72mJM9AbsTA2FTfgjzx36Cso+4PwwKeFlu1vXEN9/64RUzU5ilC2Hz8Q18fjQGXsZliPd1RaB4AdJ3TQH/dwVtRIAItGkCJMtmkCV3iqYKU11ZcmUZoWa2bM0m1D9n6SQbli3f5gHbQ6OQGT8Nt6Pc4XTckxfC1QhnuJyayv9eKgfuPLII78/ac5IKn3FTjhrKco3lAaQG2siaoXjuJMzuFYAO32Yhcrj045wwJ7gfceVl2Z6r80/jkZroh27VdZYPQXPHLoXJjtMIdVA49oI/i15787I863cO2zxkWUQZSzDI6wTeWLUKX7zzGmN8DQUVujA1MwDlGbXp70hqPBHgCZAsm0mWQBlE88fC+/tidPaIwekVb6nUxR6XLBucsyyPxWSHQxiV9i0qZ9rjf17ZLAoTSCW08UqtOuvAOfI8oiWPV5Y15zEVZVlLyrVkyYwHd15+8slZxai6gUQnyzlITnkX3zFZXvBXnNeVoEgUhYDl25H+103gRWcExUTCowepUqWOTDsRgVZOgGTZLLIsQ+riSfDefRkGzuFIjh7H5sVU26Yn/BdeA/sh5c982Ft0bTTBR9XIsuEEn3LETnbAIUc/VEadh3fm13BhPrjIRWlZs3CORZ519FAncmzeyLJhWR6Dv81C6MfUig5lkeXzLDJ2FE2oFQ0rRpbhMN+biuqgtfqSSOcsFWUpqShGSaUBGwbWY8MEFUgLHY3Jx92YWIXoqdqlpL2IABFoxQRIlhrLUozMEHd4brmEjk4ROMaiHFVFyRV9iz0u8u8fTuLnvwrx0dv2SmW58cSv8LLvj5faP6ukSzaeDSth8rNZmArBO18h82sXqRxzIuA8fh/6r9iDsHHmwJX9+CLoHLy+CYBdsgqRZagRtv6yCo5KArGGEnwalqVs3vHS+w3MWXLzrNvx8pf1zVmWI2n2UAQWz0D0dj846ImRFuWP2C7LsW7S9TqyLI+dDPuvjPHlgTUY1aUSmUtHYiLJshV/9VHTiIB6BEiWGsqyZPMEDAk90yRRKha9JeMPXGfinK7kOcv3tyfi6s3bSJs7uVFZiurs4cSCTZaQw/1ekowPbYXQWftoLpD7tWI2rA7LPHUOikGkRw8IGossy5Mw7x0hDpW+iDnJKRA2EIqpL0tWKXEmImfMwbfppXjA6vSKZQXO3JxQnQ1bdCgAkxceRL64HcuG7QO99CxYyR+bUcyGreKyZacj4ptFcDSuG1lyw+jJQTMQFJ8ty4YdjE8jN2CGGsla6t16tDcRIAItiQDJUkNZssweHNpbgEGejmpFlLU7Cfeau9AfTyGzsARl9bzBh9ufe2lBFftvB/Y6vPj33GDxvEFL6mtNq6tEAolAUD00zM+tnvWrHi6WsM8F7HPpxkXVa2B5oL6h16YVT0cRASJABDgCJEtNZdnM/ai+d8PKixi5eR+u3rmLn+dMQnsd6btkW/v2c4ADgtqFY+dSJxiXxcPXNRAls44i0c8C4N72824KXGM3wac3pMPh3/VnUWgkhlNeTmvvGtQ+IvBECZAstUyWyq5+mCgdHw95DR3a0nJd3EsJ5gqxlQ3DSgT6sHJbiTj+xQLcJn0pgU9wChuGZe8sMLOFX7TsRQpP9DaiwogAEWjtBEiWLUiWrb0zUvuIABEgAtpKgGRJstTWvkn1IgJEgAhoDQGSJclSazojVYQIEAEioK0ESJYkS23tm1QvIkAEiIDWECBZkiy1pjNSRYgAESAC2kqAZEmy1Na+SfUiAkSACGgNAZIlyVJrOiNVhAgQASKgrQRIliRLbe2bVC8iQASIgNYQIFlqiSyvlF5Gwol4pR3De8RMGHakpYi15u6hihABItBmCJAstUSWY1eMZgsNd4O+Xqd6O9/V60UwN3wRy6esaDOdkxpKBIgAEdAWAiRLLZHlmBXuWDx7eYP9Iuvirzh4LB7fByRqS9+hehABIkAE2gwBkuVTkuWDhw+w9uBq/HE5m6/B7/m/4eXuVrh7X4zzl8/h9p1bDXbCvuZ9kRIsapmdVFKE9PRyDHizN9gyy7QRASJABFoEAZLlU5LlnXu3MeizgfjIa0GNGlwqzMU/pYWYM+HjBjtQUJQQEe+vxoCXBtSzj3Tx5zoqNZ8pWwNSSb+ss27lY+jDPwfg9ekX4Hf8O3xg+hjOT6ckAkSACDwGAiRLDWVZfkyIkXN/xeiEw1ikxkLBnCzfWOiAAJ8QPHz4EH8X5/M1ucL+e728FCMHj6mumUC3PSy6Wlb/m5Nl0IQgvNlncIOyZCs9YxO/0rMa25OQpRrVoV2JABEgAtpCgGSpoSxRxiK54SySu2OJmXtVF2bVgyosiQvEH1eycbW8GNdv34DJ8yzUYuJsx9aq7ND+0SCl+O5tTHf3RX+rV/jaNlmWkiyEjPg/iNwOIEXYDyjbBo83voTpV79gePwACKvDUXPMTBRhUb8ypIbNhXBrOkolApjYz0PMDj9wfxPs97ZCpNE8vJ6xEQfZ+ljtTOwxL0a+PJbi0llVECh+lhMGJ/cL8M/dBN7lbPHseH8fBKfkQ8wGZs1sZ+LrLf6w5ZrPy9sI817PwMaD7PN2JrCfF4MdfjZsMWglZWjL3UX1IAJEoNUQIFlqKkv++34bpo0PRtrdnpiTkAShGhEmV/yq/WH4sywPs8Z/VG/HikpYg1esbTHkX06ayZKra1YIRvzf75jxy0YYfDYEy3RX4KdoN/APpNSKLPOj3DFigylCjqyHh2Ee1kxyR/xrcTi5zI6XpTCDRcZ72MLLPcoR5zMCS3SDkc3CWUFhFNwd42HHou2ltrJFmZMGI+7kMtjVkKUEx/ztMSd7AnbsWwgHQR5ivCchUm8JjrPzGHL1EWbAIWAPNvn0QHmcD0Ys0UVwNhPtVSVltJrbkxpCBIiAthAgWTaDLKUBUtOFueXYJnx95Bv06N4TXMRZVVWF9oL21TUrY8Oyk1ym4rVer6ssy+ogUXYWp+phWQnSFjvC58d20Lljg5CfouEmf3SzhiwvIsLZBaemZiJ+mmwHhc//5CJL60SIFrEItbZoy2Mx2X4V8GEUQqfbw1JPjOKSShh0N4JeDVkmYXavpTDZcRqhDrKK5kfCddgJeGXGY9oPXGRprTDXys3HRsKai3q7KylDW+4uqgcRIAKthgDJsplkycY0IZo/Ft7fF6OzRwxOr3hL5U7CCXL4krfh9e4M/MUSfPL/uYShds7Vxz/b/ln0s7Sp/neTh2HlZxDHYcqAQFydexT/nd/jUT1ryDIHYU7u2HilVjN0nBF5PhoSZbJkh4j/jMMXC6Jw9Hwh7hnaY3rEN1jkaAzUkKWC/GTOZeHtIyH+qUSWbP8Gy1CZPO1IBIgAEVCNAMmyWWTJ5vYWT4L37sswcA5HcvQ4MC2otcmfs+Sep8zO/R2eLu/zxxdf+we+oVNrnKvDsx2w4+NdTUzwkQ59fnrODB0Ku2C+iM1byitbT2SZNesctnmwScpaGz9n2VBkKb6Gggpd9pIFAza3KMaV7b54N6QDVjDJuqkUWaZgdGoi/NKUyNJSSRlqkaediQARIAKNEyBZaixLMTJD3OG55RI6OkXgGJtrU1eUXBUakiUnz6BvhQieE8HX9J/SAuw+shWHg/4Lc5OX6rnC0kdHGsqGlRzzh/3HN/C5KAbGwUyat5Y8qjMny1AjbP1lFRyZH3MinDF+X3+s2BOGceYsU3f/Fwg654VvAuyQrEyWGUswyOsMPBL3YH5vXRTxc431ybL2nGUR4j50xxLxAqTvmiKds2xoGFaspIzG+z3tQQSIABFQiwDJUkNZlmyegCGhZzQSJVeFwNjPsSVlEx6y/w2zd8E8z8/4mslluX91CvIKLiJ8y1IWVcY28Iwld0QDz1nCCRHnZuG041T8/v5RJPpZAOVs3yHLgOBj7DETpvjyJMx7R4hDpS9iTnIKhD0Vs2F1oGfhjKCYSHj0EEizYRuKLFmmataWWfBffQL5Yi4btj88grcg2KX2MCyrbqPZsA3MWfZTUoZatwDtTASIABFonADJUkNZcl/2h/YWYJCnY5MiytqX6OdzJ3Dwt0MYP8KrhixXz1+vgigbv+C0BxEgAkSACKhPgGSpqSzVZ670CE6WoftC0KeH9O08xdeK8GP6f2HauUsjEWUzV4RORwSIABEgAtUESJZaJkuuOhv/G42KOxV8zcrv3EA2e3/ssskhSoZeqUcTASJABIjA4yRAstRCWT7OC07nJgJEgAgQAfUJkCxJlur3GjqCCBABItDGCJAsSZZtrMtTc4kAESAC6hMgWZIs1e81dAQRIAJEoI0RIFmSLNtYl6fmEgEiQATUJ0CyJFmq32voCCJABIhAGyNAsiRZtrEuT80lAkSACKhPgGRJslS/19ARRIAIEIE2RoBk2UJkeaeiEKdTlvC1vV5yFmYvDcKgd6UvV6eNCBABIkAEHi8BkmULkaXk3k38dfYg8nMO4kbZebxk7YqBriseb++gsxMBIkAEiABPgGSpRbLkhHi95Fydrmlqbs//7vTRIBTk/Qh9Q3N0tXwL/Rx8qRsTASJABIjAEyBAsnzKsrxdXoA/z+xE0aWfIL71T4OXXL+zFZ7t8Dxs3vwQl7L34YUXX4dF39FPoIs0XIT4z5/xh6E97LvUXRz6qVaMCicCRIAINDMBkuVTlOW14rM4fmA2JPdvqnxZOxlZ4+0JmyB4tlMDxzSwnqX5TCSKFqGfyiU1tmMJNk8YgijrrTi94s3Gdlb985wwOLlvxBXZETp6Zujj+jHWrvAAW0ZThS0HYU7uuOCfy9boVGH36l0kbI3O/gjtsgOnQx2kv5Uwlv0XAuHZ7Fyywtni2TYfVyEi82u4qFQfdepA+xIBIqCtBEiWGsqy/JgQI+f+itEJh7HIRr1vz7OntyHnl7Vq941hk+LQ2bSPUlkiQl1ZqF2Nx3MAL8sjcE0UYREzu/jaGcR+OAMrb87C0UQ/sCWrG9maKku2wss2D9h+54RUVk43rhROjLOSALcNyIoczpd7McIZLqemIjN+Ggwbqwp9TgSIQKshQLLUUJYoY9HHcCFEdywxc696wrx//z5y0tazpJ0EVN6/1Win0tPvgt4DP4JlX1e0a9euabJki1XH+/sgOCUfYujBzHYmvt7iD1s9drr93rBaUwk3s2wcPvMqwnM3YVyt/S1Gr0ZChAu/0PV+bytEWidCxFmN3286gpILIBGYwN6lDwqSdDGfOwcvwLNw/vQeEtelo/SBHhTPU6MhtWQpjfCS8aGtECycw9dcOKdYpyoBTOznIWaHH2wu1IxK4RSBXBZelqWGYa5wK9JLJdDRs8Do1QmIcOFaUGuT1dPv3DZ4sGLSFr+OhaV20M0wQejpUDigHNs8bPGdUyoS/W7wEeypAeNQmrIf7aYzDp92eMRWsV7c31Bytt3PITm9lGc0NCAO0dN6QACp4Llz3RCxJC4xoNfXC99uWwZHWTUV2yAwsce8mB3w4/44q++alaUibK4QW7lydJSwbrTH0Q5EgAjICZAsNZUl912etw3Txgcj7W5PzElIglDFCDM3ax/QrgNMX3LEtaIzuHntIi9N7mdu0xXow8DYGpwk9Tv35H/O/XULXuo1AkZmfZsgSwkLluwxJ3sCduxbCAdBHmK8JyFSbwmOM6kYcl+8wgw4BGzBqpEWMOreCT/L9t+dGAib8kOYP/YTlH2Ujl1TDGvIMj/SFcPirLHuwBqMMi5DvK8rAkR2LMCVy3IzdD03YOdSJxhmLcXIiaLq6LFRWdYSc8aSQfA64QauTrbIxNKREyFylUlbJp7qYdjyWEy2XwW9kCNY72GMsjgfjFiii+BsVq86AwFpWPy6D26FZyFyOCew93EzfDs6LfQDorhI9xj8bRZCP+Y0Qh2kgtus64lvvvXDK2am+Hu1Y8P14tnmYvym3VjuxOoR7wvXgALM+OEI/C2k54o1XYDvtvmiN2tTiLsn9vT5Cplfu0CQHwX3ERtgyrfBEHlrJsE9/jXEnVwGuzrXzIhdMxt8fONzHI3xgnFZPHxdAyFeIL1mtBEBItA0AiTLZpAlH/w0QZhXC//Az4lzIGjfCd16uoKbjxS010eH58yg16krKsouoEpymyX+FKHi2gX8c/EIOuibwen/NqF9BwOlshTV+NQcM/lhzSTM7rUUJju4L3vZDvmRcB12Al6Z8Zj2AxdZWuJAKhMj/3Hd/XPCnOB+wZ+P2B5Flu0R4eyCn8ZzERc/gCmNeLhgsFqWF+DP/cx/qGSotL7IUibLgGe/xrmokWxotgAVuqYwM5DaLivEEWMvzefrVOfckgoUl1TCoLsRi6O5C8Xa2ScKfWXDvDUhSuctI60PQDT6IJwm/YMvsiKhzyLMkO4Hkei4GY6Tr2Ip+91wWRvO+p1j0aa0HkrrxfGItFaYN64bpdaYZ01bjNd9biGclWVRZ+iXm5eOhDXXhj9rXzNA+sfEG1i16gu885oRUItX074q6Cgi0LYJkCybSZZAGUTzx8L7+2J09ohhSS9vNdqzysvyUfVQgMLcIyi5nIrrRb/We4w8sjSzcMQL5kOgr6/fqCzrn7NU+JKtzvSp9cVb4wu9gWQhyzlIThEiq3oYFnWTah6DLKuHfPlhxoXYmVkMcZUMmWzIta6IJciL94dv6A/IvSWR7Sz/46Eubn7e8tAoJDp9h0l/fiydq+TmLtf2xpaRhzFJNEE2X1mP8JXVq44sFYex6+HH/9Eg/QOjN/cHykZ5ypO8zjpwjjyPaEltCXN/EBRBFBWA5dvT8RfLHXvROQgxkaomSDXabWkHItAmCZAsm0WWZUhdPAneuy/DwDkcydHj+Dm9xrZzGdtx+VwSLPpN5CNL+VZ7GJYPiNgzmP/kJvPDsI7jNjQxwaehyDIFo1MT4ZdW+4uX2z8c5ntTESgNNWtsjyLL5xHl7gjRhEzET5MN9TWnLGvMWd5B7GR7fGW8Cgkrx8CchYuK0W4dWWYswSCvM/DYvxMf9Tdg84P1/cGg0CxOUmN/R7d/nYaelywLls+KPQA4/oL8vv9BirAnO6C2LMuV10vTyDJrFs4xkdcZOa5zXgkqiktQadAdRoyNpCINoaMn47hbsqzejfVK+pwIEIH6CJAsNZalGJkh7vDccgkdWXRzjA0FqiJKrtjaCT7Vw7BsjpKLJuVzmNwwLPcMpuYJPrXnLIsQ96E7logXIH3XFOmcZa2hwqTZQxFYPAPR2/3goCdGWpQ/Yrssx7pJXWvOWUa5Y8T2l/Flg3OWTRuGFV85isiPFmBzlTwbtpAXc7zdLhxc7ABB0VGEzJiL3RbhNYZhT713Cvt82JXgH/W4gQX/WY/3u0iQzeYEp6wohGe9w7DcVZHOWx6sHIjgdPm8JidCByw7rY+J1UPYtWXZSL04tgvz4blhJ5bK5ywDSzDrKPsjRTZnubtbAPZs8qmes/yu/7dIZ5GtICcCzuP3of+KPQgbZw5c2Y8vgs7B65sA2CXXvWbSPya+xIE1o9ClUjqnS7IkARABzQiQLDWUZcnmCRgSekZtUXLF1k7wkQ/DPr4EHy5EbSQbtoYsa+3PZ3hOR8Q3i/gszZrZsEU4FDAZCw+yLNt2LBu2jx7Ss6yaOGep/DlLSVYUpvqs47NbBSZDMWlgHnYyocsf58hZ6waPqLO4/3Ykzke/gWThRHzK1YvNWvb1GoOOccmwVpy3rdEHpPOWwpuLazwewg/PhnZG5PlouPH71x2GVVqvOtmw3eESvBWRHvVnw3Z+7QN8GS3lzG21M3qdg2Kkx9YzvIuyZATNCEJ8tiwbdvCniNwwAyrmnWn2jUJHE4FWSoBkqaEsOfkc2luAQZ6OKkeU8iK5lxL8b/9MtH/WQOUEn2efM8WwiVuUvJTgafVUCSQSAQTycUJeDorJQk+rXlpSbn1Sq65a058N1ZLWUTWIQKsnQLLUVJYadhFuLvIie4Tkn0uiBhN8uOxYA+Ne6NbDCVY24zUs8fEczkXY76a4Ira+YcTHU2TLOivJsmVdL6otEahFgGT5lGVZX48supzG/5qLOBt+nlLL+nKd4V0/RHMvClDvpUZa1qhmrA7Jshlh0qmIwJMnQLLUQlk++W5AJRIBIkAEiIAyAiRLkiXdIUSACBABItAIAZIlyZJuEiJABIgAESBZqtcHSq/fgklnffUOor2JABEgAkSgVROgyJIiy1bdwalxRIAIEIHmIECyJFk2Rz+icxABIkAEWjUBkiXJslV3cGocESACRKA5CJAsSZbN0Y/oHESACBCBVk2AZEmybNUdnBpHBIgAEWgOAiRLLZLl/dv5uFt+Dg/ulUFyt4SvmW4HU/Z/E3Qw6APBcy81xzWncxABIkAEiICaBEiWWiDLa7kbcOOvnXjw4Bb0jE0h0HuIhw8f8jV7pt0zqLzTDrdLi6Cjo4/OL09DZysfNS8z7U4EiAARIAKaECBZPmVZFmbOhM6zV2Bg3h2Cjsqf75TcuYWKy3/jgcQSXV9br8l1p2OJABEgAkRADQIky6coy+Ksf0O340kYWvRU45IBNy79hQf3HWDa//N6jtsPbysh2EKSYOtQ00YEiAARIALNQIBkqaEsy48JMXLurxidcIHdhroAACAASURBVBiL1FxioyR7OZ4R/ILOPXpAXFaC2yUlqBTfZsOxD3D3+jW+ZnrPd8YzOjpMqs/huRfM2DDtC7iemwc8GIIX+i4kWTbDTUCnIAJEgAg0RoBkqaEsUcYiueFCiO5YYuZe9YX5d7o3xNeOs3lKPXQ0NUOH543YcGxHNlepw9fsYVUlJGIx7t64xmRahKq7d9HReCi62W1o4No2ElmWpSJsrhBb00sh0dGDxejVSIhw4Reu3u9thUijeXg9YyMO5ovRzsQe82J2wI//I0CCvHh/TA9KRgFb5NnE3gV9CpKgO5+LYOsuXpwT5gT3C/7I5cJbxeW7qrhj5yGmevkuZeflis1DvL8PglPyIUbN+kry4uHvE4wUVtcqgQns58Vgh58NaFWwxm57+pwIEAF1CZAsNZUl/32+DdPGByPtbk/MSUiCUMUIU3LnbxRkvAezV6xYpqtq76O9f6sCxb/n4kX7OCbY7mpGluWInWyPVXohOLLeA8ZlcfAZsQS6wdlMeAJelsIMBwTs2QSfHuWI8xmBJbrByGbCE+RHwnVYHKzXHcCaUcYoi/eFa4AIdvxwr3JZZiwZBK8TbtidGAhbZGLpyIkQuSZCtKgfoPS8Ehzzt8ec7An8sTblhzB/7Cco+ygdu6bcRpS7I+LtEnB4qS2QGQJ3zyQMjjuJZXbq3ga0PxEgAkRAOQGSZTPIkjtFU4RZ9NunLJosQEc2vKrOdvtqMcQl3dDl1TVqylKCimI21GvQHUZ6fK0RP60PovpKxcVHltYyiXEfKyxY3D7CGS4/jUdqoh+68aUqRrDKZSm+VoAKXVOYGUhjvqwQR4y9NJ+POi8qPW8SZvdaCpMdpxHqIG3qo4h1mFT8+BBRodNhb6kHcY22qUOU9iUCRIAIkCzV6gNNX3WkDKL5Y+H9fTE6e8Tg9Iq3Gi33TmkaSi8I0c2eRUZqbP9k/AZjqzB0NBmkpiw5qbOhS99Q/JB7i6lSupnPbFyWUBxWVVOW4Id+F2JnJpN8laxQpwheljWGa+ucVypkUe1WWs5BcooQPcV/Iu6LBYg6eh6F9wxhPz0C3yxy5IeUaSMCRIAINCcBiixr0WyaLMuQungSvHdfhoFzOJKjx6n8hS2+noYrJ2dCv4sZizAN2ZxlZ/YSgo7VtXpYVcUn+HDbAzZ/WXgqBy/0/gLPmQ5roB8om7PMwJJBXjjjsR87P+oPLtBTjCaVRZbPR7nDUTQBmfHTYKiWLKUR4FfGq5CwcgzMWUSrKMhCpeflIstwmO9NRaBN7eaKca2gArpsnpdrh/jKdvi+G4IOK84j2q05bxE6FxEgAkQAIFlqLEsxmy5zh+eWS+jIoqVjLFpSP7J5yF5KsAe3ipMhuVeIds9U4W5FAcvueYj2nZgMXjRij5e8hJuFV3D32ovo+q91SvquMlkeg7/Nx7ix4D9Y/34XSLK3wXfKChR6Nh5Z9suPgvuI7Xj5y/rmLCVMuv0RVBkC0TYPdLxyFEFTfbHPioseHWRzi7twcLEDBEVHETJjLnZbhEuTf5SetxxJs4cisHgGorf7wUFPjLQof8R2WY51kwpl4k/Envm9oVsknX8lWdLXGhEgAo+DAMlSQ1mWbJ6AIaFnNBBlfZf1Aaokt9kHz0BHoI/SP5cDOuns52dw/2YfmA1g/25wa2DoUjbsWZYsxMRPD4IlkEKvrxfGdIxDsvUOnGaTgsoiy35s0LboUAAmL+SObccyWvtALz0LVvLnOS/H4oOJ/8ZPpRIIWBatS58CJOlK5yUlWVGY6rMO6fxnQzFpYB52MgFKo9RGzlsnk3Y6Ir5ZBEf2F4kkawtm+a/GCVk2bH+PYGwJlmb20kYEiAARaE4CJEsNZck92nBobwEGeT7eubKr50Igvn6YPXfpwZ6v9G/OPqDyuSQSJjuB/MEMTsprYHmgviFSlU/J7/i4zqteLWhvIkAEiEDDBEiWmsryCfaum0U/olOXt59giQpFlWzGhHdT4BrLHivpzT2pwYaev+uPb9MjMVyTBxsf13mfDiUqlQgQgVZKgGTZgmT5dPug9OUBPsEp0iFcM1v4RctfWKBJzR7XeTWpEx1LBIgAEahJgGRJsqR7gggQASJABBohQLIkWdJNQgSIABEgAiRL9fpA056zVK8M2psIEAEiQARaFgGKLCmybFk9lmpLBIgAEXgKBEiWJMun0O2oSCJABIhAyyJAsiRZtqweS7UlAkSACDwFAiRLkuVT6HZUJBEgAkSgZREgWbYAWZaU3sFff5ejq6k+zLt1alk9jGpLBIgAEWgFBEiWLUCWZdfv4tAPuSi7LoZeB134eL0CXZ12raD7UROIABEgAi2DAMmyBcjywYOHaNfuGb6mf/xZiqRjuZg/0x7tBSTMlnGbUS2JABFo6QRIli1AliVld/DVlkwMse8Ol6GWOJ93HUd+uoR5M9RbNLqld1aqPxEgAkTgaREgWWqJLFeuPwWrl57H/73bq96+cL38Lg6m5OHl7p0wdJA5tu3Nhv0rXdDPupkXpNrvDatIaySKFqFfPTVRXMZLUpSO9PIBeLM3W9G5GbfHdd5mrCKdiggQgTZGgGSpBbJM+M+f0GsvQNWDB6i4dQ9Tx/evrlXe5XKczCzE6Hd6Qr+jAJxUZ7I5y59O/g395wRwHmJRqwV117PU0TNDn/GLseGLUejS2Aohasjy54DXMf2CH45/9wFMNbhxaq+j2Vzn1aBKdCgRIAJEoAYBkqWGsiw/JsTIub9idMJhLLJpzER1e1/gquPo0EEHk8dI47g/zpXi7v1KeLixdbDYtmjF//h5Sq8xfTFlXF/knC9F966dcP9+FW5U3IO1Zed6ZQn5oszsU/GV/VgwUYg/xiZCtKi+eFHhFGrIsrnupTqLTjfXiek8RIAIEIFmIkCy1FCWKGOR3HAhRHcsMXOvesKMjv2NiVIXd+5I+LlI+fZrdgkvzEGvdUNA2P9wm32+eN4gvGHbTYXLLo0sFWXJHZQT5gT3C/7I3dQbYU7uuOCfi03jpKd79Bn7BSfLNQLMsDmP3Sn5ELczgf28GOzwswH3p4Ci2Gocxz4rSxbC67Mk5N5ii0Sb2GPOt1vgb8sN0Souw1XFfzYvhlveK4mvq0jeKvOZ/PAvq6CsrtIKlqWGYa5wK9JL2Xn1reC2fDtWjOrC6pPDt+Ws86e4l7iOff4AehajsTohAi786HQZUsPmQrg1HaUSnVqfqYCSdiECRIAIyAiQLDWVJaeCvG2YNj4YaXd7Yk5CEoQqRJg5F8pw/NTf6KT/LF8Dh9e61qjJ72ev4lxuGYsw+6DHS4ZqdNi6shRfOYqgqb5IHRqPk8v0GpelMANOK45gvYcxykSfw9M7Ha6JInBBaYOyzImA8/gjcFi/E0udDFEU9yHcl+shPPNruPy+BIO8TsBtdyICWU5S5tKRmChyrZ4XrR1Z1pBwfhTcR2yA6bJEfO3VBeWipXhv1gk4H+DqI5XlZl1PbNi5FE6GWVg6ciJErrII+pg/bD6+gc+PxsDLuAzxvq4IFC9A+q4pUIeoGvBpVyJABFopAZJlM8iSO4W6wtx/5AJ0ddvhHhtOrbh5H05vmNfpYpl/FKOy8gE8R/dRo/vVnbNk4Rishi3G+kgP9BBIBaM0sqyR4FOObR622DEwGSnCng3K8mKEM1yyZuHcNg8+AgUu48TuP2A48l0MaH8NBRW6MDUzkH6WFQLHsZcwP3cTuNhRmSz5856aisz4aTLBSZD8oS0WG8bgdGgn5W3JkEr6jVWr8MU7r8EIteqhBlXalQgQgbZNgGTZTLLkhvxE88fC+/tidPZgX+Qr3lLaszbs+g09XzZCh2d1cER0CdMnDqh3f06YYrEEU//vUdKP8i5b/zDso2PUlWVNmTUUWR7264MP761gw7yysd0alZQOhy7cmYlicZXsEyc2Uty4LGsP9XIHqzykzIZ/i0RRCGDDtul/3QRedEZQTCQ8eqg/t9y2vyao9USACJAsm0WWTAaLJ8F792UYOIcjOXocGnugY/3OX/Gy+fPoxRJ0duzPhvPgl9nr7J6rt0eWXruDzD9K4Pveqyr02OaWZVMjSzGuFVRA19QMD+Mnw/4rY6xKWIkx5mwOMycMTu4X4K+CLBuKLIU6a5EV2VVpZCmpKEZJpQG6G7EyJRVICx2NycfdkJwiRE8VSNIuRIAIEAE5AZKlxrIUIzPEHZ5bLqGjUwSOsciqMVFyRXLRJPfO1yEDX2SvsbuL7/97ER9Mqj+65Pb/LecqLl6+jlmTX4WhfnslPbgxWUrYsGd/BFWGQMSGTDvK5jP3WUVIo0IuwYebswyRzxGqN2fptG0fFjrooSzeF67LdRHyUzRsY93hGG+HXQcXw0FQhKMhMzB3twXCFWQZarQVv6xy5Idplc1ZStLCMX5qEgbHncQyO+VRcnmsVNJfHliDUV0qpXOlJEv69iMCRKAJBEiWGsqyZPMEDAk9o5YouSJvlN9DJHsrz9Tx0kc57ogrsTvxLFzeskT3Lvp1LuUvGYU49ds/+Nj7dViaG2ggS3bo5Vh8MPHf+InLLmWZqS59CpCkO/+RLGtlww4NiEP0tB5qZMOyrFQzW/hFcxmvTH+SLERN9cG69FJIBCYYOmkg8nYWY0ZmPKaxTJvypHl4R3gIpS/O4aO++2pmwzY4/8qGxpODZiAoPluWDTsYn0ZuYJm+NAzbhO8KOoQItGkCJEsNZckye3BobwEGeTqqFFEqFpfMXllXWHQLQ994if91GRtuPfK/v3D3biUsuhvg2Wd1UX7zHi6z4cy33zTHqGFWUHxPbJvuudR4IkAEiMATJECy1FSWGl6s4+kFyM2/AUc2HCvfrrJ3wf5Tcpt/o8/fhTdRzP49fUJ/9OphpGFpdDgRIAJEgAg0hQDJ8inLkiv+2InL+DmjAKbGHdHpufbQ0XkGt25LUFx6G/b/6oIRQ15uyrWlY4gAESACRKCZCJAstUCWXBUkkgfIzC5G8dXbaPfMMzB74Tn8q98LEAh0mulS02mIABEgAkSgqQRIlloiy6ZeQDqOCBABIkAEHj8BkiXJ8vH3MiqBCBABItDCCZAsSZYtvAtT9YkAESACj58AyZJk+fh7GZVABIgAEWjhBEiWJMsW3oWp+kSACBCBx0+AZEmyfPy9jEogAkSACLRwAiRLkmUL78JUfSJABIjA4ydAstQSWVbeuoXrWVl44Y036r3qt3Jz0cHMDLr6dd8b+/i7CZVABIgAEWjbBEiWWiBLTpSZixbhVl4e+n7yCbqOGFGjVpwoMz77DHpdu8I2LIyE2bbvWWo9ESACT4EAyfIpy1IuSv3u3fGSqysyQkLQy9e3WpicKH9ftgyvMIlePnIEtwoKSJhP4UahIokAEWjbBEiWT1GWiqLsNXUqrp89Cz0Tk2phdurRo1qU4tJSdO7bF+d37Hh8wuTWsoy0RqJoEaQLh7WAjVv+yysSHaJi8IFpQ/W9g31zPHF+5h4ssmULQdNGBIgAEVCTAMnyKcmytigzQ0NxKz8ffWfNQicLC2SwaFKnY0f8a8EC3GS/P7thA/TZ720XL25UmJK8ePj7huKH3FuQ6OjBzPY9LF/7KZy6NLKOY4uTZTmSZg/HWsstOLzIBgJJBYr/OIU9+zci6fsbGBaXjEVy65exRbFdNsNubyL8LNS8S2h3IkAE2jwBkuVTkiVXbE5EBJ6pqoL1lCnIZMOvty5frpblrytXourePfR6/32pPNnnei+8ANvAQF6W7A3r6CcU1u3AkmPwt/8Y//juRox3fxigCKKl72HWscGIO7kMdsq6fAuTpeSYP+z/3RW7ZJFwTpgLvH54HmPcLJEeeRJDE0WPZMnaXbbNA4OTxyBt1xSwNadpIwJEgAioTIBkqYEsJXnZyOvaH73rjOxJkJedh679e6OxQT9FYcqHYX//8kv0YxElt/22dCm4IVpOmB2YLJWKkjdwGJzcMzEjMx7T5EaQJGHem1vQO24v5vZkK5xkRWHq7ChkFosBPQuMDt+FFaO6QMDL0gjzXs/AxoP5ELczgf28GOzwY1Ebd2620HW8vw+CU9hnrGUWo1cjIcKFLXqdgzAnd5yyn4n2/9uK9NIH7LSjER4+EIcWBiMlX4x2JvaYF7MDfjbcmRifeH/4BKcgX1wFgcqfKV4sCfazPwY224mQ6Net1lVkUaRVJKxryRLlsZhsvxtDRCy6rH2IyrcM7UgEiEBbJECybLIskzC7lz9+fMkTm/aEwtFYfiIJsiLcMPHbSxiw+Di+a3girbpkuTDN33kHclGeX7+e/5xL9pELk5NpgxHlo7MhwnksYu47Qxi2AB72ljBQHH0tZ/UeGoibH+7BJp8ekKSFY/zU43A/egT+mUyWwgw4BEg/K4/zwYglugjO3oRxAgmO+dtjTvYE7E4MhE35Icwf+wnKPkrHrikFvCxjTRfgu22+6I1MLB05ETvKhmDJf9bj/S4SiD5/B975c5AZPw2GGUswyOsE3HYnItAWyFw6EhNFrtK50sIouDvGwy7hMJZyn4W4wzOpvqiYRdA2S/HCrlQE2tS+dRuQJQoR5e4I0YRMxFf/JdEWb3tqMxEgAuoSIFk2WZZsWI9FYsOFItyxlAtTLsqL6OAQhH3bpqFHI9OE8uI5YV795Re8yiJJTpTmssdHrhw9Wi1M7hnMeodea191FgEeWv1vrN55Avn329ecs0yajV7h5tibyoTHH1eOP/5zGOUDPDE4o3aCj6J0uD8OlsJkx2mEOkgLzAlzgvsFf+Ru6s3L8oJ/LjaNk36WFeKIsZfms89kv1Ac4hVfQ0GFLkzNDKQRa1YIHMdewvxcJmU++lsFfBiF0On2sNQTo7ikEgbdjWpG6Rcj4OyShVnntsGjDuOGZAkWjVoh0joRourJTHVvGdqfCBCBtkiAZKmBLLlDy/bPhsvCFFSwCPOzwacRsVN9UcqrwD1nmbN6NS/KF15/HXevXuWTezhh9vv0U+iz7Fh1N/GVnxEbIsTKNHt8mx4Jq29cMPzA2/VnvNaZs1SUDvezEKLaFbCcg+SUd/FdLVk+Emk9skQZUsPmYuHOTBSzYVjp5oQITpbsJ/GfcfhiQRSOni/EPUN7TI/4Bosehe5yU7Ph5gvwlx1Ts1oNy7KOxNUFSvsTASLQJgmQLDWUpaIwr7Pv/U5qRpTy4vns2IULq0XJZcdysuSyX+XCtA0Pb/SFBH9FT8LE/76FuL1zwaYnpZuEzV/2iUJfbg4vr3ZkKUFFcQkqDbrD6EhjkWU4zPfWN+wpnbNUjCyVybJ77GTYf2WMVQkrMcaczery86wy8dWIOsW4st0X74Z0wIrz0XBTvFYUWbbJLyxqNBF4WgRIls0gS6kw/eCV6ID10aoPvSoWzb+lh8my13vvVWe/cp/bsexXTpbnd+6EHZOlvpWV8r6Sz+b8RmxAp89isX4alw1bgWw2jzhlJbAgfRemQDpnWbkwEV97mXOTgnCfLILrvhQI/1QmS+4xjaEILJ6B6O1+cGDDo2lR/ojtshzrJl1XS5bPR7nDMd4Ouw4uhoOgCEdDZmDubguEc1EiP595Bh6JezC/ty6K+HnTemQJmrN8Wl8aVC4RaIsESJbNJMvm6Dy1hcmdUy1RyirBDWN++lGY9DlLNiuob/UGPvgiAv6yoUzFbNh2+lZwWxmHCBeWoaR0GJaLUBWyYasEMLGfjohvFrHkJvUiy37ciwSm+mBdeikkAhMMnTQQeTuLZRm8bN53yyz4r2bzrXymbH94BG9BMFe/GlsTsmElbHi2P3vWkrJhm6O70jmIQJsiQLLUIllyVVEUJvdvlSPKNtVtpY2VpC2G48JO2KziG4fK2fCvw6FR9JxlG+wr1GQioCkBkqWWyVJRmNzPKg29atoLWuzx0jf4RPfbjX3+PaWZtQ1t/Bt84vBWMpu/rR2kttj2U8WJABF4UgRIllooS7kwuf82Okf5pHqKtpaj0rthb2OvrxcuzKJ3w2rrZaR6EQFtJ0Cy1FJZanvHofoRASJABNoSAZIlybIt9XdqKxEgAkSgSQRIliTLJnUcOogIEAEi0JYIkCxJlm2pv1NbiQARIAJNIkCyJFk2qePQQUSACBCBtkSAZNnMsiy9fgsmnfXbUh+ithIBIkAEWj0BkiXJstV3cmogESACREBTAiRLkqWmfYiOJwJEgAi0egIky1YqS+61edxGLzVo9fcwNZAIEIEnQIBk2QplyYmSW+5Lt2NHvLJkCQnzCdxIVAQRIAKtmwDJspXJUi5Ka9lSX79/+SUJs3Xfw9Q6IkAEngABkmUrkqWiKLsOHcq37NZff+GJCbPOEl814e73tkKkdSJEi/pBUpSO9PIBeLM3W/yZNiJABIiAlhMgWbYSWdYnSnnTnpgw1ZDlzwGvY/oFPxz/7gOYavlNQtUjAkSACJAsW4Es6xPltd9+41tm9OqrTy7CVEOWdOsRASJABFoSAZLlU5SlJC8beV37o+5IpAR52Xno2r83GhukrE+UZUyUWWyu8iFr26vz58PolVdUF2ZOGJzcT2HAuBsQHcyHmNWgr9e32LbMEdwykIpDqfxJFQXJ/bxGgBk257E7hR3bzgT282Kww8+GX2tS8dicMCe4X/BH7qZx/GkkWVGYOjsKmcViQM8Co8N3YcWoLsrXqGxJdxrVlQgQgRZNgGT51GSZhNm9/PHjS57YtCcUjtULEkuQFeGGid9ewoDFx/HdBw0PUioT5QOJhG/ZMwJBXWGuXYtXgoLqz5LlZRkL0wXfYZtvbyAzBO6ee9Dnq0x87SJoXJbCDDitOIL1HsYoE30OT+90uCaKwKYpG5ZlOWMxNBA3P9yDTT49IEkLx/ipx+F+9Aj8LVr0/UWVJwJEoJUQIFk+NVkCZSwSGy4U4Y6lXJhyUV5EB4cg7Ns2DT24kKyBjZNlxmefodfUqZAn9Fz7/Xf8tmYNHspk2Y7J0uaTT2Cs6nAsL8sL8M/dBGnMB6Qtfh0+t8KRFTm8cVlGWiNRtAjMjWwrxzYPW+wYmIwUYc+GZZk0G73CzbE3NRA2suP++M9hlA/wxOCXWsmdRs0gAkSgRRMgWT5FWXJFl+2fDZeFKahgEeZng08jYqdqopRXW5kwn2E7qSVK7qT1yFJxyLTRYdgasqwZTTY0DPvXWhcMP/C2gmRb9D1FlScCRKAVEiBZPmVZKgrzehXQSYWIsnY/rFeYTU3w0YrIUoKK4hJUGnSHUWOTtq3wpqQmEQEioH0ESJZaIEupMP3gleiA9dHKh14b6kL1CbM6+lTnWUtelrvRLYCbP5TPWX6H/t+mI3K4gAWeLDHniDMOHA1EH3E228cTq0qmSKNCLsGHm7MMScTXXl1QruacZeVC7jhz6TzpZBFc96VAKB3PpY0IEAEi8FQJkCy1RJbN0QvqE6baz1jWyYbtjNc++BLRi6TZsChPw7+neGPHWVnWqtPz2P/HwEeyrJUNOzQgDtHTeqiVDdtO3wpuK+MQ4VKd9dQceOgcRIAIEIEmEyBZtiJZck1RFGYnCwv1395TzzBsk3sXHUgEiAARaCUESJatTJaKwhQ895z674UlWbaSW5uaQQSIQHMSIFm2QlnKhcn9V+0lukiWzXl/0bmIABFoJQRIlq1Ulq2kf1IziAARIAJaQYBkSbLUio5IlSACRIAIaDMBkiXJUpv7J9WNCBABIqAVBEiWJEut6IhUCSJABIiANhMgWZIstbl/Ut2IABEgAlpBgGSpZbIsvX4LJp31taJzUCWIABEgAkRASoBkSbKke4EIEAEiQAQaIUCybMOyvHbtGjbGxOCfwsIGu0nXbt0w76OPoKdHbzSnbxMiQATaLgGSZRuWpUgkwk8nfoHd0HcbvANO/ncfRruNwsCBA9vuXUItJwJEoM0TIFm2YVkePnwYZ/74EyMmfoDLBXtQkl+OyvtsnTDZ1rFDH1zKOQOzF4zxyiuvwMbGBkZGRm3+piEARIAItD0CJEuSJS/LpD0LIbllAn2D+lf6uHPzBl56sTtmzZrZ9u4SajERIAJtngDJkmTJyzJ2bRCcJ8yA2YuW9d4UxX9fQsp3W7B27do2f9MQACJABNoeAZIlybKGLKuezUTaoUzcuaHT4N3AJf3M9PFpdEg2P9IVw2J6Iirza7gIWtrNlYMwJ3dc8M/FpnEtre5UXyJABJqbAMmyhcuy/JgQI+f+itEJh7HIRj0jKc5ZyiPL/Pwj+PvsDQx29Wywr2X+dBiuI4Y1kvSTgSWDZuNQZQV6fZKOXVMMm7vvPubzkSwfM2A6PRFoUQRIli1clijbD+/hQojuWGLmXvWEWZ8sr1w6iWv/lOMdD1+U3fwv8LCyBiGjTu+w4djteG1Ab4wcObLBzi5J/hC2iw2x+qMLmBM3GD8c8YdF9d4S5MX7Y3pQMgokApjYu6BPQRJ050ujuLLUMMz+ZDPOXAf0LEbD6fn9+GNgIkSL+mG/txXWVLrBLJslJ70ajlx2gCQvHv4+wUjJF3MHYPTqBES4SOdelZ2LHYh4fx8Ep+RDXMXVYx5idvjB5kIYnNw34oq8vk4RfDk19oceLEavRkKEC7iSFOtQJTCB/bwY7PCzgXp/vrSo7w6qLBFoUwRIli1dlvwX9TZMGx+MtLs9MSchCUIVI8z6ZPl37jmUFv0Nl0kz8Uf+FDx4cLcGof4WO/DD3t2NyFKC5A9tscR4K07OP4fJ9hvxygERmOukW34kXIfFwXrdAawZZYyyeF+4BohgF8Fk6ZaMD20/wuUZidgzvzeQGQJ3zy2o/OCRLIUZDgjYsgojLYzQvdPP8Lefg+wJu5EYaIPyQ/Mx9pMyfJS+C1M6Kj9XxpJB8Drhht2JgbBFJpaOnAiRq7QcoHZkKcExf3vMyZ7A729Tfgjzx36Cso+4qPk2otwdEW+XgMNLbWV1TsLguJNYZtemvk+osUSg1RIgWbYCWXJNaIow65NlXnYmbpSVynnguAAAIABJREFUYOTkOU2XZXksE+RXsOZlUY7Yyfb4yjoOJ2XmuBjhDJefxiM10Q/deP4sOrYSApwsBbPRK6ADvs2KxHD+M6m0jsgkxkeWlgeQysTIb0ls/6Um2HE6FA4K+/NzjY2cS3ytABW6pjAzkMZ/WSGOGHtpvjSKrCPLJMzutRQmO04jVFoQcsKc4H7Bn+0/jG/jKnyIqNDpsLfUg7i4BJUG3WFE73JotV+e1LC2RYBk2UpkyQYcIZo/Ft7fF6OzRwxOr3ir0Z5cnywLL13A1X8us2FYH1Q+uIVnHj6scR4dnU44mrBZaWTJJ/bEOSD+5DJwgZVkvzf6B+nhK1mizyPJyDNnFGQJb1hFWiNRtAjSQLSuLCOt5dEf51m2v1BUp62Wc5KRYrVC6bnYGC3C5i7EzsxiNgwrO4V8yLWOLKV1rFOS5RwkpwjRU/wn4r5YgKij51F4zxD20yPwzSJHfoiWNiJABFo+AZJlq5BlGVIXT4L37sswcA5HcvQ4lb6kuTf4pP6chtfecuUfC+EeHfk79ywbhi3gh2HPiA7i1vUyDBrlhazjybhdfg1vur+HH/bvUCJLqdw2Vk/4yQHrwCFYmuhTGOUOR9EEZMZPgzTtR0GWBv6wWaiPmFqRomJkWUOWXGQZbo69qWxotPb9eEzZubpLI17jVUhYOQbmLAKsKfHaw7BcZBkO872pkAe1j4oT41pBBXRNzcAFqeIr2+H7bgg6rDiPaLeW/yVBLSACRIBepF6nD2i66seTP17MpvXc4bnlEjqyqOgYG0JUNZrh3g27YeNGFP3zD8+Bk6XiMGxO2g+8IP/F5Hc+43+4c7MctsPGKJdlxhIM8kiD1w9H4F+d0SOb77u6AOm7psAwPwruI7bj5S/rm7M8xs9BXnq/4TnLGrIsZxIbGojiGdHY7ucAPXEaovxj0WX5OkwyUXau52XzjLtwcLEDBEVHETJjLnZbSJOG5BHtqfdOYZ8PR7ScjfgORWDxDERv94ODnhhpUf6I7bIc6yYVssxfL5zxkNZZtygOPiOWkCzpG5YItCICFFm28MiyZPMEDAk9o7Yoa/fhjz/+mJdl4V8XcbUwnx+GbWhreBhWmtgjFAfjOBNOjYdF+KSewxjJS1SCokMBmLzwIPLF7VgWah/opWfBipuzZJ4SZ0ZixpxvkV76gCW3vgLLijO4OeFRgk8NWbJK1slEVRgCVXYuSVYUpvqsY+VIIDAZikkD87CTyVAe8easdYNH1FncfzsS57kQsU727HREfLMIjsylkqwtmOW/GidYRi6XDdvfIxhbgqWZsrQRASLQ8gmQLFu4LLkv8EN7CzDIU7P5sQ0bNrL3wxbi4YOHeFavI0vw8UXGsf24ef0qBo+ehl9/SuSjzCFjpuPHAzsbfXSksVtDImGCEsgfrOCGYdfA8oB0iLPmZ9Lh0LN+57DNQ/0HMZrzXI21iT4nAkSg9RIgWbZ0WTZT3+SGZH///Xf+/xV37sHFczbOnf4JdypuwGaIKy7++gvEt8rx6tBR+GFf489ZKq1WyWZMeDcFrrGb4MM/HcKGkb/rj2/TWQas4GcEOAShXfhOLHWSPVYSWIJZRxPh9+hBTRVb3ZznUrFI2o0IEIFWSYBkSbKsQeDUqVNIPHQYDiPGNtjhz/zvCBzfdICTk1MTbwrpSwl8glPYMCx7j4CZLfyid8BP9nwo9yKBucKt0uFRfSu4rYyrfsmAugU257nULZv2JwJEoPUQIFmSLGsQEIvFiFy3rjrpp76u3qVLV371EVquq/V8EVBLiAARUE6AZEmypHuECBABIkAEGiFAsiRZ0k1CBIgAESACJEv1+sCTf06yZv00LV+91tLeRIAIEAEioAoBiiwpslSln9A+RIAIEIE2TYBkSbJs0zcANZ4IEAEioAoBkiXJUpV+QvsQASJABNo0AZIlybJN3wDUeCJABIiAKgRIliRLXA0NxYPr19HBzg6GXl6q9BvahwgQASLQpgiQLNu4LKvYa+5Kly+HoEcP9prZPJhFRNR7A9zPzYWgWzc8o0erGbepbwhqLBEgAjwBkmUbl+WtI0cgzsiA0Zw5vDQ7+/qifc+edW6PYqEQndk+7a2s6NYhAkSACLQ5AiTLNi5Lbgi2PYsqueFXxZ9r3wlPUpb7va0gX4ar5oLM6t2fkqJ0pJcPwJu9KRpWjxztTQSIQG0CJMs2LEv5EKwignadO+OFxYs1jCzLkBo2Fwt3ZqJYXAUdPQsM9o9A1ExbqKKtpspS8TiuAT8HvI7pF/xw/LsPYEr3PhEgAkRAAwIkyxYuy/JjQoyc+ytGJxzGItmqHar2B24I9nZKSvU85f2LF3F9/fp6h2JVjywlyAobiYkH+2PFnjCMM9dFRfY2+E5ZCSxIx64pNZaErreqzSVLVTnQfkSACBCBxgiQLFu4LFHGFk4eLoTojiVm7lVPmPUNu3JSrC8rVmVZSlh9+ofCaNMvWOX4aLFmfjj1hAdSE/3QjTGvs3TW8u1YMaoLuCMalqXi0l5VEJjYY14Mt7RXEls8mjGQX0vzmUgULQJbNRruF/yRu2kc/0mjZRrNw+sZG3GQrRvWrvrcXI2kkbJwazpKJTrQsxiN1QkRcDFu7Paiz4kAEWgtBEiWLV2WrP6SvG2YNj4YaXd7Yk5CEoRqRpiqdGaVZZkTBif3C/DP3QSpourZ8qPgPmIDTJcl4muvLigXLcV7s07A+YAIi/opkWXGEgzyOgG33YkItGWLRi9lEazIlRcjO6yGZLlSa8x3qlCmMMMBAXvYgtQ9yhHnMwJLdIORzUQrOOYPm49v4POjMfAyLkO8rysCxQuQvmsKGo+TVaFL+xABIqDtBEiWrUCWXBMetzBVluV+b7AgDxFKZHkxwhkup6YiM36aTDYSJH9oi8WGMTgd6tBwZCm+hoIKXZiaGfARKLJC4Dj2EubLyqo9Z6koS3XK5LsE145Ia6mIZZJ+Y9UqfPHOazBCrXpo+11O9SMCREBjAiTLViJLbqhQNH8svL8vRmcPJp0VbzXaOeRzlIo7cs9bGvn58b+qLCyELnu2ktsUZcklBrVjz1vW+8ylCpFlfRmuir9reBi2ZuKQtN5O1WJWJkt1yqwjS0hQJIpCABsqTv/rJvCiM4JiIuHR49Ewc6OwaQciQARaNAGSZauQJZPI4knw3n0ZBs7hSI4eB1Wm0+SyNPn8c+gYGUGeHWvg4QG9gQNREhiIDgMGwMDTs1qWnCSvRUWh05gx0LO3r9v5y2Mx2f5LdFcyZ3mngchSqLMWWZHDG4wsy2Mnw/4rY6xKWIkx5iyvtpaYmxJZ1ldmbVlaVxSjpNIA3Y1YmZIKpIWOxuTjbkhOEaLuE6kt+vuAKk8EiEADBEiWLV6WYmSGuMNzyyV0dIrAMTbHpooouWY3JEv5iwm4yJITIydM8enTMJg4ETcTE/Es+7chE2j9mywbNsUBX20JxIjqbNhI6C05jk3j2CxfrflDSVo4xk9NwuC4k1hm1/CcZWGUOxzj7bDr4GI4CIpwNGQG5u62QLjCMGyo0Vb8ssqRH6ZVNmeprMzasuwuk/SXB9ZgVJdK6VwpyZK+VIlAmyJAsmzhsizZPAFDQs+oLUpFWSoiqJ0JKxfmQ7EYaN8eHV59VYko5WeqOVwq0LfCsMXrEenRQzrXyLZGM1OtEyFi2T41hCfJQtRUH6xLL4VEYIKhkwYib2cxZmT+P3tnAhdV1f7xXwIqvgoJBLhFiLhTiRGaGymGFpD6KoJLLoAiqGM6vmHuBAqJJpW44YIbCikmuJDiO4n2Cgj6F8EVFAkDAhU1Rx3U/7l3AGeAgQFEGOa5n/ykzLnnnvPl3Pud55xn5oRjEnNwYfRsfCY8jPz2M/io71l1s2GLr1lWlt3ZFHfMkilYEp5anA3bD/OCNmFKHSRSqdXThzpLBFSIAMlSxWXJMntweH82+jgPUDqiLOly2ciS+zn3cRJt9oXqLYcNKyXDCbNgzRpotG8PgzlzVGh4U1OJABEgAq+HAMlS1WVZi3GgSJYlX39Xi6rpVCJABIhAoyJAsiRZlhvQinYeaVQjnzpDBIgAEagGAZKlGsuyGuOEihIBIkAE1JoAyZJkqdY3AHWeCBABIqAMAZIlyVKZcUJliAARIAJqTYBkSbJU6xuAOk8EiAARUIYAyZJkqcw4oTJEgAgQAbUmQLIkWar1DUCdJwJEgAgoQ4BkSbJUZpxQGSJABIiAWhMgWZIs1foGoM4TASJABJQhQLIkWSozTqgMESACRECtCZAsSZalBF4+f470gAC8Y2cHXfb9sHQQASJABIiAlADJkmRZSiBreyhycu+h6OhB9BWJ6B4hAkSACBCBYgIkS5IlT4ATZW7+Q2D0V2yD42coch+DPqL/qviNIsbVPy5Bl21SbVyyN5iK94iaTwSIQP0QIFmquSyfs6nX29u2oeD+E6koS45iYfbYuQPN//UvNGneHBotWigxSiPhaiZEaVyq1RJmfadicaAAA5TdlVqJqyhVJG8rRvcPhvn2c1j5iVJnUCEiQASIQIUESJYqLsvCWCGGe12AY8RReNdgM+Lzq1bh5o10vLvg+3ID5EHObWjNnwFNTS30/iUCTfWVsZ1UlghMx5aRLEh9cBOiAHd4He6B9YlBGEIRHj2KiAARUEECJEsVlyUKmJyGsEjusSnc91dPmH8fOYLs27cRr9kMvW3/jdtJB/Hsn3s8EePun6LJ3r3QMO+OZnaOKPIaD8sd25UQprwspXgzETRsMI4OP4ljAhP+JwVx/vASbkdivgRaLc1gv2IHVn5hDC2kwd/GAQlW7mh6inv9BbRNHBEQ8DEOf+ODE5liNDGwwuyQnfDk3xxIkBEugJvPCWSKn0NL7jWuLUEwjxLBuzsQ6WqGIL3Z+ChpMw6Vq6cAcf5eEG5PRL5Eg7/m6ohA2Cnz/kAFb3xqMhEgAtUjQLJUdVlyusgIxaRRPoh/0gkzIqIhrEaEeeXKFfx++n+8LE+tn4BHeRk8kQEtBqF5r/7Qsv2ilJBywqxIlkCavw0crguQzoWbmcFwGLoJhsuj8LOLMQpFyzBh2hnYHuSkJpXlbsP5+CXUA12QjGXDx2BnQX8sPbIBXxlLIPr2M7hmzkBy+CToJi1FH5czsN8bhUWWQPKy4RgjGoYokTe6o7wshUnWWLBvC9w6FiLMbSiWavoglbVJK1YAizn38e3xELjoFyDcYxgWiecjcc946FbvnqLSRIAINEICJMtGIEuuCzUVZkWyNL3zNjp88RVaOjqXG/KP3Ubh3R9+wHsWFgpuh0pk+d8RiI2Zg6JAW9glTJTKjq9FgpiZllioG4Jzfq14WV4XSKdxuSPFdwBG3JwrFS13RLrCLMhcKkTxXWQ/0IShkQ6LSvnCGDDiJuamb8HICmQZZB4FERdmlq2nWLp92bT04s96QQ9l6m2ENz91iQgQAeUJkCwbiSzZxCZEc0fA9ddctHZi0lk5UKlRUFaWbZJuIq+1CTrPXQk9AyNIxA/4et5qoolmLfWQdGI/3v9lH3rv3q1gSrbqyFIuyixu5aufdSkny3LlZWXJ+s1Nn36zKxm5bBpWetiwJdNqypIJO0cUjAVsOjjxFssKbm+LJSFBcOpIi6xKDSQqRAQaOQGSZaOQJRPGwrFw3XsbOrYBiNk4EsoutSUmJuIwW7ts964pnt1KwvMXT5H9uCkGjZyKFw8ykRyxkCfU0rAjBs7YxctyUP++eK9lSzRr0wZvaWiUIVj1muUNBZGlUGMtUoLaVEuW7XaPg9VP+lgV8T2+7KDNzffCxuE6BNWUpfmDXOQV6aCdHqtD8gDxfo4Yd9oeMSeE6NTIHwLUPSJABKomQLJUeVmKkezrAOdtN9HCJhCxbKpSWVFyXb9//z4uXWKfRdR9tTJ3+PBhWH7qiGcF1xXKsmvXrgpGV9ls2FT8Mt8dS+OtXmXDllmzlMQHYNTEaPQLO4vlvaVrlrLTsJVFlm8HO2BAeG/sObQQ1lo5OO47BV57TRBQTVmWSPeHg2vwhXGRdO2TZFn1E4RKEAE1IUCyVHFZ5m0djf5+52skSkVj/Oeff0b3PkPxOO9KjWUpKqlcwecsq8qGVVaW3SUpCJ7ohh8T8yHRMsCgsR8jY1cupiSHY5JuBdmwitYs2XRuzJIpWBKeWpwN2w/zgjZhSjWSpdTkmUHdJAJqSYBkqeKyZJk9OLw/G32cB1QroqxstK9Zswbvdf0Azx/9hVtnd/FFtXXboMtQAVLPxWGwzSC8//77annDUKeJABFQTwIkS1WXZR2M25CQELx8+RJNmzYtV3t+fj7s7e3RpUuXOrgyVUkEiAARaJgESJYky4Y5MqlVRIAIEIEGRIBkSbJsQMORmkIEiAARaJgESJYky4Y5MqlVRIAIEIEGRIBkSbJsQMORmkIEiAARaJgESJYky4Y5MqlVRIAIEIEGRIBkSbJsQMORmkIEiAARaJgESJYky4Y5MqlVRIAIEIEGRIBkSbJsQMORmkIEiAARaJgESJYkywpHJvedsW+//XbDHLXUKiJABIjAGyZAsiRZIiYmBtzuIyVy5L695/bt2zAyMoKXlxe0tdlOHHQQASJABNSYAMmSZIl169Zh4MCBeO+993gaL168wCq2CbKdnR3i4+NJmGr8gKCuEwEiICVAsiRZysny7NmzEIvF/LZdFhYWuHXrFgoKCjB79mzo6enRfUMEiAARUEsCJEuSZaksmzdvjn379uHLL78spXLx4kU8evSIn5adN2+eeglTZvsvY/coiObpsenqQvT8pAvqdWJaktMw2qGWj0zqtLoSIFmSLEtlyaEQiUSYPHlyKZVTp05BU1OT34EkLi4O8+fPr2INU7r5s6jsHdXBHVHBgKfDZmRVeLfZIJDbsJltORYu8IDfyXQ8kmhA28gSE1asxTwbY2hVcJ4kIxwCDz+cTH8ECSth0MMJSzYtZhs4V1S6erf5neKNpSOOLoMlZ8c/FuCjydfhefoXTDWsXl21Kp3mDxuH6xDwG1rXYztq1Qk6mQioNgGSpYrLsjBWiOFeF+AYcRTeNdyouGTNsjJZfvLJJ0hKSsK5c+eqWMOUypKZD1v4J7uCo6wA+GISxAqsMOcvD+wNcUUPHSBHtAwTpsWiX9hZLO9dpq4Cdq0hy1EwZSN2eFpDpygLx32nwCu2H8LOLkfZ4tW9VdP8beBwXYD0SjtS3VprUL5CVjWoh04hAkSgxgRIliouS/DCYJHcY1O476+ZMJWVJYfqwoULfNKPUMiEWOFRG1mmwd/GAclTkhE+Sbe4dgmiZ3+CbV3CsN+rk9wVeZklTEDCAbdXG19L2PV7LEHL9SkIGsL5l4tU3eBzIhNiNnlqZOmOn7cJpJFipCvMgvQw+6MkbD7EXm9iAKvZIdjpaYFoVzMIRSWX6wD3KBG8IR/hFcT5Y/rXW3H+Htsc28QRNm9H4tLHbLrWuzur2gxB5tK/8wd/LXNEibzRnZdfAnqOzMeJyCaYzNVtFAd/LyG2J+ZDoqENE8fViAi0Qy7Xx82vYnEb7k1IlzKRZg37qMXenGSEC+DmcwKZ4ufQMrDC7JCd8Kzhm64aP4XoRCKgAgRIlqouS94HoZg0ygfxTzphRkQ0hNV82FUmS06OCQkJ0NFhYV7xcfXqVQQGBtaBLIG0QFuMCHkGW6E/5jtZwVRH8XRqOSGVa5E0Up2ROho7D3wDa60MhLiORZD2Upxm0aIuJzBhEqwX7MMWt44oDHPD0KWa8Ell053ssuUiS9kITxKDmZazcHtKFPbNZRthJ/vCwXkbiqYqK8ut0HReh/We78PIsDmiJllhlbYvjm1wgn5BGNyGLoWmTyqLzvmGyE/Dyv27Fn38OxgOA8LRm81KLLPkuuAA5+jXE5WrwLOPmkgEqkWAZNkIZMl1oTbCrEyW3GcuMzMz5SiFhoZWKcvSoIw/szgyKw6y+B8pnFpk0c7h1fhu9S6cyXyGpgrXLKVR6LFhMtFbuaEfjemdl8Fg5zn4WRe/mBmEYYPPwCU5HJNOykR70vCPTSEHwZyL9FhbK5Vl9HR0XtAc61OCwAWwrLRce6qOLC/D80oonPj3AhI8yM1DkU476PGZQxIWWXdFcLfivlUqy1r0sd1ujLNaBcwMht9k9sZEW4zcvCLotNOr3wSmaj3CqDAReDMESJaNRJZAAURzR8D111y0dgrBuZUDlR5BFcmS+/gIF0FyU67clxNwn8H88MMP+TqXL19epSxrtmZZpsniLPyx2xfC7+NhtT6RTavKR5lVR5by8pPWLvOzq7WQpey0ao1kKZOww+lRLlFJ2tIOXAau1NqVRJa166P4ahgWzw/G8Wt38FTXCpMD18F7gL7SY4cKEgF1IUCybBSyLEDcwrFw3XsbOrYBiNk48tUanhIjuSJZ5uTkYOPGjfjggw/A/f3p06eYNm0anwlbZ7K8tRFjx/yGgWH78Wp5skyUJdOfpKV94JTiVsmapaKo6wQc46LgGV8LWcYKYPFNS4Sc84M0aK1uZCkryyQs7eOC806R2DWrB7iZZ7k3AjWKLJXoo+ldZD/QhKGRDssjFiNrhwc+922Oldc2wl6JcUNFiIA6ESBZqrwsxdK1pm030cImELFsLa66cUFFstywYQNPpk+fPvzX4HFTr9bW1hg2bFjdyRKZCHYYik2t/oPdGybx2bAPUkPhMf57YH4i9owvSfop/qUVZ8OKZ+7GhklMMiXZsGdscZBLpCnOrn21ZpmDsJkOWCqej8Q946VrliVJN2WjzqqmYSWxEFjNwM2vKl6z5Kdwj7F2HF+ErmK29ujmjFV542USfGRlyeqymIP7849gw1fGkPB9Xok7zrKRZQImJByAG/fLrXTNshp9FC9FH5fzcIrah7ldNJHDr9mSLNVJANRX5QmQLFVclnlbR6O/3/kai5Lr/tatW/HOO++A+1KCtLQ0TJ06FVeuXMGvv/7Kf+XdkydP+OnYsWPHwtjYuA5lyRojvoqwebPgz3/OEtBqaYa+UxcjUDCgwjcBctOXLIvUyHICAtZ5o3QmscpM0eIM1erKkmtqchCmzFiPxPwXLBv2fZg+OI+Ho4sFVxiP78a7YudlMZcqC0ebtxF56WMFsmST6DFCjJl3iGWlsuLdXPBlizDEmO/EOX6xNQ1r7Z0QfPkZPg26ho0dq5sNq6iPEqRsmwbB6jPF2bA94OSzDT521X27pfwDh0oSAVUlQLJUcVlyH404vD8bfZwrlokyA/POnTv4/fffkZ2dzRefPn06/zV3x44dQ2FhIS9R7hAIBPz/K5+GVeaKjaOMRMK+BkGrZB1VOg172fMKQqVZO3QQASLQiAiQLFVdlq9xMKanp+PIkSNy3+DDfXSEiya5PyUHyZIj8QcWWC9Bk4BdWGajj4JwDwxblIdpx9laqMlr/KVQVUSACDQIAiRLkmUpAS4D1tfXF23btlU4OLky3KH4SwkaxLh+I43gvpTAS7idTcOyCJNNF9t/H4ZAmsJ8I+zpIkTgTRMgWZIsy405LsJUdHDZsJXJ9E0PYLoeESACROBNECBZkizfxDijaxABIkAEVJoAyZJkqdIDmBpPBIgAEXgTBEiWJMs3Mc7oGkSACBABlSZAsiRZqvQApsYTASJABN4EAZIlyfJNjDO6BhEgAkRApQmQLEmWKj2AqfFEgAgQgTdBgGRJsnwT44yuQQSIABFQaQIkSzWX5R/nLuJe4cNSCvpv66BPbwuVHtTUeCJABIjA6yZAslRjWf5f2nUEbtoD046mpRTSb2RggddE9Oxi9rrHGtVHBIgAEVBZAiRLNZZlwoVU7I0+iVlfe5VSWBUQhGljv8CHPTqX/izh1l18/J6eyg5yajgRIAJEoLYESJZqLssfQsJh+dGHpRROx/0P8z3Goek77yLy/+4g9koe/tVUEwuHd4VtV8Pajrc3fr746h+4pGsFK+Pq7gQixtU/LkHXygrVPrVWvayv69aq0XQyEWj0BEiWai7LHQdiMHHqhFIKG9dvwzOzTyDRbIYhPdqhb6d38L8bfyP9zj0EjOypxA0RCVczIURlS3ZwR1Qw4OmwGVkV1mKDwPQtGMnvP+kBP34/Sw1oG1liwoq1mGdjjLK64zdY3lxSG1e2K4bNWYuVTh2Ly+Zh6+j+CDbfjnMrP6m87XIbKrOieVsxun8wzLefQ1WnKgFF+SL1dV3lW0gliYBaEiBZqrgsC2OFGO51AY4RR+FtUb3oSdE0bBfrQbgh1sLc4T14Otf+eoAl+5NxXDAQOs01q7hRpLJk5sOWkZUULSsnvqgEsQIrzPnLA3tDXNFDB8gRLcOEabHoF3YWy3vL18fL8tgw6YbKEOPu+d2YOeV7PJx2HFHV3Serwvao5TOBOk0EiEAFBEiWKi5LFDA5DWGR3GNTuO+vnjAVyXL8yOGYdfRPzPu8J9Ky70OnRVOk/XkfIyyMMfJDxdt3SVHWRpbSDZSTpyQjfJJu8W9GgujZn2BblzDs9+ok99uSl6X0JUnMTFhyrk7+GXbsvUOkqxmCzKMg8u7OXi1AjNAF/4nmolYtGFjNwPptAjQPko1QARte9Fw/gmAeJQJ/Kh/xusHnRCbTsjaMLN3xMzvXUpvrsivMgvQw+6MkbD7EXm9iAKvZIdjpaSGNcAvi4O8lxPbEfEg0tGHiuBoRgXbQ5081w5oiexilHsX5DwLAgutKryt7riQjHAI3H5zIFOO5Vplr0uOOCBCB10qAZKnqsuSf46GYNMoH8U86YUZENIRKRpiVJfh8d6YAPd/Vx6iPTKCjrYU/rufh9OW/sN6lVxUDsDayBNICbTEi5Blshf6Y72QFUx3F0XJFspTK+pXkZGXJ1T3qmDU27FoGG90chM10wArtACT/bAetcpGlbD3SiHdG6mjsPPANrLUyEOI6FkHaS3Gahc+6nCyFSbBesA9b3DqiMMwNQ5dqwieVTStrFWL3OCus0vY48z8+AAAgAElEQVTFsQ1O0C8Ig9vQpdD0SWVC1uJlKUyyxoJtqzDcRA/t9I7JtP/VdfdGLYJF4WHMHfE1CmYlYs/4fxDsMADhvSNwdJklkOwLB+foCiPw1/rEoMqIgJoSIFk2AlnyEVUNhFmZLPM13kZY0p9YNOJV8s/UTXHYNeVjtHubC6cUHRWtWXaAe0mEVnKawmlPCTIOr8Z3q3fhTOYzNK1qzbJ0GrakYu76C9Ds5ysIHi4bWTZFoK0dUqZdQahTsYBvn8HeS7oYziJo3UplGY3pnZfBYOc5+FkXXyczCMMGn4FLcjgmneQiS/Pi6WDudXnRPsjNQ5FOO+jx2CQsau6K4G7SaJePLE0PIm5RyWdbZc8tf13+DcJ1AYtAB0sljJkI9psMK1NtiOWuo6ZPNOo2EagjAiTLRiJLbopRNHcEXH/NRWunEJbQMrDKIVPVR0es/E9iq3t/tCxep9z832voaqCNr/qYVCnLmq1ZlqlWnIU/dvtC+H08rNYnImiIfJRZvcgyE55dZ+LpSgVrqZXKssyULN9MmZ9drUyW3BsZNl3q4YeT6Y+YKqVHB/dXsnw1TVxWtAqSpUxnIOaEEJ3EVxG2eD6Cj1/Dnae6sJociHXeA/jpXTqIABF4vQRIlo1ClgWIWzgWrntvQ8c2ADEbRyr1wKxKlt4HL8GsTWvY9mzDU7qYdQ8/x1xmiT7960aWtzZi7JjfMDBsP14tT8pHYrIXrt6aZQWRpfgush9owtBIp4ppWEWR5Qk4xkXBM74yWSZhaR8XnHeKxK5ZPcDNKstODcuvqZaVJXfdAHTYH4fSwLMUAEtoyn4ATUMjvk5x1g54fO6L5iuvYaP9631IUG1EgAgAJEuVl6WYLVc5wHnbTbSwCUQsW0NTNrLgZLl+VyRs7WxLKRw6eARfuzqhj2VPXM55COGBFHgM6YrLd+7j/uNnOMvWLtc590I341YK7p/arFlmsnW4odjU6j/YvWESnw37IDUUHuO/B+Zz63QlST/SS5fNhs06HoRZ87fiuUw2bPk1SxuEcuuO2gUI9xiGFZq++J3ZRToNm4AJCQfgxgOsbM1Sut65VDwfiXvGS9csFU7DxkJgMQf35x/Bhq+MIeH7sxJ3nJWJLAsRPX0QFuVOwcYdnqzNYsQHC7DbeAV+HHunWMJR2De3CzRzpGuhJEt6rBOBuiFAslRxWeZtHY3+fuerLUqu25wsN4UdwhcOn5dSiAiPxJzJo/ExkyV3fOwfizHWprBmn7fsoPcv/Jp0G48fP8G3w7rWgSxZldzU4rxZ8Oc/ZwlotTRD36mLESgoP71Y9ecsK8mGfcFltHpi405PSPOh0rDW3gnBl5/h0yAuOqtuNqyiNUs2QR4jxJh5h8CSVqHdzQVftghDjPlOnGMLoJVHlqxZslm4z7kM3skIXOeNAUzokpRtmCZYzdZ2pdmwPZx8sM1HmmVLBxEgAq+XAMlSxWXJPUwP789GH+fqr1VVNQ3LoflJlI5CyUuM/6Qjjl/6CyfT7kCPrWEGV5kV+3oHKtVGBIgAEahPAiRLVZdlLUYP90XqazaH4d33XiXs3MzIZF+kPgE9Onfka86+L8aX6/+HJm8Bn7KvuxvK/qji197VAhOdSgSIABGgNcuyYyD/3iMYtG5Z46FR3+dXt+Fnky/hvswWXa3ZFl3WvaTf3FNycF+k3tVYR4lv76nu1ak8ESACREA1CFBkqcaRpWoMUWolESACRKD+CZAsSZb1PwqpBUSACBCBBk6AZEmybOBDlJpHBIgAEah/AiRLkmX9j0JqAREgAkSggRMgWZIsG/gQpeYRASJABOqfAMmSZFn/o5BaQASIABFo4ARIliTLBj5EqXlEgAgQgfonQLIkWdb/KKQWEAEiQAQaOAGSJcmygQ9Rah4RIAJEoP4JkCxJlvU/CqkFRIAIEIEGToBkSbJs4EOUmkcEiAARqH8CJEuSZf2PQmoBESACRKCBEyBZkixR8DATwh2d0LXdIHwz4kQth6x082dR2Vo6uCMqGPB02IysCq9gg8D0LRjJ79/oAT9+P0sNaBtZYsKKtZhnYwx+20mZQ34/S+4FLbQ064uZ/sFwt9SuZT/odCJABIjAKwIkSxWXZWGsEMO9LsAx4ii8pbsYV/v4NfE7HEzw4c8L/OoG9Fu92rKr2pVBKktmPmwZWcnZaf6wcbgOASfI0mISxAqsMOcvD+wNcUUPHSBHtAwTpsWiX9hZLO9dgSyPDUOUyBvduZckDxD/43i4bTeEz2lWr271W09nEAEiQAQqIkCyVHFZooDJaQiL5B6bwn1/zYQ5f4c5urW3Qdzl7Rjx8RJ8abVYjkrAQVtcyf6d/1nV0WdtZJkGfxsHJE9JRvikEtNJED37E2zrEob9Xp3k2sVHlrKy5F/lrh8E8ygRvLtLkBEugJvPCWSKn0PLwAqzQ3bCk3tTwcs6AT1H5uNEZBNM5ssXIM7fC8LticjnoloTR6yOCISdPlev7GtaMLCajZCdnuCqinQ1w5oiexilHsX5DwKQzt4lSDLCIXDzwYlMMZ5rGcBqdgh2elqUi47psUQEiIBqECBZqrosuYAqIxSTRvkg/kknzIiIhrAaEebVO6fgHzkE3iNjcebKTlz+U4RVX10vpcL9jIs6uZ9xfw+JncqX7dJ2oIIRXhtZMocF2mJEyDPYCv0x38kKpjqKo+VysmSRZeoWNziv0YR34h6Mv7EUfVzOwH5vFBZZAsnLhmOMqDgS5WW5FZrO67De830YGRpB55QAFnPu49vjIXDRL0C4xzAsEs9H4p7xuB/sgKGbDOF7bAOcdDOwZqwDwnuF4SwLdzlZCpOssWDbKgw30UM7vXsIdhiA8N4ROLqMu7AvHJyjK4yOVeMxQa0kAkSAZNkIZMnPQNZQmFtPupcKUlacsjIsWdMsQaWMLEVyXDvAnY/cZH5Y4TQs3xNkHF6N71bvwpnMZ2harTXL4jXOgHXwHsDCQfFdZD/QhKGRjjSiS/HFgBE3MZeb+uWvfxmeV0LhVOLjJKlc+65ahcWf9YIeSs7PQ5CtHRImykS8ka4wCzLnp4CvcpGl6UHELbIo7mAhdo+zwirMRLDfZFiZakOcm4cinXbQo6VUeuoSAZUkQLJsJLLkpglFc0fA9ddctHYKwbmViiI/+Q5PWVc+chvQbTKmDt7MFyxZz+QEyR0lUWhdRZZyrRNn4Y/dvhB+Hw+r9YkIGiLf1oqnYWVrkE6dfrMrGblsGlZ6FCcSKVgzzREFY8GKHUi89RBob4slIUFw6nidnx7eXDYzScMWQdc2QsJkGWQeBZHsuwHxVYQtno/g49dw56kurCYHYp33APAzunQQASKgcgRIlo1ClkwKC8fCde9t6NgGIGbjSKUeyhVNq3KRJrd2uc1LwpOR/besOOtElrc2YuyY3zAwbD9eLU9K2PplVwR3KyMj1raqZFm4exysftLHqojv8WUHFtLJCrICWUoe5CKvSIdNo7KyXLKQnyPGnbZHzIkROMgiy5RpVxBaGoa+GjjcNKy8LMW4m/0AmtzULvO7OGsHPD73RfOV17DRXuWeEdRgIkAEGAGSpcrLUsyWxBzgvO0mWtgEIpYllygbvXCJO/kPMuXWKEumYt2GbEW/rhNLP1bCYeKSe7hEn4qSgGTUUYts2Ey21jcUm1r9B7s3TOKzYR+khsJj/PfA/ETsGS+f3lqVLO+wdcYB4b2x59BCWGvl4LjvFHjtNUFA6TSsfDZuiVx/OLgGXxgXSdc4eVkK8YytpY460AMr9/ljZAcgK3IxllxxwboFvRFTTpZJWNrHBeedorBvbhdo5oTBbehSkiU9comAChMgWaq4LPO2jkZ/v/PVFmXdjdnaJfiAm76cNwv+/Ocs2ScnW5qh79TFCBSUn8KsSpaQpCB4oht+TMyHhGWkDhr7MTJ25WJKcjgmZVf00ZUCxCyZgiXhqcXZsP0wL2gTpvAJU2UzZUumaLX4BJ+y07CSlG2YJljN1l2l2bA9nHywzcdO6Tcydff7oZqJABGoCQGSpYrLkmX24PD+bPRxpvWwmtwAdA4RIAJEQBkCJEtVl6Uyv2UqQwSIABEgArUiQLIkWdZqANHJRIAIEAF1IECyJFmqwzinPhIBIkAEakWAZEmyrNUAopOJABEgAupAgGRJslSHcU59JAJEgAjUigDJkmRZqwFEJxMBIkAE1IEAyZJkqQ7jnPpIBIgAEagVAZIlybJWA4hOJgJEgAioAwGSJclSHcY59ZEIEAEiUCsCJEuSZa0GEJ1MBIgAEVAHAiRLkqUS4/wFK9NEiXJUhAgQASLQOAmQLNVcli9ePENm2iI8fnhD4Qhvpm2It9+xhUG70Y3zLqBeEQEiQASqIMDJUvZ46++7D18atG5ZY3D59x6Bzq8/ftX9xWWk/Ad6ht3RUq+HwlObNNHA7at7oKM3BHrGw6t7CSpPBIgAEVB5ApwsO5q0Ke0HyVLFZV/dEZn6v5Ho8tG30NRqiSePc1CYdw5ctFn2+KcwAy9fNoN+W3smzM+re5lGXJ7bkiwI5lEieHdvxN2krhEBNSdAslTzadgSWRZJHiH7+h60NrLGc8kThbfF40e30FL3EybNUQrKSPezFJV9tYM7ooIBT4fNyKrwTBsEcpsysy3HwgUe8OP3s9SAtpElJqxYi3k2xuB2lSw90rj9KKuo643c3NWQJd9m+Q2n30gT6SJEgAjUmgDJUsVlWRgrxHCvC3CMOApvfpPi6h0lsizI/i+0muuxqLFfpRU8L3qEmylb0KnXelburQrK1mbzZwliBVaY85cH9oa4oocOkCNahgnTYtEv7CyW91bQtHqVEMmyeiOOShMB1SRAslRxWaKAPayHsEjusSnc91dfmCWy/DvrOJuKbYV3OtjyRP55cBOcQDW1dNC206vEnqJnhbiWHIjufX6pNLJkYSK2jKzkpqhQcGnwt3FA8pRkhE/SLT5ZgujZn2BblzDs9+pUcYUKZFkQ5w8v4XYk5kugZWCF2SE74cm9oeDLJ8DKvSlObU9E/gttmDgGIODjw/jG5wQyxU1gYDUbITs9wRWPdDXDmiJ7tLsSU1zXICwI24hJHbk3J2VkWRAHfy8htifmQ6LB1bsaEYF2yPW3gcPmVzG1TTEfSUY4BG4+OJEpBrRN4Lg6AoF2+qxeCTLCBXDj2/Ncvv2q+ayhVhMBlSZAslR1WXKP1YxQTBrlg/gnnTAjIhrCakSYFcny8YMM5N0+BsN3h+OpOBeF+ZfwXg83nlTdypJ5LNAWI0KewVboj/lOVjDVUSJarkiWmcFwGLoJhr7HsMFJFxlrxsIhvBfCzi5Hb778bhjO/wWhHl2A5GUYPmYnCvovxZENX8FYIsK3n7kic4ZU2pwshemjsGXvCtjoFyDcYxgWZE/ByWMCmMjJshC7x1lhlbYvjm1wgn5BGNyGLoWmTyp741AiaZlpWEksBFYzkDp6L6IWWaDw8FyM+LoAsxL3YPw/rP0DwtGbzRgss2RN9HWAc3Q/aftV+pFDjScCqkmAZNkIZMl1oabCrEiWty9vhUH7T9GilSlPJ+vqTvbRkd5opdddaVmK5Lh2gHvZBBiFU6csojq8Gt+t3oUzmc/QVNGapWz9FdR1g0nXLmEiksMnQRqjykSAKLt2mALfASNwc+6raJgTZJB5FEQsa0f273xVhaFwsvwFNnFR8GwrG1lK8CA3D0U67aCnzf9WmGy7IribtB5pRCsjy+jp6LzMADvP+cGar1gaWV8XsHYM3o1xVquAmcHwm8zeNGiLkZtXBJ12euCrpoMIEIE3SoBk2UhkCRRANHcEXH/NRWunEJxbOVCpgVSRLO/c+AXNW7WHnlEfvo5bqRtgZPIFtFt2UFqWNZuGLdNkcRb+2O0L4ffxsFqfiKAhCqLMCmSZVmbaU1qzBmyDrmFjx7KylJFU8dRxpbKUiyblp2H5aVUPP5xMf8RUKT06uCuQZaQrzISicr8n0xkxOCHsBPHVMCyeH4zj1+7gqa4VJgeug/cAboqWDiJABN40AZJlo5BlAeIWjoXr3tvQsQ1AzMaRUO6R+gI3Lniho4U7cjOPya1Z3koLgYZGMzwveowHBal4f+CPPKk6nYa9tRFjx/yGgWH78Wp5skx0VtEdoiiyTJmGK6FO8lm03PnlyldTlgojyyQs7eOC806R2DWrB7gZZLmotKLIMqAD9sctgkXZfonvIvuBJgyNdFj7xcja4YHPfZtj5bWNsH/TTwm6HhEgAiBZqrwsxdL1rG030cImELEsq0Y5UUo7np/9C/4pPAvJ03vQNfiwNMGHe+3h3TRoNG2FFiyivHhqFhPmT3UrS2Qi2GEoNrX6D3ZvmMRnwz5IDYXH+O+B+YnYM74k6afML62iKd20QNiOOoAeK/fBf2QHNpccicVLrsBl3QL0vlX9yPKbTGds2rWsdM1yUd40HI/yLLNmydYgLebg/vwj2PCVMSR821fijrNsZJmACQkH4Mb9kgqjMX3QIuRO2YgdntbQFscjWLAbxit+xNg7S9HH5TycovZhbhdN5IS5YehSkiU9s4lAfREgWaq4LPO2jkZ/v/M1EmVJ1+/lHEX+nUNsXbK7nCzLDsrC/Av4l45pHWbDsiuKryJs3iz485+zBLRamqHv1MUIFAxQ/CZAiWxYDZZparskBEFOHaFVg8hSLhu2nR18tgfBqYJs2IIYIcbMO8QyWFlyazcXfNkiDDHmO3HOj1uVTMNaeycEX36GT7npYBYiymbDPtcygNXkQKzz5voqQcq2aRCsPlOcDdsDTj7b4MNnytJBBIjAmyZAslRxWbKnLQ7vz0Yf50pkosSoKsg5gkd3T6B953F4+eK5wjMe3b2E+wU3WHbsSiVqbRxFyiX4NI5uUS+IABGoBgGSparLshq/7KqKFtw5gHu5v+HZ03yFRbVbdYJpD1/2umZV1TWa10mWjeZXSR0hAjUmQLIkWZYh8JL9u6Jv5qnxGFP5E0mWKv8rpA4QgVoTIFmSLGs9iKgCIkAEiEBjJ0CyJFk29jFO/SMCRIAI1JoAyZJkWetBRBUQASJABBo7AZIlybKxj3HqHxEgAkSg1gRIliTLWg8iqoAIEAEi0NgJkCxJlo19jFP/iAARIAK1JkCyJFnWehBRBUSACBCBxk6AZEmybOxjnPpHBIgAEag1AZIlybLWg4gqIAJEgAg0dgIkS5IlzmY/w1sKvrSnVdMm6G6giaIX7DvOi7hv95EerZrSt/w09ocD9Y8IEIFXBEiWai7Lrf/3D85kidFVT6PC++Lk7SJ8ba0DHSZHYWwhXyb7YRHiJr6D9jrq8/2w9NAgAkRAvQmQLNVclmviH+BDvRewMq5YlusvStC0aVPMsWrJk7LensfE2QQ7HVvDuGXF57ypW0p89Q9c0rVibWe7LNf7UX4DabkmKdhGrN6bTQ0gAkRAKQIkS5JlqSwFoicQZb3anutl8axryRTtOy3ewqmJhnAIL8AOB0WyjISrmRCissOvgzuiRN7ortSwVKZQHraO7o9g8+04t/ITZU5QooxUeJuzKi5qE5gOtre2goNkqQRgKkIEVJYAyVLFZVkYK8RwrwtwjDgKb4vqR1iykeUHO//B/038VymRycfE+Na6GTq3bsL/bOpvTxDx73dw6vZTfNy2KZprVrRuKZUlKhWLKtwvVcivXBdIlqrwW6U2EoGaEuBkOWZFeOnpb/199+FLg9bSKbeaHPn3HoHOf4P8CpichrBI7rEp3PdXX5g1kWXl46IKWbLNqsMFbvA5kQkxtGFk6Y6ftwlgqc1qjXSF2Zoi2Bul4uj5DxCQvgUjy5Q3cVyNiEA76PPFzRBkHgWRN4tX+XKTsSQmGxItA1jZdUV2tCbmcnXwU6CXYTvvKaJ+TET+C23I1lNxfyqWX0GcP7yE25GYL4GGtgkcV0cg0I5rjbR8gpU7mp7iXn8BbRNHrI4IhPRlrg3XIeDaw/4pyQiHwM0HJzLFYAVl6pEgI1wAN58TyBQ/h5aBFWaH7IRnDd4I1eT+pXOIABGomADJUsUjS675koxQTBrlg/gnnTAjIhrCajxYy8qyu740iuSOR5KXaKbxFth/aMLmYjPuP0fadOMq7qXKZClBrMAKM1JHY+eBb2CtlYEQ17EI0l6K02x+U5eTpTAJ1gu2YdVwE+i1a4U/isvvjVoEi8LDmDviaxTMSsSe8bpysswMGobBYeb48eAafKFfgHCPYVgg6s0C3BJZboWm8ybsWmYD3ZRlGD5GhGFRInCeVVqWhbsxzmoVtH2PYYOTPgrC3DB0qSZ8Utk1tKSy3Ko5BVxbLXEVGyaNxrpWPtK+ycpSEguB1Qykjt6LqEUWKDw8FyO+LsCsxD0Y/08wHAaEozebKVhmCST7OsA5uh/Czi5Hb3qKEQEiUG8ESJaNQJa1EaasLN/f8Q/mf9S0lIhhk4e4+6IFiiBN5Nl7VYJTXxkpJUuRXKkOcOfFFI3pnZfBYOc5+FkXF8gMwrDBZ+CSHI5JJ7nI0hQH45gY+ZfLl0/zt4HDdQHSmYBeRZZNEWhrh99HxSHKs620Yl683GxwiSxfRXUlUeB1QTXXICUPkJtXBJ12eiwmZoeEtblrMLrxfasgEo1fiI8m5mPZtY2wl5Vl9HR0XmaAnef8IMUgc+5gqZAxMxh+k61gqi2Wv2a9PSrowkRAvQlwspQ9aBpWZaeRCyCaOwKuv+aitVMIS3oZqNTIrmwa9trtXHQwYmJoJl0LLVmzrLziyiJL7rUgmMtFdDI/u8oEF2QukwikIFnIdAZiTgiRUjoNCz6qk5NfXcgS0ilSD7+TSH8kKcZQ8kagAlnKClL273zb5N9OcJWZzojBCWEniK+GYfH8YBy/dgdPWbbv5MB18B7AzeXSQQSIQH0R4GSpo9Oq9PIkS5WUZQHiFo6F697b0LENQMzGkfyanjJHWVlGDmZraMXHI/ETJsqm0GginZr94Yo2to+ozTSsosjyBBzjouAZX1aWXPkAdNgfBzZbWe54FVm+jWCHARCNTkb4JF1pubqQZdJS9HE5D6fIXZjVQwdakJV/NSPLgA7YXxpBy3RNfBfZDzRhaMTVL0bWDg987tscK7noVJlfKJUhAkSgTgiQLMtgVb0EJbF0XWvbTbSwCUQsm55UVpRc13+7+RQ+pwrRrlUTJOYU4czoV180kJV7F4Z6OmimJf3Z16efY+8o5aZhK86GLbtmmYOwmQ5YKp6PxD3jpWuWcpFlIaKnD8Ki3CnYuMMT1mxKMj5YgN3GK/Dj2Dbya5bBDhi64z38oHDN8jVMw8YKYDHnPuYf2YCvjCVIDfXA+JV34CwzDcutWZasxypcsyxkbwIGLULulI3Y4WkNbXE8ggW7YbziR4y9UyzkqH2Y20UTOfy6KMmyTp5+VCkRqAYBWVk+fca+9YyyYVUrmzdv62j09ztfI1GWHScdg3PkPjry+qdh2RWryoaVk2WZ8s+1YGA1GYHrvMHNSspnw+bg8IJx+OYQy7JtwrJhu2ojMcXs9a5ZogAxwjGYx12DrVp2c/kSLcJiYM6vwVaQDdvNBetDl/NtrSwb9jmXvTs5EOu8B7A3OhKkbJsGweozxdmwPeDksw0+fEotHUSACNQXgRJZcqJMu3qLZKlykSWTz+H92ejjzD1oa3f0D83DEBPN0u991XnrKf5hk4HPX0qnYQ9el+D0JMPaXaTOzpZAItGCVslHTfmPocgmC9XZhaliIkAE1IBAiSxv/5mDd/R1SZYqJ8vXOEgfPH2JNPb5QUVHex0NtG9Vv19xp6htXIT9+Ylh2L3FDV2QDF8HZ/zSYz0Sg4Yw3dNBBIgAEagdgRJZnk+5hqEDLUmW6izL2g2lej673PSuJzbu9EQ1PnJazx2gyxMBItCQCZAsy/x2SJYNebhS24gAESAC9UOAZEmyrJ+RR1clAkSACKgQAZIlyVKFhis1lQgQASJQPwRIliTL+hl5dFUiQASIgAoRIFmSLFVouFJTiQARIAL1Q4BkSbKsn5FHVyUCRIAIqBABkiXJUoWGKzWVCBABIlA/BEiWJMv6GXl0VSJABIiAChEgWZIsKx2uL16+5Dd+poMIEAEioM4ESJYkSxy6cAW/3cqGv70Nmmu++jq7lJy/seLoKSy0/QQfdmijzvcJ9Z0IEAE1J0CyVHNZ7jqXiuiLV+A6tC96d5Dfq/L5i5e4eCcPm2L/h68H90UfEqaaPy6o+0RAfQmQLNVclnN+OYZeXd+DQ8/OPImnRc/x/dHfMeqj99GjjQH/s8MXr6Hg/j84l34L43r3xOfvd2nwd4z46h+4pGsFK2P6GvUG/8uiBhIBFSBAslRzWU4LO4yu77XF5L4f4OHTZ1gQ8Rv6djWFY89OaNW8mRydhMw72HUqEY4W3eD0YVcFwzsSrmZCiMq+2sEdUSJvdK+Tm0K6l+R1QTrY3tfsyMPW0f0RbL4d51Z+UidXpEqJABFQLwIkSxWXZWGsEMO9LsAx4ii8a7DFhltYFAZYdGaRpTkOX7qBP66kw2+0HdvD8iVevHghR0dLQwOnbmTh8LkUbHa2r1SWbNflYnG9iRuqrCzfxDXpGkSACKgTAZKlissSBSySG8IiucemcN9fPWH+dPY8UrL+gv+YYTyFfefTcPbKTfzg8gV2JVzCgf+7KkfngPu/cYjt5Sa6eB3bxzvUQJblpZbmbwOH6wKks5Aw0tUMQXqz8VHSZhzKFKOJgRVmh+yEZ/GbAElKMCZOD0ZyrhjQNoFjwB6sNN2OoQ6bkVXSGpvAV3WZR0HkzcWyBYjz94JweyLy2QbRLc3ssWLHSnzBT9FK23TZdh6eRv2IxPwXrGpHrI4IhB23m3ZBHPy9hNiemA+JhjZMHFcjItCu1httq9NDhvpKBBoDAZKlqsuStV+SEYpJo3wQ/6QTZkREQ6hkhLkn6RJ+vXQNP4yzR3MtTew6exFXs3Lw3ZjPFI7t01aWdv0AACAASURBVDduI/RkPPZPG1snshQmWWPBvi1w61iIMLehWKrpg1QmUq3CaEwftAgPZ+7DFreOkMQHYNTE03A4fgwCk/IS5sVbLMvMYAcM3WSI5VE/w8W4EKJlEzDtjC0O8tPC0nO3ajpj065lsNFNwbLhYyAaJhVtrMACc+5/i+MhLtAvCIfHsEUQz0/EnvG6jeH+pz4QASKgJAGSZSOQJdeFmgpzOpu+Hfp+Z3RtY8jWK2Pw7fD+6NLWEMm3c3Dpr7/l6HxlbYHHEgkW7zsK09atsfjzgXir3GcwK1qz7AD3KBG8uysRWZZGg+zSka4wCzKXrnVGT0fngA7YH7cIFnyrCnHpyFEU9nRGv3crk2VTBNraIWFiMsInFQtOEoOZlguhG3IOftaVtylpaR+4nOmLVasW47NeesDdbDzQNISRDiUOKfmMoWJEoFEQIFk2EllyU42iuSPg+msuWjuFsMSWgUoN0Mm7o9DfohPM9N9GYHQc1k74Avr/0salO/m4kpsvV8foXl1RxNYxF/zyG3qbdIAnk2f5QyrLitcsay7LFmvtMOTgpwqShCqTJcok/3Atli1feZsgyYEoeAGbtk3ErYdAe9slCAlyQkdypVLjiwoRgcZCgGTZKGTJ1uQWjoXr3tvQsQ1AzMaRSq+peeyNxtBePfBpFxNsOX0BWTm5WFYmwYeLHjWbNOFJxV2/jZ2iBPzi7qTgHqgbWZaPLCV4kJuHIp120NOuSWQphMbaFAQNqUyW9jLXYNH7g3j4OY7DafsYnBB2aizPAOoHESACShAgWaq8LMVI9nWA87abaMGSW2LZ+h6Xl6LssflMMuJu3sbEQR/jGvvGnj+u3sRPExzlEnx6tnkHPvbSSPUg+7Yf0aV07JhQkwQfCZtZ7YElRb4QhTqhRdZxLJnogQNmFSXlsIvJTsMWr1kWfROFn106gHUaDuNEGHbgBITF07sJExJwwE3ae8VrlhLEB4zCxOh+CDu7HL3lokwptVdJR4Oxe5wVftL/AQfXfAHjomR+PZNkqezoonJEoPEQIFmquCzzto5Gf7/zNRJlSdcPsizY6LQb6N/dDEnpWVg+WnGCz+/XM/Hb+StY7zS8BpElO+X2bkwd8x1+z5dAi2W72nXNRrTm3AoyWMvIkv1TNhu2SUsz2H8fhkA+ZZUJbq09nIIv49mnQbi20V5Olspkw776jKasLNmHNgtisGTKEoSnFmfD9puHoE1ToGQOVeN5UlBPiICaEyiR5e0/c/COvi7e+vvuw5cGrVvWGEv+vUeg898gP0kGDu/PRh/nAdWKKCv6BWfdfwjPfUfgNawferU3hpaGdOq15Ei4/Rd2nkrCqJ5d8O8PG/63+NR4ENOJRIAIEIEyBEpk+fTZM6RdvUWyVHXZ13aEc9/iw61jjrJkX2tnYV5a3XOW2LM85gxGdemIvh3b1/YydD4RIAJEQKUIlMiSazQnTIosVTwyVqnRR40lAkSACKgIAVlZck0mWZIsVWToUjOJABEgAm+OAMmyDGt1n4Z9c0OPrkQEiAARUB0CnCxlD4osKbJUndFLLSUCRIAIvCECnCw7mrQpvRrJkmT5hoYeXYYIEAEioDoESJY0Das6o5VaSgSIABGoJwIkS5JlPQ09uiwRIAJEQHUIkCxJlqozWqmlRIAIEIF6IkCyJFnW09CjyxIBIkAEVIcAyVLNZZl1/6TSo1WvRTf8q+mrbDClT6SCRIAIEAEVJ0CyVGNZXsvbh4t5a/GvZmxT4yqOFy+e48XzJnDofqSqovQ6ESACRKDRESBZqrEsL94Jxv2Xp9Cx3cdVDmzxs4e4cDkGYz74o8qyVIAIEAEi0NgIkCxJlrwsk65E4v5D+W+oKDvYX758gSZvaeLFy+cY3i0MRq2qlmy93jCSHCQmFqLnJ12gXUVDZPe/RDXOU7p/sntzKn1SccG6aE9120DliYCaEyBZkix5WZ5MDMZgK0+lboebdxKh87I/PmjnVUH5SLiaCSF6ZwLC+c2V5Y+kpX3gtOtv2ASmg+1TXcWRBn8bB8juNVnVGXKv/7EAH02+Ds/Tv2CqYeVnysmyGucp3R5FsswMwrDBkbCJEsG7u2xt8Vj40TgkTTyJY1YblO6H0u2hgkSACFSLAMlSxWVZGCvEcK8LcIw4Cu9q7kgsOw1bIsu8gmvIzEthEaRGuYHUTEsbXd4bhD9zU6qWJVpgeHAyfrbTelWPJAYzLT1x9DHejCyrcSvIybIa5yldVGFkeQfBDgOwwzIcZ5fLvLWIFcBixt/wTtyD8bpKX4UKEgEiUEcESJYqLksUsEhuCIvkHpvCfX/1hFmRLM9dPgAjvY5o1eKdckPu2u3TMH+3Hz9dW3lkGQSx9ROcwywk7hmPkmd94e5xsPoJ+Kh5PLQFxZEl27w6XOAGnxOZED/XgoHVbITs9ITFdX/YOGxGVkkrbAKRzoWisuXZ5KqJ42pEBNqxja+lUWhCz5HIPxGJJpOjIHI8xOq4DkH6FnBBbEGcP7yE25GYL4GGtgkcV0cg0E6fv4KcLNO4axefx0lOKJJn0cEdUSJvdEcB4vy9INyeiHyJTNu59wesnaHTXbDy93y8YNeytW6GmPRBxefJVyflYo6w0khcgpiZlhAiEMk/20FLtj3cqQoY6MTMhOVCXYSc84M1K3Yn2AEDwvuVXjPN3wYjrguQynHMCIfAzQcnMsV4rmUAq9kh2OlpAZm3NnX0yKFqiYBqEiBZqros+WdnKCaN8kH8k06YERENoZIRZkWyTLpykE3LfgRNjebIv3+Tp9O6VTu83aotktlrpuw1ZWRpHjwSIs+jGH7yGAQmXC2FCHWyRFi/YNhEepZOrXLTsi5n7LE3ahEskYxlw8dANIyJjp+TLDsNK0GswAozUkfz5S0KD2PuiK9RMCsRe8Zn87LcqumMdes98b6RIYz+XP1KeoW7Mc5qFbR9j2GDkz4KwtwwdKkmfFKZSJkhFMpSdnzwb0yWA0tj2RSyPjKZjIZuMoTvsQ1w0s3AmrEOCO8VxkeInJgcjllhy94VsNHNQdhMByxKd65QlpCwenv4wXjnOfhxluMjcCEQWByZy8myEgZOJ1k969DtyAkIO0l5+yR1x7y4KHi25SJYGyRNTWVt/5uPZsN7R+DoMksg2RcOztHoF3YWssGtaj7SqNVEoG4IkCwbgSylwUb1hVmZLC+l/waj1ubQ0myGjDsJGGI1sxqylD7oB0dYYaf1cRzjbMmtzQ2Nx8REVyT0n4ZHPtLIUnw3Gw80mdh0pDFNiu8AjLg5VxpFlpNlNKZ3XgaDEqlwJTgpsWgpfUsXXpaXPa8wSRTHR7KSkTxAbl4RdNrpSZN9JOGY1DUY3YrXCquWZRoCbUdgl9ka/L7RnkXLN9i/7ZAwMRnhk4pj59Kp1tE4ovA1LiItexRHkhprkRI0hLnTFT0C2r+KNOVkWRmDwbwgD3/B2jTiIJyGXEN/uxgcb3cIUe7xTKRhGJjI+q1biN3jrLAKMxHsNxlWptoQ5+ahSKcd9KrKhKqb5xDVSgQaPAGSZSORJZtkhGjuCLj+movWTiE4t3JglYOvIlmWRI9pGSfQ9T0bNNNqifjUfUyWnsjKvQg93XchflIIA/wb7d8eVME1pAk+YAk8G1qwacGl+tjOphfBIsjJBcvZtOJjeBS/zvuwIA7+Xt9gV3Ium4Ytrq5kyrWcLIuTh8pe1XQGYk58jl/KJgOVicgywgXw8DuJ9EeS4ho6wF0pWUqQ4j8cY07YIuKoN6SBuzTq3Vw6T1xcpYYtgq4JcKlsW6rKho1fiI/cCuGX7If8SVb4yVwaofKHXD8qYyBECxbt2iRNxf8GR2BIgisusKloi42WOD09Gf3XdkFMlCfacnWKryJs8XwEH7+GO091YTU5EOu8B7DpbDqIABGoiADJslHIkq2dLRwL1723oWMbgJiNI5V66FUmy7uF2fj7XgbeeqsJWrU0QPf3BjNSb7E/L/n/t8dcBXfUK1luGZnEHDkZBYv9Ae/voL+dm+aTfV0a4fykvwoR33+JDiyqeRUpKoosA9BhfxwWWZS9fAWZs7KSSVqKPi7n4RS5C7N66LC1Oa4dQTBXQpYSlmxjNSMVEw6y6c3SsFAaWaZMk4lkS5tUWdRZUWTJnVjMaq4QdxeFwfp4yfR1WVlykaUiBqws++ysg10aOn58Gs+dElmC1SkIPtyCt7+4g99bBRdPb4txN/sBNA2NwAX04qwd8PjcF81XXgMLmukgAkSgAgIkS5WXpZgtOTnAedtNtGARWSwL15SNDhJvr2SJKSIY63fGxetHWPToVTrV2rpV+2IyL3Eu7RfotmqDjm2tce/hn7iaGYf+7/2EdroDKhhSsjLkZl+HYej6W8B7M3D8mAAmvKSkkeeWkdJM0PDee3BooTW0co7Dd4oX9poEyE3DJkxIwAE3rleFiJ4+CItyp2DjDk9Ya4sRHyzAbuMV+HHsvfIfM5GVJZddOuc+5h/ZgK+MJUgN9cD4lXfgXJUsy6xTynY4LdAWow70wMp9/hjZAciKXIwlV1ywbkFv3KrOmmVxpRwr+5BsPO4mRHL4pNLEKPnIsjIG3FcRcm8aRmBrzgAEpHDrsdwUrxVm/aaJMaXT15yYXXDeKQr75naBZk4Y3IYuJVmSIohAJQRIliouy7yto9Hf73y1Rcl1+2J2MDLv/4YWTQ3w5/3/8rK8djsO2X9f5iPKrib9mUi78p/B5LJgc+/eQFP28ZFmWi1goGlX6ecspTLk/MYl1nDTsFwSDre2Jy9TSUowJrr9yGeoahkMwtiPM7CLybBEFmlr7eEUfBnPPg3CNS7sKZc9OxmB67wxQL+KyJJNU8cIx2DeIZZ1y1Ytu7l8iRZhMTAvFoiiNcsunPTKzbXasO5xGbay2bAa0DaxxZKQIDh1ZOEa387JWBKTDQnLNh307164fuY9bOSzaBUcXFQ4YC1a+ZSwKi5XWTYsn0FcwkBaPn7hR5h48+vSTGR+DXRJS6xPCcKQ4iolKdswTbAaZ4qzYXs4+WCbD5dVTAcRIAIVESBZqrgsuYfy4f3Z6ONcu/WmHYnm7EsJZvDfzvPihXRNr0kTLf7zliWfwSx6/oxlyTZF5V9KQDcaESACRKDxESBZqrosX9OY3Br/HtrqcTFPk3I13v/nTwz4cGrpz2/eiUerl58oiCxfU4OoGiJABIhAAyJAsiRZ8gSu5O5m228ZVzg0dZqbQle7Y+lrj5/lsb+/ZNO3Rg1oKFNTiAARIAJ1R4BkSbKsu9FFNRMBIkAEGgkBkiXJspEMZeoGESACRKDuCJAsSZZ1N7qoZiJABIhAIyFAsiRZNpKhTN0gAkSACNQdAZIlybLuRhfVTASIABFoJARIliTLRjKUqRtEgAgQgbojQLIkWdbd6KKaiQARIAKNhADJkmTZSIYydYMIEAEiUHcESJYkS57Ajz/+hIyM9FIadnZ2GD58eN2NPKqZCBABIqBCBEiWJEuewNqgH6HVQhddelrij5OHYWX5AclShW5kaioRIAJ1S4BkSbIslaWesQk6M1lG79sCo3f0YW5uzr82bNiwuh2FVDsRIAJEoIETIFmqsSy5qVe2FxdP4E52Nrr36oO273aUyrJNezx//hz5eX9h7dq1DXwYU/OIABEgAnVLgGSpxrKcM2cOzHv0Qiudt3kKnCi5g5Olu9AXf2Xd5P9efVmyDak3e0IYdAaZ4ufQammGwd4/YbVLF7aT5Bs+2F6OZkHmiKpsH8k33CS6HBEgAqpHgGSp4rIsjBViuNcFOEYchbcF23S4GgcnS/uxrmjJZPnwwX3+zLsskvzff4/wskw49Rv+L+EUOnXqJJVp27YYNWpUlVdIC7TFiF2G+M/uDZjUQwsPz+/GzCnf4+G044jyNKny/NdagGT5WnFSZURAXQmQLFVcliiIhOsQIUSPTeG+v3rC5GSpb9gGT5+I8ahYliU4OFmKju7no8vOLPrk/t9MqwnmCGZXfq9IWHt6LIH2T8n42e6VvCUxM2Ep1MDalCAMSfOHjUMCeo68D9GhTIhZvNnNZT1Cl5dsYF2AOH8vCLcnIl+iBQOr2QjZ6Qn+vQAnvzVFsDdKxdHzHyAgfQsGxvnDS7gdifkSaGibwHF1BALt9FlRMwhFJc3tAPcoEby7y9fd0sweK3asxBfGrPLSduXjRGQTTObKG8XB30uI7Yn5kGhow8RxNSIC7aCvrk8M6jcRUFMCJEtVlyVrvyQjFJNG+SD+SSfMiIiGUMkI8+jRo3zvr1+/jkfiZ/hyvIccDU6Wjwrvwd7ZDUlnYnE3J7NqWfLCuQ4Bk9hI2doKQ+FkuQ2WnIDAldkNw/m/INSjC5DsCwfnfehaLNjMYAcM3WQI32Mb4KSbgTVjHRDeKwxnl/eWylKYBOsF27BquAn0Wh6Fq9UqaPsewwYnfRSEuWHoUk34pLLrl8hVZhq2pO7lUT/DxbgQomUTMO2MLQ5y07R827dC03kd1nu+DyNDIyQKLTDn/rc4HuIC/YJweAxbBPH8ROwZr6umjwzqNhFQTwIky0YgS64LNRUmdy4nzeQLKfjYZjj+vHkdj/95yFPJzc7Ev1rqlMoy48oF9LG2LiVWYZbsUU90nfkUK8vKEiziNAuCeaks5YUav/AjuD0KQEqQCQJt7ZAwMRnhk4qFJDuVykeWpjgYtwgWfMcfIDevCDrt9KTroZJwTOoajG58FFkciZbK8kb5uiUxmGm5ELoh5+DXipPlZXheYWIvDoqTlvaBy5m+WLVqMT7rpcfmqbPxQNMQRjrVm/JWz8cL9ZoINB4CJMtGIkugAKK5I+D6ay5aO4Xg3MqBSo9STpYxMTF8+ZcvX6KVbuvSpB89Nk37yeAvcO1SMv+HO54+fYK7f+dUnPijdGQpL8s0fxs4XBcgfUsX+Ns4YHNWmeZr2CLo2kbYl1uDlCAjXAAPv5NIfyQpPqlkyrWsLNP4uq8L0rGlNOyV+VmXCqJiSQ5EwQvYVG0ibrH3EO1tlyAkyAkdyZVKjy8qSAQaAwFOlrLHW3/fffjSoHXLGvct/94j0Plvmh9bh1s4Fq57b0PHNgAxG0fWeE3tp59+gq7hu+jdb4jCMVBplqzSa5aVR5Yp064gtCS8k21JWVkmLUUfl/NwityFWT10oCUbwSodWQqhsTYFQW3KylKCB7l5KNJpBz0WtkoexMPPcRxO28fghFCa9EQHESAC6kGAk6Xpu8Z8QMH9IVmqnOzZxzR8HeC87SZa2AQiloVMtUk+4WT5+NkLtOlgyt8B3MdKuC8q4AR5h/3hDi4ZiIsyFX2kRD4bVhvi1FB4jJfJhuWjz71ou2AftriVrFn+gh7rExE0RAvc+aMO9MDKff4Y2QHIilyMJVdcsG5Bb7QoK8tYASzm3Mf8IxvwlbEEqaEeGL/yDpxlp2H99LD9f6swgEWD8muWEsQHjMLE6H4IO7scvctFxYXYPc4KP+n/gINrvoBxUTKWDR9DslSPZyP1kgjIESiRJfdDkiWDoGqRcd7W0ejvd/61iJIbBAcOHMDtrD/5QXLv3l20aPl26ZrlpeQ/2MdH2vGvNWFfZjB79iwFt1MVn7Mslw3bGr2m/oCN3hVlw2pA28QWS0KC4MTNfZabhi1AjHAM5pVm1X6JFmExMN/J1iC55dXCaMz+TIjD+e0xI+YEhJ2qyoYtk5xUEIMlU5YgPLU4G7bfPARtmiLNzKWDCBABtSFQsmbJiZI7KLJUtchSkoHD+7PRx7lENK9v7HJrmRdTr1YvG1aZyyta11TmXCpDBIgAEagHApTgUwa6qkWWdTlmOFmeO38RfT79HNdTz+PZP/er/uiIMg0iWSpDicoQASLQgAiQLEmWCoejbJYsV6hjR7NKpl6rMapJltWARUWJABFoCARIliTLhjAOqQ1EgAgQgQZNgGRJsmzQA5QaRwSIABFoCARIliTLhjAOqQ1EgAgQgQZNgGRJsmzQA5QaRwSIABFoCARIliTLhjAOqQ1EgAgQgQZNgGRJsmzQA5QaRwSIABFoCARIliTLhjAOqQ1EgAgQgQZNgGRJsmzQA5QaRwSIABFoCARIliTLSsfhC/Y9iNz3wNJBBIgAEVBnAiRLkiUOXbiC325lw9/eBs01NUqJpOT8jRVHT2Gh7Sf4sEMbdb5PqO9EgAioOQGSpZrLcte5VERfvALXoX3Ru4OxHI3nL17i4p08bIr9H74e3Bd9SJhq/rig7hMB9SVAslRzWc755Rh6dX0PDj078ySeFj3H90d/x6iP3kePNgb8zw5fvIaC+//gXPotjOvdE5+/z/agVMWj3PZeqtgJajMRIAL1QYBkqeaynBZ2GF3fa4vJfT/Aw6fPsCDiN/TtagrHnp3QqnkzOToJmXew61QiHC26wenDrgrGayRczYQQybyqoW2ErqMWYtNitoFyfe4DSbKsj2cMXZMINAoCJEsVl2VhrBDDvS7AMeIovGuwI7FbWBQGWHRmkaU5Dl+6gT+upMNvtJ3CwX3qRhYOn0vBZmf7SmWJwHRsGSktIs6KxPwxQlwaEQWRd/f6u3FIlvXHnq5MBFScAMlSxWWJAhbJDWGR3GNTuO+vnjB/OnseKVl/wX/MMJ7CvvNpOHvlJn5w+ULhsD6Ucg2ii9exfbyD0rLkCqb528DhugDpW7rA38YBCT1HIv9EJJpMlgq0IM4fXsLtSMyXQKulGexX7MDKL4whDUQLECN0wX+i0/FIogUDqxlYv00AS232Etv8OlzgBp8TmRBDGyaOqxERaAd97jT2Wuh0F6z8PR8vtE1ga90MMemDECXyRvdy24Sl8e26LuAkL/17pW00sMLskJ3w5N+gFCDO3wvC7YnIl2hA28QRqyMCYcc3gg4iQAQaAwGSparLkndCKCaN8kH8k06YERENoZIR5p6kS/j10jX8MM4ezbU0sevsRVzNysF3Yz5TOLZP37iN0JPx2D9trNKyFGcdx5KJHogbFI6zy7V5EW3VdMa69Z5438gQRvc2w2HoJhguj8LPLsYoFC3DhGlnYHtQBC4QTQu0xahj1tiwaxlsdHMQNtMBK7QDkPzzYJwSWGFG6mjsjVoEi8LDmDviaxTMSsSe8bpSQR+zwpa9K0rPW5TurLQsK2yj7zFscNJFxpqxcAjvhbCzy9E7VgCLOffx7fEQuOgXINxjGBaJ5yNxz3joNoanBPWBCBABkCwbgSylQVTNhDmdTd8Ofb8zurYxZOuVMfh2eH90aWuo8NZ4LJFg8b6jMG3dGos/H4i3yn0Gs/yaJQsVYTZ4ITYEOaGjljRqu+x5BaFO0rjxBpOhXcJEJIdPKpaLBDEzLbFQNwTn/PQRaGuHlGmvyuP2Gey9pIvhn9/Cfzovg8HOc/Czljb5VQRrwZ+XMDEZ4ZOKlSU7DatEZFl5G7l+BsE8igldvBR9XM6g76pVWPxZL+jhLrIfaMLQSKc4MqYnDREgAqpOoESWL9lnz7njrb/vPnxp0LpljfuVf+8R6Pz64FcA0dwRcP01F62dmGRWDlTqdzh5dxT6W3SCmf7bCIyOw9oJX0D/X9z8ZsVH0YsX+H/2zgWu5vOP4x9dkJFbyIwkTVhzW4thQlZGDX9SLsNyzSazTKZVTMrEtE1kucSI3KKMpixik4iNXOcSC0XowsGJ/s/zOx3OOd3OOd3Oyffx8pLO7/f8nt/795zzPt/n+f6e39ztv6ObSUu4WVsWsZFElrJzlvIbyQ53KgquYJJTTnq14WbxOZ76v5oDfVVfEWLmL5pOQ0zsx9j+cli1YA8VZSkZkpVp4y83Fc5XF7ZBlxAyWIw78cGYy4aOk67nAG/Zwjs0CE5tqjKbSanLTxsRASKgJAEuS9NWktvruDBJllopezZnNm8kXLfcgKHtYsSEDJXM2SlRpm6JxoAuHdG3nQnWHDmNm3fS4VtCgk/C5RvYGH8c2yc5FVO76rIsLrL00F2OM0EmhSNLkTRyO4zP316MljsS4FXI2/+WObKUlaXQxjOTcSHMqVC0KM5OR0aeIVo0Yl8yxNlI9HPEqCODmbA90FaJa0CbEAEioPkEuCy5JCWRJckS2hcZi5C80AHO666hjk0g4lgopKwoeff85WgyEq7dwNg+7+MSW7Hnz4vX8NMYx2J7biRb7Sf+7BVsGKNags+rCgtHlkgNlpuzFCcuxrCx0egZfgzzu0nnLG0QtnMOrA0kc4KL9BbiUEhvJEzpA6/0CQjZ4MZeEyEx2B2bjBfhx5HNS56zFDOpd/RG3sJ4NhxcBzcPeGPs1J0wE7J4i2jjuUDYDtuJjv5bETC0JcAyfL/1vgCXFXPRdtcoWP3UGD9ELsMg4zwk+w7ECJKl5n/6UQuJgAoEaM5SAZa2yTJj7XD08julliilpx7JsmCjz/2LXh3McPLKTcwfXnyCz6HLqfj91AWsdBpYbpElr0jpbNgXBmjW1Q0hG90g5DHJZsM+55my4xG4whO9+TcG4bXx8I5Jg1jfCH3+1wWXj7ZGCM+GZS/f2PQZRnx3iGWw8v3sYJEWDb1ZxchSoY26PLvWOxRBTm1YpMmydb0nwDsipSAbtie+ClqNCUomWqnwfqVNiQARqCICJEstlyUXwt4daeju3FuliLKo/nbzYQ7ctv6G6fY90eUtdtuGro7cZsdv3MbGwycx7J12+F9nLV3Fp4reaHRYIkAEtJsAyVLbZVnO/Y+v4sPnMYd1ZcvaWZq/rP05S+yZH3MUw9q1QY82b5XzUak6IkAEiIBmEyBZkiw1u4dS64gAESACGkCAZEmy1IBuSE0gAkSACGg2AZIlyVKzeyi1jggQASKgAQRIliRLDeiG1AQiQASIgGYTIFmSLDW7h1LriAARIAIaQIBkSbLUgG5ITSACRIAIaDYBkiXJUrN7KLWOCBABIqABBEiWJEsN6IbUBCJABIiAZhMgWZIsNbuHUuuIABEgAhpAgGRJstSAbkhNIAJE2vrLfwAAIABJREFUgAhoNgGSJclSs3sotY4IEAEioAEESJYkSw3ohtQEIkAEiIBmEyBZkiw1u4dS64gAESACGkCAZEmyxPWULKyafRJTl3RD6471i+yWod+cwr+nHwivjZzdAV36GhfbfcVXI+A+1Q8Hr+RCrMufPzkGi5Z/BRtj/gBKKkSACBAB7SNAstRyWWbFeWDg9NNw3LYPnmo8bFgqSo6hOFme+uMOti45B8/1H+BaykPh54Df+hXd28VxcLeaidtTtyDUtSMMcQfxvmMwOa4nwo/NRzeFvR4+fIjTp0+//O2TJ09w7Nixl/9/+vSp3P+LOqhiHbLbtG7dGvyvtHTu3Bn167/6QmBjY/Pyte7du6N27dra9y6mFhMBIlDhBEiWWi5LZO6Ca38PxD82xaQdqglTKsqPPm2D3zdcLTGylGI6uOW6sG2xsjwXgO4DE9A3eDaaXT4NLjK8uITQ5bGo06EjWhgAp5OT8DD7UYV3bnUOoKevjwYm3TDOxQ62H3SHRds6OL7MFwtiUyGCAUwcl2JboJ3woG0hgp64ALGpIjzXN4LVjFBsdLMExc/qkKd9iIBmEyBZarsshQ/tMIwbtgCJT9pi2rZoeKgYYSozDMsxSUXJI8wGTSURWHx8vBAZXrx4ERcuXBD+r0r5wLIFzv4rRotuHWBSOwvp/6ThqZUThr7HdHT7Lxw8cAYNJmzG172BhO9HIe7DWMR7dpAcYpcrzILMERXviQ6pwXAYsBpNF+7HKqf6uLpsJBwiugjRrNmvY9Hh67/QYbQPZg9qjkdxS+C26j5spg2Chc5TXIpeh333WqF5fTHO//MqypWeRw0dPXTt1Qsdm+vh8p+nUefT9Yhd2AXBDr0R0W0b9vl2BZIXwsE5Gj3Dj2G+YvisChDalggQAY0kQLKsBrLkp1AWYZYmS+kwJ5di6rU07Pz1AB7hNjLvZxTq1A0aNEDnTu3w5O5t3Lmbi6znumjctg+mz5mCzo300PrqanwUbIqNJ/xgLezNhnRtHHDZ/QrW6E/B275GRb82lLvRDEHmUUXKsmagLeyOj0VyxDhIBllZxG0WBPOoeHhelJGq4msdojHl7cVouSMBXpaS04ndvAxbTj1BvbzjiAg5iPt6uniSwyJkhdLtrbrIaOGIFT/6wv791hClZyDPsAUaseiZChEgAtWLAMmymsgSyET8rCFw3Z2Ohk6hOOH/odI9VVGWfM6QR4iJiYlC1Hj9+vUi6+JzfMbGxujUqRP43B+fD+SylC2im39i00IPfJ9ohZVJQegfzcTlEV+oPtNpMYg1838VKSqKtBRZMuPC4ZebCvXqwjboEkLEJciyznLY9Y9EXy7VgoD1VSVcuGyIm/3ixYsX4POnwl/dN6Er/g/ZfIi5oBjUMYTlx9Oxa6M33qR5T6X7Hm1IBLSFgFSW+fn5QpNr3L2fk2/UsK7a7b/3IBe0f2Xzy0TCvJFw3XIDhraLERMyVJhTU6bwqHF/5FGsCogEmlzHsaQjTAhP5Hbt0skKhjomyMupg1aNO6NH/3b4wu/jIqu/HjISI37/EOE7pqOtdAtxBMZZBKM9F9JVFj0ubokdCV4oCORe1RNdxsjyzGRcCHMqPGcoO1wrHE0m6iwishRnpyMjzxAtGsUVijpfNVaEX9dsxf7Dh7B3T6RkbpYV3Zq1MWLYEHzyyScYMmQIJQwp0wlpGyKgBQS4LE1bSe4C4MIkWWqd7EVsuswBzuuuoY5NIOLWFC1KHi3yTFNepFEj/530Q17aV3lkyKNEa2tr2NvbC9GiSqVg7rDe15uwahzPhs1GSthUjP4emJ20GaPBhj37eCF9Qgg2uFnDQJSIYPdNMF70I0bWYRLr5Y2c6dsRNrUdmwdcCqdxwWi6gA3RssjyHI8e99si8oAXLEQpWDPRGUsyRkvmLM8FwnbYTnT034qAoS2Bm7vwrfcFuKyYi24xJQ3DZiF6Sh945c1B1M8uaIlkLHQYhXj7nYj1aCF5LX0CQja4wdpAhMRgd2wyXoQfR96CT3cXnHKKwtZZ7bBz1Qx4ea7HTZEYz5+9+rLBhSkVp2LUrRJX2pgIEIEqJcBlySUpiSxJltC2yDhj7XD08jtVoii5HPv27VtqR5s5cyZ++OGHUrcrbQPRxXB89UWA5D5LFufVNeuBz74NhHtvSbxbKIt0fCBWePYWouHMBB+MmxaO8yLAwORdmGafQtN5ElkiKxHfjXbFRsmLcLRpgF1n35fIUtg3ANM91iPpnhi67HVb71AEObWBfomRJW/QGQSPnYLg5HSIdOrCbPD3CC/IeGWNRYT7REk27HN9GFmNR+AKT/BTEZ9Zh8nuS3G0IBu2o9MCrPqmDw5HRmL37t3Yv3//yy8jfLja398f48ePLw0fvU4EiIAGEqA5S4WLom2y5B/me3ekobuzRDZFFR5RBgQE4NChQ0Vmq/J7C3kUyT/MLSwsNKibyiT/cFlqYYlk4gwLCwP/lxfOed26dcJcLxUiQAS0hwDJUttlWUpf48k5ISEh2LJli1yiDh8S5Ak6dnZ2cHZ21tAPb+2XpfTy8CHvCRMmCLfXcPbh4eGCOKkQASKgHQRIltVUllyOPKLhQ4HSwj+c+fwZn5PUrAiyuDdL9ZElP0Me4X/55ZdYtWqVcMJ82JtH87RqkHZ8WFIrX28CJMtqJss7d+7AxcXl5XArj2J45Dhnzhy5Zd9e725ftWfPh2R5lMmTq/hwLB+WpSizaq8JHZ0IlEaAZFlNZMmjFh5Nzp07F1yYPHL08fERRElF8wjwa8SjTH7NeOFZsytXrtTQ4XDN40ctIgKVTYBkqcWy5Fmu0qxLPhcmLVyQ/IOXblWo7LeT6sfj13DatGkv5zL5CICnp6fqFdEeRIAIVCgBkqUWypJ/wPKoRPZpHTyS5PdEjhs3job0KvQtUzGV82zl+fPnC/OafE55165d9GWnYlBTrURALQIkSy2SJZfk1q1bXyaIcDlOmTJFGMKjWxHU6v8atRMfmh06dKjwSDJ+bf/44w8SpkZdIWrM60yAZKmhspQ+11G62g7/V7oCDx9e5YsH0A3u1e+ty68xFybPYiZhVr/rS2ekvQRIlhomy1/WrMdv0btf3sQubR6/vYAPz/FbP/icJM1Hau+brrSWkzBLI0SvE4HKJ0Cy1BBZ8iE4fjuB9L5ILkN+OwFfo5UvHsD/Unl9CMgKk/eDffv2vT4nT2dKBDSQAMlSA2TJBcnvjeT33Zmbv40FC+ZX2i0f5+7lIefZi1K7Zot6uniL/aVSeQS4MHv06CEkcvHbgHx9fSvv4HQkIkAE5AiQLKtYlnw1F37rAC/8loHP3b9CC2OjSummv197igWHs/BmPZ1Sj3cr5wU+6/wGPuv0Rqnb0gblR4AvV9i+fXthvpon/PCheCpEgAhUPgGSZRXKkt/+sXz5cmG5M76KC5+LLOtC7qp0oeVJuXj27Bmmvatf6m5Jd57j9H0dzLI2LHVb2qB8Caxfv14YoucZz6dOnaLM5/LFS7URAaUIkCyrSJb8w49/CPK5SR4xSJ8bWVWy/PW8GH/cfF5sp3kszsfj5zXQ7A1dtGCRqHev+jCsVUOpTqbsRrtczRBkHoV4T/7ALcUi+8BmZWtUZjsxzgS7IKh2MEI/a1r8+e+cBudLk7DVsysMlKm2nLeR9hd+mxC/B5MKESAClUuAZFkFsuTRJI8quSj/+usvuUXNq0qWnTY+QuiA2nI0zmW+QFruCwww0ZP7/e4reTBtXBszreoWVhoTnkd80Z245aTiRCjZvipkmRU9Bf2Xm2LdPk9Y6otxNcIdExfEIlX0HPp1zTD4+3AE2glP2mTts8PabjsQ5WZSue9SdjQ+n82HY3kiGI8uVX4od6W3mA5IBKoXAZJlJctS+iBmPvTKI0rFLNeqlOXfY+XnI/dey8PpjOeYZ11LjtLKf8SoWbNmkbKU3bBk+RV+I1W6LMVxcLf6Ds03x4MHs+I4d1jNvI2p28MwtR1wM/xzOPhkYnp8JCa9yX0ZBqeeMfgkcTNG16/8DwLpcCxFl5XPno5IBEiWlShL2eiALyrAH9GkWFSRpfhqCq4274h2hcYFWYSUchXNO7YrcchQds6SR5aKsoy+mod/7j7HN+Upy8wEBEz3wPqkexDrGsDEcSm2BdoJD67mslymPwGWl7YgNlUEHSMrzAjdCDdLPqeqMAzLHnod4T4RC2JTIWJnKVuP+GoE3CcuEOp4rm8Eqxmh2OhmCcWZWfEuV3Rc2w3xUW7gLvx3xf/gcnUikpYOLLgsikO/Wdg0ygpbesWz6JLvUfmlefPmFF1WPnY6IhEAybISZclvD+FPmSjpvjnlZRmNKW+7449Wzliz1Q+9uW2EwubgAgdjxMpreGfeEWwvYR5OVpbvbsjFO0byt4Y8ZVOYeS/y8Ya+/Nxkkzo18K6xgRqRpUQ2SwwWYv8qJzTODMfEAT7QW5CCNUP1BVl6nLSB//5VcGqcifhvnOGaZI+oeE90kJOlGHHuVpiWMhxborxgmbUXs4Z8icwvkrB59CMEO/RGRLdt2OfbFUheCAfnaPQMP4b53eQvdpy7JXybbEaCl2WRHwXixHnoPSUXfklB6F9g2lvBDugdPxzJEeNQBcGlkBDGh/CnTp0qLJZPhQgQgcohQLKsJFlKM19Ly2hUXpZsVJBFRv3ZBOFjU6kwpaL8F7WtvbEzbBzalJDoqhhZ7v5EPkTNfvQET56J0bRhPTlKu/7Ng2GdWmrIUozs9AzkGbZAI+FQYkSMs0Bwe8lcZqFh2Cw27Nl1I96PiYVHW9koj39R8IXRxhPws5Y07VyADRwuu+PKmn4SIeNzBPuNh5WpAURyx5Seyr8ItLXDmckXEOZUBKRMdrz+8wGfOCbyl99EePgLsyDzAoFXzptU9ih8zpJHl61bt8a1a9cqvwF0RCLwmhIgWVaCLKWZjHyekq/EUtK9cqrIkjc9c9cU2M2JRTaLML/ueQKBvyonSr5vacOwD7IfI1f0FC2bNZSjVJY5S2GIdKofDl7JZaqUFGniT+E5S1lBKv7sgXjFN63pNMTEeqCt6CLCv52N4AOXcOtpfViND8QKz97CUO+rcg4BNg647H6FyVChoswYuDt8hQvDwhHtoTB8e2Yheg+5hllX1kBxt8r6DOnbt6/wcG8uSy5NKkSACFQ8AZJlBcuSP4yZP35J8RaR4i6tqrKUFeYDNmxaT4mIUnpsWVl2+/UR9g2SX8nn8ZNneCrOQ8N6deSaG/OfDp7p11UjsjwJn+4uOOW0C79+0RGGLKCTFaRqkeVitNyRgMIjqCLcT8uGXtNmQv2imxsw9eOFqO1/CSGDZU+jmMhSlIyFDqMQb8uGcT0Lz3NWdWTJz0A6SsFvIeHJPlSIABGoeAJSWebn5wsHq3H3fk6+UcPCtwQo2xR1Puxl665O+0dGRgpPkFBWlJyDuuefucsNLlHWWBVS8tCrLOtjac8w+bf7aN9YD6fTxYgeKC9L0VMxnjFZ1q8rPzwbe1sXT/XUkSXLPrWciYezf8OqT40hTmFZp6P9ccv51TAsn7NcGPUzXIyzSpizzEL0lD7wSp+AkA1usDYQITHYHZuMF+HHkbcKhByFrbPaQe+OZF60sCzB5j0V5izFZxAwcARiixMlg1fVc5b8+klXffL396cHRSv7wUTbEYEyEuCyNG1lLNTChUmyfJCL8vqyIB0uUyUCUFeWZewHaBN8p1A27P3sR3gkDMM2kqu+LMOwmTEeGPHVHnYfI2DQ3gWf1AlHjPlGnGCTj4WzYftgbngIxgkTryVkwz7Xh5HVeASu8BQSncRn1mGy+1IcLciG7ei0AOsWSDJuZYtiNqwQNRZ1k6hNIJsL5YOuYrZJR3avZdVlw/L28+dd8jVj+YpP4eHhZb30tD8RIAJKEOCy5JKURJYkS7UjOylrqez4Wp48EYOXBw8eKHEpJJtoniyfqT1nqfRJV9WG4kTM6z0H9dZK7rMstWRtwijrvRhURfdZStvHb0Fq2LChsJjF+fPnS202bUAEiEDZCdCcpQLDsspKur+6N5CX9fjqdomBW+7CsKb8LSK1dPKhz/7m5skvtM5X9Qns3wDdW9RU93Aas5+wgk9IB2zZ6Y62JS6RK1nBJ/zDGJbBqxijVv7pSO+3FIlEwtrCVIgAEahYAiTLCpKlOkOwVRlZ8mPzOUxlyluG1elxXcqtDftox1S4XJ5cZWvDKl4XPgzLh2Np6TtleixtQwTKToBkWQGyrGugJwyT8W/8t2/fVumbf1VFlmXvSlRDZRKQ3o7E5yz53CUVIkAEKpYAybICZHn27xPgkaU6a3iSLCu2w1eX2qW3JPFVfPhqPlSIABGoWAIkywqQ5bffzBbS+/kzKsePH6/SFSRZqoTrtd2Y37vLhenj4wNfX9/XlgOdOBGoLAKFZHnuQZ7kjksqahMY0Kkt0m5cx+GL/8GoqeS+HCpEoDwJ7NochnnTXfHpNHd4LlpanlVTXUSgWhAYM+fnl+dxMsS9zOdEsiwzQvkK7mXcwYft3oKFZSfsPHyynGun6oiAhMCRuBhMHj4IQ0eNg9+KNYSFCBABBQIVLku+gs/dGuo/C75Jvgiv8/5J0dswbqwLRk6YAp9lK1TuwFXNT+UG0w5VQuD4kUMY79CfZFkl9Omg2kCAZFnKVapq2cRtCsUXn0/F9DnemO7prXKfqur2q9xg2qFKCJAsqwQ7HVSLCJAsNVyW6wK+xZLF/iRLLXpTaWNTSZbaeNWozZVJgGSpJbLkQ7B8KFbVQpGlqsRez+1Jlq/ndaezVp4AyVJLZMmTLnjyhaqFZKkqsddze5Ll63nd6ayVJ0CyJFmWSKCsslW+K0q23Hz2MTb980il3SZ3ewOftJN/RqZKFdDGIFlSJyACJRMgWWqJLPm9b/weOFVLWWVX1v1Vba9n7AO4d9KDlbGu3K5h58TsUTbA+I7yq5NnP82HW/wzBNg2VPVQtL0MAZIldQciQLLU6ltPXrcEn+JkufYskyX74/pO4SeTjIl5SrIs4ycdybKMAGn3ak+AIksNjyx3BgfCa56n1mTD5h7+GtO//ht91kbjsw4lPqOqSPJclpM66qFzE/nHeG06L5HlmPbystTRqYFpB0mWZf2kIlmWlSDtX90JkCw1XJbSRQnUXVmlrMOoKu9/PxK+Q7/GCZEphq1XXZhcls/EL5Dz7IXclXn+QrJqoi6To2xpWU8Hj1/olBhZ5p1bhXmzVuL8XRFQ2wQ2Phsx4yNj6LGK8lK34Xv3hTh2k7/WFO0//RELpnRFLfbaQfe3sVFvPMyvbBVe12n8Hkb5TEHuurnYc+oeXvC6vtuCWf3Y8ygvLobrqCS0HZSFE/tT8RQGMB22At959kID3mDxNfz+zWSEHGKvPddHgy5fwGflVJjz7xPRkzB4dSOM6pyMHXxfHSN0nLwafp+9I7w2LKAuvI78gPd5Pdkb8HXf9bDYfBCftSu/j6e4vbvxxZj/0aIE5YeUaqpmBEiWGi7L1KTDGPhRP/Tqb4fV2/eq3P1Ulp3CEdTZPy91A7w+XYizT9tixNrdGKdChFncMGz6/WxhztK4sWEhBiUOw2bvxXcO3ng0KRzzx5gi7+QSzJp2FH127MUo44P43nY6rjiGYdmM96GXuhY+rkGoPfswfAfXF2S57NpQ+P6yEO81ysS+mXZYcawxE1skJnbTx731EzB5Y1v4xS2EpSDLzWj8xTZ8N/5t4O9FmDFpK1oHnMDcfvo4F9ATnscHYfHmb9AeyVjl5IykfruxZmZ7iSx9kvHOl5I25uyYjKmL9eB29Bf0w+/w7zsbuov+xtcfArnbx2DUBkss3zMHbVTuDcXvQGvDliNMqqpaEiBZargs89Ovo6NFW7XXhlVHdrJI1N1fXWGWuyxjpsHxx5ZYuvcbmAsnloV/Y2OQa+GEzinste8bS2RXcNK3QwZhUuJIbFn7KY4zWW4yLRAaj0IjJ2DIWgv8KBWVIMh/Mfokk5rszwV1nVlojfmP/bF9UT88fXALuXpN0LieZGj68lIbfHljJqKDhhRElm1f1QsWnXf7Ea2E6FGMP+e8h5/rrcZmr65M4O+yNu2USLYcyy/LF+OH+fPUHu4vx6ZQVURAIwmQLDVcllxWbUxbCq1MvH5P5U6kruykB1J//0yc8PoffPelo96QEIR/y8IiJQqX5Zdv56JhTfmH1TwVS7Jha9eUnwfV19PB3NNvFDsMe2vVx5j8Wx8ZEck0Qhj+lJUUe03md9cVZCn7mhDVlSLLq8v7Yca1GRIh3j+CtV97Yu8/GWwYtqANvb5XQpZM0gdnwNnPED5x/bCv10IYrSnfIVjeGi5KLkx1F79Q4tLSJkRAqwmQLLVAloMcBwv3wUUfP4s25hYqdTj1ZSc5jHr7Z+LUwlHw2XUDb/Txx8plQyTzdkoULsuZ7+SjncKdIA9yHguybGQofz+ljo4OphzKL37OslBkKcajjLvIM3wT9Q8VE1kecsC6zVNxpoyyfBVZdsNvk7sjvOFiLJnvCOPagJxIC0lbNrLk0Nhwca+5MBj+AQ4dNMb35TwEy4/AH8/Fh2ID12zCx8NGKnGlaBMi8HoRIFlqgSy/WbBQ+NavzgeZerJ7BUX1/UU4v3QI5my+BgMWOYWwqEpZUfKjlvswbMGc5fMZkZj7Pxah87nEKYfwQVgMxrVRmLPM2AL/UfPx5ItjCBgumbOUHYYtPbKMQBNh3lE6Z7kDZoHH2FzjXUSMskFMp1/x4yw2N5oRi9VffIGYlv5KRZacCxfvvD3ZaDKq/Idgef388Vz8MV3ro+Lwfq8+r9enIJ0tEVCCQEXJMp9HAazUoEd0lf0RY1t++13IVFTnwbyqy06+16i6//1NThi/7LRaoixJlhkPcoSGNW1YT66ByixKIJsNq/NGG3zou0mSwcpKadmwqslSNhu2ASxGLYPXTEk2rNCGmT8hJVMMvcYfwq7LVey9O16YG61bamTJKjjphVGT/4RtOWfBSmEO+7AbLpz5Gwf+/hctWrVW4qODNiECrxeBipClaStjASIXJsmyHJ7HeTX7qfAAaKNmxsKHmSpFVdkp1q3y/uwWiYSoNFgOK7hlQpXGsm13X5Qsd/dIrNyOb7ApzNHvasByd0Uk+Ch3BkpuxWU5vx4WVsAQLG8B71/8QePnHuQp2SDajAi8XgQqQpZckpLIkmSp5pzfq04olRV/MC+ftww/cBSd3rNWupeqLDuFmsu6v9IN1fYNK1KWT24i6qvB2PfuHgRPMakQUh0a6gkRpapfxiqkMVQpEdBAAhUhyzYmzV+eKUWW5RBZ3q1hgA0rgxDwzVcqD8WWVXZl3V8D+3zFNKmiZHl1KaaMCEW2pTsW/FKwiEE5n0HajesY0KmtMFfJ5yypEAEiUJgAybKUXlFWWZTX/k+fPsGAd9siJ+shDvzzL4yaSsa6SyvldfzSjkOvay8B6VJ3PAuWJ5FRIQJEgGSpch+oatnIHl+d6LKq268ycNqh0glIV++ZNHMOvvTxq/Tj0wGJgDYQoMhSSyJL3kyegMGjS16UjS5JltrwNqzaNtI9llXLn46uHQRIllokS95UPm/JI0xlowCSpXa8EauqlbJfwA5f/A/16qtyV2xVtZqOSwQqnwDJUstkKf1w4x9qPLqsVYstB1NCIVlW/ptKm44o/fJF85XadNWorVVBgGSpZbLkzfVwHY3fdm6F56KlQnYsybIq3jraf0yeNNbdxEg4Eb6UIi1GoP3XlM6g4ghUiiyNGtZV+wzuPcgF7S/P7/Tp0+jSpQuMjY1x6tQp4d/iSlXzU/vC044VTmD9+vWYMIE9SWXIEOzatavCj0cHIAJE4BWBq6m3Ueg+S5Jd+X9Z+PLLL7F8+XJ0794df/zxB2rXLno4lmRJb8/iCPTo0QPHjh0TRMmFSYUIEIHKI0CyVGBdUbJ68uQJ+IcdjzJLigwq6viV16XoSBVBID4+Hn379hVGJW7fvl0Rh6A6iQARKIEAybKSZMkPc+fOHUGY169fx/jx47Fu3bpCl4ZkSe/XogjwYXz+RWvlypWYOnUqQSICRKCSCZAsK1GW/FBclDxC4P/yIdnw8HC0bt36ZSu0TZbLk3LxI/urSvHqWQ+fdXpDlV1e620jIyMxdOhQdO7cWZjzpkIEiEDlEyBZVrIspcJ0cXER5p948fT0hI+PjzCPqW2yHLkrE1Pe0YWVsa4cybBzYuHhz+M7sseMyBT+iK5ZCWJsHSp55FaRRXwGwWMnMgnfg/GkKMR/1QhJSVl454N2MKj890iVH5H3lS1btghfrJydnau8PdQAIvA6EiBZVoEs+SH5HGZAQAAWL14s/MyjBp74k5evV6XZxKq+CYqT5dqzTJbsj+s7NQtVOTH2WYmyvBXsgN4R3bBtny+6cjv+ORfvjb8MtyPb8VlTVVuo3ds/fPgQzZtLnnTw4MGDYhPDtPssqfVEQPMJkCyrSJbSw164cAE8cuDzUVyYm7ZsR4d2Zmr3HFUj06w4DwycfhqO2/bB01I+ClSmEVyWYy100bmJjtzmm85LZDmmvbwsdXRq4MtDJcvyXIANHC6748qaoco0oVpvs2rVKkybNk2IKHlkSYUIEIGqIUCyrGJZ8sPz6IHPY3JhtmzVCocPHZKbx1Sla6gqS2Tugmt/D8Q/NsWkHaoLk8sy+8lz5Dx7IdfM5y/4A1IBXSZH2dKyng5e1NAtNrLc5WoGj3jpHi0xKSoengiAjcNluF9Zg6Hn+M/nYfvVU0T9mIR7Lwxg4rgU2wLtIAzsZiYgYLoH1rMhXLGu/Gu87qBGM/DeyV+wJ1UEHSMrzAjdCLeCLwniM8EYOyUYyekiwMAEjos3w3+QMfhXiMyEAEz3WI+ke2LoK+ynyvVRdVu6XURVYrQ9EagYAiRLDZAlbwIfiuVJHPv37xduD9i3b58QaapaVJYlO4D4ahjGDVuAxCeDn1VcAAAgAElEQVRtMW1bNDxUiDCLG4ZNv58tzFkaNzYsdAqlDcMWiiwFQcrKci30nFfjV18b1D/ji4Ej4mHPpdohC5tGWWGJwULsX+WExpnhmDjAB3oLUrBmqD4EEZ+0xtytazCxTRbCJw6Aj94CpLAIVj8rGlP6eCHn861YM7ENxImLMWzsETgc2A93BMNhwGo0Xbgfq5zq4+qykXCI6ILwY/PRTdULpML2fNShffv2dLuICsxoUyJQUQRIlhoiS6kw/zd8BH7bG40GDRoIw2729vYqXXt1ZMkPoK4wq0aWBeIUyJxDgI0DLrtfYUIUIzs9A3mGLdBIyAQSI2KcBYLbsyQhzw6CLIPMJT8LZZcrzILMERXviQ7RU/D24pbYkeAFS+HFLJz9bR+y3nFGswhb2B0fi+SIcagv2RGuZkEwFwSt0uVRaWNfX1/Mnz9fSADz9/dXaV/amAgQgfIlQLLUIFnypnDZ+S34VljthxfZTFllLr26smQDjYifNQSuu9PR0CkUJ/w/VOZw4LKcZpaDhjUlw67S8lQsyYatXVN+HlRfTwfzz9QtMcGn9MiyOFly6UfAfaofDl7JZaqUlJY8o7YUWdZZbof+kX0l4lQ4c6E9v9xU+K0ubIMuIWSwUpjU2ohHlTy6PH/+PCwsLNSqg3YiAkSgfAiQLDVQlny5QX6rAE/s4POZfFjW3d1duBmdR5wlFfVkmYmEeSPhuuUGDG0XIyZkqGT+T4nCZTm1/Qu0ayi/8YOcx4IsGxnWkXtBR0cH7kdQQbI8CZ/uLjjltAu/ftERhszTstGkapHlqyj1/goWWZ6ZjAthTsL8ZWUU/mWJL5FI68BWBm06BhEonQDJUkNlyZvFV/zhwuQ3pfPCRcmzIrk4i4s0VJelCMkLHeC87hrq2AQijs3fKStK3ibNGoaNg7vlTDyc/RtWfWoMcUoYpo72xy3n0iPLDgVzlnlzovCzS0swKHAYxeZCd8bCA4GwHbYTHf23ImAoe+3mLnzrzbKYV8xFN/nvAqW/45TYQrpgOr/vli9CQFGlEtBoEyJQwQRIlhosS2nT+Go//H5M/iHKE4F44av/TJkyRZCn7KLsqsoyY+1w9PI7pZYoS5JlxoMcoZ1NG9aTI6zMogRlGYbNjPHAiK/2gCW7wqC9Cz6pE44Y84044Wdd8pwla6VsNqxOXTMM/j4cgXaSrw6y2bC6LFPW1jsUQU5tyj3SlIqSH5MWIajgTz+qngioQEAqy3w+ZMZKjbv3c/LpqSPl/9QRZa9JSbLjkSb/MA0JCRGWy+NFGm2OGzdOEKiqsmSTfNi7Iw3dnXurFFFKz2ft34+w/HgOcqUThKWcaF02jjnzfVrurihMfJGKuXPnCi/xdYP5+sFUiAAR0AwCXJamrSSPV+TCJFlqyfM4+S0mYWFhwtymtPDhujFjx2P0qJFq36epGd3y9WoFHy3gz6nk15KPEnBR0rJ2r1cfoLPVfAJcllySksiSZKl6ZKZwjVWO7Mq4P482+YcsjzZ55qS02NjYYOTIkcKHbmlJQZrfTatvC/n1GzhwoLAgBV9Qn99fS3OU1fd605lpLwGasyyjrBQvfWXLUvb4fGH2kNWh2L9vr5AcJC08o/KTTz4RMitJnJrzZuVD6jzjlWc88y83/KHOdH005/pQS4iALAGSZTWSJT8Vqax5Bu3u3buFTFr+YUzirPo3Pn+AM/+bmpoq/Cudd1b1XtqqPxNqARF4/QiQLKupLKWnxefDuDC3bt0qLKUnzablr1PEWXFveC5DHt3zofHExESBvWLh0SRfmYcnZlEhAkRAswmQLKu5LBW7H0WcFfOG5HLkw+CH2CL4RYmRLyzB5WhtbS2s+csFKXvLT8W0imolAkSgvAiQLF8zWcqeblHi5B/gPCmIP4yaJ5xQkScgjRZ5xMh/Lipq5POOXIydOnUSxMgTdihph3oSEdBuAiTLaiZLdbujVJw8s1Y6VMuX1+PS5FHR61akUuTR4t9//y3ML/KfiyqyUSOXpDpPi3nd+NL5EgFtI0CyJFnKEeDJQHxdUr5iEJemNNLk2bTVJULi4pMm10gjRA6BJ95IpSg7tysFxCNGLkIux3bt2lHUqG2fdtReIlAGAiRLkmWR3YdHVlyYq1atkksK4htzaXJh8Hk3ExMT4f9cIpp024NUiPz+RS5B/q+sGEt7z/AIkZ+XVIo0x1gaMXqdCFRvAiRLkqVAIOr8NfQ0aY5GdWq/JCJ+/hxhfyYj++xJJB0+JMzRcenI3ooii08aeXFx1q8vefIjl45sUfy/qm8vfmzeBmmRDpemp6cLMpSNGouqm0teOn8ojRCl29H8oqpXg7YnAq8PAZLlay5LvnDT7P0JuPYgC9P7vw+zpo1Qk/1OBzWQ9/wFlscdx+X0e/Dp3wNd3mz6khbP/pSKSzp8yX+nCUVxuJRHhVyQlLCkCVeH2kAEtJMAyfI1l+W2M5fx+7Ub8HLsI5DIeizC3r+vYNh7Fqitryf87uiVG9iR8A86NWkEj496oI5+8U91lEZ20n+lIpXFrK5UZaNCaX1chLVq1RIiWD6/SvcsaucHEbWaCGg6AZLlay7LVcfPIDEtHb5DbXAv5xF+iDqMhoZvYObHvaDHHtQsLQ9FT7Du97+QkZWLH/9nD6M3DMqpb4tw8c+zqG9lBePKerJyObW8vKsR30lCUtY7+KBdebEt7xZSfUTg9SVAsnzNZfnzn6dwITsHs+0/wI97D6NeHQNM6GtV7Dti9R8nUI/NZXra9ixym12uZvCIL3r3lpMkD2GWKxlrMbxXMMzXn4D/B1X3Riy63S0xKSoeik0ur1byYwaZv2Ly59z3MP6yG45s/wyvBrzL62hUDxEgAmUhQLLUcllmxXlg4PTTcNy2D56WqoVmOU+f4VO2n/MHndC9zVuYv2U/TFsa49OenbHmcDKbq7z/ks5bjerh8/7W2Pjn30hPy8BPIwaW2u8UZVDqDlW4gSBLBOLKmqGV1gpt4lNpUOhAREBDCZAstVyWyNwF1/4eiH9sikk7VBPm6qSz2P9vKn5wsRMofBfxO7q0M8HgTu2QnvUIT8R5L+nU1NNF8wZ1EZl8EdevpeGH/31UapcuSgb8d8vyBqNZyj6c6rSYyQlwNQuCuTSCy0xAwJQvsfbUA8DABI42DbDr7PuIivdEB4hxNcId471jkCbWh5GVHSzSoqE36woEx7EHWUe4T8SC2FSIYAATx6XYFmjHHmp9DgE2Djj+zlDci90FnfGFI9ySZFnoPHa5wizIXNIm4edGmPHeSfyyhx1XxwhWM0Kx0c0SwlcX8RkEj52C4OT0gjYtxmb/Z5hnwa6ZlGDLSUJdrJFwuOz+UtiZCQGY7rEeSffE0K9rhsGLNsB/kLFQr9CmRjPw3slfsCdVBB0jK8wI3Qg34QtTJhICpsNjfRLuiXUZRkcs3RYIu8alXjLagAgQgWIIkCy1XZaCI8IwbtgCJD5pi2nbouGhQoQ5KTIWbZs3RudWzbF810F4On2E1kYNcOlOJrKfPH1J541aNdG+uRH+u58Nv4gYrHIejFYN6pX4xipOlh4nrTF33RIMNGmEFo32y8hSjJjPu+KLGxMQtXUW2iEZCx2csS7vM4mYUoNg3y8c5j9GYtmgxsiMmAr7ufHoFshlKUacuxWmpQzHligvWGbtxawhXyLziyRsHp0myHKtnjNWrHTDu82aopmhfBReJll6nIT13K1YM7ENssInYoCPHhakrMFQ/SxET+kDr5zPsXXNRLQRJ2LxsLE44nAA+91NJMKTGYY9JyvL1GA4DFiNpvOj8LOLMbLifTFm8lHYRkqGhYX2co5b12BimyyETxwAH70FSGHfGvTj3GE58yG+ORAKl8aZiJhqDy/RbCRtHg3JDT1UiAARUJUAybIayFIIYNQU5urj/yDl/kOI2Go9ei/yMWdYf4HI9qRzSM189Wgv4/p1MbrHu8Jr3++JR7OateFt30stWS4zjUSCl2XBviwyfhlZRmPK23NRe+UZBEmaAUEg++0FWdYMtIXdoWFIiHLDm8KrfF8PQJAl39cXRhtPwM9aZl8hUmsnyPK82wWEORU9VF3UnKV0jrX0yLIgynzZJmmkzNu0GC13JEB6ullnf8M+lsTj3LNVibL8l5/r8bFIjhhXIDjJF4l59UNxgp1giW066YPuLkfRY8kSfPtRFzTCfaRl66FpM0NJtEuFCBABlQmQLKuJLPnQW/ysIXDdnY6GTuwD1f9DpTrDsiMncOlhDuYO7o1ZYXswnM1XftC2VYn7PnnwCO0alh6jFBdZykZTEuFJ5SL7c2FZKg5TystSIs54xZabTkNM7MfYzmR52b1guLaIsytTZCkdklWUZZ3lsOsfib7FJAmVFFnKRZkF7ZX9XYmyZMPVd+KDMZcN2yZdzwHesoV3aBCc2pAqlXpT0EZEoAgCJMtqIUs2RzVvJFy33ICh7WLEhAxl83TKlciUK4i6fA2zBn6AZXv+QK+ObdGvg5lcgs+HbB7z43fNhQrP/JeBwW9J4rrSiuqyjIO75RzUDVWIDgsiywbBDugdP1wm2lKMLOWjuFftk8xZVrosOxSOLMXZ6cjIM2TDzwZqRZYeustxhoXdJcnSXOYYEGcj0c8Ro44MZl8aPNC2tItGrxMBIlAkAZKl1stShOSFDnBedw11bAIRx+aslBWl9NSXHD6B+Gs3UVenBnpamuOTzvIJPvUMaqIRu6/y6t0H+DI8Bo7t22DBgNLv81BdlgXzjtc+LWbOks/jbUDrH4qasyyYH0yfgJANbrA2ECEx2B2bjBfhx5EPyiRLyVCwLSIPeMFClMLmJp2xJGO0TIJPccOwBW3Km4Oon13QUpiDHYV4+52I9eggCM+v0Xr8taS3MDxa0pylOHExho2NRs/wY5jfrSDBR2a+k1X2MumoxaZRsPqpMX6IXIZBxnlI9h2IESRLUgARKBMBkqWWyzJj7XD08jultiilp3/tQTa2nzqHW49y4TqgB+rVriVHZs/pi0yWD/EHW0NWT0cXrlYdMc1aModZXFFdlqwmUTKCJkzDyqR7eMGyYd81zcapnOEvs2Hv7J2LUXP2IFWkw7JhLWCQdAZmwpwl21c2G/Y5z5Ydj8AVnujduGyRJbIS8d1oV2w8LyqcoSubGSuAUBhKls2G1akLs8HfI1zI0GWrJUXPwEcee3HvLT5U7IFnqmbDFiPLDmxIPsZ7ArwjUgqyYXviq6DVmKBC4leZPlVoZyJQDQmQLLVcllwQe3ekobtzb5UjyqL68+Lf4nH0zl0sHT0Y9VgGrLT4Rh9mt5Pk4lpmFnTydWD5ZmOEjZDcclKuRSyGmC2nJ51dE6Kt8264EOYk/E7MXtd/udweF9MymEa+SqAp17ZQZUSACBCBAgJSWebn8xW1gRp37+fkGzWsqzagew9yQftXHT+1L5zMjv8xKb7Fsl8VS9J/6Zi08wDs3m4Nr77vy8m0PI7L6/hzrjW8dRbjV18bNM6MwFR7L2RMPoAoNxOAr/bzcSzsN7HbJdpBMvy8vSOLQoPQn3JXyusSUD1EgAgUQYDL0rSVsfAKFybJUstlX5G9nK/4s/v8FYzp3L7iDsMXJZjugfVsGFasLz9syeJKYVGCiQti2TAsGxFt1hVuIdIb8SuuSVQzESACRIDLkktSElmSLKHtkTF1aSJABIgAESh/AjRnqcCUZFn+nYxqJAJEgAhoOwGSJclS2/swtZ8IEAEiUOEESJYkywrvZHQAIkAEiIC2EyBZkiy1vQ9T+4kAESACFU6AZEmyrPBORgcgAkSACGg7AZIlyVLb+zC1nwgQASJQ4QRIliTLCu9kdAAiQASIgLYTIFmSLLW9D1P7iQARIAIVToBkSbLE3Wc5uPc0t8TO1r5e8wrvjHQAIkAEiICmEiBZvuay5KKck7Idb9ZpWGwffZL3DG3qNIGbaV9N7cfULiJABIhAhRIgWb7msjyXcxubbiViTLuexXa06zn3kHjrMnzbOVZoZ6TKiQARIAKaSoBkSbJ8KUsuxYRbFwr11Wcv8vBI/BTNa9VHk5r1MM3Uptj+zJ9h6RFf9MstJ0Uh3rODpr4XqF1EgAgQgWIJkCy1XJZZcR4YOP00HLftg6caD/eVjSw3XDyCdg2M0axOg2I7TOyNM3Bt1RsdlJjDLOrhz/ReJAJEgAhoIwGSpZbLEpnsAcj9PRD/2BSTdqguTEVZfvimBVrXMyq2L/968ShGv2mtnizPBcDG4SicEqLg9iY/RCLmvTcWd+alYA2mwmxZHga3uIAY4fFcRugzNxwh49pIHgTNHnId4T4RC2JTIYIBTByXYlugnfDAa/HVCLhPXIBY9tyu52w/qxmh2Ohm+fIB0tr4xqQ2EwEioFkESJbaLktBFmEYN2wBEp+0xbRt0fBQIcKsVFkiFUH2/RDrmMAe5sxsedIH3V3+YwlGazA02hVmHlcwbM0WLLJpjMyIqbCfm4YJB/fD3USMOHcrTEsZji1RXrDM2otZQ75E5hdJ2Dz6EYIdeiOi2zbs8+3KnwgNB+do9Aw/hvndNOvNRq0hAkRAewmQLKuBLCWBl3rCrFxZAqlB9uh31AXJEeOQFmCDIZfdkbJmKPR3MVkGmSMq3hOSWc0shDl1xXYbLtZkTHnbF0YbT8DPWnLBzrF9Hdi+V9b0w6ZRVliCzxHsNx5WpgYQpWcgz7AFGhlo7xuTWk4EiIBmESBZVhNZApmInzUErrvT0dApFCf8P1Sqp1W2LJktYd/vKFySl+PRGBuc/IwNwQ5lA62FZMl/ZYYgc54UdBGuZmyoWfGMTKchJtYDbUUXEf7tbAQfuIRbT+vDanwgVnj2FoZoqRABIkAEyoMAybJayDITCfNGwnXLDRjaLkZMyFClRcFlufbGEdi2egcH/jsL27feqbg5S4H1LWHYNL7nJIjWXsZnfAiWT0qWGlkuRssdCfCyVOz2ItxPy4Ze02YwZPWIbm7A1I8Xorb/JYQMLo+3CNVBBIgAEQBIllovSxGbpnOA87prqGMTiDg2pKlqRBV87Q9ksMUJ7jzJxidtulWwLNkAa5gTrPxOA70XS4Zg+TXgspyTCufVv8JXOmfplYHJB1gykEkWoqf0gVf6BIRscIO1gQiJwe7YZLwIP468BZ/uLjjlFIWts9pB7044Jg7wIVnSpxsRIALlSoBkqeWyzFg7HL38TqktStnT9724B9Zvmle4LJkt4dTVD/UCC4ZgpbKUy4ZtAbsF6xHkVEQ27HN9GFmNR+AKT/Rm3wzEZ9ZhsvtSHC3Ihu3otADrFkgyZakQASJABMqDAMlSy2XJb6nYuyMN3Z3LPkfHI8yrj++htp4Q6xVZ7jx+CP+O/xMWJ1C7cFlaHYaLdAhWKku5BB+1a6cdiQARIALlToBkqe2yLOcuwecwSypNatUtmyjF2Uj0c8TEe3OR/LPdq3shi0jwKedTo+qIABEgAmoTkMoyPz9fqKPG3fs5+UYN66pd4b0HuaD9q46f2heuUnaMZreAuOOQ8VAE7QqEnew4KcmyUq4AHYQIEAH1CHBZmrYyFnbmwiRZarns1esGtBcRIAJEgAiURIDLkktSElmSLKHtkTF1dyJABIgAESh/AjRnqcCUZFn+nYxqJAJEgAhoOwGSJclS2/swtZ8IEAEiUOEESJYkywrvZHQAIkAEiIC2EyBZkiy1vQ9T+4kAESACFU6AZEmyrPBORgcgAkSACGg7AZIlyVLb+zC1nwgQASJQ4QRIlq+xLPNePEHmozNKd7JGdSygr1uGZe6UPhJtSASIABHQLAIky9dYliduLMZ/Wb9BT79Wqb0y7/kTNKxtiT5mK0rdljYgAkSACFQ3AiTL11iWCVdnw7B+LTRu3KjUfv0gJw1paTdhbxFR6ra0AREgAkSguhEgWZIs0aChIS6lJuDx06xi+/fz58/w7NkzNDAwh4G+EXq09kdNXUO13g/iO0lIynoHH7QzUGt/2okIEAEiUNkESJYkS9R+owZOX4xCxzb9lep//95IQo9WgWhW732F7cWI+bwrvhAtePVQ54It+AOfuwY2RXDyz6jn/R7GX3bDke2foalSR6SNiAARIAJVS4BkqeWyzIrzwMDpp+G4bR88LYt/DmVR3Uw6DMtl+c/lfXi/4whcvnEEj54UHWHW1K8Ni9Y2SLkcD6sWC4uQJTtKnDssp92FZ9JmjK4vPeotBDv0xoauETg2v1vV9ng6OhEgAkRADQIkSy2XJTJ3wbW/B+Ifm2LSDtWEqSjLTm9/jOQLu/FOG9siu9Llm3/C7K3uuHErpXhZ4iR8urvg8hdJ2Cy1ZWoQ7Pvtw8CD++FuApwLsIHDZXdcWTNUOE5mQgCme6xH0j0x9I2sMCN0I9wsbyHIvh+OuiQjYhy3bhzcLachd0EK1gxlXwrE7Lw7BsE8Mh6eHTKREDAdHuuTcE+sCwMTRyzdpvAIMDXeHLQLESACREBKgGSp7bJk7RdfDcO4YQuQ+KQtpm2LhoeSEWZRsvz7YjTef2ekXIQpjSjP/vs7TJp3KUWWBTJMnoDkiHHgmksNske/fQNxcL87mCvlZZkaDIcBq9F04X6scqqPq8tGwiGiC8KPzYcBk+qQax64FDIYSJyH90ZtwdPBq3EmiA0X8wj2u+bYGu+JDvznmQ/xzYFQuDTORMRUe3iJZiNp82jh+FSIABEgAmUlQLKsBrLkp6COMIuTZad2g+UiTGlEmXr7lFKyZHZkkWQsHBOi4PbmOQTYDME/k15FmrKR5b+BtrA7PvalWAEWMZqxiDGKRYw5TJDTgRUn/IB572Fps0+BX65gypkgNGci/TRnMU74WQMnfdDd5Sh6LFmCbz/qgka4j7RsPTRtZgjVBqbL+nai/YkAEaiuBEiW1USWbDAT8bOGwHV3Oho6heKE/4el9tmSZMkjzB7vjhHqOHVxjyBJpWWJLIQ5dUV4z4PY32stE9llfCEzhykrS+HnX24qtFUXtkGXEDKYD71+h+Zbl0L0mS+a7QwBpjgizWsPWiy0w8WZZ8CDTPZVAXfigzF30QYkXc8B3rKFd2gQnNqQKkvtBLQBESACShEgWVYLWbI5u3kj4brlBgxtFyMmZCgaK3H5i5NlF4sh+PvSHujp1RFqEYtF6MAyZa/8d0y5yJLtk7VpFKw2WmOxdTi8M+cj+We7l1FeocjyzGRcYNmyRaktzt0Sy9EPORfbIIwN4+oHO2BYWld03PEfBp9ZA2H6MjsdGXmGaNGI3YoizkainyNGHRmMmFgPtFWCA21CBIgAESiNAMlS62UpQvJCBzivu4Y6NoGIY0kzyoiSn/ahK7OgVzsXNWvXwNX/EtHFwhHSiDJX9AB5eY8FOrq6tVCvjtHLCLPkBJ8CoOIYfN7VA4dQC46hJ8BHS6VFLsHnXCBsh+1ER/+tCBjaEri5C996X4DLirnoxlwt3uUKyzkJMP4sEvGeHfgEKOwHrMDVzvOQVDAnKoj5p8b4IXIZBhnnIdl3IEaQLEt779PrRIAIqECAZKnlssxYOxy9/E6pLEp+2rezjyH5v+/xIl+MLNFVdH93pFxEqdiPpBHm1ZvJJWTDvtqLR4WTE4chgiXryN4wUlI2rK6BCWy9QxHk1EYSaWaFwanrSrSPOAbJXSd8DtQBR50SEOX2ZsHBMhHjPQHeESkF2bA98VXQakxQMtFJhfcLbUoEiMBrSoBkqeWyZJk92LsjDd2deysdUSr29awn1/DH5Sl4z9IeshGl4nbSCPP0hf1KyfI1fU/RaRMBIlANCZAstV2W5dApHz29jQOXJkBX/4VStT3PE+PDNsFoVKe9UtvTRkSACBABbSdAsiRZCgQeiv7F07z7SvVn/pguEqVSqGgjIkAEqgkBqSzz8/OFM6px935OvlHDumqf3r0HuaD9q46f2heOdiQCRIAIEIFiCXBZmrYyFl7nwiRZarnsqa8TASJABIhA+RPgsuSSlESWJEtoe2Rc/l2EaiQCRIAIEAGas1ToAyRLelMQASJABIiAIgGSJcmS3hVEgAgQASJQCgGSZTnLknocESACRIAIVD8CJEuSZfXr1XRGRIAIEIFyJkCy1ABZPs9Nh45BQ7xg67HiRR50DVuU82Wm6ogAESACRKAsBEiWGiDLu79+giajI5F9dBlqtXgPtUz7lOWa0r5EgAgQASJQzgRIllUsy0fJ65Cf9wx135+ChzFz2L/ToNewdTlfZqqOCBABIkAEykKAZFlFsszL/JdFkj+gJosk63abgGc3EyG6Eov6NvOKvJ4vxI8hvnseNY07o4aOblmuOe1LBIgAESACKhIgWVaRLPOfZiP/+VPo1GkC8e2/kXtqPRrYL2Ei1CvyEuYkrsLjf8LRbNIhFS+xKptLHn912f0K2GMxK7CIcPHPs6hvZQXjop74XMqRRRf/xNn6VrBSZ+cKPCuqmggQgepLgGRZRbJ8nnMbokv78eLJQyGxp35fLyDvCR6f2wX9Jhao+darpyU/OhWGfLFISAIS3z2HWq1tUKvVB6ihV6vInim+GgH3qX44eCUXYl0DNOs6BouWfwWbUuVSSbLMWIvhvYJhvv4E/D8o7c2l2KYMrB3eC8Hm63Gi9J1Lq5xeJwJEgAgoRYBkWUZZZsV5YOD003Dctg+eKjxs+Nmdv/H8/lXoNmiFmm9KHo38KHk9sg75o0atemjudkL4Xe6pjch/9ggGb9sL/8+K8xHk2mTsnqIvsDgO7lYzcXvqFoS6doQh7iDedwwmx/VEuMJDmAtXUEmyVKprSjfSxDapdAK0MREgAtWAAMmyjLJE5i649vdA/GNTTNqhmjAV+8+z/xKRuduNyTEXTcZE4tl/x4WIsra5RJS8iC79hucPrkOvsRnqWk0pwncBsHFIxoTkCIyrX/CyOBozPliHduE7MP0Zf/0y3K+sgWSkVVZGkp+PW01CzcPrkXTvBQxMHLF0WyDsGvNtM5EQMPiAJigAABoZSURBVB0e65NwT6xb6LUYDxd8HX0FuWJ9GFlNw8p17uhqAOxyNcOyvMFolrIPpzotBjs0XM2CYB4VD88Or15vcSGGHVMMfaM+mBsegnFPlrK2/oKb0rO0CWT7DhXqCzKPQjzfWa5N+qhrNhiLNvhjkBBFS87nvO1XeBr1Y+HzyUxAwHQPrE+6J0TgJo5LsS3QTu2HaFeDzwM6BSJABIohQLIsqyzZ/uKrYRg3bAESn7TFtG3R8FAhwizquvBEnkfJYdAzehu12/ST2+Rp6hHks8jyKRNpoyGrUUOf2UiunEOg7RCEPrOFR8BsOFmZwlB2XvBc6bJcqzcBW6K80BUXsWrccKyotwBHmKTqx7nDcuZDfHMgFC6NMxEx1R5eotlI2jwaaYG2GLbfGqt+9YVN/TsI/9wBiwwWI/lnO0QzuXmctMbcdUsw0KQRWjTaX0iWHleGYc2WRbApqHdu2gQc3O8OEzmZS05UVpapwQ4YsLop5kf9DBfjLEkUfdQWkfGe6FCw71o9Z6wW2nUGvgNHIN5eIto4d0vMfPgNDoS6oHFmBKbae0E0OwmbR0u/ZdDnBhEgAkRAQoBkWQ6y5FWUpzClc5SyEaW0mU+uHGCJQc+EodnaJr1Qk81dFiriq9i79Dss/fUoUp/VlJ+zVEKWcgk+ifPw3th78L0UgsEnfdDd5Sh6LFmCbz/qgka4j7RsPTRtloEgWzucmXwBYU4FZr5xFFvO1sfAj9/BQR5ZmkYiwcuyoKksGleILF9FimyTrDA4dd0Om4QouL1ZeBj2lSxrsi8Gdjg+NhkR0jBaHIPPu85D/dAT8LMuvO+5ABs4XHYXItSTPt3hcrQHliz5Fh91aQTcT0O2XlM0k/t2QR8VRIAIEAGSZaE+oP5TRzIRP2sIXHeno6FTKEs++VCt/pX710+Arr7c0KtsRbmJwSzBpzfyHt5k92OawqDdwBKPI7r5JzYt9MD3iVZYmRSE/pdLjyzlZCknVzHuxAdj7qINSLqeA7xlC+/QIDi1iYWbxed46l90Fq38sKkQG5YsS7nXS5IlisjeLTysLHs+srKEmM3nBs9lw7ZJkJyON0KDnNBGjQxdtS427UQEiIDWEKDIslwiSzaXN28kXLfcgKHtYsSEDFVr3is38WfoNukIfSbBogrPnM0+sgQNbP0gOrcD+s27smHavnKbXg8ZiRG/f4jwHdPRVvqKmM1fWgSjPZ8jhIqylIks7bLTkZFnyIZR2dCvOBuJfo4YdWQwYmKHIFIxshRJo05DYRhWLnIsTZZljiw9oLv8DIL6lxRZDkZ2egby2NKCktNJhJ/jKBwZHINYj5fktOaNTA0lAkSgYgmQLMssSxGSFzrAed011GEJKHFseE/IhVGxPD6zFc/ZXKSBTDKPYhXZR5bCwGIQS4CxQNbhxex2k2+hZ/im/GapwXAYsBr1vt7E5ht5Nmw2UsKmYvT3wOykzRhdh0V1Hb2RtzCeDZnWwc0D3hg7dSfMAnlUKJELn7PcuHMOrPWvys1ZYtMoWP3UGD9ELmMJNHlI9h2IEYIsPfBMmLO0QRjfz0Ayn7lIbyEOhQwWhmFLk+Wc1IJ5RelcaMZkHIhyezlneXzMceycKCFb/JylGImLh2FstDTztyRZ9mOnY4WfGv+AyGWDYJyXLMxnkixV7Li0ORF4TQiQLMsoy4y1w9HL71SZRMmbkHUoAHr1jNm6sDaFut6LR3fx6Ow21HlnOHTfaIpnd/5hCxmcQv1+PkV2U9HFcHz1RYDkPkvwDNEe+OzbQLj3lsjmxqbPMOK7QyyjlWet2sEiLRp6s17JUi4btr0LVobNh2TXTMR4T4B3REpBNmxPfBW0GhOEhCb2mjQb9gW/t9MNIRvdwF9SZhiWZ8u+zIZtYYcF6/nwrmQ89NzywXAKPo9nfYNwiclX1WzYYodhM2PgPcEbESkF2bA9v0LQ6glCm6kQASJABGQJkCzLKEuW2YO9O9LQ3bm3WhGl7OEfMyE+TtnJlrTrxO61NGRJPDlsbvIG2yQfddoPZdmx5sLmD/fOgNGonUAxq/1oWxcvLFNtOwNqLxEgAtWdAMmyrLIs5x6SczhAGI7Va2TGZKgPPbZogfAzK89unYAoJRKNh6+vNqLk50WyLOdORNURASJQ7gRIlhomS94c0fndEP0bCx025KpTqy7yn2RJlrlraY26PWZWu4XUSZbl/r6mCokAEShnAiRLDZSltEnP0s8CT9gDofXrsKSedqhRs245X36qjggQASJABJQhIJVlfn6+sHmNu/dz8o0aqv+hrP59ipLmavv+ykCnbYgAESACREC7CHBZmrYyFhrNhUmyfJCLsnxZ0K7LT60lAkSACBABZQhwWXJJSiJLkmWZI1tloNM2RIAIEAEioF0EaM5S4XqVdRhYuy4/tZYIEAEiQASUIVDtZKnMSdM2RIAIEAEiQARUIUCyVIUWbUsEiAARIAKvJQGS5Wt52emkiQARIAJEQBUCJEsZWnf/+gu5V6+iXps2MOrRQxWOtC0RIAJEgAhUYwIky4KL+8/8+cjLyUFDCws8uHCBPc3DEO96e1fjS0+nRgSIABEgAsoSIFkyUrcPHMDdw4fx7qxZL7n988MPaNK7N5oPGKAsS9qOCBABIkAEqikBkiW7sJdXrUIDMzM0ee+9l5f57okTyL1zB6Zjx2rMpRdd/BNn61vBypieIaV4UWh9WY3pptQQIlAtCZAs2WW9vnUrez7kbZiPG/fyIl8OC4N+8+ZoPXKkiheePVzZzAMQHqas4q4lbp6BtcN7Idh8PU74f6B0xVnsgc19/hqHpJ/t2JMtwZ4oFgH3qX4yz7rsh3mrXj07UumKy3nDcwE2cPjl5qta9evizc4uWLTCs+BZmiUfkGRZzheEqiMCRECOgNbLMivOAwOnn4bjtn3wVOOpvQ/++Qdn2HxlDV1dtGBDro06dsT9lBSksaHZF8+f4+FYT9zSM0K7t+qhX2cjJbpPRclSiUMX2iQVQfb/Q8b8E/CzZi9mhsGpxw94Nj0EG9ysYYg7iPcdg8l7O2JlUhD6V2HAKshyvz2i4j3RgUs9OwVrJjpjmZ4nkjaPRv1STp9kqU7/oH2IABFQloDWyxKZTE79PRD/2BSTdqgmzNwrV3Dy66/RzcsLtZs0wc39+/Hg/Hk0bN8eLe3tMf3XVGTkiGHe3hjXbuaiqaE+VkzvVNrHdsmRJXtYdIT7RCyITYUIBmjWdRJ+XueOrga8WjGuRrhjvHcM0sT6MLKyg0VaNPRmSaJUWSEIPzeagfdO/oI9qSLoGFlhRuhGuMl+YTgXAJvPRFh6bD66sdoFIR0fg+M7J8o8qPok/O0+R9bsvxBgKznGsrzBaJayD6c6LcYVduDMhABM91iPpHti6Nc1w+BFG+A/yFiIVAtJapcrzILMJdLjPy/Lw+AWFxCTdA9ifSP0mRuOkHFthH1li6Ishddk6+KuV6EdctvKsclEQsB0eKxPwj2xLgxMHLF0WyDsGiv7lqHtiAAReB0JaL8suWKuhmHcsAVIfNIW07ZFw0PJCPNPNuzafvJkNOzAYxn5EnkiE9v/ycbEEW1fvrBm+7/4X/fmGPJB8xL6SkmRpRhx7laYljIcG3fOgbX+VYS6jkSQgQ+OMCnVTw2Cfb9wmP8YiWWDGiMzYirs58ajW8GQrqIsPU5aY+7WNZjYJgvhEwfAR28BUlg9UhGd9OmOeY22Yr+7SYF7mAhNI5HgZVls+/kxhHrXLcFAk0ZokbMODgNWo+n8KPzsYoyseF+MmXwUtpHx8GTYSpWlxxUMW7MFi2yk55OGCQf3o6BJL9tROLJMxOJhY7G940okBfWHfmqw8u2QbrtwP1Y51cfVZSPhENEF4fxLQ5w7LGc+xDcHQuHSOBMRU+3hJZqtVPT6On5A0DkTASIgIVAtZMlPRFVh8qjy3JIleN/fv8i+sGhPGt54sx46tWv48vW/Lz6ArugFPnc0VVOW0Zjyti+MNhYMi/JaBEEehUtyBHr+Ygu7Q8OQEOWGNyV6k4tSC0WW5lGI58YSNpWJ6AQgMfi86xpYHYnAuIIxTHmxSeqOLzgTGxkhywr130DWpuNjkRwxrmAoVIyYz7tiXv1QnGBju6XKUhplCsfJQphTV2y3SUCUm+QMpaXQnCV00cx2IX792QltmP1VaUfhbfm5BsE8igle5IPuLkfRg137bz/qgka4j7RsPTRtZlgo2qUPCSJABIiAlEC1kSUbpEP8rCFw3Z2Ohk7sg9z/wxKv8s3ISNyOiUGTbnyAsnDZdqsBUpu1w4iBkqiMl20xN9H5rTcwaWDrEuouKbKU+dB+Gcy++p3jHjZMetldGPqUFPVlKY75HFZhPXBIZr5PGGItFFmeQ4CNAy67Fx7q5S0QJCbXJvnfqSbLIiLRgjOVjyxTEewwABE9I19+GVClHYXFyw+iC9ugSwgZLMad+GDMZUPJSddzgLds4R1a9QlO9JFEBIiAZhOoJrJk81DzRsJ1yw0Y2i5GTMhQmTm5oi8AT+x5yP4WVc48rInvzhlBR18PH77XBG+3NsSl69k4fOIu2zwfP7u9CyuZiFO+jpJkWVxkGQvHhCgMiXRA7/jhMlGcurLMwqZRffDXuCT8bPdqdjA1yB799g3Ewf3uePUVoGRZFhfReeguxxk2PKqaLEuJLGUTfNhwqdXMXPgcWYOhLDJWpR3Ctmcm40KYU6FoUZydjow8Q7RoxCaJxdlI9HPEqCODERPrgVcD7pr9pqXWEQEiUPkEqoEsRUhe6ADndddQxyYQcSwqK0uuxgWWyPPpkhOYMcYCjerXRHxSBi6n5sDcpB5srJriftYz/LTpIsI8usGiZd0irpgqc5Z3EP65A3ykc2bCXNsGtP5BuTnLoOKGYW+xeuwuYuYZluEq28IsJus+s3Bl0Aqs8xqAlgZiZKewOU/nZWjoz6OuIiI/hblCceJiDBsbjZ7hxzCfBeWSiNAWkQe8YCGSZLAuyRj9KsFnTiqcV/8KX+mcpVcGJh+IgtsrWwstLJzgI4kuN3QNxzF+oFLaISftc4GwHbYTHf23ImBoS+DmLnzrfQEuK+ai7a5RsPqpMX6IXIZBxnlI9h2IESTLyv/koSMSAS0joPWyzFg7HL38TpWLKPm1s/U8ipEfm8CcRZPFlcssytz7Rxoiffj9GIpFfi7w5atM5MLwainZsHf2zsWoOXuQKtJh2bAWMEg6A7NiEnyKk+UbLIIced9PIhmFIr4Tj6Uzv8GvyekQPWfZoA1a40OPn7DUpR3LzS16mLSkLFRkJeK70a7YeF4ElloKR5sG2HX2/WKyYVvAbsF6BDkplw0r5tHltNv48i8278q+AambDavL2mXrHVpw3EzEeE+Ad0RKQTZsT3wVtBoTlEwK07L3NzWXCBCBciKg9bLk8tm7Iw3dnXuXKaLkPHlUOSv0LL52LZwdq8j7+zXnsGziO8VEl+pfHbGY3Z6hLx065eJdBtPIBJSQwKpwsJPw6T4PjbYWzjhVv1Vq7qmYdKRmNbQbESACRKCqCWi/LMuR4Ma4m9h8KA3vtmtQaq3/XHyIKfYmpdxGUmo18htkrMXwj2Nhv4kNjbaDZHh5e9UvGKDiWbzanGSpNjrakQgQAc0iQLKUuR5J7NaQpEsPlb5CVm83KCHRR+lqZDaULEowccH/2zv7qKiOOwy/wK6yJgdEiGIU0cRUjeU0YohGa6URi6ZiJCci6LFqxYho3NSsjcbPUBSsaA5RUSJW8QuEGFshVY5gtqX2aFCSxmoMxo9oVFAW+dINWYHOvbu4CBxYKASXfeevde/cmbnP3OXxNzP3TqYYhhWjmj28ER5f50UDLSm2vc6hLNuLPOslARJoZQKUZSsDZXEkQAIkQAIdjwBl2fH6lFdEAiRAAiTQygRqZFldXS2XbHenqKzazaWhRyIsq7nwbjna83zLWslcJEACJEACJGA5AUmW/fq4yydIwqQsLWfHnCRAAiRAAjZCQJKlJEljZElZ2ki38zJJgARIgASaQ4Bzls2hxbwkQAIkQAI2SYCytMlu50WTAAmQAAk0hwBl2RxazEsCJEACJGCTBGxelsXfZ6LygXgDgCm59HpF7DbyhE3eDLxoEiABEiCBhgnYtCwlUd46tx6dnMyvtyvPv4JB/ofRqYtxiTATCZAACZAACdi0LHVX01B8czd6/sL84vTi769Cr3sCz46I491BAiRAAiRAAjIBm5bltTN/QuHlJIHB7tHbwc4eys5usLM3f19dXYWuvcfA44UVbXbr1NtI+ZGapB1IYvFcmhZLmt4Upc3ayIJJgARIwBYJ2LQsL2RNR7e+zujs5Nhk3xt+uI9b//kaXhM+azSvJDyNtuEsHnPSoG3EdJRlk93ADCRAAiTQLgSsXpYlWRqMn/8lJqYewZJmbuD7zfEZeGpATzh27Ywf75dDX1T4sBPs7O3h9HSfh/826O/h2slcIcvjFndU4/KrXwxlaTFaZiQBEiCBn5SA1csSOjE8OUYD7f1+mHOwecKsLcsr/8yAosuTsFco5A5QOqpg76CAa/+BsBPDsq0mS102oudrsCunEAYHFTwnbkBqjL+8cbUky43KWfDKS0am2KPL3s0HCxNqtuiqMwwrNr1OUYciIvM76PFoOYbLKVCHRshlVCrd4LMwAXvCvaDEeUT7BuDznweiWHvYuA3YoBBsTXwfo6QG1C6zUgk3n4VI2BOOmv+D6DI0CPljOi6Viw2qRdvmbd0JtbdK5qXLjsZ8zS7kFBqPmdutQ3b0fGh25aDQ4ACV50RsSI2Bv1QfEwmQAAlYCQHrl6X8Nz4RM16PwKkf+mNeajo0FkaYtWX57fF0eA7/NZRdzI+NXMw8jL4jxsjftY4sS7Bvqg/WqyJxdFsQXHVJCB27CoqIc9gRqJRlqTnji6ij2xDkqoP2vWDMzhmHNO0SPI/asjQgSy1kde4NJKcth1fJp1g06Q/QvZWD/dPuIS5gFFKGpuLIam9pB2kEBKdjZNJJvD/UKMt93Rfj48QwDEAuIgOCcWDgJuRu9sdXq4Yj5MQEuUxvcWz1+MnQjjMNHZ+Pgd/rRzFs216s9nVGftICBKxVYV3uZvjfjEPA2I/QPfIotgU54/LGKQhIGYKkk+9jaJYaXm8X471jCQgR15QSNg7L9YuRs38anK3kR8JmkgAJkECHkKXUjS0RZo0sHRwrcTX7GKrEIh4piqxJhvv3oBARpoOyk3h5bhUqKwzikZKnRPSpwrMjt6Lzk+Zh2oZupfrDqgaUFtzGA6de6CYHZAakzBiIuEFGIdXLX5KIIO89eCkjE5r+tWWZjrk/Ww23PaexZpix5vPRvgi4qMalHa8YhYwFiFszEz79VNA/rNMoy4vqS0LOphafWoYXQ8ux7mwsRhTdQKmiO3o4KeWDZyNHYdKVRaLMQHwb4wf/s2/iQmKQiFCldA0nkv8L5/GvwnG7OPb5dOSmzDAJsFZb9aswPOQEXl6/Hit+MwTdUIQbpQp07+FkKoc/QhIgARJ4/Al0GFmKgUBoF03C7L8VwCUoAaejftUk/TztHLEQNh9VlXpU3CtG7xdM5pHPlN4uXwWlqv52ZXcufA0Xj7lw7Tux0ToamoOUh0jD1uD4pXKhSmOqWfhTP39tQdb9LIae69bebx4yMjXor/8GSSsWI+5YHm5WOMNnZgy2LBklhnobkOX5aPgGXIT60g4EykPE72JvbgH0labCfWNkWR4JH4gFFVHy57pJFvX263W+doBfbB7iJxiQr43D0rW7kXO1DOjth5UJsQh6xqhcJhIgARKwBgIdRJZiXmzZFMxOvgYnv3XIiA+U5wCbSj/eL0DZ7VPQF+ehrPAzeL78YlOnyMdvffUluvac3QJZnsGq4SH4IugQ9r41GFIAV1uQzYss18HjYDaWe9Vtsh5FN0qh6N5DLl9/fTfCXo2EY5QkrsYiywjki4h0k+t6pP75NXiIyNccrTYUWZrruR1bN+o0t8lQWoDbD5zQSwqlDaU4tWYipv5rglHqFtFmJhIgARJofwIdQJZ6MS0XgOCdV9BFREFZIvKxRJS10Zfm/xsFeVvQa6hlf75bLsssqL3eRvHiv2Pb79xhOJeIsGlRuBlsHoaV5iwj0zYjxL2kkTnLEqTPHY3lBbMQvzscw1R6nIpTY5/7Wnw45aZJyGk4sGgAFPnGedHaskx+eikO7Ah9OGf58eCtyIkdhO3yXOd+HF42DMr8Y4icNR/JnuuM0aRpztI38RO8O0wFXUoYxq1VIPIf8ZhwQ5rP/ASDow4gOtADuH4IK1ZeQMiWpeh/aCp8Nrnig79uxG/dHyB39XhMpizb/5fPFpAACTSLgNXL8vZf3sAv13zRYlFKtH46WYrBYrGidPI75pWor3VJQsZze3BaTD7WXw07GkuT4jFDHrJsZDWsvHJ1JmK2LJFXtRrO7sSb6g04YVoNOzgoAjsjpBW39VfDugz5PT6IrzkvDtNDPzStaB2NKS9dxl4h5Jq5SPNq2CqoengjPL5mpe6jq2EdVJ7wW5mA2KBnxLykDhkrZ2FlyjnTatiReCf2I8yycBFWs+5mZiYBEiCBNiJg9bKUHnf49OANDA+W5uRaltpKli1rTVue1cAwbFtWx7JJgARIoIMQsH5ZtkJHlN/JxXdnlsPRuZNFpVWUlaLn80vh0nusRfkfn0yU5ePTF2wJCZCANRGgLE29VXorG4aKuxb1nfToiPWJUro0ytKiDmYmEiABEqhDgLLkLUECJEACJEACTRCgLHmLkAAJkAAJkABlyXuABEiABEiABP4/AjWRZXV1tVyQ3Z2ismo3l/pvrbG0msK75WjP8y1tJ/ORAAmQAAmQgKUEJFn26+MuZ5eESVlaSo75SIAESIAEbIaAJEtJksbIUshSfDDGmEwkQAIkQAIkQAIygboLfP4Hzj4LPncwWTUAAAAASUVORK5CYII="
+ }
+ },
+ "cell_type": "markdown",
+ "id": "f910589e",
+ "metadata": {},
+ "source": [
+ "Nach erfolgreichem Anlegen der Tabellen kann dies über pgAdmin kontrolliert werden.\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8b96412a",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/01_Stammdaten_Unternehmen.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/01_Stammdaten_Unternehmen.csv
new file mode 100644
index 0000000..8136ce6
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/01_Stammdaten_Unternehmen.csv
@@ -0,0 +1,13 @@
+Name;Straße;PLZ;Stadt;Branche
+Volkswagen;Berliner Ring 2;38440;Wolfsburg;Automobil
+Mercedes-Benz Group;Mercedesstraße 120;70372;Stuttgart;Automobil
+Allianz;Reinsburgstraße 19;70178;Stuttgart;Versicherung, Finanzdienstleistung
+BMW Group;Petuelring 130;80809;München;Automobil
+Deutsche Telekom;Landgrabenweg 151;53227;Bonn;Telekommunikation, Informationstechnologie
+Deutsche Post DHL Group;Charles-de-Gaulle-Str. 20;53113;Bonn;Logistik
+Bosch Group;Robert-Bosch-Platz 1;70839;Gerlingen-Schillerhöhe;Kraftfahrzeugtechnik, Industrietechnik, Gebrauchsgüter, Energie- und Gebäudetechnik
+BASF;Carl-Bosch-Straße 38;67056;Ludwigshafen;Chemie
+E.ON;Arnulfstraße 203;80634;München;Energie
+Munich Re Group;Königinstr. 107;80802;München;Versicherung
+Siemens;Werner-von-Siemens-Straße 1;80333;München;Automatisierung, Digitalisierung
+Deutsche Bahn;Potsdamer Platz 2;10785;Berlin;Transport, Logistik
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/02_Connect_to_Database_publish_Company_Data.ipynb b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/02_Connect_to_Database_publish_Company_Data.ipynb
new file mode 100644
index 0000000..7a23bcb
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/02_Connect_to_Database_publish_Company_Data.ipynb
@@ -0,0 +1,330 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "dbd6eae9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import ipywidgets as widgets\n",
+ "pd.options.plotting.backend = \"plotly\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "8b447b09",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df=pd.read_csv('01_Stammdaten_Unternehmen.csv', sep=';') "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "5fc7b7d2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Name | \n",
+ " Straße | \n",
+ " PLZ | \n",
+ " Stadt | \n",
+ " Branche | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Volkswagen | \n",
+ " Berliner Ring 2 | \n",
+ " 38440 | \n",
+ " Wolfsburg | \n",
+ " Automobil | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Mercedes-Benz Group | \n",
+ " Mercedesstraße 120 | \n",
+ " 70372 | \n",
+ " Stuttgart | \n",
+ " Automobil | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Allianz | \n",
+ " Reinsburgstraße 19 | \n",
+ " 70178 | \n",
+ " Stuttgart | \n",
+ " Versicherung, Finanzdienstleistung | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " BMW Group | \n",
+ " Petuelring 130 | \n",
+ " 80809 | \n",
+ " München | \n",
+ " Automobil | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Deutsche Telekom | \n",
+ " Landgrabenweg 151 | \n",
+ " 53227 | \n",
+ " Bonn | \n",
+ " Telekommunikation, Informationstechnologie | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " Deutsche Post DHL Group | \n",
+ " Charles-de-Gaulle-Str. 20 | \n",
+ " 53113 | \n",
+ " Bonn | \n",
+ " Logistik | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " Bosch Group | \n",
+ " Robert-Bosch-Platz 1 | \n",
+ " 70839 | \n",
+ " Gerlingen-Schillerhöhe | \n",
+ " Kraftfahrzeugtechnik, Industrietechnik, Gebrau... | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " E.ON | \n",
+ " Arnulfstraße 203 | \n",
+ " 80634 | \n",
+ " München | \n",
+ " Energie | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " Munich Re Group | \n",
+ " Königinstr. 107 | \n",
+ " 80802 | \n",
+ " München | \n",
+ " Versicherung | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " Siemens | \n",
+ " Werner-von-Siemens-Straße 1 | \n",
+ " 80333 | \n",
+ " München | \n",
+ " Automatisierung, Digitalisierung | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " Deutsche Bahn | \n",
+ " Potsdamer Platz 2 | \n",
+ " 10785 | \n",
+ " Berlin | \n",
+ " Transport, Logistik | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Name Straße PLZ \\\n",
+ "0 Volkswagen Berliner Ring 2 38440 \n",
+ "1 Mercedes-Benz Group Mercedesstraße 120 70372 \n",
+ "2 Allianz Reinsburgstraße 19 70178 \n",
+ "3 BMW Group Petuelring 130 80809 \n",
+ "4 Deutsche Telekom Landgrabenweg 151 53227 \n",
+ "5 Deutsche Post DHL Group Charles-de-Gaulle-Str. 20 53113 \n",
+ "6 Bosch Group Robert-Bosch-Platz 1 70839 \n",
+ "7 BASF Carl-Bosch-Straße 38 67056 \n",
+ "8 E.ON Arnulfstraße 203 80634 \n",
+ "9 Munich Re Group Königinstr. 107 80802 \n",
+ "10 Siemens Werner-von-Siemens-Straße 1 80333 \n",
+ "11 Deutsche Bahn Potsdamer Platz 2 10785 \n",
+ "\n",
+ " Stadt Branche \n",
+ "0 Wolfsburg Automobil \n",
+ "1 Stuttgart Automobil \n",
+ "2 Stuttgart Versicherung, Finanzdienstleistung \n",
+ "3 München Automobil \n",
+ "4 Bonn Telekommunikation, Informationstechnologie \n",
+ "5 Bonn Logistik \n",
+ "6 Gerlingen-Schillerhöhe Kraftfahrzeugtechnik, Industrietechnik, Gebrau... \n",
+ "7 Ludwigshafen Chemie \n",
+ "8 München Energie \n",
+ "9 München Versicherung \n",
+ "10 München Automatisierung, Digitalisierung \n",
+ "11 Berlin Transport, Logistik "
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d5c6c68d",
+ "metadata": {},
+ "source": [
+ "---------------------------------\n",
+ "# Schreibe Unternehmensdaten in PostgreSQL"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "6c09bdca",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import psycopg2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "383fb9a9",
+ "metadata": {},
+ "source": [
+ "### Verbinde zur Datenbank"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "8675c8bd",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Database connected successfully\n"
+ ]
+ }
+ ],
+ "source": [
+ "conn = psycopg2.connect(\n",
+ " host=\"localhost\",\n",
+ " database=\"transparenz\",\n",
+ " user=\"postgres\",\n",
+ " password=\"postgres\")\n",
+ "\n",
+ "print(\"Database connected successfully\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "22b9ab1d",
+ "metadata": {},
+ "source": [
+ "## Iteriere durch Dataframe und schreibe Datensätze in Tabelle *Company*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "961ac836",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "cur = conn.cursor()\n",
+ "\n",
+ "\n",
+ "for i in range(len(df)):\n",
+ " #get data from dataframe\n",
+ " name=str(df['Name'].iloc[i])\n",
+ " street=str(df['Straße'].iloc[i])\n",
+ " zipcode=int(df['PLZ'].iloc[i])\n",
+ " city=str(df['Stadt'].iloc[i])\n",
+ " sector=str(df['Branche'].iloc[i])\n",
+ " \n",
+ " postgres_insert_query = \"\"\" INSERT INTO company (NAME,STREET, ZIP, CITY,SECTOR) VALUES (%s,%s,%s,%s,%s)\"\"\" \n",
+ " \n",
+ " record_to_insert = (name,street,zipcode,city,sector)\n",
+ " cur.execute(postgres_insert_query, record_to_insert) \n",
+ " \n",
+ "conn.commit()\n",
+ "conn.close()"
+ ]
+ },
+ {
+ "attachments": {
+ "grafik.png": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABeEAAAOoCAYAAABWWz8BAAAgAElEQVR4XuydB3gVRReGP2kSepMiIL1LCyBIkUgvCU1EOgQJHYIkSJEuVQISOgnSDUjHgID03ptUKQGklwSpAQL+/5zZuzd7b27Zm9w0OPM8Poa7u1PemZ3d/ebMOR+8ehXxP3BiAkwgQRH477//4dWr1wmqTlwZJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwAQcJ/ABi/COQ+MrmEBcECAh/s2bN3j79r+4KI7LYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkwgFgiwCB8LUDlLJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkSARXgeB0yACTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwARiiQCL8LEElrNlAkyACTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwCI8jwEmwASYABNgAkyACTABJsAEmAATYAJMgAkwASbABJgAE2ACsUTgg6NHj/4vlvLmbJkAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMgAm81wQ+cO0yhUX492EIUC9/8I431JE2OnLuO45NV/Mc4eXIuboKfwdOcoSJI+e+A2hMmvA+t/1d60tuDxNgAkyACTABJsAEmAATYAJMgAkwASZgJMAi/Ls+GN5HUctWm99HHs4c48w2ZjSZnz5+fJ/q48RnMQEmwASYABNgAkyACTABJsAEmAATYAKJggCL8Imim7iSTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMgAkwASaQGAmwCJ8Ye01vnd9na1JLbX+feegdM3rOY7Z6KFk/h/np48f3qz5OfBYTYAJMgAkwASbABJgAE2ACTIAJMAEmkOAJ2BXh06b6ECM61IZbmQKx3pijF29i8vLd+PvGg1gviwtgAkyACTABJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmENsE7IrwAT7NUa5wztiuhzH/26FP4DF4fpyVxwUxASbABJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATiC0CNkV4soLf+XO32Crbar5dJq3CMWEVn1hTucK54PF5MTwNf4Wl206CFhY4MQEmwASYABNgAkyACTABJsAEmAATYAJMgAkwASbABJjA+0fApghPYnKAz1dxTiW2RHhaVGhVo4yxPUu3n8TTF6+c2r4iuT9C0JDWxjzJtU7r0UFOLYMzYwJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkyACTCBxEHAKSL83zce4uPMaUEitzOSuQhP/ugL58pizHrXqZBo+Y3v6lEJXdwrGvOJDbG/dc2y8GnxhQmGcl39nYGF82ACTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMgAkwgURGwCER3mvyahy/dFs20bXQxygvLOWDhDX5s/DX8rccQojvKkRuj0pFY4TBXBzfNaUb0rhECvwUwLWrcFnjaIoLEf7jzOmwdGhrY33XHziP4Qv+dLSqCf58925eGFngDob3X4/1Cb62XMH3jQCPTx09/lUrHKsDLO66FFN0nM6nMAEmwASYABNgAkyACTABJsAEmAATYAJMgAlEj0C0RXhbxXl8XhQj2teSpwQJn+hBO07hTuhT+W8S6rs0/AzBQpzWCvqB/ZoZs9SK8B6Vi2NEh9pRiqPgrY76Wo8LEZ4qSjsCyHr/9sMnicO3vRTjslrs0vN/+qOtWO9wrVMPHXPew5z5J3BWnPmui5zZildA/69dUTl7SnyY5H949TwM+7fsxsSN/+CegZQeBq4e7ujo8jfGLL9kvC56t2riv6rvYG+0y2OjHdePodzYvU5pqJ6+cUpBcZyJbFfZZxaFc8k34xX9C2Mswsdx73FxTIAJMAEmwASYABNgAkyACTABJsAEmMD7SsApInyalCnw7KViDU+JRPau7p9h+MKtWH/wgkW2aVzENQYLerKqtybCLx3axsQVjZqZPQtzEsLdRXDUtAYLejqfBH1L7mi07m7I1Q2J+9VL5xcudtLJ4rTubyhfa8fUupFLGmqf9lqtP3o1YCv5j6e8KNFvu04qZcd5kmJcGhxYsxXLbpmW/uzBVZy8C3Ts1wO9897DtD6rsECc8q6KnLL1hapiSe9yyPv4GpZv+QvHH6WBq5srWnyaGtf+XCcWJRRIehh0H9AbnmnO47uhW7HPSR0rxVY4T7B2UrXsZpO3YD7kcjGclrM0hjf9CH9rx1z4v9h7+ZHdfPScoKdv9OST0M5hET6h9QjXhwkwASbABJgAE2ACTIAJMAEmwASYABNgAvYJxEiEdxduZ0Z2UCzefxci98hF2+TfOyd5YYcQs9V/26uGNRHePDDsxZsPjYI8BVT1+GG+xcCqlvyyUx0oSCoJ32pSLe4DfJqjXOGc8mcSwUm4N/dvH7z/HCiQ65x+X0U5tvPkFfjMinTKcmyOt7GMYxdvocuklTC3wg/adgJUT22iNk1asRtUVpwmgwi/Y0EgfA/oK/ldFTnFPgZ0/b49umS/hUk/rkWQURNOi9bereFTKAwBQ1dgjvg9vhgkVhHeZGR97o4/O+bAXw6MOX0jUzkrvvrGkTpG51wW4aNDja9hAkyACTABJsAEmAATYAJMgAkwASbABJhA/BKIkQhPYrtWrG45epkM0Dq5e0M0/GEh7oYpLmgo+TSvKkTnMlI091uxx8RC3poIP7JjHWnNTonc2fjMCkbQkNbGPCct3y3c3ZwwIWjNfY0lzJZE+Oh2R8D6Q5gTfFBerkeEt1VOdFztRLfe8jodIry5qBlV5EyLSk1qYFD1T5ArVRK8efUU5/buwUArblhoMYT6lvrQUvJtUV24LDoXrQC8MWKBzxA4/XNkO7YOjeZfM81KCsd5cH3dDHj9oQq9oVh7JRVqlMqMdEn/w5PbVzE/aD0WXVIujeoixD4n1zruGFgvD/KmToakb1/hyl9HMH72MRyX5RdAZmOtXsDawknC5WuovA0RPm/1WhjToAgKZaD2R+De9TOYHLAbWzULItqx9jbiJa6dOaowMmQfZXxm/AQ9PWuhVcG0cElqcC+0aQd8/zTb+mG4PqHyc0yEtzPWzNzRKMxCselOBlSXnKKOZ/N7K6FyitkcwFczASbABJgAE2ACTIAJMAEmwASYABNgAkzAuQRiJMIfm9XLpDYUuJWCtZIrmnLdpxuPmYvsdKD6dwFGFzbmx0mEJvcsO3/uZsxjqfAt77d8lwh6GumehqzW6VxtMg/iSpbox0QgV7KqV63d1fOtifDPRNl/33go3dGQD3vzRHmaHyMr+9ajg+SpekV4WligNhTJncUk8KxW0Hdud1vJzQkifLYGzbHKIz1ObdiLpddfI03hcuhfKytCghcLwTpyMUatgbr7gKz+RyzcYlIxdfFF3UUQJwzUQio0wMbOhRBq8IVvWrZwUzOnHD7cvQxf/3pPsbYu64J/r/6FmRuu417GAujTvATyhp6C58id0ne+uQhvj1O2qu5Y0OYTvDx1DHP23QfylIZ3w0+AE1tQP+C8rI4eS/gEy1cFak2E/1zwb18QuHAI/tvv45mB6cd3j6GP8BdPInuJJt9gTv3MuL1vD6aeeIY0KqNT29Fx9hnpe99chG/RuysGFHqOtSv3YcejFChWoyq8ir7CqglLMOFa1BGWUPk5IsLbG2vK4ltkYFZ1PN8/p7BHnhLoWqcAcmrGszmphMopTucMLowJMAEmwASYABNgAkyACTABJsAEmAATYAJ2CMRIhDe3hCfr90bCulmPCK+1lNeK8Nbct6jW4eaW7togrubua3YKlzg+M4ONCLRuZ+hHayK8+jtZ+a8f62kikKvW93Rs6ZA2JiJ9ua7+siw9IrxWYDavd5yLz9YCs2oCZdq2hM+LkWMaw+3+blT3V3cmpIXPkE745s0RfDZ+f5RhSPyoPwrnyiLd76hCvCrAk+shcuNDOyfiNBmsze/bEOGznvgTdWafV4Tegnfxo28w1hoqmU2wDK7zITZOW4DhZ8xFePuceg3sA89U5+A1bGukVXfnDvDNdRujRmzBdlGOHhE+wfJVO9OKCN/Ztye6ZxLunQZvwk6VaZ1mWP5VZhyRrmsUhrUfH0LTnw4ag926tm+PwM8jsHjwUkyx4CooCte8JdC9Yib8e2YPltJqiVlKqPwUoTyV9VviiRqY1f5YsyjCm43nEq3aYr7bB1g7bjHGXks8nOJ0zuDCmAATYAJMgAkwASbABJgAE2ACTIAJMAEmYIdAjER4NxFUdET7mtIlzZz1hxGw4TBUP/FaS3cKUhrwXTNp8U1phwhA6jtH+PMwJK0IT2IsibLrx3YyCtxkLT5iwZ/y7DTCX/vkHh7Ga7VCu7kvePLTTv7a1WTul92SCE9W8NX7zjZeYy7cq0I7nTBJ1IMYqMkREd68bpaE+zgbvdYCs2oCZdoW4Stj4awK+DSJhRprhHzzo+ZC5wcffCBd1MSbAE8VdNQSvsAdDO+/HsaIAGbisqklvD1OofCbWAelr25D7ZlCwbeS9IjwdGmC5Ku2yaIIX8xK+5UdCJALI8rfSbbNQ+vlmh0WZvmZj9dsVRtgXutC+Oi/l7hz9y7OnLiEJWKeOW8jDmxC5KeI8C+wdvp+7DAbH182aYQm6VQR3t5Y22twQ2VmCW9nPFsakgmRU5zNnVwQE2ACTIAJMAEmwASYABNgAkyACTABJsAEdBCIkQhvKX9y37J+dAfhOkZYmO44ZTyFhHhyVUNuZsjSW5tUEZ7cs7gPngdH/LpTPqqVvLkIr7WSp/OsHdcK7eZW6LZEeHNR3xER3rxuCUGEtxWY1bYIrwijaY9swcRD4abDQiPk2xPw6Hi8CvCygopP+Bwn1sP9l8gFHHnIok94yyL8mcWB6Cd0TlMR3h6n7E4V4anKWoE0YfA1jII4FuFlqRmzoma5QqhRLD/KFcmITK9uIWDaKsy9Zn2mTGj89LujsTfWxOqDRZ/wtheVrJFKaJx0PPv4FCbABJgAE2ACTIAJMAEmwASYABNgAkyACcQZAaeL8FRzv64NhOCeEy3HLDMJzmqtVaoIr/pCNxe+7dFQ/cWbu3VZf+A8hhss6CkPPe5oWIS3TNu2CF8EEybUQ7XHx+Al/HYbvXtkTItsj54aXYbYE/DoeLy4oDGpWFp0/b49umS/hUk/rkWQJhhoa+/W8CkUhoChKzBHdXli0X1HMivuaOxzkm5TUp5B+xHbjRyrNG0Er5yhYnFgH/aJuuq1hFebpQqkCYOvoVZx6o6mJIb2L440Z3diwB/kMV6kQrWw2rcEXlh0O2Q6UhMSP/0ivP2x5gx3NFpSCYmTvWcGH2cCTIAJMAEmwASYABNgAkyACTABJsAEmEBcEoiRCE9iu9+KPUahPXsmIWCKoKzkF54SuZEZvlD4tr5026RNJLrfFlbvd8MUdxKqCO/23WwZ8DRoSGvj+WrwUnMo2mCm5Dfc4wcRzFX83zwwK7m2OSoCs35ZpgDcxH/aZMkdDYvwloefbRFe9KGwqp1aJyMenFACij5zyYqvm5ZH/kub4THvst0xTQIepTj3AW+pZoWEFXHvcsj7+BqWb/kLxx+lgaubK1p8mhrX/lwnXKIoOzmsBWbNJYKIqosR5oFZ7XEyBmY9ehCTDj8SQUcpOGZ+pDwTGZhV+k3/+A5mzz+KvTf/selSRW1eguJLldIdmDUPvBqXQoHQ4zYCsxoYnbMWmDUbeg38Cp5ZH2HZ2oM4IBZQspWtgu+qpMaxpXPgvdPu8JQ7ChLC+NQvwuu4Jy0GZk2Of9R72BAUVzue7ZFKKJzs1ZOPMwEmwASYABNgAkyACTABJsAEmAATYAJMIC4JxEiEPzarl1GYUsUXS5X/+8ZD/H3zAZ4JkZys1T8WLmvcfAKNp1YvlQ81yuSXVutqYE71oLnbFvV3c1cwqi95c5cztmCyCG+gY/AJH313NJRPWtRqUQe9P/8YuVIJ5/BvX+Hm+b8wbsl+HLThdzsuB7sjZWUrXgH9v3ZF5ewp8WGS/+HV8zDs37IbEzf+Y7TsVxYmQrHpn3SoXCw90iX9D09uX8KMOZuw8q5SmrkIr4eTax13DKyXB3lTJwMiXuLamaMYP/uYMVArPq+FVS2LI2/K59g69xcMOOJIyxLIudZEeFG9vNVrYUyDIiiUIRmSvo3AvetnMDlgN7ZqdiVUalIDg6p/IsfaWwuMzBeNkLEQfLpUQ9M8aeGSFHjz4jEO7dqOMWsj+zOBkLFZDUdEeLtjzZIIXzAMW26nR9WCxCnqeE4MjLiOTIAJMAEmwASYABNgAkyACTABJsAEmAATSGgEnCLCW2sUBWu9E/YErb4sYwzKSpbOk1buQfCBC8bLfJpXxfoD56TlfPAYT6PVqeoj3lL+ZDEfPNbTeIiuJd/wlHxbVEermmWiXEb+xgvnUoLDUmIRPqENx3evPlFF+Hevjdyid4NAlIWLd6NZ3AomwASYABNgAkyACTABJsAEmAATYAJMgAnEO4FYFeGrfxeAZy9fGxtJQVtJWNemNClT4BffZvhm1K9SfCdLdjX9feMBdp40C46puZgCuJIYr6Y5wQeNfxfJ/ZF0P0OW9xQMlvKh/7T5B207Id2faPORCwHChY2aKA/KixKdS9eoifIuXyRXlPLJSl9NR/++KQLR3pR5aN3hqGWr51G91N0E9tod76OGK2CfgAgCWjFXLrRuXw2fhx7BZ+P327+Gz2AC8UiARfh4hM9FMwEmwASYABNgAkyACTABJsAEmAATYALvNAGHRHiybCf/6moK7NfMKpwdJ0PgO+cPm/BIgB/RoZbw154f/WYG45kQyymRxXqC8A3+Tnc9Ny5WCVRogI2dCyFzxBPsWLYSA/aaLj7FatmcOROIBgEW4aMBjS9hAkyACTABJsAEmAATYAJMgAkwASbABJiADgIOifA68jM55ejFW8LtzHkh3N8yBmGlEyiAa/nCOWUQV60lu3qxNT/wjpbP5zMBJsAEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABOITwI2RXhyj7Lz525xXj8W4eMcORfIBJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATYAKxQMCmCE/lBfg0F37Vc8ZC0ZaztBWMNc4qwQUxASbABJgAE2ACTIAJMAEmwASYABNgAkyACTABJsAEmAATcAIBuyI8WcOP6FgHbqXzO6E421nsPBWCABFclQKTcmICTIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMgAkwASaQ2AnYFeETewPf6/r/T7T+g/eUgKW2v888nDkMmG3MaDI/ffz4ftXHic9iAkyACTABJsAEmAATYAJMgAkwASbABBI8ARbhE3wXcQWZABNgAkyACTABJsAEmAATYAJMgAkwASbABJgAE2ACTCCxEmARPrH2nN56v4/WpLba/D7y0DtW9JzHbPVQsn4O89PHj+9TfZz4LCbABJgAE2ACTIAJMAEmwASYABNgAkwgURBgET5RdJMTKvk+iFqOtNGRc52AP9Fn4QgvR85N9GB0NsARJo6cq7P4RHPa+9z2RNNJXFEmwASYABNgAkyACTABJsAEmAATYAJMwFECH/xPJEcv4vOZABNgAvFJIOT6HeTPkyM+q8BlMwEmwASYABNgAkyACTABJsAEmAATYAJMgAkwAV0EWITXhYlPYgJMICERYBE+IfUG14UJMAEmwASYABNgAkyACTABJsAEmAATYAJMwBYBFuF5fDABJpDoCLAIn+i6jCvMBJgAE2ACTIAJMAEmwASYABNgAkyACTCB95YAi/Dvbddzw5lA4iXAInzi7TuuORNgAkyACTABJsAEmAATYAJMgAkwASbABN43AizCv289/h6199XrCDz69ylehL9yaqtTuXyIjBnS4sMUyS3my+U6B7ctzizCO4cx58IEmAATYAJMgAkwASbABJgAE2ACTIAJMAEmEPsEWISPfcZcQjwQICH81p2HyJIpHdKlTe3UGjx5+hwPw54gZ44sUYR4Ltd5qG1xZhHeeZw5JybABJgAE2ACTIAJMAEmwASYABNgAkyACTCB2CXAInzs8uXc44nA3fthIEtqZwvwanNIICYL++xZM5m0kMt1bodb48wivHM5c25MgAkwASbABJgAE2ACTIAJMAEmwASYABNgArFHgEX42GPLOccjgbgQaS2VweU6v9Pji7PzW8I5MgEmwASYABNgAkyACTABJsAEmAATYAJMgAm8jwRYhH8fe/09aDOL4c7v5OiI4evWrcOMGTNw7do1vH37Fi4uLqhQoQIGDhyIIkWK6KpkdMrVlTGfxASYABNgAkyACTABJsAEmAATYAJMgAkwASbABOKAgHNF+HPj4eZxCd5XfkFTS5WPCMGuVTeQ+6vqyG85pmUcNNkJRch2bkK94J0YWNwJ+XEWTidgS4R/8uQJDh8+jN27d+P+/ft49OiRLD9jxoxInTq1FInr1KmDTJlMXc2YVzK+xOHEUG54eDhatWqF06dPW+3bPn36wNvb227fx1d77VZMc8KabwvAv1AwdlqZEOwdd6Ss6J57brwbPC5548ovFmfn6Gb7TlwXeiIY+1EZHmUzvxPteV8aEbN+C8WJ4P1AZQ9wt8d8xMTZ/PKuvEfGHLkTcjiH8W4euOR9BfxYcAJOziJ2CVzfgUZjH6HLnGZwt1SSPH4VNQZ3Qt88QNilMziMvKhXKE3s1otzZwJMgAk4SODv5fPQ+k4FHPMu6eCVUU9f7++PgBzf4PcW2WOcF2fABJhA3BBwSIQP3TMePQcswfF74Xib1AV5qnhhpJ83qqm6hT0RfrcvynQ+jY5/bEbfgjFs4JpvUcAX8LMm+GMNvhUn7IxSTG54xVQ8ZxE+hp0X+5dbEm5JGPb09MSRI0d0VSBPnjxYsWIFMme2LMzFlzic0MuNiIhA/fr1cfXqVcmZrN+rVq0q/6YFjxMnTkireEpeXl7SKt5Winl7zeYCMXdlK1oPfaeMQwsnrQbaE9ntHdc1IGN4UuyKZIqYE3hDU0ni7NoWY6f4wC17Alp1tTB/b+xRFN63fbBzrRc+jiFnZ18eEbIc3t3GYPuVZ4hAcqQp8Dl6jZ8JL1cXY1ERd3diUt/BWHL8HsLf0jk1MHDaJLQqop6j9M+metYXiuK63nRP+MJP/6JQTPstyjvDRvQo6o3bPjux1ith9bq8VzU3U/I0BfB5p6Hw866GhLpMFLvzi2Z0Xp6Cug0WoOTck/D7wtmjNmb5Jb5+c64I7/A9HTPcZlcnomeQU9v9HmXmoAi/deZ0DH5UHr//UAksTdkfJ0+2/IZa54pjnxAFk5staNi/ms+QBJ4fQSffG2g2TSwUJYtlJvtWo9wiYKS1RalYLj4y+7e4d+oARq86jSP3Xov3VCB5yoyoUMUV3o0/RcEP46oidzFl8G/YXiZxiNEswsfVuOBymEDCJKBbhI/Y5o0KXXYhr9dETGxXHKlenMPi/v0x72FjLN4xEhVJY7EnwjuTgU4RXqj0zrfwYRHemT0ZK3lZEm79/Pwwa9Ysh8qzJRLrFYdJdJ4zZ45D5dLJWbNmlZbi5osAesq9ffs2atSoARLE9aYffvgBnTp1snq6nnLp4pkzZ2LSpEkyn4oVK2LhwoVInjxShA0JCUGzZs3w9OlTJE2aFFu2bAEteFhLesu13k5FhFfmggg8uXcGO2aOxPClz9By1UYMLBlzgdieyG7vuN4+isl5sSuSmYu8Cufl33liXEhDBO0ZozwjEkJKTPP34/XoWr0frjScgVk+VZE32ROcWf4dPH+6j7Zrt8KXdmKFivFdcwBOlfoegePqIyvu4+jPAzHg97foaBzfcSzC66i3w4JdTPvN7jtDQhicSh3kvbqpHoJ3DkTx8DBcOrEafr4/4VCxCdgmTJYTohAfu/NLwukbWzVJfP327onwkQuNCfgZlDiGs7GW/QcF4IT+V0mhwGVH30GN4J7OyQ11UIR3cunveHZhmDNiGULcu2JC+aQAi/DR6u8baxeh1Z3PsKN7UWEyEcspQYjwz7B++q8YdzsH+n3rhjp50iFtsrd4+ugO9m7YjYmn02HID+6o4ey5wCJaFuHZEj6W7znOngk4kYBOEf46/OvVwNJyQdgzpmLkgyViM3q59sD17nsQ3ENYksmP5POo5fMKwVOP4GFEcmSp0AdzF/eA1LmifERH4PT8LvCetA/Xw4XFbJ5GmBA0Dg0NVpPSArDzKGwVB98mz4IKHf0wY2A17CYLup2RFNwsCu1a4c2cmCh3dG00WVkaAUf8UVPULXRhC3w+Jhx9twSjx3ML7ag+CEvndFDc6Fhox90NP6LLqOU4+1DYKmYpgRaj5mNUXeVTWX6Yna+F7qHLEHC+IiZI630bbVc5dg/FsoDzqDghFhYSnDiIEmJWloTb8ePHIzAw0KHqxlSEJzHczc3NaPntUOHi5JIlS2Lt2rUml+kVpUlUX7Zsma4iyRXP5s2brVr9UyZ6y61UqRIePHiA3LlzS4FdK8CrlSE3NU2aNJH/bNu2LUaOHGm1nnrLtd5QS3NBBLZ5V0D3kC7YEtwDcglAuDlY7t0NY7ZfwTMxd6Up4I6flvrBcBsj4vRMtOs6U+4Egks2uHpNx3xvV5CtsRTZc49G0wtTMOvIQ/znkgeNJq2An+FieTxTH5Q/FojflcnO5DgQjuOBPeDrr86FVeDjHwBPdYHAZt2off7I5FUcuxdshktHxdpZ1rfzVBx5+J8orhZaFj6N+RFC0I0VvwNWRN7HC9HC1Q85Ak7DP4dhXjWZ1yJga+60+EzRzsXUb6GbMcxzGJaffYgIek50n2XaL5m8UHz3Amx26SieY5vgrbEwzu2lsIoiCNvIUxSIzb6t8P36yHEydlHkc0vXDaf3pPVdUdj7JUZfEByNX3TK83hl1bXYM6Qkjg2vhBa7mlPPYWsAACAASURBVCiCrTHfx6JNVTEgfCCOBLVBesSxCG+z3t4oPN9fs0vNzbijTbvbTt5jPeZgcY+SuGRmGW6t30I3+6LV9+tx5Zl4DgvrcfexizCuYXast/jOYD4vRCBkuTc6j9oq3kfeiud4BXT0m4GBhq1+tu5/vd2p9zwTMVe96PpMeNQOQP5ZR+BPLy26xr52zimGVrMWYqRx66L9d5CWUz/C8gG/Cx5JTN/laLq0N7/Yuy9tzJd0j+0Z3xO+C+g9Mqmcv4bN9Vd2Ljn4HmltTMSGQKK330I3D4PnMPV9UTyHZs2Ht9zZYpjL+5THsUDiLh4VxVph1sKRkTtOI8Q83sUbk/ZdF08NsSO10QQEjWsIem1W3jVbYupHy8UinDieRMyHfebKe0hpr+jzme3Qmd7P/xPX1mqJwqfnI6Jf5DumvbrlHt0UF6bMMjxXGmHSCnpGmu881dzTVu5J5/PX8QyqaeVZeXcDfuwyyvgMKdFiFOaPqhu52BW6B+N7+mKBeLZH0C7gWsMw17+F0a2mdWaG+8TKe4O4iTCzXVfMpB1Moi+zuXph+nxvGDc52XoO2btW72Sj47xyXf11nGV6Ss6aFqxRpbAbiurub7F5012EvkmKzMUqIrBXBeQhq2ELIju5WRiOGorLBkvXF3DFlH6VUdx4faQ7GpNrafTfOYnBM/Zh14M3eJssFcpWr4GfWhSARceTT65gyuztWHblBSKSJEPuklXg36WMUk8Iy99D29Bv5UVceCKeFemyoPE3jTGovMHtjbV6ds6EZZO3YZMoHynSo16H5hglrzkN765HkKF+dpzadgU3XgMpcxYVu9tqo5JBvJR1n3UAe8jSOFkK5C37JQI7F1XqbiivWadUWLuErv8AmY1cFGHyj+JN8WfbT5ROOr8ZNafcE9+p7dE1m6HfKI+przF8Ul2kITcZ254aO1TpywdKHWtmwYFdV5GyutK/YWd24PvF5/DXv9Sm1ChVpz5meeSU84209L1VDOPS/o2Rxx7jZRLBvF4D43G8uYV5kzfil6vP8RLJ8FG+0pjgXRWlyXLa3lgRp9gvOw88n17Aols5MExai7/FuT/XYnDwbYXxRwUwvF9d1MmkLjqEwjJDQ1s0TBQ4adHO4PpI+Tex/h3P2nXBkGL62hARdhZ+M/dj3Q0xzsSYLFqpGqa1M/QrtfHoH/BaHIJrL8U4E9bldVo3wdCK6bCZ7otzkfdc1fbe8K8i/v3kAob9pIyxJOmyo+WnQND+5Ib2G8aZWR/SNeOm7jHWoWztepjeJDdSUva2+oj6eNUCdL9ZBkt7lkG2KJb/4j7ZtBKtrpfF5q6F5ZiQblPSlkOZkFOG+yAzmnVtgoGfqi6jInBq4+8Y/ofaRx+jZ6cmaJ1f9JFMz7B97mqMOPEIz8X8kTpbfgzpK/rw6W4xt/yFWyqSzKUQNPZLFKE+D16JvjTf/Ef3cXEUufkXzhus5ZUx6sA4sdEn9p5pESH7xbP+OE48+Z8Ye3nQLMcDBL35zOiOxt5YsDV/mbijEX02ZeRqrMlSDcsN/RJ29E/0/k2dr7LDs0szdC1ENbYyJiKHFv/FBJhALBHQJ8LfFh9/1eahVNBRCA3eJG0TL0Zd/h2KC0LETi4/jgLxb8VB+HV2G+QOXYvvmg7B2cbLcXBkuSgfT6HLO8BtbDLxQJyOVlkeYsuwduh2xGD9pVrSNV+M1QOE8B8yF99+8xPQ/wiC2qQn1UuXOxqrlvARh/BDtdbY10SIMD534F2hO862XYutZFoo2zEPyVrOQOCAqsh841d0azMOIVbaEXHoB1Rrt0OI5b9hfNMseLi0FzyGnEXDoD2CV3LlwyjwX1T0nomRXxVFrpyZ8MJW240cvTFz5FcomisnMkV6HoilofBuZWtJuA0NDUXTpk1x65bxMW2z0Tlz5sSaNWti5I7m3Llz8PDwiDZcErJ37txpcr0jorQeIT5t2rTYtm2bTQGeKqCnXFp0qFatmqyvj48PevToYbXtxIX4FC9eHMHBwVbP01OubcBWFuTEfVu+9SX0Pr4cHcSUstu3DDqfbI7FqwegoksolnerhyHh/Q0i5m74lumMk3I+cgWOT0Czdr+h6LTjmF43uSLi7smHljPmY0jV1OJwM7RfJRb5TotFPlG5KMcntYDnoqwYfiQINJ3JRcCfX6PnnEXoIbNvhnaLMuGHA6JuYi3Pdt2U9u3J1wgTJ/qiUoGsyOayW5nThAX1/CFVkfrCr+jlOQ6Hyjng/sOhUatDAJEiPD0fIue1tH/ZnjvtzsVCiBhd+yvsrGXol4u/oLOYt9OO2it2PaQ3cm80cSJ8KxVA1mzpDM8p05geJiK8nTxvBzaB24zMGGl4bi3t5YEhtzyxfZO3spjjzHTdH/VqzEW6/iuxsFsRueBjmi7Dr1ZdrHNTBHltihDPmKJDUsL/4hzx8RnHIrzdehvuCa07mtuBaOI2A5lHBmN6q9ziJhgNj5brUWXpQdDrQ1Tx1SwPk+vV5/AteG4XCy/UMVHeGUznhcdi4aC6ECObL16NAeK5HTL3WyivHHSP2r7/ndnllJdFMRePsbCFK6YVCsJRehHTM/aPVcSg+dPRpuhz7B3tiZ4rNHOOrncQ9V1uBXo3Gokw1eAiYpvt+UVP3WzMl+f8aqHJkjzKPZb9MXaOaIsu26pg6cGRKGcmwtt8j7Q3JpzccXr6LeL0aNT+aidq0TgTc/3FXzqL50ZajNorjDPSK2PymHiHnj+9DYo+34vRnj2xIutww3NIPJc6uGFsssEInt4KWR5uwbB23XDE4GbK+K456FfMbpMboSt6o9HIMHTfI4xLhJ2M3NHaXbybGp5TF37tBc9xh1DOYMiip2578rXEjPlDUDX1cUxo1h6rSgfgtD895ezd0xbuSafy1/EMkiK8+bPyuPgWaIcdFSfgt/FNBdOl6OUhvlsaqkZH58Qc2wRL8oyUzLM/3okRbbtgW5Wl8rvGNjPb84b2ue4K4tkOvxWdhuPT6yK5nXvI5rVO5QpUnbAdPhUzKrk+CsH0vUBzj/wGFy/PsDX4vDipAmoZTrl66AB25msW1T+xFFbPIFnlOvj56/zIdP84fKYcxLXyBoFYlwj/Fx4XrIQ5PV2R8/FpDJmwB+dNrrciwj8/i34/bMe1ih5Y+HVeJL9zCH0mHQY8OiOgpvmT9S6mD12BFVmqIKibK7I+v4QJP2/C7iKNpZAdIUTshlNvoHzbrzCsShqE7ghG62WhqN23kxBfVUFX286D6DrhJEKSpYe7pwd8S6TAqdViTj2QBX5T3fGFFMK246Ro1/Surij0MgR+0/7E7+mqYGt/V6TDZQzruxFnDHVP+eQkfEftQbhad8lNy+UUBo7bh0e1OyDII4Mihp/MZxAlDYLyucJYO6IqxJNWplNLAtEfdSOF+iiW8EodD2QtiJEdq6BcjrTI+uII2g09gUwtWmLCl6LzL21D68kh+Ow74WaysCpcv0K5pk0wSRwP27MebVa8RKcxbdEpC7B/7iz0vV4Yswa5oRRuYOq4YKz5uLZiRW5vrDw8qK/sBvUwoEpW5MySGi92r0Sj1Unw3WAPfJX+GXb+ugY+lw1c7DA0vaXU8eGGNUIDMS7iXNyCOsLOa+LE2ihNF9hrw5trGD0oGPsKumFux5LI/Pg4BowV47lsY2zoIMaoSRvVcfYMrdXFkyiW8GGY9+OvmCdKn+T9GYo/FwYbM//Emvs5DS5rLPRhiruYNGw19pWk+0KMhpuH4T35BNJ+4ylEfRfbffRc5PfDOXw+6hu0FItFkSIzxCJQSYzrWR3lUv+D8QMPouDQFmieWhHhh1/Nge96N0TzXK9xcNk6fH8wFb73U46HCZdI9Ta8xbfdmqGTcFv814pl6L7bBf0mKGXc3RiERptTYoChD1fNXoaxj4SxmhzLUS3hI06sR63Zd1CpfVMMKeuCa7s3oNeaO0hvWCSU98Y2MUb1jhN7fWJt7n1zEYN9N+NC2TqY1jI/Ut0UfT3tII7lMyww2hsLduavSBE+jWC8GKMeFsWC4V/KxcmIkG34auINVPduiT6C6ZVN69D5z+RijhALU6ktjIlU6oKHkx8knB0TYAImBPSJ8Da2gZt8dBgsuHtorPYeC3HJ1S+HIkaZ5KO8MB/3PC4+KoQKRUlaTS7GZ5u3wmufuG5aIQQdFW4MDFW+vnooxj1ojNldy+sW4Xead7hbpAilfJDcQcPG97HsSC2s3TJEY7F/Htp2XPevhxqLyyn1MWlHhPi2L4FhLoYXZ1leBDb3ckXv8FE4K6xOpRXfcU8cFx+9Skttt933NYlVx+FpEAd5zDpOwJJwe+jQIRQrVgwkxpPoSwLwsWPHTDIvV66cFIVJIE6WLBlOnToFd3eLIaB0idKqCH/hwgWjRbhqBX7lyhVj2ST2T548GXv27DH+tnz5cunaJSYiPGVmLsST6N6yZUvkzZtXlkWW+tmz2/eYqUcM1y46kPsfWvSwlr799lvZNksLDdpr9JRre4RYEeHN7uMn9+4j3EUI2OkM9gwk2g1IZhAxKY8xyLTgACZWo+OPceaPjfjnk/po8Kki9o7JbhDH5C1O9/BWuIu5zFe89NDxyfm0QqlYBCzfGn91ol1E/8q5cGfT7dgk1UJKirXzGjey1C4kXLvYr1t2zSJphKh7iWEumHZ8OsQagUynR1dDk6txaAkffkNZWN1UAH4kMN0yn9fsz53Kwq71udiV2jkmOxZrnhOHfiiPdg9H4OIc96j9Yuwb6yK8ZGcjT/nMO9wWh1d3Viwl/9mHZRTfs2UVGOzMHJ+wrF6hWGd3HLYZd5PlQdm6ddC6Uw80KCEWE+Q1wl1NYW+8sbRbSi4y3cUPcudVHIvw4hlou94WBDvhduVWGJBJLFIrkohS563um8XiuLiJLLyHmCyeyOOH0fbwanRWOgb7lI5BFeoYmyK8mcBtuAdXDx2HB41no2t52/e/EztcabnWHY0mc2177Y3TKHOOYefifV9657pl8/3L0jsI5Tcgmb+8r+zNL3rqZn2+VObGS70174YRBzGj92Z8Mmw4PP6lflbvXz3vUjbGhJM7zn6/0ZxUQjwrFisLKTJRe9vh4YiLmONO42wy8q3dA3VNLWJzL7Ej5D586X0wyhxKr83iXXnxZ9i81Revo7xrUn4DkMyf8rY034pFzGpNcFVawivHbddtDLTPGdnere6ybArzFGVHkb170qn8Lcxx5s8guchh2gZLY1ky7x2OUWfF3HncdLGeqhxxcAZ6b/4Ew4bXwyEdzGy+N2RagAMTq8n5/PGZP7Dxn09Qv8GnSKXn2WblWsMXldPoNlp+N1JQJ2FReFecKK1MKZHw9QfQVQmGSomErf5oYEWED0WnGc3RxGA1S+47muzJhgBhgV1Olwhvej35Mf8yODV+JjHbTDjWWsLL8zZlUMoxkLmx909MeSIszhuYPbmlpfi/8JoshD8hDMo+P7cfA0+kQ/82xXDUfybGpzCIxfLoW2yfNQcDX1fT+FPX1vMt1v48HT+iOg5+V0Z5dpvUlYSww/hkwLfwyW8o72gwvgx8gV5Uhw9f4v6/r+GSgVx9KMepbaOS1sLhXiUMed0XAnhkfU2O39uLFsMuorK02ia3M4uxrUw7LG+iysdCIOyzF1l9IvswqjsaquMBfNTXYOVNlXj1HHeEwXxGIXBLq2mDCLq7XCus/iqrIv5fLYkdAyqIhQRKlMdOJPXsjcmVlDb8nNYdmzoVkEyeXD2HbQ8yoOZnHyOdwRLe6lhxuGxFoP3ryy6YV9uw6EL+2/udhevQjuj1lhYybDDU3E1k/d1uTzoMGyVETI2bld1zZsIvo2bxyU4bSgkRvcpvyTF+sgdqGPo1gvr9lwgR00fkfYvqdBctJrZCW1lOGA7tvA4UL4uKWcU/zUV4Sy6ETM6J2ocRVIfVqTFLc18cWxiA7k+ryLFlq4+wbTnqnCmGPRRDQIrEu/G2WRsRq+Uppg7cjKTdlfG0e84srC3d3djns7I2x4ZWORWiby5gQL/NeOBB/fJY9tH+z7RjUxmvG4orOy/kmLpcAlsGV1QWP+5fxRqxI6CCWz7kiiLCvxX1n4lRcFPuS80YVf3GRx2jesaJjT7RjBPtn5KzWV+fW/oL2t1XLOEtHdeOhS922J6/FBG+OcZjCzru145NhcHPGTywTSzsKEks/vgEI+xrug8t3NdW2sA/MwEm4FwCsSDCX4K3NliqsPqp1uQq+tFvJh/RtgOnNvqdttX2UCzsLbU5ppbwMk9ly77vzqRwD9Bs8bbk295qOyx8BIqcb8/0QLXlVaSLAPG1C49L3ho3EHaCxopp1M3DjKNz+/2dz82WO5oCBQqAXKaQ2K5abZMw/erVK2zcuBH79+/HgQMH8OzZM5uBQ/WIw6oorRXcLf1GIry/eIhqBXdLv1HH6SnXvIO1Qjy52GnRogUOHxZWQFZSkSJFULZsWZOjespNVJbw5qJe+N9Y6tMb46U7GrXp6rb6x9g2yAM9V4Xh47Ji62PTr9CmcWXkNrzLR/H5bpZ3VJ/wEUIIK4qZxUhk/zuKMECly11Gz0Yp84bNuilb7AtpAk5LcUQsZO4RrnbUkJOx67PZQlA8CDcS2VzhNd3gaiHKvGp/7ixuZy4uYuamxDhgDYutFn3x2xFzzYMrmueJc4Fo3n4iziQtikp1a6HtNx1R3SiKx9LUKsSk/et+xeKgNdhx9hHSlO2L+UvJzVtCFeENHKzW24JgJ4T7uzsnoe9gQ/B3Qxaq6xm7IrwQ7QObt8fEM0nFlu66qNX2G3SsXgLqmpptEV4Zi+d7XBDW5pbeOGzf/87udftirlhWcXjsm885NgLXW3gH0Qqs9uYXh+sW5d3QVIg24evAe+TA4nbGhJM7zn6/FYkawNpQB8WtYtS5HBFCfC86E8Vofv+bdoDujFrr3F423zWVHaHKGN/XwuA+Uuai9QlvaQ5XirJWN/P2Ro3zEJf8dTyDDO5+ojwrTYxk5Au82P27HFVU5pPzYe0eYaQThbw9ZrbnjcfbBsGj5yqEfVwWdes0xVdtGqOy4aXC3j1k61onD2t8NmApqn2SSsn25SMcEjrgp0UyQtGnXyPk7wdAnpzIryixePjPP3hU7msrIvwjdNEGkhRWmg0nPEZ3+k2XCG/vesuW8IrbCddIEdwWJBIug9Nj8fiaGhdv6gUWRDpx6G7wEjQ8kFOxNrfXDsoqigh/BPm0rk3enETPnsdRyPDbyxvHMTTwkOKORq1Kca2bHlMupq54NMJ71Qto/cNlVNe4opFi3/qMWKqxjLcswpvVkdzynNqNH4IUdzRvDfVSXRFFDTypWN3C4DrlyYlNaD33Eh5lzIoapQrDw+1TfJbV8Py15P9fO1aiWbbYxGGWDC5lQIK3LYaGy67vQrPx55C7bTthKa66UBHHpJh8GPl/MHPxY5YnNG0oFGWRgm6e/aJ/LuAz2e93sWjcOky/mQSFCuZB9eol0apUDuNCTBQR3pKP+CgivGkfKpbgka6HjHAMY8tWH9Giw4L8nnJRg8Z/owvFDTs3qJ8vobbhPqcyZubsJN3lmLhNkYUpC1Tzcqouj8wWesQZVM53L6sZXFIdREf/I7iQNBPKlcqDFtXKo3LelBYFdnVRyDRQq6m1vLUxanWc2OsTK/OKLOfvotgwtLIxSLS27KiLAaZjof4h2/MXcZ31Mruwen+I3F+3wy+11NUhpb2LQ6NWTHFhpLijMZl7bM2NfIwJMAGnEdAnwjvkjsYREX4Y0pCvYGUnq0lSfFvGtggfKj64P8eoY6lQy3+XsBQy2I9YEn60VoX2LPpFSy6L7dR119ey8WFkve1xGuDWaUMpYWXkqE/4oKAglCpVCo8fP0avXr1AwVQpxdQnvCq4k9ifMqXyhUL+0k+ePInatWsboZF4TdbyFExVTVevXpULAzG1hFfz6y8CKa9evVq26dKlS1Hy1fZgTNzgJA6f8KK1Ju5oDD60r3+D+ct9UIX8P1lY6Au/sR9b12zCkrWrcSKsIPoHrYVwxa74hC+k+BeXyQki/HrhQ9H7zQQhwguLePLvbbVuCUeEjwyKZ2E+0CnCa+dOiyK8Zi6WIrzZYoO25GiL8DbylPlHPMHZXSsQvGod1uy4gKTus7DRr6Zhp1PszoURd5eic+0hBtcgLxKmOxoLCEzr/bEVq9llKDB6DX5unk+I52aWrfYs4ZWOwZOzu7AieBXWrdkhPtTcMWujH2rSo92mJbw9EV5pkLX739k9rsetiSUh3PbYV6z957uqC3+OvYM4LMI7cl/GSIS30Q57Y8LJHWe/39JaEMJNei3KgqqyQ3Q+XFVBeFgao5sz8+pHXWjV7gLTJ8KbivS262ZfhLdzTzqVv57dPlaeleYi/GU/1Kor3BjoFOGtM9Mxb9BC5dY12LRkLVafCEPB/kFYK14q7N3fhgnJ4rVOxSoyi1URXlqdP8d3iVyEDxHW0V8fy+M8EV5aaZ9GKRJjswihbNBO3PjcHb80y4eMwmd6VF/5tgVkuePgdEEEVbqB1vtyalzRhGPlxLn4Q7hbNFqI0wCy6I7GTKyT51xAvpZfix01WYQ4rE/gVEV4OU5fPcLhE2exbddlrL8WjvyNmmKx8I1vKT6A4steO1YcLXsPUnfrgbGm9kXK7aJn4cToa9vMDY24/ImwCq91NB+2Gq3+LeepbYNFEf6mEPl/vIIvjAsyIsjptctYd/gCNh65gUtJ8sNvWAN8QStg5qJ7dEV4M3E4yvxhpY9oDG4pr/iip7+D8ivujyAXkEJQX5cIH45lEwIQlM+6CL95+jQMfutm9J2ONy9x4a+/sOngJfxxNgxJhWHUb50Li90W5u5oLAVq1TNGbYwTCcdGn1iZfKMlwmvGgh4RftTDUghs/Bx9lrxGf+MuDaW9hz839E2U+rEI7+znJefHBPQS0CfCG1wjRA3MqvhV/6u9aWBWfe5ojmF4pRbYXNfgL17WOAIRIiBicrEQLrfYmrmjCT0RjC0vSqMl7S13giW89CX6YzJ0bnMfM5blFwEVlSCtlkRwk/pExx2NiSW87bazCK93+Fo/z5IIT65dJk2aZPEick/Tp08fPH36FBMmTJDn+Pr6Srct9H9LSY9leEIS4cmyntqiivDXrl1DoUKFZNMogOrnn3+ONGnSgBYEnjx5Em3xX8u5YsWKWLhwoUlw1pCQEDRr1kyyTpo0qSw7Tx7r3rT1cLY9YvQEZtVaBCq5SZ/ag5IpQSOjuBzRuotRAnvaE+Gj746GNtN44JJ3ZPA8k7pZsO6z5y4i5neYeQ46BJAoIrxedzSmC7vaubjor61RQcT0VX3rKx0nniPiIUJTeXRE+Mc28zR1QySLk+4ihOsC7Q4wJwEm1zqtj7Uz8zevWDQPSam4BkmIgVn11DuK1Sw90/0LaQLMKq4ytjY0LG7ZEeG1rhzkcrrB/Ur4KMN947A7mlCcCN6CF6WFOxuYuxwyvf+d1N3GbPQE+LQ9Ti2Nfa2bl8s2378svYNEcYVjw92Vw3Uz6VtL7mhCsGvVBWSu3wCfSpcsqjsaO++RGvceFseEkzvOfr+9wK+tK2CkCDWpBEw2PGvEnKUEMLdgCa9dLL48HJVabEbd5YY4CWbznW0R3p47mscO182eCG/3nnQqfx3PIJ3PSrvuaEJ2YdWFzMJtTG6st9WfNt8b0pi6yxIspNvLNW5yDsxp8zlk5mrL7NrIAN3OAexcdzSmYrGJmxgL7jssBWbVuiiJiTuasEtnsOv1x2hawiw0qyV3NHeESHwjlXCVkg27dbmjsWNVbc8SXluHh+ZW2gb3Nkn0WsKLcSAtrC8DuR7jTck2ka5onh9Hl+8vo85Pik9uY9IjwpPouyGj0dc8RFjMSQNXYperxnXInQqR4qnB970iwpu5VhEFy4WCw7mtLmSYjBWHyxa+yfuvwfbSmgC1QkyNEME9k+sJCkwBPpcvFq4+MuDHMU1QV8tKhFVeOfEX/On6rWl8AQvCvrYN9tzRfHFD456HOsbguuXlN4YgrOaiuxRtr6OuNuCuHUt4uXiwEkaf7LL/3wguyQQXc/c3Zn10yUyEVwV5ae0/NwkmGwKjrvefh5N1vGSw2qiW8OQaZR1C6ulxR5Me58VixK2PiqJWPmUbstzFESjc90jBP6roTgL+j0m1rqPsifC2x4mJyyRLfWJlyo0NdzTa+SuSa3psnr4AY99WNcQrUBbZfhJvsUp8CcM7h+jj5KKP1cCsbAnvnGcl58IEHCGgU4Q3BHTqsgt5vSZiYrviSPXiHBYLy9rAa9URYCJe6w/Mel24bKk9JRxfByzBCLf0uLtlNDyHPMWA7VNR+43YZl9d+C+2FphVuofZiyabl8MrqwvSGfecq8234gdaPWwILBbSZQuCvZ6I4H7iY7/WWmwRjjgVP8RKYNb5Q2obAzVdaWlZDFACsx5CTQp2VVsEn1rTH1/7HkVNbWBWExFevGzbavt1dkfjyCC2dK4l4TZCfOiSCL9kyRKEh4ebXEYiPAURvXHjhvydXLH8/PPP0l+5taRHHE4o7mioDeYiPAnwAwcKd0kikYseYkAuemLqBoc4169fH2TJT8nFxQVVq1aVfz969EjuMnj7Vtm4mjFjRgQGBkZxfaNlroez7fGinQuEpey9M9gw0hsjt6ZAx1UbMbAkiR+3EdjEDVNT9MOi2S2Q5/pq9PX6CfseVVNE+Otie3rtAKT9/jf80ll4Qr2xCN0ajMbjPjuF1Zpi1WtPhDcJ3GoxMGsyfP/rbHQQAa2OT22DznNc4CsDs9qpmyXhxjxw4vEAdOo5FafjOjCrtmMs7DCyN3dqA7NanItlO7tgV/FB+E0EOMwfcVYEMO2A1ZVX4I9e+SyL8NK9w49wmboPPwn//unSuZhaZdvMM5dwE1QB3c82RMCSEXDLHI5DYxqh9drymH/STwRYc3I6JywymyxBEU9oKAAAIABJREFUmk7iudulKgq5hOPE2kHoOfwQSk427N4KFeO75gCcKvU9AsfVR1a8wLnF/dF/3jO0NI5vPQKVE+uuo94yRsHeJti83AtZXdIh3QFflPE8itqz52OQcNp7zL8bei+5jOxehueunX4zBp2U7xOZEX5oDBq1Xovy808KH6WibVHeGdbLII1q8HabgVn/tX3/O5GczMpE3BS+8i/tDcCgQfNwufQEbBPuqaTLex1j35cCs6pzCgV7/i0PJsgAoI6/g5gGLzYLzGo+v+iom6350pHArLbepdwOGgKRWhsTTu44Pf0mx6l4ly4+iJ4l+RFxdiG6dViNyiv+QK98kYFZf53dAYXVYJ15JmCv6Pf0wiBmpkdtTAn/Wpl/0t/FFhFwd8jTAdg+tTauW3F9qI5x88CsxwM6oefU05GBWe3WzYLbs031jAtn5ve0y+645K9njrPk7oeMidrhUE31fX8N+n/ti6M1dQZmtcUsia15I0L2ZUDa7+Wzq4gITLmoWwOMftwHO9d64WOb91AS29c6eVzHRmDWaS2LGANRXq2siLZ4I6wye+/Eg9rNMaehCOQpdjV9F3gB14tqxebYCcwadukE/gjLjW8qZhHio57ArHfwhVdj+LqKgJn7NsFz0V18YRKY1VERXgnMOqdneRRQg5RmccMfwi1hOhkM8jiSN2yESV9kxM39G+G97hYem3Cx50rlXxG0cyFm3DS4XzHYvZAbkeY3yyvBULXjRloz70fKTp0womRSpE11Iarbir/+QPUZd+HWtRH6iqAQp37/AwP3PEJWbdBLGyI8BRFdmPIz/NKnoogp8QjLZi7F5Beu+P2HSsiuCWpqcaw4XLZ4bRdt/eqPN2gkgn4OKO2C+8e3o/fS1+gzygNu9227o4kI2YFvJl5A3g4dhR9ts0C+tMAxKhSdNb7dJUp7bTAE4zz+KQXrpPvhNIZP3I4TnyqBWUFBRQMeorasb2q8vLAdbX6+jDI9u2NUKZG/dG1zCw2Gt0D7DMlFHz2WgVmJ6fSupZHXYmBWc7dHFDB0I/blrCT7Ic/bO/htxu8ILvwVfmucxJifpT66KNzEzP64tbR+J5cxo5PXxe/tP8Km2Usx9uonmDqhPsrd34sOU8MxYLwSrNYYmLVvI3yTyxB49YDwYS6DhKqBWT9AH/X4upXw3pocvWRg1reinAD43syPn7+rhSrpInBsWRC6HM2OaVMaoLLBtY1filrY6CniDKRKiaQqQy93eBe1EpjVZIzaHidVLtjpE2tzr3lg1ssiMHTgMZwzC8xqbSwoPvetB5Y2WdwQgZt7DhHxkIR7xhlfpIESnPYGijRthqn1siDi2lH4TL2Iz/q3Q+ccbAnv5MclZ8cEdBPQLcJTjqF7xqPnAIO/1qQuyFPFCyP9vFFNfhHKL0cZRK+WzysETz2Ch8KqPUv1QVg6pwPyGy3MtQHxwnHc3xO9Ao/jXrhYlctSAR39ZmCgIcOIkOXw7jwKW68LwdQlD6p4+2Gml6sxaJv0/3riET7pbgjcZtJsa37Xyb/lBTFpVxN+0GoiaI8ItCrqpn6cSNEi6SQZ4K2CVwrsXqC0I2fdUVjg38JKO4Qv2w2D0H7welwRzqSTZykhguAEYGjD7PKlxrIvZhttt+QOR3eX8olEwJJwO2XKFLx8+VKK7STCk0/058+fS2AkGjdu3NgowtNvZKXdSbyA+vj4mFhyq4T1iMMJITCrWl9zEZ4C1ZJATiksLAwZMmRAkiRJ8Pr1aymOx8QNDvFt1aoVKAittUR++FVr+GnTpqFu3boWT9XD2faoN5sLxNyVrWg99J0yDi3kxGRIoZvh+7UPfhfzTRKai77JgJUzwtDbECDZZP5LngUlWozC/FF1pSCmR4T3z9QH5Y8FyvzhUgytZi3ESOPkqZ0PaLqrAm+/mfByNbzs26ybBWFB1Cni9Ey06zwVRx7+J/KrhZaFT2N+RBwGZjXvFIvzmu25U3mm2JiLqZ13N2BQ+8FYf+UZIui5VGsY5hrmaouW8CIWiPTvv/wW/qulWJObW2XbylM4XcRy724YI2MHCL/3oq98/APgKRdznJ/C/16Kof2nYdOFewh/K8rLkBdfDJgN/xb5jR/NEXd3YlLfwVhyXDknadK3yFxvNtYLYU55PFvzXZwbXppYAs6svd16G3zrn3j0CbrLAMYROD1TfBTQu8N/1I99Uf3uOAQXUwMe2+s3JRhstzHb5XM4Kb0z+IhgVZ5qQC6Df2rjO8NpExGeduLR9Z1HbYXyymF6D9q6/53JTfaWmb/35GkK4PNOQ+HnXc3Qn0qJ9sb+5OSeKHlxmfIOlbEsOv0sggdanHPM3r8s3KtR7hE784u9utkS4cXbJvaM7wlfw/tXlhItMCxgKBpmF/dYlB0Rtt4j7Y0J5/acvn4znfNonNYaNtdwPyuBWZOLMXtxmTIOM5bthJ/nDIx8zw4/Dn/PXgiU97p4x67QEX4zlOO2LeHliDG7x1qi8On5iJCBWZXj2nfZqHWzLcKr8TK097Tte9KZ/KMpwpvfR/LZPgwBQxuChptMoXswvqcvFhx5KHZZmR+3xczsu8nsvUHJd4Bh3hZ9Kcb5qPmjUNfwTWXzOWTnWmeSLddzFjK6kNWkSP8JQ4bn/0PKtCmQQv7wFs+evkHS1B/CJYlyymvx/pehukFY11ZEipJ3UbZmEhzYdRehwgo5R+mqmNGlDPIYAlOGHf0D7edfwh1xLHW2/Pg85SVsTa0V4UNR3f0tNm9Srs9crCICe1VQrrcRmFWO7jsnMXjGPux68AZIkR4VG9TExPq5ZVDR/XNnoe/NT7FsRDXI2KhPrmDK7O1YduWFsApOJeKMVMbkViWQTdZT+EI/tBk9gkJw7aWYO9NlQePmHvCtaAiYrse1iYXArMncPsKV/ddx4zWQPu+nGNvzS1QymK4Sl04Lr4hjHyBzgRJomvoS5j4rqwQ91VOeqLWJpbnsF/IVvwwh7l0xobyhf439FY7d85fi+4NP8V9JCgD7nwXf0cI6PHgl+lJf/JcMuUsK/9z/HsTmnI1lEEh7PuEVxjuw4upzvPxP9GXuwhjYpw5qUJvtjhVHy5YjAKeEK8kB2+7jwev/RL9lR8sODdH3U+Hb3Q5Da77Tya+274NFaHXns6gLGXbbIGoUdhY/TtmNP8nXv4Vxdn33BvRb9Y8cZ0lpzIqFu8l1chp9oEuf8ddeIlcdJRgunlzAsJ+2YZMY40mofcX+w+JDH2KktBS3LLia1CEJ9WMV+Kv3pI0+Iuvuavvz4k+ysL6u+Go//SolqjSpixp/b8TES/9DipQZ0a5rc3TKr4wv6bs82acofueCch+mzobWndyVPpBJ20dAyo8+FovUjdCukGEyfvMQawP+wGQRG+n5myTyeM9OTdDakL/iw/5v3PkvD8bOEjsWaAeDyRgtigL/nMElq7s17IwTkZ/tPtFOeKZ/R4TsR/dZx3HiiZg/P8qDZjkeIOiNEphVlmpzLNiev8x3GISJQNT1VgP9DIsX2vmKxlH1r90x9gtacGQR3nqP8REmELsEHBLhY1wVC9vJY5xnbGTAInhsUI3TPO35hCfxmf4rV06YXIo0bNgwtG7d2kSEVytMgvS2bduQPr26eVw5okccVkX46DY+Jr7Zzcs0F+GzZ88uFyQoffHFF5g3bx4KFiyITZs2YfHixTES4dWy161bhxkzZoBc35D1OzGvUKGCtMAny/tZs2bJU2nBw5oQr4dzdPnydQmcAM/F0eqg8OP+aNVpKq4VFDs7FvVEKUNMvWhlxhclSgKWF6ASZVPeo0pbXlB9jwBwUxMggdh0R5MAmxsPVYoLIeytEEBnIiCHJmDuxS2oEwhMnKhYKSeoZCkwa4KqoFoZcl+ymQKIYaDYxWqS4qMNRlcySk2k+5sdWTUug5wIUVp3b8NzEQjUJEitjSKiuqNxYn0sZqVxOSSPK+5vHjQzuPRxYvHSyv+chQzVAMpOLIuzYgJMIPETiDMRPiIiHOHrv0MV33AMvSACTcWO0aBzeoSFH+dwjMdc7Inw5lUzd0ejHlet4VW3Ldrr9IjDqgi/aNEi5M2bV15Ogv7IkSOl2J0qlaKOkUA+Z84cGThV/Y3ctJA1ekws0rX1jQ8R3t4Q8Pb2xvr16+Vp1oR4PZztlcPHEykBnouj33HCUnLdueJobLR8jn5WfGXiI8AifOLrM4s+4RNjM7jO7xSBhktvYUOrnEqbyAVGgBBux9eE4nue/IBvArp8Cx9pQi52ZCz9Rewobqi4mNGm+BAlE0VPxK4I//LJv3h04xh6Tr+FuiPao2u2RADlXRgrcd6G+5g9Yg2OVxJui2rlQPKw4xgwdg+M7p5iodulm55JF5GuuhuG1suPAuQa+NVznD52AykqFxVutkxTXIvwL478DvffP8Sw3jXgluktjq1Yhu4a9zexgISzZAJMgAnoIhBnIvz6roXhvSMFinVZijW+6vZwXXWM+5NY+Il75k4u0ZJwS+J39+7djf7ItUVaEuHJL/z06dNBFuOWkh5xOCH5hCcXMeRap3BhxVyDLM+tJXINQwFWtUlPe6PTjVohPl++fNi6dWuclBuduvI1cUyA5+I4Bs7FvSsEWIRPjD3JlvCJsdfe9Tp/3dMfIcJzhO6ULCM8fdqgl8FFhPG6OBclddc4nk+MXRGeglMOPpsCJRu4I9BDdWUSz022V/y7MFbioQ3S5dKsA9gj3dukQN6yX2BmR9WNkj3o0TseEXYJ8xYdEK6bHuOJcPMDKrdQaQz2qoxyJgFsLQVmjV6Z+q96hoPLN2DEHnJBJNzbZMiK9p2boavq3kZ/RnwmE2ACTMCpBOJMhHdqrTkzJmCHgCXBmC65e/cuFixYgA0bNuDevXtGQV4rwpP7GT8/P7i5udksRY8orYrwWqv3U6dOoXfv3lEs4ale5L5FTWS5vnLlSqdZwsd00Ohpb3TLICF+165dkon5okdslhvd+vJ1TIAJMAEmwASYABNgAkyACTABJsAEmAATYAJMQC8BFuH1kuLzEhUBayK8pUZQUFIKEkp+4UuVKoXmzZtbDMRqfq1ecZjyO3HihMP8yD1L//79hatBL5Nr9ZbrcIF2LnjfynU2P86PCTABJsAEmAATYAJMgAkwASbABJgAE2ACTOD9JMAi/PvZ7+98q+/eD0Mqlw+RLq3ZXjgntfzJ0+d4Ef4K2bNmMsmRy3USYEM21jg7ssji3BpxbkyACTABJsAEmAATYAJMgAkwASbABJgAE2ACTMAxAizCO8aLz04kBF69jsCtOw+RJVM6pwvxJAw/DHuCnDmy4MMUphGGuVznDRBbnFmEdx5nzokJMAEmwASYABNgAkyACTABJsAEmAATYAJMIHYJsAgfu3w593gkQIL4o3+fSot1ZyaysM+YIW0UAV4tg8t1Dm1bnFmEdw5jzoUJMAEmwASYABN4/wiU6+r//jWaW8wEmAATYAIxJnBsjneM8+AMmMD7TIBF+Pe597ntTCCREmARPpF2HFebCTABJsAEmAATiHcCLMLHexdwBZgAE2ACiZIAi/CJstu40gmIAIvwCagzuCpMgAnoI8AivD5OfBYTYAJMgAkwASbABMwJsAjPY4IJMAEmwASiQ4BF+OhQ42uYQCQBFuF5NDABJpDoCLAIn+i6jCvMBJgAE2ACTIAJMAEmwASYABNgAkyACTCB95bAB1eu3f7fe9t6bjgTYAJMgAkwASbABJgAE2ACTIAJMAEmwASYABNgAkyACTCBWCTAlvCxCJezZgJMICqBx48fxxhL6L8vkC5d2hjnwxkwASbABJgAE2ACTIAJMAEmwASYABNgAkyACTCB2CbAInxsE+b8mQATMCHAIjwPCCbABJgAE2ACTIAJMAEmwASYABNgAkyACTCB94mAFOEfPnqGLBnTvE/t5rYyASYQTwRiS4R/9fo17t0PQ+ijJ/HUMi6WCTABJsAEmAATiGsCmTOmQ7asmfBhihRxXTSXxwSYABNgAkyACTABJsAEdBNgEV43Kj6RCTABZxCIDRGeBPhzf19D0YK5kfvjj5xRTYfz2LL7OGp/4erwdXwBE2ACTIAJMIHETiA+n4E3bj/Ahcs3ULxIXhbiE/tA4vozASbABJgAE2ACTOAdJsAi/Dvcudw0JpAQCdgT4S9fvoyCBQvarLq5T/h/bt7FR5nTx5sAT5WNTwEiIfYz14kJMAEmwATeHwLx/QwkIf5B6GN8kiv7+wOdW8oEmAATYAJMgAkwASaQqAjEqwh/9eptXbBy5MiClCl5i6kuWHwSE0jgBGyJ8Js2bQL9V69ePfmftWQuwp84fTHerdDjW4BI4N3O1WMCTIAJMIF3mEBCeAZSHcqWLPwOU+amMQEmwASYABNgAkyACSRmAvEiwt+58xC//PI7smbNqIvdkyfP0aZNPZAYz4kJMIHETcCaCK8K8GrrbAnxLMIn7jHAtWcCTIAJMIF3iwCL8O9Wf3JrmAATYAJMgAkwASbABJxPIF5E+K1bjyBVqhRChM+AZ89eImnSD5A3bw6rrTt9OgRhYU/h7l7V+QQ4RybABOKUgCURXivAkysacklDyZoQzyJ8nHYZF8YEmAATYAJMwCYBFuF5gDABJsAEmAATYAJMgAkwAdsE4k2Ez5EjI+7ff4Tbtx8iefJkqF+/ktWa/vPPPZw4cQlt29Z/p/tz8+bN2Lt3L3788Uer7Tx37hz8/f0xffp0wS35O82DG/duEjAX4Q8fPoygoCAT0V0ryrdu3RqfffaZCYzYEOGfPHmCLVu2gP5fsWJFFC9eXJa5cuVKrF69GrNnz0a6dOmsdkpCECDezRHDrWICTIAJMIGETsCRZyA9Zw8dOoTz58/j5s2b8j81VapUCWnTpjV5DuttO7uj0UuKz2MCTIAJMAEmwASYABOIDwLxIsLv3/8Xzp4NQeXKn+pq8/79Z1CiRH5xfimr54eEhKBbt264cuWKsKxPCldXV0yZMgXZsyeOAE0krrdr1w5//vknMmfOLCz/w+TfJE7myJEDc+bMMbZ9/PjxuHPnjhTjOTGBxEbAXIS35gfeln94Z4vwJLSPHj0aT58+NeL86quvUKxYMfl70aJFsXTpUhbhE9tg4/oyASbABJhAnBDQK8KTocmCBQt01YmewT/99JNxUdzeRSzC2yPEx5kAE2ACTIAJMAEmwATik0C8iPDU4I0b9+PChet48+atzfYnS5YUpUsXQo0a5a2eFxERgQoVKkgR/ttvv5XnjRgxAtu2bcPBgwfjk6/usj08PNCpUyc0bdpUXvPpp5+iWrVqCA8Pl4sKv/zyizEvai8dmzFjBsqVK6e7DD6RCSQEApZEeKqXpUCsJMRbOuYsEZ4Wui5cuCAXtEhop8WuXLlyYf78+VJ8p6RHgKfz9AoQzugDmucKFSqEgQMHWsyOFuqI3c6dO+VxWqS8ceMGqlev7oziOQ8mwASYQLwQKFCgAIKDg3WLsrYqSfPkpUuXTN6v4qVR70ihep6B9E7epk0bh1pcq1YtE0MUWxezCO8QWj6ZCTABJsAEmAATYAJMII4JOCzCk5hDltkuLi5Rqnr27FlhsV7CbhPOnbuKrVsPCxEpt91z6YTLl2+iZs0K4qMrn8XzyYqcROzjx48jffr08hwSqitXriytV8nHNNW7c+fOuH79uqz7pEmTULduXajXkvi9Zs0aBAQEoEuXLiZ5kThIVur04aA3H/pIzJYtG3r27IkjR45IIb1Ro0bw8/OL0gaqwzfffIPTp09HOWbtI3H48OH4999/2Rpe1wjikxISAXMRnnZ9ZMqUyWoVLR13hghP299VUZo+8idOnGhi6U7W8QMGDEDt2rWlKxp7SY8AYS8PvccdFeFpVxBZHp48eVJvEXyegcAPP/wgXSPQgof6vHCWCPg+Ql64cCF2794dZ8KnujCvXciOT+60MDZ27Fi5a49SmjRp0KpVK3h7e1t8r4rNurq5ucnFT2uLebFZdnTzZhE+uuRi/zo9z8DoiPDkjo7e5fUkFuH1UOJzmAATYAJMgAkwASbABOKLgMMifOHChfHJJ5/gt99+k25T1ETi8qxZs0CCBVl020oUmDVjxtTylEePniJJkiTCkr2o1UsuXryBq1fvoHnzmlbPIRHt9evXINGarOK1/tJVS/nmzZtjyJAh2LBhA7777jspjt+6dUsK+C1btkSPHj1EsNisaNasmSirOTp06CB81t8GfajSualSpZJ5683H19dXCuVz585FaGio/Njt379/FCugmTNnSt+YJE6YJ2siPFn5k0B49OjR+Bo7XC4TiBYBS4FZHc0oJiI8Calk7U7+3UkQoB00lMj1k+oHXq2PKsRPmDBB3ve2kh4BwtF2WjvfURHeWeW+b/nQs4Ncm61fvx558uRhEd4JA4Ceg/T8pUXwuEgJSYTv2rWr9IFNO29otxu9p9y7dw/0DkDxKGhxR/teFdt8WIRnS3hnjjE9z0DyBU/3AcWC0ZM+/vhjaQVv/my2di2L8Hqo8jlMgAkwASbABJgAE2AC8UXAYRGerMVJXM6XL59RiFcFeApmSEKyvYChkSL8/4Tv82fCSvwDIW4Xs8pAjwhPYglZty9ZskSK8Vqf8CSgkHsarWBNH59keVakSBEpwpNLCrXe1AYS6pcvXy4/jilYKgl0juZD1ur79u2TFrZly5aVft6TJUsWxa80fZDkzp1bLhCYJ2sivGqRqVrTxdcA4nKZgKME4luEJ1dOtGOG7mkS4kkQmzp1qrR2tiTEN2zYUIr22rgMltqsR4BQryNrzj59+iAwMFC6nCK/tzTvqAKcuchuboFNx2n3wLFjx6Ls7qEyzN3RmP9bPYes42nuJIGZFgvz589vsTtpEVG7q4cWPYmbOmfevXtX7iCi3VD0W4sWLTBq1ChjXtbqS/MXsVcXShcvXiyvV9vr4+NjPE67FqgP1DK1cUDoN3d3d5OdRsSYXArRLoCHDx/KNq5YsUIypucYLWLS4qq6e4rqTIuwFPRaTXQeWWDSs4AYUn+pycvLS1oQq20j627aZUWWztQeer5s375d/k11oXy0/UtzPj13qA7a3VmUP11Du69odxclep6RiyR1B5q98aOnfBo/2jpTOVQGPUdpTBIvuh/UuCq2eNK1dNw80XNWa4FO/dq+fXvjs1hPP1NdaIGcnqWUqlSpInesqePAFivzOqnPSxrPX3/9tbx3smTJAhrPy5YtM1qnW+pTe3xoJxs9y0lUp36i8UFjQE30nkQCPO2qsfSORPcf5aHGeqHxRue/evVKjhG6ZtCgQdI4QE327jtrbK5evSrfe9REY1F1XUV1oF2D6j1DuxvpN/U4MaW20dzRsWNHeQ9QOXT/q31Eu/7GjRtnbCcFnf/+++/x7NkzaflPOwFoXtWT6H3z999/l8YaVB7dg9qdKPSuRnMN1Zf6kv7WLvBody8SQ7XO6hyodUdD/U5jgvKnPrTVLnXsdu/eXY5HWqhV3Qnqade7eI6eZ6AahJWeqbTwRBy1QVmJCz2XSXSnbwr1PE9PT13IWITXhYlPYgJMgAkwASbABJgAE4gnAg6L8FRPVcAgi3j6ICbhW68AT9dHuqPJpavZly/fsumOxjwT8n1M4gtZl9PHK4nn9CFnnujjqUGDBvJjVCtmk0hI7aHr6WOTtoqr7mocyYc+4EjEX7RokQz4aC5cqfWxZdVqTYSnvMlXNbtF0DWE+KQERCC+RXgSyrZu3SqFbwq+SnMF3Zt0v1MyF+Lp/ichgBbTbCU9AoR6PQlZNMeQ4Pv8+XOQwEACMJVNSY8Iv2fPHhkXomrVqlI4pXlGFZXtifAkCNK8TfMHiaz2YmgQHxJlqb7Uf23btpVz/8iRI6VQRQsb1B4ql8QwmlNJZBszZoyxPbRgQCIvzVskyJEAQ+IyiZIkitIcS0IeCa6qwEU7lEgspzmd3IE1btxYlkmpTJkycncCHbe004gY02IxlZk6dWq5w6l06dJS5KQ6k7ioCmfqv6dNm2Yi4LVu3Vq2Q/VhbMkdDfUV9QWNj0qVKkk3ZPScINc/q1evlmIe7bYgMVnbv9r+o3qsWrXK6JJMez21lepO3NQFAnvjR2/52jrTQgOJozQmSMwcNmyYHE9a8dUaT/P7gp65/fr1k20qWbKk8TAtTFNS+1BPP9PiCC2s0/hWWdACAtWXkj1WlizhVQGaFr5oPNNznoRp9T3AUp/a46Mdj7R4Qoso6niiMmgRiXaw0UKMVuim3XW0uESLQXQvk6hMf9O9NG/ePOM9/uuvv0phm+pBsWD03Hf22JhbwquLYVQP1WUOzU0ZMmSIMg5o7NA4JMGUFgbIwIDGJ93/1HbVzY26m5D6nOZSWowigwNaoKI5xVai9ycSuKnttFBA9wktlqjvPTRnU1nqfazmTfcZzUcqd3WeIEGeXP+pOxK171f0N+Wt9hHVy1a71LFL5VDb6BlhyU1jAnr0xnpV9DwDVXc0OXPmRJ06dUD/V63caSGc/qY5m3ap0rm0EMXuaGK967gAJsAEmAATYAJMgAkwgTgiEC0RnuqmCvFv3751SIBX27V9+1EhrNwTH5K2A7MmT55UuL/Jhi+/tB6YlT5gKcAiffCrSStS04cXfaSR6GGerFmUk/hCwhJ9BNIHNVlQkbDgSD5kEUcfqPRhRltwyTqMrDXNhXy2hI+j0c7FJAgC8SnCqwI8WaHThz4tjpHASYISzQV031NShfjYckdD4tXatWuNAiVZipL4rMa10CPCkyCq3T1Tvnx56QqM8rEnwtO5vXv3NlrV0nxJ/ybhlbb/axMJXcRFG3ODxBGqM4mq9Cyg69R5kq6lY5SfahlP7dHWl0TIJk2amDDQiqXqvKzdoUTiOVnK044mqu/9+/flwoVqVUzXkxCo7lggxqoYR3UiJrT4Qv9R6tWrlxTGyVKb6kvzsrYNqniotoGusSbC00KGuuA6Vy3iAAAgAElEQVRA56nW0DT/a5+XFy9elP+mumqvUfOlelAME9USW134OXPmDP755x+5aEzJ3vhxtHzKkwRZElxVS2u6T2mRRK2TPZ7qmFGFT1pAMfc1ToI8ubJTRTd7/awe1wq2ZKlco0YNoxBrj5W5CG+pD9Udfv9n71zgbCr3N/6TyDCIGZfBEOWSy6lIiZQSIoouIimVJJU64ujUcZLTHZ2upPIXuRSpDl2UnBRSyVG53+/3GcIwhPqv53XefdasWXuvy157z56Z5/18fMbs9V6/77rMft7fel6zCG+dUzd8EB2OvxuQPv30U2XdB9sZiMgYA841zefRRx9Vb4wgv7bbQOQ89qDA3wk6Et5sUwdhGwI8zjW31x0WLMKdR1YRXv9dZz7nrfcS63lgtycP+oxrFdeaPg77Ef0mCMRu7NkDPpES+ofFOf1GgTX4AHOLv6/Mb6+Yr2v0Awsh5rcgsTC2d+9e9daCFuHBG4t55kUjt+My3xcjDqYQHPQiwtvhwHMZc42/l3G/x/WERBG+EJw8HCIJkAAJkAAJkAAJFBICvkV4LSwgIslsEeCG23/+s9qIsFsuF15YT0qUKB6xyNGjvxmWC6uNvPUNQaCubV58KccXV0RXagEBX76ef/55FcmHhCg0CAwQqCC84A99RHrt378/VyS8Hhu+lCFSR3/B01+e3dYD4QpfOl944QU5ceKEtG/f3laEpye8m7OGeQoKgbwS4a2CuhbdEcFoZ00DQRtCgFsBwI0AoefQurmgnbhUu3btkIhpZ0djPo56ce9DdD+ETycR3iriRjq3IMzhHma3iIlyaAtClI5MxmcQsCEu6ohVp0UFlLET4c1vKGnhXn+2evVqJfSb85jtT6yMrUzMwjsEeCwom8U8zD2sKsyfhRPhrXOBZwysdLQdjeZrFnkjzS+icWH/gwURPIMQiY9IYLfnj9f2Ua+dnQw+13PoxFP3DeImxvnZZ5/lsF0B73/+858ya9as0DjsFsHN84xzD4Kzde8TiPmwHYFA68TKKsJbBXf9vMc5EG5+3PCBVQxEXFjPoV94a0NHRuPvDSxo4Bo1W9zpenW7OEdhkYfydm/B4a0dROxDzHdz3TmxsYrw4WyrMGfmNyLMb+BpntZ7iNniBpHoWEjCmyJ4iwZ/jznZFmo2iIRv3fp/+wGZz0PrwgjKgC/uReiv3UKGuZ84jsUB9A32ROaFNKdx0RIw91PDzTMw0sasEOFhTYOFX1wziJL/xz/+oRbtnN5E072hHU1B+UuR4yABEiABEiABEiCBgkkgKhHeLxJ4wqellTOikfYbYk2G8WXsdOPV5WZhq9uyZbcsWbLW+PLWPmweqyCDL2pDhgwJRaWF8wUN90VKb8gHP2HzF0Av9cAiAYI9osqKFi2ay8tWDwZ9wCvSEB+sKZwdDT7fuXNnyD/W71ywHAnEm4D2uY6m3TNT0oy3TEqHqliydI20uaxxxCphhYAIO9g9mK89LJZBiNfWNBA+ISIjwYYFX/51RHOkBtwIELq8VdDUUcduRWs7C6tEEuHXrVunbF3cjgdcnER4HZEPwRK8YJmB+ybEboidVrHVSTQ23+Ox4AoBzuwlDcEQQjzsJsznC6xMzCKk3Vxob2mIgYhEtou0jiTCoz0I6Ygkhm3QkiVLlIUGbFOQ3Jw/WJx2276u0yp4ms93J57IqyOprTY0OIbrDHzNnuZ2z1/zPIcT4bFBvNmDOxKrIEX4SHwwRtgmoc94ywV7wOg3atAHRFtDXMf/Ec2OgAC9+OZWhMfG9/CBDyfCW687p/MoKBEeb8LY/f1iPn/wdxCuG/DB30NYpNH7MYS7r+Kc8yrCw2oLby26FeERlQ/bH5yf2DNC2yfpNw3CjYsifO5Zc/sMxII47q36OatrgggPkV5v2op7L9720hupu/mbgSK8G0rMQwIkQAIkQAIkQAIkkFcE8kyEL1eulPEFrJSxUVe22nCrZs20sAywMevOnfuML7GX5hWnmLeL19K197ybxiAQwQ8aX+aZSCA/EchLER6c4BtsTjoiHtY08N3GcdhbQZjVVjVu+LoVIFCXVdC0Wr5Y7VvsIuGDtqOBcIq3dazCmJ0dDRYjYRUDexS3thhOorOTCG+2lrATwLR/s94I1I1ojGhLjGXTpk05rGjgX49IdAhC1nPFjQivN/7WGzVCDEektNtIeKtdBwQrcA4XjWydI6/tY4x4pkAk137t+AwisY5YduKJRWcsWCPS2Wq5Zt5nxXx+2c2j3TxHsqNxYmUV4bVQba7TaZHEiQ+sgr799luBBY9OsI7BPOjNe80ivP4/BF68zaHnFX3Fvgh6fwXzpqGoF38n4Dpya0fjxMYqwkO8xnlqtmWys6MxL0LhWkG/tFe99byxWinpxS/9JkOke2ss7GiwoHXkyBEVFGEOcoB4j4h//QaH07gowueeOTfPQNxTYQmEDXKxuK0j31Ebznvc67QIr1vAAjnEeLeL4Rc0quPmkc08JEACJEACJEACJEACJBB3Ankiwu/cmWFE931mbPb1v0jWSCP/9ddDKgo+LS017oDi1SC+0GGDsfnz5ztu7oUvjhAMza9Ox6ufbIcEoiWQVyI8POBh52C3mbGdNQ2EeAiTbr74g4kbAUKz0xtrYlNSJIj92KRQC8i4xhFNi8hMbCoKn2MIrebI8lhuzArxDjY8tWrVUv1zszErBFgIJdiYEdYO+N28MasfER6ipq4T4rf2Gdd+7dj8EwIgRB3Yj8ECx4sID7sOiJ5mGxuMF+I8xq69qPW86cjll19+WbWFc8MuEh5+98WLF1ebziIiHRHssD5zK8JjrNikUI8FG7tCyMY5geR0/nhtH3XCxgNvfiHyGDywca7eQBPnoJMIr6P/tee++T6BunGNma19cNy8MavdPCMP5hde//pagTUP3nzQ9kdOrHDN47mK/CiHRQVdRm80bLcxq9ViKBIfnPPaEq93794qIh4LVIjsRd04j2Azg+h3/B/nBuzwcF1D7F24cKE6TyBMoq9I5o1ZUbfedFTfA/TGrJGuOyc2WLgCE1w7OJf1xqzYjBiLkDhf7TZmtd5D0Q7eRsBbG1hkAXP8jYLrBNfYvffeGzqv9IIR7seXXXZZxMeJdWNWvN2IhQLrxqwISAAjvZjiZ2NWjB114F6n99qINC6K8Lmnzs0z0GxHozdiRU2Idsdz0E6Ex3HkxdwjX6TESPiIeHiQBEiABEiABEiABEggjwnkiQiPMcPrHWK8mwTx3ck73k09iZ4Hnrn4Ag4PzHAJr3Tjiy3EAzeeqok+Zvav8BHIKxEeVjR422T79u0hmwhNH8dgR7By5Urlq44v+16TGwFC1wlBE+IWxG6IV/CRxt4aeuNCCELoK6I2IZJBaDOLT3ozSgh4EO+QZ/To0SH7LSdPePQDebDxHdpq0KCBEsmwGSXS+eefrwTBhx56SP2OKGdEhmOPDdx3IIxCENP3IFhk3HbbbUq0szvu1xMeAqbuI6K0IdDoNnG/hBUN+DVt2tRY1D1TWYBocdZJNNZzAb9hLBboqHUdqQveWBixJkQKow2IdZgzOxEevLAQgblJTU1VtjkQCt1uvKt5Iz+86jE/EC31+eF0/nhtX48RfN98803FFP1GdLDeaNSJp52nvPYFR1T4n//85xx2P2hTC5mR5hl9wbWi7xuIYIY4q/3WnVihDZybWATRm8xa+UAMxkJOJE949DcSHyyKQbjGprj6GkC0NxLEYSyoQRzW/cnKylJR54ighzCJhQ6cT9oORfuVQ7DX1x3qw7Wnk9N158RGe8b//vvvojcNRnQ+FhKwsIDzH9Y/eOsl3FsY6It5jnC+4nrE+a7PV1wvuMYwZswbrlvMqZuEtypmzJih3pjEPQnnp3kRAPZi2OQWdeOchTUOFhF0MlsIom0sgmhbJ6vdn14g0CJ+pHFRhM89e26egU6e8GY7GnMLEOjxzHFaFKcI7+aqYh4SIAESIAESIAESIIG8IpBnInxeDZjtkgAJ5C2BvBThtdCOqDpE1iLSHa/DI9IYAjwiIHEMGwl6TW4ECF2nVdD02lZBzx8vgQvtIGoci5ta3J80aZLaNwBCXKKm/HT+hLP2Adt4zbN1Hs02OzgGCxwscmihOeh51xHmjz/+eGixx6mNcPvBOJWL9riVjdmHPtq6reUxRojq1mTe1DXoNllf7Ai4eQbieQs7JrwpYU1WT3gcxxtZWDjBs9pNogjvhhLzkAAJkAAJkAAJkAAJ5BUBivB5RZ7tkkAhJZAXIrw50h1CO6xmzL6zEN7xuR/xXU+jGwFC581PImpenKaxFmchNO7Zs0dFzSI61mqTkhdj9tJmQTl/Yj3P4ZjirQq8qQA7FkSTm62OvMyDl7yIMEebiOaGBRI27EWkNe5F1113Xa6q8kKEh1c63gp45plnlDULIsNhk2feBNfLmJm3cBFw+wzE8xh7kODcx+K3FuTNIrzfZzJF+MJ1znG0JEACJEACJEACJJDfCFCEz28zxv6SQD4nkFciPOxdYIGghXYtAOD1dghOTl6zTtjdChCop6CIqE5M/B6PtTirN+esWrWqsgrRthl++xvvcgXl/In1PIebF1iU4O0XbZ+EyFwIz7G2eIPgDwsa2MtAgEd7l1xyifLit26InBciPHiZbXWwQKU97eN9jrO9/EfAyzMw3Ojef/99ZRmHZ7WT9YxdHRTh8995wx6TAAmQAAmQAAmQQGEiQBG+MM02x0oCCUAgL0T4eAw7CAEiHv1kGyRAAiRAAiQQNIFEeAZShA96VlkfCZAACZAACZAACZBAkAQowgdJk3WRAAk4EqAI74iIGUiABEiABEggXxGgCJ+vpoudJQESIAESIAESIAESyAMCSoT3227G/ixJLZfstzjLkQAJFEICFOEL4aRzyCRAAiRAAgWaAEX4Aj29HBwJkAAJkAAJkAAJkEAABCjCBwCRVZAACbgnEAsRfsu2XVIhpaykV6ngviMB50wEASLgIbE6EiABEiABEnBFIK+fgVt37JW9mQekerXKrvrLTCRAAiRAAiRAAiRAAiQQbwIFRoRHPH+RIqfwHco+JqVKFJfT9Afxpsr2SIAEwhKIhQh/7LffZMXqTVLvnPQ8E+LzWoDgKUcCJEACJEACeUUgL5+BEOBXrdsq9eueJWcUL55XCNguCZAACZAACZAACZAACUQkkK9E+GPHT8jrH/8gS9Zul8rlSkuVCmXk0gY1ZNrXS2WXYY1TrGgRyThwWP0BfuLkSWlQo5IM7NpSkpPO4GlAAiSQIARiIcJjaBDid+/ZJ5n7DybISNkNEiABEiABEiCBWBNIKVdGKlUsTwE+1qBZPwmQAAmQAAmQAAmQQFQE8o0In2VEtz806hNpdXEDqVapnPGHdjH55Juf5ddDR6R7+2ZSoXxp2b5nv3w0Z7FUTCkj3YzPVm3cIZNnfiujHrxOypYqERUoFiYBEgiGQKxE+GB6x1pIgARIgARIgARIgARIgARIgARIgARIgARIIFgC+UaEHzHtGznn7OpyXt3qisA+I+L9idc/kpcG98hF5N3PvpfsY7/JHZ1bysbtGTLvu1/k8duuCpYcayMBEvBFgCK8L2wsRAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkE8J5BsR/q9vfS7XXHmhVDWi4JE+m/+LHDn6mzRtWFOqV07Jgf/Q4Wx5aeJsue7KxlKubCn58psl8sTtFOHNkJ599llZu3atjB07NqpTt1WrVvLggw9Kly5doqqHhQsPAYrwhWeuOVISIAESIAESIAESIAESIAESIAESIAESIAFjL9M/jOQXRIbhw55aLtlvcU/lhrw9W9q0vEDSK5dX5aZ+/oMsXbdN2cxUT0uVru0uUp/Dnua1KV8qgf6CejUkPS1F9u7aIw90bu6pvWgz33XXXVK7dm155JFHoq0qJuUpwscEKyt1QYAivAtIzEICJEACJEACJEACJEACJEACJEACJEACJFBgCOQbEX7E1HlSs2ZVaVz/LAX/9an/lnOqV5bTTisiP63aItdecYGck15Rvl68SlZv2KU84o/+dlyys3+Ty86tIm0urBPXSaMIH1fcbCwfEaAIn48mi10tEASKGs/Jo0ePSbbxjykxCSSVOENKGP9O/u47LiIxB8ZekQAJkAAJkAAJkAAJkAAJkAAJKAJxE+E3bNggaWlpkpSUlAv98uXLpUGDBhGn5P2vl8q2g8eUxQzSq0a0O6xoLm50trw5fa5c2KCWEfleXTZs3SvTv/xRzj27ivx+8nf5dN5P8vlzd9nWvWLFCunUqZOyUpkxY4bK0717d3niiSdC+REx/vbbb8vx48fl7LPPlgkTJkjlypXV8alTp8qwYcMMoT9bUlNT5a233pJGjRqpfDqlp6fL3LlzJTMzU+655x5ZsmSJYgAbl2XLlqljH374obzwwgtSqVIldXz9+vWqPdi8fPnll6qqa6+9VkaMGKH+D5a9e/eWzZs3S7FixaR///7Sr1+/iPzQ/u233y4rV65Ufa1Ro4aULl06ZEczb948GThwoGRkZEhycrI8/fTTcs0116g60ZeePXuKFk/Rl2eeeUa1bbaj+fzzz1WfJ0+eLI0bNxZznWY+Zu4Y+8yZM6V+/fq8JAsJAYrwhWSiOcyEIAABfv+vByW1fBkpU7pUQvSJnchN4OChw5Kx76CUO7MMhXieICRAAiRAAiRAAiRAAiRAAiRQAAnETYSvU6eOVK9eXd577z1JSfmfhzuE5dGjR8tjjz0md955Z1jEa7btlTdnLZZ+3duqPBNmLpDz6qSrjVpfmDBLbjLsaNIrnbKqee3dOVKlwpny3c/rZOBNl8pF9dJt69Vi8KBBg6Rv375KZO7WrZu88sor0q5dOxk1apS88cYbSiSG8D506FBZsGCBEs537NghLVu2lGnTpinB+cknn5SPP/5YvvvuO9WWNRL+/vvvV6I5hHskiP8nTpwIifAQwP/6179K+/btpWrVqkrMxuIE2j5w4IB07txZHnjgAenRo4cq26RJE9Uf3ecpU6aoz8Il9OfQoUMyfvx4Japff/31SoiHJzz61aZNG7X4gEUIjK9Pnz7y0UcfKXEciwcoi7y6LPqAPmoR/pxzzpGbbropJMDrOsGla9euapEBYwcfzR2ssXhQsWJFJegzFQ4CsRLhT5w4KRCyDh/JzhOQWcZeFMmlci8yxrMzQfShVMkkJdaefnpR266f4pxlcD4az6H5bqtUyRLGeJLDjmf2YmNvjM8Wyf5DxnlTxHczeVfQCJwuVzpJ7mrfVNo0qZ2rH8d/+01KlTyDAnzezZDrlk/dv45JseLFc5XJ6/tbxr4DrscRq4xlkktK8eLR/a3g7v7G50i0zzJyDn8VuGNTcJ6xx479Jrv37pPM/QdjdWuwrTelXBmpVKG8nHFG7vtpXDvCxkiABEiABEiABEjARCBuIjwiniE016xZMyTEawH+4osvVuKwkxD76P99IV3aNZPUM5MN25nVsm7TLmnToqGMmfqVPNX/xtCwlq3dJv+cOEvaXVhXBne7POyEazEYkec6YTEgKytLXnrpJbnqqqtUBDgiyJEgQENwR8R7vXr1pGnTpgJxvVevXiq6fc+ePUpAR7KK8FiEwGJD69at1XFE2M+aNStHJDwix3VC/nfeeUfARufXG6necsst6rOnnnpK8dy9e7eUKVPG9i0DN/VhHn744YfQAgHKYFxly5ZVbaAv06dPV1H+SIjgx8JAixYtlAh/6623yquvviqPP/54aINWuzrxhgAWFZAg4q9atcpxznm1FjwCsRDhIVDt3J0hlSuWNzZjjs8+FdaZWfTTaml6ft08nbAg+rD/QJbs2rNP0iql5hKuE4GzV8CRxgMBfsTUb/Kn+G4FYYjxA7telkuIP3jwkNSqkeYVG/PnEYENm3caz/PSOVpPhOtu3vdLpc1lp95EzKu0cu0WqVk9unM50e9vQdzDo52fIPpAzuFnIdHZeD1/Io0HAvyKNZuk3jnpkl6lgteqo8q/dcdeWbVuq9SvcxaF+KhIsjAJkAAJkAAJkECQBOImwqPTEOIHDx6sIuIh4E6cOFGJzG4EeJSf9s1S2ZR5WG5se2oT1tGGJU2mIRi1vfQ8uciwptFp685M+etL0+Sbl+4VvIofLtmJ8OYNS81WK7oO82erV68WRNGvWbNGCdYQnhEdj2QV4bUArW1XrCI8RH9EoOtktrTRn0Fwhz0N7G+GDBkis2fPlmPHjqlFAKcNYO3a16K+3Sat+jO0g4WDcJYx4PGbEWlZsmRJue+++0IiPMq/+eabudBjnLVq1VIivHnxI8iTmnUlNoFYiPD7jAir0slJeSbAg3gQwkW0MxdUH/Cl+lBWtpQ3IsnMad/+AwbnknnK2Q+jU+M5YoynbI7i3Z6cLPuNcRaUVM64Bt7926lFWp0owuev2bUT4RPh/lZQRHicDeHvb3yOBPksI+fw957C8ozdss3YoyulbNwFeE0eQvzezANSvdopG1EmEiABEiABEiABEshrAnEV4TFYLcSfPHnSkwCvQd00bJLcfdOVMnvBL9K73QUy+8d1MnPhSvmHEQlfodyp6LFl67bJl/N/ljJJxaVn2yZSp1qqLWe/kfAvvviiNG/eXA4ePKh83JHgFQ/rFQjySFYRHlHkiKA3R7abI+GtIrw1+tw8gO3bt4csXLZu3SodOnRQHu0dO3YMez5FiqwPFwlftGhR9UaAtS8YN6x0ypcvryLhYSnTsGFDZXEDux7YDaHOpUuXqgUWa7LjntcXAtuPH4FYiPBbt++Wc2tXj98gbFoKSgCPZhBB9gFRp+lVT93fdEoEzn752I2n3eCxBSMKXkMxouGte6BQhPd7xuRNOTsRPhGuu4IkwmNmE/X+FuQ93O8ZHGQfyDn8LCQqG7/njd14lixdk+dv0Mz+5j9yQaM6fofFciRAAiRAAiRAAiQQKIG4i/Dovd6Mc8yYMZ7tSH478bv8bezn8pful0uJYkXl7pEfyI0tG8rynQekZ6fmCs6CJWsl27BLOatyOfl5/U71ir5d0mIwvNix0an2V9e2MVZP+Oeeey7k+7548WLln44I8bp16wo82WHHYhbhIVIPHz5cNQ3/dGyoGs4T3irCw4cdNjMQ92F1g77Al/7mm2+WZs2aKZ/1AQMGyK5dhiWP4efuJMJ78YT//vvvlQ2P9plHXyC6w3IGCVHsV199tbIXMr8ZAOEdCwufffaZIMoeojz6hY1vsVjw97//XV577TXZtGkTI+EDvYzzV2UU4WM3X4VBPPFLz1aEf8QQ4QtY+vzZnBuRU4TPXxNMET78fAVhR6NrT1QBNMh7uN8zP8g+kHPk87mgL3RThPd7FbIcCZAACZAACZBAQSWQJyJ8UDCfnDhHHujcXDbs2i9Tv10pfW64QlX92byfJb3MGdKpef2ITWkRHiLxjBkzVF5sDmu2doGtyttvv6384GHpAlEcYjjSuHHjZOTIkcoeJjU1VYYNG6Y2dEXCJq0QqatVqxaykLnjjjtk0aJFSlSHtQw2O4UFDRYlrCI82oNwD/sZvDUA/3kI2IgyR4Q5jmHzU/joQ5BH25FSZmam2mB1yZIlqn1sALtv3z612SoS/OjR34yMDElOTpann35arrnmGnUMfYEoD/H0tNNOUxH3ENyRrJY98NHHZ3/7299y1Ik2IcKjr4yED+oKyJ/1UISP3bwVBvHELz2K8H7JsVw8CVCED0+bInx8zsREe45s2LhRjh09Kjt37gwBKFGihKSlpcmZZ54p5cqV8wzG6xhj0YdEXaDwDPO/BYKOhP/uu+/U9yQk7Hul3yT22j9GwnslxvwkQAIkQAIkQAKxJJCvRXgN5sfVW+VfP26QOzuf8mMf/+E30rHpOXJh3WoR2cVTDIaQbd54FuL+ypUrbe1a/E44ot3NvvK6nnB+7n7bYTkSiIZAYRfhcd/BGyxu0gUXXOBJYPAqLETqQzwEgqOGsPLtt98qey+IKrFMFOFjSZd1B0WAInx4kokiwkOQ3WT885LOMgIvahn/nJLbe3gi9MFpLDju9zmC8S00ng0rjL+TnVI5Q4hv3Lixp+eIG86x7oNfNk488up4ECI87C5ffvllef/990MCvB5P6dKl5cYbb5T+/fsrUd5togjvlhTzkQAJkAAJkAAJxINAgRDht+09IE+/+40MuvMaOXrsuIz4v49lzJ+7yOlFT4vIMJ4iPCxvEEU+dOhQQVQ67Fz69Omj/NSZSKAwEcgrER7X+7cLF+ZCXcWIpsO+CtEmN1/q9+/fLyOMt2fcphJnnKGsshDx5ya56YObeqIRT9zWDwEe+2TsNBYk0oy3izDOWArx0YjwVVLKyOO92rgdmsr3xNuzZUfmQU9lgsicyHY0eJsMb1Hh7TPYs8Gm7PLLL/c17GjL+2o0DoUKkggPQQ3Ji2AWCXEiiPC4b/3D2P/HTxpivCHodI9zcw9PhD64Hb8foRnit35L0207yIfnyP333++qiBPnePTBDxsMDs9NLDrgXyKlaEV4/I12yy235BLfrWOEGD958mSpXz/y2866HEX4RDpL2BcSIAESIAESIIECIcJjGr9euklGfbRQypcpKS/07SBJZxRznN14ivAQ3u+77z5lR4OIeLOli2NHmYEEChCBvBLh//GPfxiLdMdsSTY2Is7DfaHVr707TYHTl3qU11/sYWl1a48etlHueOUeX7J1X70I8W764DQOfdyvQOC2fus4vQgobtsw54tWhJ/59B2emu306Lh8K8LDUuz0009XdmjmhDe49IbinmD8N7NZhMcG57B6++mnn/xUJdbyeBMMyY9456sDMSoUrQiPe8wH06fL/l9/jdhDRA9ff8MNrqKzUZGfjVnPP/981QfY58GOL9qUCCK8X3EWY8c56hQN7+Yengh9cDuXfp4jc/79b/m38c9PesrlAokT53j0wQ8b/Z7yba8AACAASURBVHfERuM6b33llQrRK8Z+TW7ersPfEoMGDXJcCPLDHWWiEeGtAjyEdtw3bjDuUUiw/0SEvE5ehHiK8H5nlOVIgARIgARIgARiQaDAiPCAs+9QtpQvnRQLTqyTBEggIAJ5JcI/ZkQh+k0Q6fWXwXB1OH2p11+eIRJeaXx51l+g7eqbOHGirFy1KnQIX56HDBni2H03fXCs5L8Z/AoETvUjinPipElyzX/fPtALDnkhELTzsDEr9hgZeru7aPih42fLzG9XOKGIyfEgIuEhwiNK/d5771V7hegUpAgf9OApwp8iis3gfzU2pneTIMSb5zdSGT8iPBZddIKfM/aKcRu9ateXRBXhce/CIm4JY+8bpKPGPkF4zlkXfeMhwp9ZtqzqQ7hzIKg+uDm/kMfPc8TvIgPGDpHZTXJ6VsajD37YYGzom1mEx7nmtOimmUT6u8MNt0h5ohHhW7ZsKTt27AhVP3r0aGnbtq188cUX6k2aZs2aKSH+SdMiS9WqVeWbb75x7DZFeEdEzEACJEACJEACJBBHAgVKhI8jNzZFAiTgk0B+FOExVKcIO6cv9frLM0R4bMzc+7+Ru1aMEKlfNSLbrF+q84N44nRKmC1odIQ/ymDR4dZbb3Vtu+PUjt3xaCLhdX1P9GorHS85N2LzHy9cKY+//YWfLgZSJigRHnOFzbtnz54tNWrUUH2zE+HffPNNtbE4NihHPvy/UaNGtmMxR8Jb68IxeP2iPl0XLAceeuih0BtkOK4t3MzlzWIvGl6/fn0gLPOikmgj4b0uNjrd1zSDaEV4XQ+iWzGPflKiivDNL7kktJG9Hpd1IRWfB3UPjyQQOy1GBdUHt/MXjdD87YIFORajzW3WPOsstfCBZyk2ZsWbVfjpZPej63D7vI5lH/yywb0Z90g/G9K6nTc/+fyK8PB/Hzx4cI4mcQ83i+7PPfec8oPH2zV6s1YU0J9H6i9FeD+zyTIkQAIkQAIkQAKxIkARPlZkWS8JkIAtAYrwYxUXiNBpVarkYrTTiAazs83xK56ANzY/tfNc16I4Nka12vH4FQjCnfZmAV7nCWe147fPkS65IET40iXPkDcevlHqVEu1bWrNtgzpM9LYUO6Ive2R21sCou67X3m+3PPC9Fx1oQ9jBtwgU/79k220fVAiPPYtwTxA7MHm3khW4Xz8+PHyz3/+U8aMGaPOHwgiEyZMkIXG3gspKSm5huskwiNaGgtQhw8flptuukl+NSxVEKndw7Bu+uijj1Qk9bx586SKcd1Y++IkPrpln9f5CroID76IYH3++edVdKuXZCfC+71X+L2/2Qng+s2mTz75RO1xgUh4/LQmv/dwaz15IcLHk7P+G0E/kzDeX439VPTCNKzL8EYF9lhBRDjuExDj8c9tchLh49EHv+eg2zFGyud3Pr0+Y5csXSNtLovsXX/PPffksj4799xzZaVpU14s3GEB75prrpFVprcEr7rqKvX8iZQowgdxxrAOEiABEiABEiCBoAhQhA+KJOshARJwRYAi/CkR3mvyK+CA9/QPPsi1+alZFL/h+utjKsLbCfAYfyQR3k+fvQoEXuxodN3YpHXKkFskOemMHM1lZR+T7v+YHIgPvLa+Wb11bw4hXgvwddMrSDjLmyBF+LvvvlsuMaJ8H3vsMbn99ttzCd+wrcEmqxBHdIJ4j88feeSRXNPhJMJDaNdR9LAd+Pzzz5XorlOk8vEU4RHtb/YntjvvtGjk9TovDCK8ZgKfeHByu3FrOBHez73CrwDqKMIbEdnZRqSynUe333u49Ryy9uF+Y78hLLT+Z8kSFW2PFG5vBL99iOdzBGP55NNP1TggrGsffbPQjgUP60brsFfCJutuLI+cRPh49MHvOQgLNyxAtG7dWj238X8sRDilMw0+Onre73x6fca6EeGt0e3WNurVqydTpkyRbdu2SadOnXIcdmNJQxHe6czgcRIgARIgARIggXgSoAgfT9psiwRIQEXXRpvOTEkzhJvSoWq2bt8t59auHrFarzYN1sqcbBucvtSjPr8+syjrVzxBWesXbnyGL/KI1rQT4HHcr0Bg5eZVgNfl/fQ50gkQRCS8rr/V+WfLyHs75mju4dEfy9yfgrNBsQrxaAwR8JEEeOQJUoSHkD5q1Ci1CSqi22EVY96YFaI4LGMQwa4TBPmsrCxbEdBJhEfEvRbQ7KxvEkWEx1gjCfF+BXh1j9i8M8e9DZ+5ub9p/l7vc073NV1vUHY01msUGyy63Zw3nB2Nn3uF3/tbJBHePLZ42tFgDvVGorES4eP5HMEz403j+WRdyNB7s0w3Nh7GgkO41OOWWxyFeKfntZc+nGuIxOY9XNAvN33wew7CegeLBHqfmkibzlsZDTHeJtKWPX6uG6/PWDcivNVOzNwG7g/wfYcAf4sxr2YrGp3PyX6MInykWeMxEiABEiABEiCBeBPIUxE+Y3+WpJZLjveY2R4JkEAeEqAInzsSHhHhzVu0ULMCD9og7Wj0VJu/cOOzSAI8jvsVCMynll8B3m+fvQoEfiLhdRsDu14u3Vufr36dMucnGTH168CvKrMQj8qdBHjkCVqER52IPixfvrzAIsBJhIe1wIkTJwq8CA8udkJ8NAI86ixsIjyshcxvOzhdwzWrp9lmidf9LZIIjz4gIhn3vcWLF8dtY9ZwInxlw7alSlpaDsE6msVcgI8HZ0R2I2J7xYoVypJkhyE6Q5Af+PDDypImXJQ/xgvbmiRjg1ynDYedRHg3fdBvcuHNB2uf3Gx67PcZC9G9SZMm6i0lcNIbtTo9gNAnq+2c1/l0uj7Tq1bKkSVaEV57vlttaHQjbhbxKMI7nRk8TgIkQAIkQAIkEE8CFOHjSZttkQAJMBLe2JjVnPBFftCgQaHoNAg4w4cPj4mAo79wo/1wEfC6b34FAl0+WgFe1+Olz14FgmhE+Hs6NZM+HU9FgL/x8fcyZuZ3Mbm6tRCPysNZ0JgbjoUIDzGsc+fOyosdae7cuepn0HY0+SkSXjM3C/HRCvCoszCJ8L169VJWRtHY0ZjPfS/3Cr/3t0giPN4u2rhpU9j7QLQCuK7Y2odwIrz2qje/HRFEH2LNGVH9K417DvYq0Ruv6rGHi4LXUfLapsZpnE4ivFMfsDBw4w035NhMHMI9IvT/bfQfyakPfs9BRMJD+McCi9uNaCM9nLzMp9dnrBsRvnv37vLDDz/YVj1p0iR1f7Da0OjMF110kbKqiZQowsfkTxNWSgIkQAIkQAIk4JMARXif4FiMBEjAHwFGwucU4fEq+6233poDZiytDKwbzoWbRb8CAeoLSoDXfXPbZ68CQX4Q4TEmCPFIM79d4XjRxUKER6MjRoyQ0aNHS3p6ekiE1xuzQiipU6eO8knHJnl+N2aNRoSHh/z8+fNl6tSpKhK2WLFijqyCygAhHsnsje+37sIgwsPjeciQIYFszGrl7PZe4ff+ZifCNzcikhGpa06vGBsMW+1UnERZlHcSh5Enr0V49CGWnM2iMNrCQjUiuMFYL3RcY3i/Q4yG6K0FeHM5JzsYJ85OfcAzDhtGa49189xrP3mnPvg9BzFutJ8WkAjvZT69PmPdiPDjxo0T3L/9JGzWjb0lIiWK8H7IsgwJkAAJkAAJkECsCFCEjxVZ1ksCJGBLgCJ8ThE+zXiF/v7774+bgOP2tPQrEAQtwLvtr1O+ID3h0Va8IuGdxmU9HisR/vjx49K+fXtlNaMj4dE2BGh4xWdnZ0uNGjWUWG+1PNB9jKUnPKL1b7vtNrVJITZ0Peecc7yiS4j8BV2Ej+ZtgXCe8H4mzu/9zU6ED2fzAesUc4qVCA8RGsIsLMbqG5ZRSCsMGxc8WyDUmv3Tg+qDW+Z+OUPIXmBYs/164IBqquZZZ0nv3r1FL1DrN7nw9wTuN1bR3GmcTiI82nTqg9WOBlH76Je2zHHqg182iNLfuGGD8r3H2wI4JzcZ/5wSNmYNd292KuvmuN143IjwBw8elMsuu8zW7/16gyfSB8bm8taEN7Pw5oPTmzQU4d3MHvOQAAmQAAmQAAnEi0ChF+H3bJsnReS0EO8K1U75MjORAAnEhgBF+Nye8GZrGKuYoGfB6Qs98rkRFtzOql+BwE6k0mIFBKG8ShTh84o82/VCIFoR3ssmjWeWLaussNykaDdmhW0EbLaqVavmpjnbPIkqwrsdUFD38Lza4NvtOM35/D5HdB3a7/yosciHSHg76xS7qHWzxZtdv708KyP1Ac+2WrVqqUUPJFgAYVEG4rBTH/yywUL3K6+8Io0NX/jWRnternnzxqx+5jNSGb8iPOr84osv5N57781VPd6yQsJbB9aEN7Patm3rOAyK8I6ImIEESIAESIAESCCOBAqdCA/RfdOKf0nG9l8kO2uvLeqk5AqSWvVPclb966RitZZxnA42RQIFn0BeifCIHtNerV4pa2/dSOXcfKlHlO6IkSNtq8GXeSS7TVnxOTals3v13VyZmz64HbtfgcAqECWCAI8xBy3CY5PUkfd2UjgfHj1TVm+1f5645R1UviAi4YPqC+vxTiBaER7X3/T33w9FEIfrAQT4G268UWoZ0btukh8R/vzzT21cDJseJ8sIN31IBBE+0j3caQxB3cMToQ9OY9XH/T5HItVvtvpB5L8WwHWZoJ7Xbvtgzoe2sbk6NlqHQB4p+WUDSx5sAIwoePzD+WB968KuXSwOOP0N4XZe7fJFI8KjvveN+9bgwYNzVI3NwJGwQa856Q1b3fSXIrwbSsxDAiRAAiRAAiQQLwKFSoRftnCErP7xVFSF21T3wp7S8JIBbrPHNB+iqGrXri2PPPJITNvxWznsCrDB0qhRo6RixYphq0G0y9133x3T12L9joHlYk8gr0T4WI/MrQCOV9xhneEl6dfOncq47YNTPTjuVyCAIIDN83RC9GJeRsDrfgQtwrthmBd5KMLnBfXg2oxWhA+uJzlr8iPCw2YCyckuwm2fE0GER18T4R6eCH1wM29+nyOR6kYk+JuGEG313EcZO39+u7qifVYG0YdYsHEzJ7HKE60Ij37hbyNE9ofbqBVv1GA/CfxN5DZRhHdLivlIgARIgARIgATiQaBQifBfvd9D9u30Jn6VT6svV9wYXriHx61O2AjuEmODLnjipqSkuJo/L8K6l7yuGg840z333CPwxNSLBNggb9iwYcorODk5WZ5//nlp166dZGZmqldI4fEID2GmwkWgsIvwsZztaIUFc98Kg0AQzcassZzHaOqmCB8NvbwvW5BE+KBpJooIH/S4zPUFeQ/3288g+xDL5wj+lthovPmBhV8s9MLv3O2Cb1BjjKYPsWTjd+6jKReECK/b37Ztm8yePVvMC3lt2rTxZWdFET6aWWVZEiABEiABEiCBoAkUKhH+QOZCWTL3ZcncscoVx5Qq9eSCVv2lbMolYfObN5rDH4t4RRJekIsWLRKI8k7Ji7DuJa9Tu0EfnzNnjope0Rv24feHHnpIvV5at25dmTJlijz++OPqODZTGj9+vNo8b/LkyUF3hfUlOAGK8LGboKCEBfSwMAgEFOFjdy6yZn8EKMKH50YR3t855bVUYXiOBDlGr3x1/sLwjHWzMatffm7LUYR3S4r5SIAESIAESIAE4kEg34jwGzZsUBEuSUlJubgsX75cGjRo4Mhr6bdPS61GV8jxY0ckc+cqOXIoQ/00p5S0elKydKrgZ7EzSsqGpV9Jo+aPhq3bLMLrTFdffbW0b99e+aAimSPCU1NTBX6OjRo1EnMUfXp6uhKoESV+3333KRG/aNGicu2116rIeiSI8BD216xZI5s3bxZzXTg+b948GThwoGRkZChOIw3vaUSeI4Ff7969VTnU0b9/f+nXr586BhsZ9PXLL79Uv5vbjFTODAV9a2JsEqXrfO2111Sb6INOGO/MmTPVa6QHDhyQpk2bhkR5x8ljhgJDgCJ87KYySGGhMAgEFOFjdy6yZn8EKMKH50YR3t855bVUYXiOBDlGr3x1/sLwjKUI7/fsYDkSIAESIAESIIGCSiDfiPB16tSR6tWry3vvvZfD6gUC9ejRo+Wxxx6TO++8M+I8QYRfs3iapNdtqUR2JbYb0e7mlLFjpWQfylTi/NbV86RB815Sr8kpMd0u2Ynwzz77rKxdu1bGjh0rixcvVj7p7777rnpVdujQoUp41hHj1uj2W265RQnor7/+uhLk8folLF26dOmiRHjUN2vWLMXg0UcfVWI96tKi9pNPPildu3YNRZ5jgQKie6dOnZRIjvYhgnbr1k3lwWcQ4JEPAjnq6dy5szzwwAPSo0ePiOXMPLCogKh2/LRL33//vcCuxvyGAPp0o7Ex3O23315Qry+Oy4YARfjYnRZBCguFQSBoN3isSJHYzUfca/5D5PPn7srR7MGDh6RWjbS4d4UN+iNAET48N4rw/s4pr6UKw3MkyDF65avzF4ZnLEV4v2cHy5EACZAACZAACRRUAvlGhP/www9VlDc8x7UQrwX4iy++WNmbONm/wI7m8KEtsm31/FAkvN3E6kj4anUvlVKlq7u2o9F1QYT/6quvlN0K/NBhU1OpUiV1eOnSpUrkXr9+vfrdKsLv3r1bbWKmI/4hUJ977rnKZ92aF4I5hH20A2/1PXv2SNWqVVW9iG6vV69eKPIc4j7SU089pRia28ECxzvvvCPgiGReRIhUTo933bp1KuJ+1apVtnOAxYTWrVsrOxosJuiUyPY6BfWCT4RxxUKE37f/oJROTpJyZZPzbIiJ8KU+qD7sP5Alh7KypXy5Mjl47tt/wOBcMk85+5ngU+M5YoynbI7i3Z6cLPuNcRaUVM64Bt7926l7vU4U4fPX7NqJ8Ilwf/OzMWvQ5IMS4cPf3/gcwZzF/jlCzoXlGbtl2y6pkFJW0qtUCPp24Kq+rTv2yt7MA1K9WmVX+ZmJBEiABEiABEiABGJNIN+I8AABIX7w4MEqIr5FixYyceJEJRy7EeBRHhuzlk1Nl1oN20jJMqf+IETkuzmlVjlX/Xrk4F7ZsGy28XOfXHrtG2HnwSkSHgUhaqOvEOR1CifCw8Klb9++IZEe+e+++25bER7HzBYvsL2ByJ6VlRVqR9u/oO0hQ4aojY6OHTsmvXr1Cm2garbF0QUh1MOeJlI5nXfFihUqYl6PyQwLAjyOXX/99WoRxZwQtY9NtfDGAFPhIRALEf7EiZOyc3eGVK5YPs8E4qCEi2jOhCD6AHFg1559klYpVU4/vWiO7iQCZ698Io1n9uK1MmLqNwUjGt6Igh/Y9TJp06R2DkTHf/tNSpU8Q8qULuUVHfPHmcDBQ4fl8JFjUqx48YS77gqKCJ/o97cg7uHRnrZB9IGcw89CorPxev5EGs+xY7/JijWbpN456XEX4iHAr1q3VerXOUvOOCPnPdXrGJmfBEiABEiABEiABIIikK9EeAxaC/EnT570JMCjrHljVkS7lyxdIZcdDTZtPXJor/KL97oxq54Usyf8pEmT5JVXXpFp0wwbHMP33SpYW6PBmzVrpuxkYAeDyH7z8UiR8IiKh+0N+Gh/fLNAv337dqlYsaKqc+vWrdKhQwd55plnpGPHjoJI+OnTp9tayUQqp8cbLhIeAj4E+Kuuuiok+JtPXEbCB3UZ5696YiHCgwAE4lMiVt5ENmcdzpbkUrn3rIjn7ATRh1Ilk5RgaxXg9ThOcc4yOB+N59B8t1WqZAljPMlhxwMhfuxni2T/IeO8yY/WNIb4Xq50ktzVvmkuAR7Qip5WRPb/elBSy5ehEO/7LIp9Qdy7MvYdlHJnlpGTvxuTakl5fX/L2Hcg9hAcWihjvIVTvLjzhveRqnF3f+NzJNpnGTmHPwvdsSk4z1gI8bv37pNM443FeKYU402+ShXKU4CPJ3S2RQIkQAIkQAIk4Egg34nwGBGEZkR4jxkzxtGCxkwg1huzwnZm0KBBAv9z7X0+atQotTHrjBkzVF8R/Q1/eHMkfPny5WX48OGqq/BURx233Xab8mmHLzv827UdDTzhMfbKlSvn8ISfM2eOPPTQQ/Lpp5+qY3g7ACK7joTX4v6AAQNk165dymtei/Dwaoc9zYQJE5QNDvqMOm6++WaJVM7M1uoJDzscbE4bToBHWXrCO16fBTJDrET4AgmLgyKBAAhAiD969JhkG/+YEpNAUokzpITxz06AT8wes1ckQAIkQAIkQAIkQAIkQAIkQAJeCORLEd7LAM15ly0cIat/nORpY9aGLfpK3cb3hG3SbOUCkf2SSy4ReNVj41QkiNE9e/YMifIQtmFNAyGybNmy8vHHHyublmrVqin7F/i7P/zww8oGBl7wJUuWlNq1ayubGUSOo401a9bI5s2bJTU1VW2uWqtWLdUW6oHYj4SoeBzTXu/woscGrCiHOhBtjw1fdR9xDO3jDYOmTZvKa6+9psYQqZwZCvqGTV779eunPtYe/lZwrVq1UvYz4IKIfWwqW6VKFb9TynL5kABF+Hw4aewyCZAACZAACZAACZAACZAACZAACZAACZCAbwKFSoQHpT3b5smm5R8ZXvA/S3ZWpi24pOQUSa1ynpzVoLNUrNbSN9zCVBDR//Drh6juJsGm55NPPpHJkye7yc48BYgARfgCNJkcCgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgCOBQifCW4lAlDcniu6O50zYDLC1qV+/voq4j5SwWWvbtm3liy++CL0x4L9VlsxvBIIS4fPbuNlfEiABEiABEiABEiABEiABEiABEiABEiCBwkmg0IvwhXPaYzNqWMzABgee8tgENlzq27ev9OnTRxo3bhybjrDWhCYQlAhfq0ZaQo+TnSMBEiABEiABEiABEiABEiABEiABEiABEkhMAhs275R4aksU4RPzPGCvSKDAEqAIX2CnlgMjARIgARIgARIgARIgARIgARIgARIggXxBgCJ8vpgmdpIESMAvAYrwfsmxHAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQBAEKMIHQZF1kAAJJCwBivAJOzXsGAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkUCgIU4QvFNHOQJFB4CVCEL7xzz5GTAAmQAAmQAAmQAAmQAAmQAAmQAAmQQCIQoAifCLPAPpAACcSMAEX4mKFlxSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAi4IUIR3AUlnydifJanlkj2UYFYSIIG8JkARPq9ngO2TAAmQAAmQAAmQAAmQAAmQAAmQAAmQQOEmQBHew/xThPcAi1lJIEEIUIRPkIlgN0iABEiABEiABEiABEiABEiABEiABEigkBKgCO9h4inCe4DFrCSQIAQowifIRCRgN44fPy7Tp0+XG264QYoVK5aAPWSXSIAESIAESIAESIAESIAESIAESIAE4knggw8+kI8++ihHk/Xq1ZNHH300qm5QhPeAjyK8B1jMSgIJQiAvRPi5c+eqm/Pu3buVuHvllVfKyJEjJSkpKUGoRN+NRB7jhx9+KAMHDpT169fnGujZZ58tI0aMkC5dusi6deukQ4cO8tZbb8lll13mCKVVq1Zy9dVXyyOPPOKYlxlIgARIgARIgARIgARIgARIgARIgATyJwF874e2oNNFF10k77zzTlSD8SrCZ2Zmyn333SfQtU6ePCmVKlWSxx57TK655hpX/Sjyh5Fc5bTJFK0Intfl/Y7bXG7PtnlSRE4LfVShWosgqmUdJFBgCcRbhMdNevDgwfKXv/xF2rdvL3v27FGiLW6Yn332WYGIuE70MboV4b2e9BThvRJjfhIgARIgARIgARIgARIgARIgARLInwR69uwpP/zwg+p8XojwV111lVSsWFH++c9/SpkyZWT+/PlKlH/hhRekY8eOjlApwjsiypkBovumFf+SjO2/SHbWXtvSSckVJLXqn+Ss+tdJxWotPbbA7CRQsAnEW4Rv1qyZdO7cOUe09IEDB+TSSy9Vn/Xo0UNWrFghnTp1yhGpfdddd6mJGDt2rPqJFc877rhDli9froT7e++9Vx588EF1DHnLly8v33zzjYqux+cQ/hctWiRly5ZVebp27apu1q+++mrgE5zoY3Qrwut5mDlzptSvX19gT4OHrD5nGjduLOPGjZONGzeq+dIpPT1d8CYA0ptvvikvvfSSZGdnS40aNdT/GzVqpI49++yzsnLlSjWX+Il2UM/UqVOlSZMmKg9WsRcvXiyzZs0KfJ5YIQmQAAmQAAmQAAmQAAmQAAmQAAmQgHcCsKT561//qsR3CPHxFuHx5n67du2ULY7WGDCK+++/Xw4dOiTjx49Xg4K+MGzYMKVJpKamqjf/W7Y8pQ1ThPcw78sWjpDVP07yUEKk7oU9peElAzyVYWYSKMgE4inCh7tJgu/tt98uJUqUkDFjxjiK8BCD27RpI1j1hLi+Zs0a6datm7qxwkYFIvy8efNk+PDhAkEcgnyDBg3kueeeU8dRHr+/8sor6qYdZMoPY/QrwsPC5qeffhI8bJGuv/56ge+bXsiwRsLjoYcVacwpBHvwnzBhgixcuFBSUlKUCA+RHosk8J2vWrWqWOvA75gzvcAS5FyxLhIgARIgARIgARIgARIgARIgARIgAW8EtAD/zDPPKF0AAZXbt2+Pqx0NdB3oDLDEffrpp21dFT7++GMZMGCA6tfFF1+srHaff/75UIAmRXgP8/7V+z1k384VHkqIlE+rL1fc6E2499RAmMwQBWvXrk2v5CBgso5ACcRThMcNEGKqnRc5Ip537dqlIt2dIuEhIj/11FPy448/hligfEZGhhJ8cb1VrlxZ5dEJq6FY+UT9n3/+ufJEx9iD3nA0P4xRi/DhTiTtCW+NhNdvGGBxA2nZsmWyZcsW5RuP5EZAxwMS+fCQhgiPOcDKtE6IlEf/EEm/efNmtV/Av//9bxVFz0QCJEACJEACJEACJEACJEACJEACJJB3BKwCvO4JPocgH03y6gmP4Ms/u1meLQAAIABJREFU//nPkpWVpQIw+/TpI82bNw91AQ4I0GLN2tCQIUPkuuuukwsvvLBwRcLPmTNHefVMmzYtx6sDbifsQOZCWTL3ZcncscpVkZQq9eSCVv2lbMolrvIHmYkifJA0WVeQBPKjCK8jqK0cIO5CZLe73szCOwR4eNDHwoomKBE+lmP0Gwmv79lVqlSRtm3bKusgWM/oZBXhscnr5MmT1YqzTliEwQMS84Qxrl27NmQxhDxm4f2TTz6RGTNm0IomyAuedZEACZAACZAACZAACZAACZAACZCADwLhBHgfVdkW8SrCoxJExH/99dfqLfslS5aogExoHnj7HhpFv379lB2xXSpUkfDwAW7durUcOXJEpk+f7lmIP358vfzxx2E5cnCvZO5cJUcOZaif5pSSVk9Klk4V9bNMBSlSpJQR+Xq2LXwd9QnrAwg/SN27d5cnnngilB+i0dtvv60mGQITrBUwwUhWnyG85gBfIuTTSXslY+z33HOPOkHgWY0TA1GliP7EyYJNBLCrL44jahjtQbz68ssvVVXXXnut8jFC2rBhg/Tu3VuJV4jq7d+/vzrJmEjADYF4ivBBWbXgOlywYIHyELdLdiK8flXpxRdfVBY2WAkN2ooGfckPY/QrwmN8eJsA96GJEyeq+9OgQYPk7rvvVtPgRoTHfe/EiRNhRXjUg2h53ONwP2zRogWtaNxcyMxDAiRAAiRAAiRAAiRAAiRAAiRAAgERsEa2x1qAR7f9iPDm4UKvaN++vZx33nlqPzqK8JaTAQIyXlc4evSo54j4LWsmS+WzGno6vXZtWibV69xiW0aL8BCV+vbtq2wS4DOtfaNHjRolb7zxhhL+ILwPHTpUCYEQinbs2KGM/RHVD0+iJ598UhAR+91336m2rKIgrDEgmmsbBmxGCGFKi/CI1MUGBzh54JMMAR4bUKJtbGKJjS0feOABFYmKstjEEP3RfZ4yZUpoY0NPgJi50BGIpwgPuF42LV21alXILsa8MeukSZPU4ph5o1WI7NpaJtybJ7iOcM/ZtGlTTKxo9MmT6GP0K8K/++676tWu6tWrq6GarWPwux87GmskPOrBvRYLoZir2bNn04qm0N2VOGASIAESIAESIAESIAESIAESIIG8JFC3bl3Rnu/xEOAxVi8iPPagQ3Cy1WYYeiy0VQQP2tnRQFeFSA9do1BFwuuTya8QP39GH8nO2iO1GrU1It3rqkh3u3QqUn61bFj6hWFFc5Zc1O5F23x2PtTwmYZ1AsQmbALZs2dPtYEkko6sRcQ7Nids2rSp2oW3V69eKrp9z549SkBHsoqCderUkdGjR6s3AZAQ2Ttr1qwckfDwNtIJ+fVGAjq/Fq9uueXUogIie2vWrCm7d++WMmXKqD4wkYATgXiL8BCAEYn+l7/8RS0y4U0YLHzhOvvss8+UkK43TsVi2L333ivz589X1lVY6IKNCY7jeqtfv37od+SFQIxrMJwIDzsVeIRp2xonNn6PJ/oY/YrwWPArXbp0yD4GzLEoiN3IkXBvxH0HG53gHqQ3ZsWiCe5hL7/8svLsN2/MaifC60VN/eaQ33lgORIgARIgARIgARIgARIgARIgARIgAe8EIMIjIXAaIrwW5L3X5L6EFxEeWsTll1+u7G+HDRsm5cuXV5oq9KVbb71V7QPIjVnDsMdutf/617/UKgUm1k2CHc2qRRNl25r5yooGKbXKuTmKZuxYqX6HJU21OpdKvaa3OtrRmDeNNHsWQ7hDJC3sanQyf7Z69Wo12WvWrJGyZcuqFRmIhkhWURAWNVh9gYiIZBXhIfrj5NHJbGmjP4PgjpUdvG6BjQUQMXrs2DG1CIBND5lIwA2BeIvw6BPO7UcffVQtGBUtWlT5s7/++uvSpk2bUJfh4Y7rTVs/JScnS7ly5UICMDZxve2225RdE+rAIhmuG4j4kfZgwDWHBSvzdeyGk9c8iTxGvyI8bLSwGIJzBnPWoEEDGTdunPJaQ9Ke8b///ru6DyJhTuDNhvsUNlfFfRFvC+n7np0Ij2PmDVy9smd+EiABEiABEiABEiABEiABEiABEiAB/wS0CI8aoJ9At4x18iLCoy/QheAigkA/aEfQjWArbtZEzdbhVk2iUEbCI9ocNgcQ0RAl6TZpT3jkR7T7kSzDE96ySSs2Yy2ZnBqKknfjCW8W4d1EwsNjGhG4Bw8eVD7uSPCKxysQWoiyioLwikcEvd6w0EmERxRpON/87du3S8WKFZX4uHXrVunQoYNayOjYsaNblMxXiAnkhQhvxQ2hFlHSWIyDyBurhLddYOUEaydtXROrtgrjGINiqd+EQIS9XqgMqm7WQwIkQAIkQAIkQAIkQAIkQAIkQAIkEJmAWYRHzkSLhA9i/gqdCA+hGpGUfuwhln77tGFFc4UUO6OUK/bHjx02LGm+kkbNH7XNr+1osIqCjU61v7q2jbF6wj/33HMh3/fFixer1RZEt+NEhSf7448/nkOEx6sRw4cPV21rb+pwnvDWSHhsZoioYYj7sHtAX+BLf/PNNyuPbbxBAAETq0CIJqYI7+qUYCaDQCKI8JgI2C9BcNVR1UFODkRd2EP9/e9/V9fPq6++GmT1rusqDGN0DSNMRiwq4pkACyJYdDGRAAmQAAmQAAmQAAmQAAmQAAmQAAnEl4BVhEfrsRbivUbCR0ukUInw//d//6dsIfwI8AC9bOEIWf3jJEmv29LwhDci3g3LGUS+mxPsaLIPZRqe8Ktk6+p50rBFX6nb+B7bedIiPF6zwKaASHfeeWeO1xgQsf7222+HLDIgikMMR4JwNHLkSGW7kJqaqjyJ2rVrp47Bhwh+RNWqVQtZyNxxxx1qY0mIgrCWOXToUMgT3irCQ0SEcA/7GdhAwA/7tddeU4Ll0qVL1TFs9IroXgjyaJuJBNwQSBQR3k1f/eZZt26duhaxRwOsWGIh9PvtW1DlCsoY8dYP/ORxP8UbQ0wkQAIkQAIkQAIkQAIkQAIkQAIkQAIFnwBFeA9znLE/S1LLJbsuAWEZFivdunVzXcaacc+2ebJp+UeSseNnY5PWTNt6kpJTDK/48+SsBp2lYrVTHu12yW5jVt8dcyiIsZvtMCDur1y5Um1kyEQC8SRQGET4ePJkWyRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAt4IUIT3wMurCO+hatdZIcqbUyTR3VppPEV4WN6cdtppMnToUMFmh9iEsE+fPtKvXz/XY2VGEgiCAEX4ICiyDhIgARIgARIgARIgARIgARIgARIgARIgAb8EKMJ7IJcIIryH7ubKGk8RHsI7NqCEHQ0i4rGJ6ogRI6LpPsuSgC8CFOF9YWMhEiABEiABEiABEiABEiABEiABEiABEiCBgAhQhPcAMr+L8B6GyqwkUGAIUIQvMFPJgZAACZAACZAACZAACZAACZAACZAACZBAviRAEd7DtFGE9wCLWUkgQQhQhE+QiWA3SIAESIAESIAESIAESIAESIAESIAESKCQEqAI72HiKcJ7gMWsJJAgBIIS4W96emqCjCg23Vg85sHYVMxaSYAESIAESIAESIAESIAESIAESIAESKCQE4AIH09tqcgfRvLLPFoRPK/L+x03y5EACfgnQBHeHTuK8O44MRcJkAAJkAAJkAAJkAAJkAAJkAAJkAAJeCVAEd4DsWhFfA9NMSsJkEBABCjCuwNJEd4dJ+YiARIgARIgARIgARIgARIgARIgARIgAa8EKMJ7IEYR3gMsZiWBBCEQlAifIMNhN0iABEiABEiABEiABEiABEiABEiABEiABEggIgHa0fAEIQESiCuBoET4MmVKx7XffhpLLZfspxjLkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJxJAAN2b1AJeR8B5gMSsJJAgBivAJMhHsBgmQAAmQAAmQAAmQAAmQAAmQAAmQAAkUUgIU4T1MPEV4D7CYlQQShABF+ASZCHaDBEiABEiABEiABEiABEiABEiABEiABAopAYrwHiY+EUT4PdvmSRE5LdTrCtVaeBgBs5JA4SNAEb7wzTlHTAIkQAIkQAIkQAIkQAIkQAIkQAIkQAKJRIAivIfZyAsRHqL7phX/koztv0h21l7b3iYlV5DUqn+Ss+pfJxWrtfQwImYlgYJPgCJ8wZ9jjpAESIAESIAESIAESIAESIAESIAESIAEEpkARXgPsxNvEX7ZwhGy+sdJHnooUvfCntLwkgGeyjAzCRRkAhThC/LscmwkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkPgEKMJ7mKN4i/Bfvd9D9u1c4aGHIuXT6ssVN4YX7u+66y6pXbu2PPLII57qZWYSyK8EKMLn15ljv0mABEiABEiABEiABEiABEiABEiABEigYBCgCO9hHuMtwh/IXChL5r4smTtWueplSpV6ckGr/lI25ZKw+SnCu0LJTAWIAEX4AjSZHAoJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5EMCFOE9TJoXEX7Dhg2SlpYmSUlJuVpYvny5NGjQwLHl48fXyx9/HJYjB/dK5s5VcuRQhvppTilp9aRk6VRRP8tUkCJFSkmxYmfb1n322f/7PD09XebOnSsQ5U+cOCHLli2T888/X8aOHStTp06VYcOGSXZ2tqSmpspbb70ljRo1khUrVkinTp3k4Ycflpdffll+//13ufbaa2XEiBGqPYy5d+/esnnzZqMPxaR///7Sr18/daxVq1bSsGFD1SbqPffcc2X8+PGSkpIix48flwcffFC+/PJLOXnypDRt2lTeeecdVceHH34oL7zwglSqVEmWLFki69evz5EfdZv7gHauuuoqmTlzpmRkZEiNGjVk2rRpqp1nn31W3nzzzRxskB9jZiq4BCjCF9y55chIgARIgARIgARIgARIgARIgARIgARIID8QoAjvYZa8iPB16tSR6tWry3vvvacEYJ0gWI8ePVoee+wxufPOOyO2vmXNZKl8VkMPPRTZtWmZVK9zS9gy1kh4/L548WIZN26cEqw3btwo3bt3l3fffVcaN24sQ4cOVcI5/mkRvlu3burzpUuXyk033aQE7/r16yuBvkmTJuoYhE/kmzJlivoMYnfFihWV8I6EvPXq1ZNXX31VHn/8cVmwYIGqB6l9+/Zy9dVXK8sciPADBw6Uv/71r+rzqlWrKsEeCxnIf+DAAencubM88MAD0qNHD9XO6aefLhMnTpSyZcvmqMsMRfcdAj0WGJgKLgGK8AV3bjmyYAhMqfW6HM86Ls1GXCF1bsv9zJl1zfuy5dP1ORrr88fgsI2/UeQ5dax6h7Pl6k9uDKaTrIUESIAESIAESIAESIAESIAESIAE8jEBivAeJs+LCK/F45o1a4aEeC3AX3zxxUqMRqR3pDR/Rh/JztojtRq1NSLd66pId7t0KlJ+tWxY+oVhRXOWXNTuxbDV2onw6OPf/vY3VQZR6gcPHlSR50gQqyFyIwJdi/D4v04QvSGKd+nSRW655ZT4/9RTTwnq3L17t5QpU0a9DWDOhzzff/+9ippH/fv27VPCOfIiPfnkk2oxABHqOhJ+3rx5oTaxwIFIeXBEQoT72rVrVX5rO+ZjugII95dffrnceuutSuBnKtgEElWEv63HzbJ69Sr5/sefA5uA1HLJtnV9N+gr+WXEDzmOtRp/TUhwhQh7aOOBXGVL1ywr3Tf0lcyf9sj0C8ap4+HEV7s2dIU3LLlDUs6vqH61E3RxfO2k5bn6aO5QPAVd83itUP408CKp3aNBiIf1uJlPJPHazEvzQf4dc7dIUqWSinu8kpMIr/vh5jxAXi3C6/MnXuNgOyRAAiRAAiRAAiRAAiRAAiRAAiSQqAQownuYGS8iPKqFgDx48GAVEd+iRQsVne1WgEd52NGsWjRRtq2Zr6xokFKrnJujxxk7VqrfYUlTrc6lUq/prWHtaJDPToS3btQK4Rp9hSCvkxsRHvmHDBkis2fPlmPHjkmvXr1CG8BaxXGzoJ+ZmSn33Xefip6HHQ2StokBw5deeklF4utkttXRn0H0h52NGxEeDJBoQ+Ph5M/HWRNNhJ/3zdcycEB/ub//Q/Lqyy/GXISH2LvqzZ/ljPIlQsIuRNfff/tdrv74RiWOO4mwbsRXtLNx+mopd25q2OhntJO9+4hUaVVd5UG9szq+L6cVPy2H6OymLqdTEvcOJCwQek1O47U7buVs97teCIFQbxbhIew3G36FmofD2w5JqWql87UI75U385MACZAACZAACZAACZAACZAACZBAQSdAEd7DDHsV4VG1FuIhLnsR4FFWe8Lj/4h2P5JleMJbNmnFZqwlk1NDUfKRPOFRj5MIP2nSJHnllVeUjzp8481iuVMk/Pbt25XlDCL8t27dKh06dJBnnnlGOnbsGDESHhH0sOx5/vnnVdS8OXrdToRHJPz06dNtbWScRPhRo0bJG2+8IV9//bWyq2Eq+AQSTYRHBPyESe+JFuNjHQmP6Oo9i3ZKxaZpEcXxSHYkTqI0ziIn4XzNhGXy3cCvpFhyMUeB2akuN2ct7h2rV68OLQS6KaPzOI3X7rj1Mx0Nbn4LACL7sX1Hpd7d56mmsGiBRQlEvjcZeqksfWGRHFi731MkvF5QObz9UI4hmqPr96/MkJo31FVCPxLOCeRvNKCpehtCL8Ic3XvEtg43XOyi/vXigrnScG9C6Dcl3MxT+6fnyayfdoWy/ue5NnJBzTNDv1uP/zH1ptCx8V9vkncXbJXVOw7Jxj2HBWUbD56tjut6dJ761crICx+vUceuPr+yfPZoyxzdq3X/p6oOneza6dYiXXq9tkhlqVmxlGx4tYP6/8MTfpYPf9ge+l3Xgb6j3ZG3nTpHmEiABEiABEiABEiABEiABEiABAoGAYrwHubRjwiP6iEGwb98zJgxjhY05u4s/fZpw4rmCil2RilXvTx+7LBhSfOVNGr+aNj8EOHLly8vw4cPV3msojxEamzMOmPGDNVXWMPAH95NJHyzZs2ka9euMmDAANm1a5e0adMmhwhfpUqVUPQ5POGxOS2i3LWXPHzyUe6OO+5Q/vTajsYaCX/PPfcoq5sJEyYo0R59rly5stx8880RI+HpA+/qNCpwmRJNhNeA4yXCm8XhcPYg8YiEh/hqFYPDnWzRiPB2b8qgHbONltNJ7keEN1vJQFCfe/snqhmzPY15XGfWT5GdhvUMRPdiycUFc3P80G9yeEeWq4UKPQazlRDawmKHuW077nYivLYjsqtDt+XERefDODG2NOONBy3845hdpD8+Q3JrvwPhG0mL2fg/PtO/Q8SGwK5/h6AOEVwL5Pp3CO4T521WIjuOoRwShHadZ0DHOiExHG10uahq6Hfkh8B+++VnqXLh2jWL99Y68PvjN9UP1bFk469qQcAs5judqzxOAiRAAiRAAiRAAiRAAiRAAiSQPwhQhPcwT35FeA9N5Mi6bOEIWf3jJEmv29LwhDci3g3LGUS+mxPsaLIPZRqe8Ktk6+p50rBFX6nb+J6wTX788cfKB71atWrKvsUqwh8/flx69uwpixYtUiI8hG1Y00DIRKQ7BPNwnvAQueEPv3nzZlUWgvywYcNUXxCh3rBhQ2UrA9uaCy64QC1KIAIe5eAPn5GRIampqXLRRRcpkR2LAXaR8Ogj2kH/8YZB06ZN5bXXXlN1RYqEx1jNtjboF6L9rZ/5nS+WS0wChV2E17NijUC2RmjbecJrAdmN+BrOE157z5ujwM3CrN1ZE40Ir+vDvQDJz/UdzhPeziPf3H99PFzUv1WERyQ8UomUpJAYj9+t9jyRriy7BRTzZxveW5Vr8SNcJLx5Y1a7et2cB+irnQhvXRzwc7ewCup2dRTpOi0U0a6Pm8Vv1PHEtBVKpNcR7xDeEZm+YtvBkAiv8+g6zOXs2rUK6Hb5zW2gDmseHEdiFLyfs4NlSIAESIAESIAESIAESIAESCCxCVCE9zA/8Rbh0bU92+bJpuUfScaOn41NWjNte5uUnGJ4xZ8nZzXoLBWr5Xxd3sPwYprVKo7HtDFWTgImAhThc54OZjHULJDH2o4mXpHwGC0srZDq1q3ry5LGSWwOZz2jeYYTnO1E+FJVS8uu+dtUf2ENs33O5gIrwru1Iwp3A/MqhOt6zBYvQYrwelHA3F9zxL1VyLeK8CiHBYLpDzdXdjrm//MmTgIkQAIkQAIkQAIkQAIkQAIkULAIUIT3MJ95IcJbuwdR3pwSVXS39psivIcTjVkDJUARPjdOqyAeDzuaeHnCY++KkSNHhqyv8AYM9qXwskGrVxHebvNbt57w2MgWNj3YKLfZyCvku4e/ilqE121jUQCR8NY9AdxEwpvrwOIAkhMXfaYVxEh4q4c7BPO6VUqHfOL9RMKDl47Gh7WNVbQP9EbIykiABEiABEiABEiABEiABEiABPKUAEV4D/gTQYT30N2EykoRPqGmo1B1prCL8HY2MFaBNR4iPE46tIONSKsYXuFXf3KjEnVndXw/l+gchB1NNCe5k9hsd9zK1CrMm+16YPNjN8ZwPCKNxcrUrt1Vb/4sZ5QvoXzXzf0wvwlhnhe7RQWrCG+2M7L2L1pPeL3hqXXDVbQThCe8Gzsa+Mib24fNzdv3NQ35t1ttbyDSa395La67iYRHXtQF73izx3w05y/LkgAJkAAJkAAJkAAJkAAJkAAJJB4BivAe5oQivAdYzEoCCUIg0UT4YUOHyCcfz8hF5/sfT/lBR5NSyyXnKq6F3cPbD+U4pgVYfGje3NNaAQTjcB7pyPungRepzTfDecIjj7ktqzc9jl/4j5ZSo+M5knJ+RdV8fhThzRY0WqC2Y6J99oMU4Y/tOyq/HTiWY+rMG8Ja57fChZUlqWIpqXVzPWWBoxdqItWhK7eOyW6z33AiPOqwm3/z+YE8EKWRzKK3eXCwl5n1067QR9Z81uPmjU7d2tG8u2Cr2uB1457Dqh3zJq34XYvuuhM47leEtwr40dwDWJYESIAESIAESIAESIAESIAESCAxCVCE9zAvFOE9wGJWEkgQAokmwscSi50IH8v2WHfeE3B6iyHve5j/euDkPR/0iLgha9BEWR8JkAAJkAAJkAAJkAAJkAAJJB4BivAe5oQivAdYzEoCCUKAInyCTAS7ERMCFOGDxxpPEV57ydtZ7wQ/MtZIAiRAAiRAAiRAAiRAAiRAAiSQVwQownsgTxHeAyxmJYEEIUARPkEmgt2ICQGK8MFjjYcIr8V39D6c7U7wI2ONJEACJEACJEACJEACJEACJEACeUWAIrwH8hThPcBiVhJIEAIU4RNkItgNEiABEiABEiABEiABEiABEiABEiABEiikBCjCe5j4aEX4aMt76CqzkgAJ/JcARXieCiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAnlJgCK8B/rRiujRlvfQVWYlARKgCM9zgARIgARIgARIgARIgARIgARIgARIgARIIAEIUIT3MAnRiujRlvfQVWYlARKgCM9zgARIgARIgARIgARIgARIgARIgARIgARIIAEIUIT3MAnRiujRlvfQVTl8+ITM/XKHHM464bpYpcol5PLWVVznZ0YSyA8EaEeTH2aJfSQBEiABEiABEiABEiABEiABEiABEiCBgkuAIryHuY1WRI+2vIeuyicfbZGsLJHkssUl68Bvropu2vCrXHZlRbnk0squ8jMTCeQHAhTh88MssY8kQAIkQAIkQAIkQAIkQAIkQAIkQAIkUHAJUIT3MLfRiujRlvfQVXlv4npDgC8l332zTc6uU8510cyMI9KkaYq0uooR8a6hMWNCE6AIn9DTw86RAAmQAAmQAAmQAAmQAAmQAAmQAAmQQIEnQBHewxRHK6JHW95DV5UI/0eRYnL0yHFp1/Fs26LLftoj33y1RR1LSjpd2l5ztlRNLy3fzFkvN99qX8ZLH5iXBBKBAEX4RJiF/NuHN4o8pzpfvcPZcvUnN4YdyHeDvpKN01dLuXNTI+bLvyTYcxIgARIgARIgARIgARIgARIgARIgAb8EKMJ7IBetiB5teQ9djSjCnzjxu5x++mky6oUfDfuZ6lKi5Cmx/pt/b5F+Ay50FOGfffZZmThxomRnZxvifZI8+OCDcvfdd3vpnm3eVq1aqbq6dOkSdV2sgAQ0gUQU4S++8LzQBN3f/yHpedsdgUxYarlk23pmXfO+bPl0fY5jff4YrH7PNBbjpl8wzraczjOl1utyaOOBHHlK1ywr3Tf0DX0GEfqXET/Y1nPDkjsk85c9Mvf2T3Idt9YTCcSaCcts6/jTwIuk2fArBOPcMXeLJFUqmaNv6H/27iNSpVV1zwK5FuGd+ulXhDfz1+MwM7CbH+uCgJs8gZxgrIQESIAESIAESIAESIAESIAESIAESMAXAYrwHrBFK6JHW95DV21F+D/+EJn5wRrZse2QNDyvovzyn91KdNcJoryTCA8BfsaMGfLee+9Jenq6LF++XHr06CGDBg1SP6NJFOGjocey4Qgkmgg/bOgQueLKq6TlZZfLli2b5abrr5VpH8yQ6tVrRD2JdiI8xOFVb/4sZ5QvoYRps1gOkd0s4GrR3VoGIvbxrOPSbMQVUue2hkrs1qK+uUykSHAI6N8N/EqKJRcLCeSoZ8+inVKxaZorcdyuDi2Stxp/jeqbta92ZaIGbVOBXxFel8MigXXxwDw3WMhIOb+imr+dxkJDmrGggIUH88KEzgOuh7cfkkYDmiomTCRAAiRAAiRAAiRAAiRAAiRAAiRAAnlLgCK8B/7Riuheym/YsEHS0tJUpLk1Qfhu0KBBxJ7b2dF8+q91clrRItK6XU35dd9RmTZphScR/vjx46rdsWPHSsuWLUPtQ5hfsGCBzJw5U302depUGTZsmIqUT01NlbfeeksaNWqkjiHv22+/LairRo0aMm3aNNm9e7d06tQpVB/EeLQBBr1795bNmzdLsWLFpH///tKvXz8PM8bTJwFoAAAgAElEQVSsJCCSaCK8dU5u63GztGl3dSDR8HYivBaptUCL9iFUHzPuAfXuPk9q92gQioS3i47HZ1Zh21oHxGAnEdpODPcqkIcT8vevzJCaN9QNidJmsd+u707Xhd2bA9Yodbvoc0TLe7WjQf9+/+33UJeu/vhGJbYjmQV2PTfWvvsZn9P4eZwESIAESIAESIAESIAESIAESIAESCBYAhThPfD0IqLbVeulfJ06dYzI2Ooq4jwlJSVU3YgRI2T06NHy2GOPyZ133hm291YRfs6Xm+Szj9ZJauWS8sjfmqtyH01dLRvW7ZcShh/80ewTUuucctK5a92wdjQrVqxQYvn69TltLcydWLx4sXTv3l3effddady4sQwdOlTmzp2r/s2ZM0ceeughmT17thpT3759lVA/efJkVYU1Eh5tNWnSRNUBIbVbt24yZcoU9RkTCbglkOgiPKxpRrzwsoqMjzZZRfhwIq5ZMG/61GW5RHirrYud0GsV3f2I8F5tYiJFwlsXGRC5X7NLHdn44Zoc0fdeGVsjz1HeLMDrCHy33vHm9lHPrI7vy2nFT1OLCOYId53PbAVkHqO1H+FEeq/jZX4SIAESIAESIAESIAESIAESIAESIIHgCVCE98DUi4huV62X8h9++KEMHDhQatasGRLitQB/8cUXy/jx41V0eLhkFeFhRTPkL3Pl+pvqSeOLKoeKbd18QN4Zu1QeHXZp6LNwG7PqPkUS4SGqHzx4UCpVqqTqW7p0qXTu3FkJ91qgHz58uLRt21YdN+e1ivC33HKLyvPUU08pDoiYL1OmjO3bAR6mkVkLGYFEFuFhTbNu7RqZMOm9QGbFToS3WsCgoXAivLkTZg90tyK8nSe8FqnD+bk7bXhq7lO4OuzEaYjb2XsOS/EzS4RsdPxAthPh7RYcnBYh7No21403ErQgb/baRznruHVUvptIeT9jZhkSIAESIAESIAESIAESIAESIAESIIFgCVCE98DTi4huV63X8hC9Bw8erCLiW7RooTZDdSPAo22zCF+1Wmn56P3Vsj/jmCSVKipNm1WR626qq7r42quLZf3KfXJZ6+rS+fpTn4UT4d1EwqO8eeNWzUEL94iIf/rpp2XTpk1SrVo1ZVVTq1Ytlc0qwkPQHzJkiIqcP3bsmPTq1UseeeQRDzPGrCSQuHY070wYJ6++/GJgfvCY6yAi4a0e66jXrQjv1hO+7QfXh6LvrQJ6pHPWLhIefTts7HNRyrjPmcXrcJu0er0m7ER41G22wEGdfkR4uw1v1b3wv/72dn01R9zbvcXgdXzMTwIkQAIkQAIkQAIkQAIkQAIkQAIkEHsCFOE9MPYqolur9lNeC/EnT550LcCjXbMIv37NfrnsyurS8L8+ww/fO1uef/UqKWr4w/9i2CEs/m6HdO/VUEqUOF11OZwIf+DAAWnatGlET/hJkybJK6+8orzesXGrWbhH1PuJEyekfPnyyhMeEe7z58+XL7/8UrVrFeG3b98uFStWVBH/W7dulQ4dOsgzzzwjHTt29DBrzFrYCSRiJHwsBHjMcxCe8NZNWVFvLDzhvW7Kin7YifB2G8sirx9R3O5aiVUkvNmKRi8euOmzlQE94Qv7HY7jJwESIAESIAESIAESIAESIAESyA8EKMJ7mCU/Irq5er/lIcRj09MxY8ZEtKAxt2UV4dt2PFvOqVNOZYEI3/66c2Tr5oOSseeI3PtQE0kuXTxUPJwIjwyIcodoPm7cOCWyY5PYHj16yOOPPy5dunSRUaNGqY1ZZ8yYofr65JNPKn94RMJrgf6jjz6SypUrK693qwh/6623qs1YkZo1ayZdu3aVAQMGyK5du6RNmzYU4T2cr8x6ikCiifDzvvlaBg7oH2gEvJ5rOxHeKqrjd20bAx9xOxHbGg1vFXrtosydBGSreGxu1200fLiNWXfM3SJJlUrmiIR36o/b68PJEx59R5p+wTj10629jlO9mBu7BRHr4oXZkkZzRJ7D2w9JowFNpc5tDd0OlflIgARIgARIgARIgARIgARIgARIgARiRIAivAewfkV03US05T10NUck/Path+SiS6qoSPgjR07IkIe/kpGj28jOHVmSViU5V7WRRHhkNtvNJCcnq01iIZYjIcK9Z8+esmjRIiXC33zzzcpGB0Jo2bJl5e9//7sS6ZGvRo0a8tJLL0mjRo1U2RdffFGJ+FdccYVacICf/IMPPiibN29WdaGNYcOGecHAvCSQcCI8NmK1S9//+HPUs2UnwqNSs/CuG9EbedqJ8FZh94vrP5BDGw/k6J/ZMz5cG7oA7FVUnoFf5dgk1bog4AQgnCe8tS+6P5HscZza0sftxHIcs/alRIWSUsq4n5aqWlqu/uRGx+rtbH9QSH8O33f4xC/95yLVljlZhX7zHOp8KedVpAjvOAvMQAIkQAIkQAIkQAIkQAIkQAIkQALxIUAR3gPnaEX0aMt76KrM/XKHfPftXqmclixn1ykvX3y8PlT8bCMivp0RGR8uOYnwXvrBvCSQ1wQSLRI+ljzCifCxbJN1kwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJRCZAEd7DGRKtiB5teQ9dVVkXzt8l387bKxc3r+a66L7MbCl62gm5pnN112WYkQQSmQBF+ESeHfaNBEiABEiABEiABEiABEiABEiABEiABAo+AYrwHuY4WhE92vIeuhrKioj43buyXRdNTi4mrdpUkVKlTm3SykQC+Z0ARfj8PoPsPwmQAAmQAAmQAAmQAAmQAAmQAAmQAAnkbwIU4T3MX7QierTlPXSVWUmABP5LgCI8TwUSIAESIAESIAESIAESIAESIAESIAESIIG8JEAR3gP9aEX0aMt76CqzkgAJUITnOUACJEACJEACJEACJEACJEACJEACJEACJJAABCjCe5iEaEX0aMt76CqzkgAJUITnOUACJEACJEACJEACJEACJEACJEACJEACJJAABCjCe5iEaEX0aMt76CqzkgAJUITnOUACJEACJEACJEACJEACJEACJEACJEACJJAABCjCe5iEaEX0aMt76CqzkgAJBCzCEygJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5AcCRf4wkt+ORiti5/fyfrmxHAkUZgJBbcxaq0ZaYcbIsZMACZAACZAACZAACZAACZAACZAACZAACeQTAhThyyXnk6liN0mgYBCgCF8w5pGjIAESIAESIAESIAESIAESIAESIAESIAEScEeAIjxFeHdnCnORQEAEKMIHBJLVkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5AsCFOHzQITPzjohG5bulwaXVLA9SXasz5JylUpIUvLp+eIkYidJwAsBivBeaDEvCZAACZAACZAACZAACZAACZAACZAACZBAfidAET7OIjwE+Dce+Y/s3JAlN/35XGnSJqevNQT4MX9ZLOXTkqTPs40pxOf3K4z9z0WAIjxPChIgARIgARIgARIgARIgARIgARIgARIggcJEgCJ8HEV4LcCnVEqWJq2ry7sjF8u1feuEhHgI8G8/8Yt06fsnWTxni2TuzqIQX5iuxkIyVorwhWSiOUwSIAESIAESIAESIAESIAESIAESIAESIAFFgCJ8nER4swB/Zdc6smXtfilbPikkxKfVKh0S4A/sy5bqtcvJv6euSSgh/tlnn5W1a9fK2LFjefmQgG8CFOF9o2NBEiABEiABEiABEiABEiABEiABEiABEiCBfEiAInwcRHirAP/uC/+RPVuzpMPt50qF9NIy+fnFUjypqNz4wPmyd+sh+XT8SqmYnizdBjR2JcRDHJ84caJkZ2dLUlKSPPjgg3L33Xe7Oh1btWql8nfp0sUxP0V4R0TM4IIARXgXkJiFBEiABEiABEiABEiABEiABEiABEiABEigwBCgCO9BhJ8zZ47cd999Mm3aNGnUqJGnk+C9ESvkxLEicsWNtY3od0OE3/Y/EX7aKz/JyWMnpfXNdZQoD5uasilJ0u3hUyJ8sSSRmwfWt20PwviMGTPkvffek/T0dFm+fLn06NFDBg0apH46JYrwToR4PGgCFOGDJsr6SCA4Ahs2bJCtW7fK5ZdfHqp04MCB6jlTpUoVmTt3rsycOVOaN28uKSkpwTX835rs2g+8EVZIAiRAAiRAAiRAAiRAAiRAAiRAAnEmQBHegwifmZkprVu3liNHjsj06dOjEuK1Hc2Hr/8i3QadEtjHD/1ZWhtWNRDiy6aUcBTgjx8/Lg0aNFD2MC1btgydOhDmFyxYoIQSpKlTp8qwYcP+n70zgbepev//Y56u+XLNU4aIColGEaVEJRVFVMiU+jdroCSVUpEKKaIMKQoV31Aiknz1/cpY5szXPM//81n91vnuu+/Z5+y9zz7j/Syv+3LvOWuvvfZ7PXv6rGc9j/KUT01NldGjR0uOHDmkVatW/m0gxqMdHCMmGpYuXarqtG7dWt58801Vz+wJv2DBAoE4k56eLikpKTJo0CBp2bKlqou+wcN+9uzZkitXLrnxxhtl5syZsn79en9bY8eOVfUqVqyoJjYiIehE+Xzi7mwQiLYID9uGqKjLBRdcIC+88EKGcyZUtx988EFVJZxQTPrcwvGfPXtW2f1LL73kqB84lhYtWsgzzzwTqsu2vl+1apW6DuBaUatW4Ik+Ww0FqYTrxocffqiuQYEmBvv3769W8uA6Y2dFTrj9SYbtp02bpq69Q4cOlVtuuSXDIcG+nbA029Q777wjuDb//vvvql1MPvfo0UPGjx8vF198sVptdeGFF8rjjz9ue8VVMOah9p8M48VjIAESIAESIAESIAESIAESIAESIAGK8A5EeJgLvPTatGkjJ06cCMsjvl6T8qIF+Okj1ilLRJJWLcRvWbc/qAc86msBTQvbgcx52bJl0r59e5k0aZLUq1dPXnzxReXJiB8Usyf8Pffco0SWESNGKEG+efPmSjyDOGYU4Tdv3qy+g4iI9tFet27d5KuvvlJiHsShiRMnqr8hrnfv3l3VQV8h6jz66KPy/fff+7/DBMGECRN4RmYBArEQ4bVwvW/fPpk6daoMHjxYXn/9dduib7giPCabGjRoIJUqVZI33nhD8ufPr0TNjz/+WP3fsGFDWyOfyCJ8tWrVZNasWZmOs1GjRrJnzx5HwrEtWElcSYvwBQsWlPnz50vhwoX9RxuuCG/Ghn3heq7vGV5j9dqmve4f2yMBEiABEiABEiABEiABEiABEiABLwhQhHcowgO6F0L8qsV7pNOLl8j0D9ZJ3cbl1Vj+Pn+rtOrxjxBf64oSliFo9MBrISaYCA9x+9ChQ5KWlqY2W7Fihdx2221+j3SzCL9r1y4pVKiQEuJROnXqJDVr1lSet0YRHp6Wv/76q/Ky16V3795KDHrllVekWbNmarKiZ8+e6mtjX/XEAMTIG264QX1v7KMXhs024pdALEV4TeX999+XUaNGqRUfWKmhV27MmzdP/Q4hE5NImEDC78aizzesBHn66acF5wzOF9i6tnczfT0phW2wP+M5gwktvWoF+zJ6peOcg3CN/hpXriD0FERRfL969Wo5efKk/1j69u2rzluUQHkctEi7du1a5aGuC/JIeOVhbzx+9AF9RVJnXC/q16/v/xorZeDRXaRIEXnsscf8kyL4vF+/fmqVDVbvfPDBB2oSUV/DHnroIT939BurbnRBe1h1o8dx3LhxUqpUKfV1qDED52HDhsm5c+fUNQwTncaVB8H6hf117NhRtH2jv2PGjPFfS708I/X1tESJEmoCB/ali1mE37lzp5ogRagy2N5dd92lJlb1JK7ezmhTsDltX4FsxLwP82or3B/06izcLzEJi/MG+4fnPr63s3/dN/QBx4j7GVaQ4HcdEg4TZOj7mjVr1DmAc3HIkCFq9RVKNMfFyzFmWyRAAiRAAiRAAiRAAiRAAiRAAslFgCK8CxEeJgDB6Ouvv1aCxquvvurYKnZsOCKIEw8BvtqlJeTg3hO+ZK2HlRB/ly/+e+kqKSHbtOMJj0aMiVt1o1pINIvwRsFE19XinFHQCyTuGT8zt2ueMIDAg/A1mzZtknLlyqkQOVWqVAl5zKyQ+ATiQYQ/ePCgEnWx+gIiJoRbhN+AlzxEPIiGxtUZZk/47du3q1UkeiUIjqldu3ZKuDeKzHq0IKAjlAcmqIwFq0IgkEJAhEBpJcIbV64YRWGcc/Cmf++99+Tqq6+Wzz77TF2PtNgdTITH6pZohaOBAA+elStXzsAAK2/gIQ9vbp0gGhOFd9xxh1ohgDFCCCAc38KFC9Uk36WXXipt27ZVEyDgDuH73XffVaIrxFrUxUQGxHtMDG7btk1NZIQaMz0WEIgRdgwMwVJf/0L1y2hDGGNMQiJsy/Dhwz0/afX1FPYLhphQQp9RjAI5BGiI4bBx2AImNWCLCBumbdHsia4nfrTNBfKEN+4DEx64H+oVHbiWY6UJBHHzeGF1FezXmLMk1P4/+eQTefvtt2XkyJHKHrCCBRMrixcvVpNkODcxuaLPAXyPcHEYL5RojovnA80GSYAESIAESIAESIAESIAESIAEkoYARXgXIvxzzz2nwrvAUxLCgNNy/MgZGfnUv/0C/KS3/q1E+HaP1fML8d0G15N8KTmDNg0hESEugsWEhygHgQox1+EtaBbuzWI5QkNgYuHhhx9WoiAEDohkdj3hEUceXooQeiCUaY9cowgPr/czZ85IsWLFlJcixCAIbHPmzHGKkvUTkEA8iPBmsVJ7s2MVCArsFSLvunX/hIoyi/AQlBHapmzZsv4RwLkEL1+IfuZiFXLDLIK7EeHhCQ+hUheInJgIwHkVLyI8clRAEAcbjD+uLVgB0LRpU8HqA1wntAgP1vBcN05YXHbZZSqUFviCEWKWa0/rb7/9VipUqCC1a9dWx4sVOphMQdmyZYssWrRITZCEGrNAIYeM4xaqX/ge1zSs8EH5448/1P5vvvlmz89S4/UU9yNMIOhVFkaBHPWwokAzR0fgzY/ru/aMDyWChxLhcb/APcI4Xsi5cOutt8oll1wiu3fvlpIlS/pXgIBTzpw5/ffOUPvH95gwMq52gI3jc9yXzOOizykcZ9WqVdX30RoXzweaDZIACZAACZAACZAACZAACZAACSQNAYrwDkX4gQMHqhADOpGpG0vYvv6IjHpqmTTxJWEt6UvCOmnIMtVMu8frKxH+h8/XSbfB9aXMBaG94SE6QbxGnyCyQ1hB8kMkO4RwgfAK8OicPn26EkHQf0wgGD3hO3ToIF26dFF9wBJ/eCned999/rYgYJlFeHNM+CVLliiPVO0JjP3CWzFQTHg9MYDvILZBXKMI78aSEnObeBThIdAi0aQOR6PJ6vMkkEALT+Fnn31WhUXRxSqkSyRFeHiZGxPG4hzfuHGj+ixeRHgd3gSTfBCAcY3SYWrwnXEy0JxIV7PVyUYRbgeeznXr1lXXOIi9OnwWBFhcuzAZCM/4u+++WyWv1iXYmAUaI+NnofoFIRxJrcuUKaPCbOEYcU2ORDGK8DrfgPZuN4rwYIzzzRg2DCsCMIGhwx6FEsFDifDYHmGYIMYHKgh7hDE3hk0z3j9D7R/Ho1es6PYhyB85ckTZuHGiGN+bJ7aiOS6RGGu2SQIkQAIkQAIkQAIkQAIkQAIkkBwEKMI7EOER9gHefuEI8NpszEI8PncqwOu2jOFmUlJSBJ6RWhDR8XB17GuIUp9++qkSZhAq4J133lFCfZMmTZRnIrwHIUZClEQseCSQ1F6OZkEPnpfwbEWIA+wX4WUgBKFgvxDLIP5nz55dhWVAeAAtxMA7E8IQ6plj/CbHqcWjsCIQDyK8ORwNhDxMLMEm4TVrDp9kFuG10AfBGys+MMFlJbSDQyTD0ZhFeJz/iAMejyI8Vsl89913KjyMUZCvXr26P1EuOOL6ZRVfHzy3bt2qxggTeViRAJEWCaH1tQfhbSDU//DDD5likFuNmR0RPlS/cN3EpCiuscuXL1cTmpiY8bqY7VOH0gEP5PzQExaBRPi//vpLTVBEQ4THeYYwSbjv4L6CyRLzueRGhEdOAKymsiPCg320xsXrcWZ7JEACJEACJEACJEACJEACJEACyUOAIrwDER6CMYQdeIZ7UYxCPNpz4gHvxf4j3QZ46SSUEI3eeustFTKBJWsTiAcR3pyY1RyWCWI8JpGsPOEDeQfDuxiTUIGSm1olZoVg/t///jdDYlYIqTrppDk+dyDB0izCG8OD6MStxnA1Rk/paMWE157wevIDwjRWxOgwKcY+IcY5CoR1XfS1xBheRn9nDE1iDE2D7zGpCDEf4xhqzCDs4npljOFu5B2sX9gXVhhdeeWVKjQOCsYc+9Sx1b086wMl5Ub/4XWOCQotwscqHA0EfoSigbc6JqCMXvAIPYRwNHr1RigR3k44Gh0yDYzNNh3NcfFyjNkWCZAACZAACZAACZAACZAACZBAchGgCO9AhI/E0GshHm3bDUETiX543SZWDcAjVAstEGIQFgLCFEvWJhBLER5e00hiCftEAkeEM0GB93Du3LllxIgRyiMeIvH+/fv94iG8pxEyCeI8vHmRFPL+++9X9RF/HXYN72ercDQ6ZEilSpVUzHCsMEEiSyQSNSbVhOAIAR6JLZGsFfsoUqSIX8iFgIn943vErzcmZm3evLkKB/X888/7vZx1bHv8j9AoOGaIklqkRb+wSmXYsGEqRImOie+lhZonEiBmI3wVwmAhsS2KUYTXXt2YBEGYLITYwnEjrwVW1eA4n3rqKfUdBGfEXO/Tp49ijzAlqI+xQNJOrFzCpAaS7v70009Bxwz77dGjh0rwiUSm5sSswfqFhLO4xhUsWNB/zUNyX0w6YP9el0AiPPbVuHFjOXz4cIbxxbgiaSvsAquW7rzzTvW3juEeyKb0pAn6HSocTbDErEePHlUrRJC4FZNDiNUP20Wf9L0h1P51YlZM2mDFBGwVq7aMiVmDifDRHBevx5ntkQAJkAAJkAAJkAAJkAAJkAAJJA8BivAxFuFhShDiUezEgE8U04O4B0FMJ1utV6+eEh21Z3yiHAf76T2BWIjwEGt1geCLxJE6sSc+37t3rxInIcCnpqaq8BkQY3XYJh1rHMK8TvgIb3oIgufOnVNJmhECBiGcjAkqjfSwD8QMR5tnz55VYZggQhv7gZBNEN6xn7S0NBUKCn3S3tQ6vjX2iaSxOhEpJhB0yKkBAwZkiM+NkFEQUnHuIbEpftciPPoHsRuCs9tE06EsxCzCa+90xN8HAxSjCI+/v/nmGxVvH57UmHRA+CodYguraZA0F7H4cUz4HMeMoq87Ora/OdRVqDEzf4/xMK5uCNYv8/hi0hG5OjAZ4HUJJMJjH/pz4/jCLhEnH97omhfsX1+LA9mUExEe+4X9YAwQ9gXMsX9c81GMIc6QSByTSpgM03HqQ+0fbWCSCxNWgdoPFRM+muPi9TizPRIgARIgARIgARIgARIgARIggeQhQBE+DkT45DEnHgkJhCYQbRE+dI8St0agxKuJezSx77kxhBZ6c9lll6kcG3rFROx7yB6QAAmQAAmQAAmQAAmQAAmQAAmQAAkkIgGK8BThE9Fu2ecEJkAR3rvBowjvHUskjB0yZIjyXi9VqpQK3TN58mQVhghJrFlIgARIgARIgARIgARIgARIgARIgARIwC0BivAU4d3aDrcjAVcEKMK7whZwI4rw3rFES+CJePIIe4JwQEjSqsOqeLsntkYCJEACJEACJEACJEACJEACJEACJJCVCFCEpwifleydxxoHBCjCx8EgsAskQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJRI0ARniJ81IyNOyIBEKAITzsgARIgARIgARIgARIgARIgARIgARIgARLISgQowlOEz0r2zmONAwIU4eNgENgFEiABEiABEiABEiABEiABEiABEiABEiCBqBGgCE8RPmrGxh2RAAhQhKcdkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJZCUCFOEpwmcle+exxgEBivBxMAjsAgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQNQIUISPsgh//MwZOXj8lOUAF86XW/LlzBk1A+COSCDaBLwS4e8c9Hm0u879/R+BZSMfIQsSIAESIAESIAESIAESIAESIAESIAESIAGbBCjCR1GEX71nn7w8b4mcPH3Gcnjy5c4lLzRtJDVSi9gcQlYjgcQiQBE+scYrUG8pwif+GPIISIAESIAESIAESIAESIAESIAESIAEokeAInwURfiu0+bIy60aS+6cOdQInzl3TnJmz55htE+dOSv9ZsyX929tmum76JkF90QCkSNAET5ybKPVMkX4aJHmfkiABEiABEiABEiABEiABEiABEiABJKBAEX4KIrwV4+YLNO73ylnz5+X9+Yvk39v3Sn7jh7PZEcQ4i8pW1JaXXiBtK5ZORnszPIYFi1aJA0aNJBcuXIl9XHy4P5HwCsRnkxJgARIgARIgARIgARIgARIgARIgARIgARIIBEIUISPgQg/adkqOXbqtDxwxSVBbeTl7xZKu9rVpGH50pb1LrjggkzflS9fXn788ceI2N+0adNk6NChAdt/8MEHLffbtWtXeeaZZzL0affu3XL11VfL2LFj5corr4xIf9lo/BHwSoQvVKhg/B0ce0QCJEACJEACJEACJEACJEACJEACJEACJEACJgIU4R2I8HPnzpVevXrJlClTpE6dOo6NSXvCD/1hqVxUpoQ0q1EpaBuo17BMSbm5hrU3PET4N998U26//XbH/XGzQTAR3tgeBPlq1aplEt7d7JPbJBcBivDJNZ48GhIgARIgARIgARIgARIgARIgARIgARIggeAEKMI7EOH37t0r119/vRw7dky+/PJLx0J8NEX4zZs3S9OmTQWCZ+HChZUVtGjRQjp27Cj33nuvLFiwQJ544glJT0+X1NRUGT16tFu28mQAACAASURBVDoeLbJfdtllMn36dMnui1nfp08f6dmzp5g93WfMmCG1atUKaGGBRHh8dubMGfnjjz/k0ksvlY8++kgwiaDbAd+HHnpIli9fLvny5ZPrrrtO1dVe/Z9//rn069dPTp8+rULYbNu2TR577DE1AYHPHnnkEZkzZ47qT+vWrdXkBAraqV27tvquc+fOamLgtddeUx742K5ixYpqYqV48eK8XkSBgNci/MlTp2TX7n2yd/+hKPQ+8y4KpeSX3L6EyrEs6fsOxnL3cb3vWI5Pgfz5pFDBApLz//KAmEGd8YUeO3T4iBw9diKqDAvkz+vrV4plv06e9J1TvkTi0T6nihctJGklikmePLkD8ojXfkV18LgzEiABEiABEiABEiABEiABEiCBhCRAEd6BCI8R3rBhg7Rp00ZOnDjh2CPeqQg/e9UGqVW0sFxSuoSlcQXzhG/VqpW0bdtWOnXqJNu3b1di9NKlS+XAgQPSvHlzGThwoNx1113y1ltvCQTuX375RYnwEOf79u0rXbp0kYkTJ0r//v1l5cqVKm57OJ7wEOGXLVsmY8aMUcJ3sWLFMojwvXv3FkweoC8o6D9Ee4jwelJh2LBh0rJlS1UHfdSrACDAo48Q9A8ePCi33XabPPzww2rCAcedM2dO+eCDDyQtLU0xePTRR+X7779Xwnv37t3l+PHjMmHChIQ8iROt016K8BDgV63dJBdWLS/lfatLYlFW/7lFKlewDhkVjT4tWLJCml9bz5Ndff/Tvz1ry22HvOxDLMdn/8EjstM3QVQ6LTWT4A0BfseudClVspgULZziFpWr7YL1C0L3qnWxOae2bt8ja/7aKrWqV8okxMdrv1wNADciARIgARIgARIgARIgARIgARLIcgQowjsU4cMR4p2K8NhXMcke1CgDxYTXwvQnn3wi33zzjRKs33//fVm4cKESmvH9r7/+6he7sQPtkb527dpMMd+N3urhivCVK1eW559/3n9MxrarV6+uhHKsNkCBt/qsWbOUCI8+z58/X4nsuhgnILDt+PHjpWHDhv5t//zzT+VtDxEenvyYcEDBRED79u3ljTfekBtuuEF9dujQISXQs0SegJci/Ja/d0qJ4oVjJsCDVixFXj1aFOGt7TbW4wPB+/CR41LM5+VtLPv2H5SCvlUU0RbgdR/+6dcxX7/+WSmlS6zPKQjxe/YelArlSiVEvyJ/xeQeSIAESIAESIAESIAESIAESIAEkoEARXgXIjwGHmFQvv76ayXsvvrqq7ZsIVIivFVMeHiEQ5ResmSJIDEqhGeEboG4/eGHH2bqMxKuIjyLOfGqlyK8OU68sW3j7+icUYTH71pU1x03ivCBJiMg+CMEDUR4eMob4+ZD2B80aJBs2rRJypUrp8LxVKlSxdY4slJ4BLwU4ZevWBdzr+1Yi7wYDYrw1jYZD+ODPpQvm3GSb+u2XVKzWoXwTqYwtw7Ur3g4p7ASom6d6hmOLl77FeYQcHMSIAESIAESIAESIAESIAESIIEsQoAivAsR/rnnnpNJkyZJs2bNZOTIkbZNpfOUf0n7y2vJnLWbpUHF0iETs6JhO57wwRKz3nPPPXLNNdcoT3iInwgpg/orVqwQeMqbSyBP92iJ8IhJDzHc6M2uPeHRfwjnOlQN+m32hLeK028W4eH1jjA3CIeDSYdXXnlFrRLQ8eRtDygruiKQVUX4HTt2qDBWwUqRIkWkaNGijrnGiwj/xRdfqDBXKFjxgnBYbkqyhKPRx04R3pkVUIR3xou1SYAESIAESIAESIAESIAESIAE4p8ARXiHIjwEJsQ0h7CLUCdOypFTp+Xleb/Iok3b5eEmDYKK8B/+/Lu0b3CRVMidJ+gugsWEx4YQ1Z9++mkVdmX48OGqrVWrVqm49vDgh3f41q1bVcLT9957T2bPnh3SEx6i9eLFi5Wgb1WsErMG84SHtzpi7lvFhEcc+7fffjtgTHgkdN21a5eMGzdOJXWFaF+qVCm5++67M3nCf/bZZ/Luu+/KV199peq8+OKLFOGdGHKYdbOiCI8Jon/7Eg7bKS/4xOu8efPaqeqvEwsR/u+//1Z5FQ4fPqz6gcktXBvLlCmj/kYeivvvv18KFfonDEvBggVVLgqsPAlVKMKHIuTN9/SEd8Yx0OSAsxZYmwRIgARIgARIgARIgARIgARIIKsSoAjvQIT/+OOPlde0GwHeaGBjlv0h+32CfOcrLrG0u/vGzZA9h4/Kkl73BLXNQGFYsMH69evVdvD0rlevnrzzzjv+WOv4fMGCBSoBa3p6uhKtIcIjtE4oT3iEuIGgj+0g2FetWjVg/9yI8EiOCtEOiVPRJ4STgcAHD3gUxLfHhALqNWjQQNXTqwBwnBDx4c1+9uxZ9T0mFZB4NVA4GhwvxH5shySxCMEDT3yWyBPIiiL8cz5hvUjhwlKvfv2ggIv6POFxvjot0RbhIbhfe+21fgHe2F/kdUDp0aNHpsOAEP/TTz/5hXmr44wHER4rF1avXp2hizVr1pTSpZ0n4fXCEx6rKNCnjRs3ZugTJmzQJ/w4nbzxUoTHpMzUqVMz9A2TvXYmXcx2QE94p1cA1icBEiABEiABEiABEiABEiABEoh3AhThHYjwEGzh0dquXbuwxvXMuXPyyg+/yr+375a9R48HbOuYT6Q/6/smb/bs8nmHW6RikYxJ/cLqQJxuDL5G73rEgYcIpsPmmL/HBAS82Smex+mAWnQrq4rwV15xhVrFEYkSbRH+l19+kXvvvVetqLnjjjvU77pAaEfRHvL4HatPcO2ESIvfGzVqFBRDrER4rBJa5Fvlg7LD58l/4uTJDP3MmyePlP4/T3+MZ61atWwNZzgi/P79++Xbb7+VVaYJgUA7rle3rrIxu2K8lyI8VkHoUES6bwhJhIlVp4UivFNirE8CJEACJEACJEACJEACJEACJBDvBCjCOxDhvR5MiPE5fSJ7oHLTx1Nlz7ETsqjH3ZI7Rw6vdx2X7fXt21ey+3ggPMzevXulRYsW0q1bN+nZs6fs3r1bbrrpJpkwYYLUqFFDiT2IPw1v+GBhceLyQLN4p6IlwkOMXLNmjS3a8HCeOXOmrbrmSnYSf8ITvmnTpnK97wdCLwRps8CLdrH6o4NP0LYrouq+xEqE79Onj1qBYrUiR/cPK3Ow2mTYsGHxL8IvWmTLDq688sqoiPCffvqprLZpx+i4tjM7B+GlCK/H17hfbR92+mKsE20RHis78BPKa5/haJyOJOuTAAmQAAmQAAmQAAmQAAmQAAloAhThYyjCBzPD135cKo9eXVfy5syZZawVwnuvXr38wvott9yiws3ogvAxAwYMUOFo0tLSVFJcesEnnnnEowh/4YUXqnBHbopTER7Jhzdu2pRpVzV9fUCoESRm7dKliyMhPtYiPATYYAVCfSKI8PoYMFGyc+fOgIeEsC+YtHFSwvGEt7IXq/1ThM9IBmFysKIKCb91fgJjDXyPew1WboTy3KcI78TqWZcESIAESIAESIAESIAESIAESMBIgCJ8nIrwNFMSSFYC0RLho8XPKxEe4mktn7gL0dWpEB9rEd4O60QR4TEZo0PSWB2X09BC4YjwiAMPb/gDvnwcoQryDnTo0MF23Ppk94Q35i6wWu1iDKNz+eWXy8SJEy0xU4QPZYH8ngRIgARIgARIgARIgARIgARIwIoARXiK8Dw7SCCqBCjCB/aE1x7MEF2dCvGBRHiEaxo7dqwK4WT2AIY4ec8990jnzp2lbdu2GcbfTjx2HRPeSbiRcEV4t8djZ5LECMCO53nlSpXUagW7JRwRfpEvPA4E5P0HDqiVEgd8MeIRJ14XlZDVl8gaEzgIY4R6VXxhjewUL0R42ALCDMGjfNu2bRl2W7ZsWRXiBXYSKg+AcUOvwtH861//ypAgePny5RnOBax4wHkAL3jkMhg8eLBKPG5VKMLbsSrWIQESIAESIAESIAESIAESIAESCESAIjxFeJ4ZJBBVAtES4d3GhMd22bJlsx0j3o7Ia4wJbyXyGr2rjUJ87969Q46PlQj/9NNPKwHXKMRrAR4hOl5//fWEEuHdHI+d8YlnEV7bS+lSpZSHO1ZJoEBwP3HihPodojwEegjw0Q5HoydkghmpnWS8XovwWmBHuzgHfv311wzngvF7nB92kuxShA95KWIFEiABEiABEiABEiABEiABEiABCwIU4SnC8+QggagSiEcR3hgTXicZRTJRO8WOyGtHhC9apIjUq1fPv0sI8at8QvmDDz4Y0rPZKhwNvMeNwjUah+evlQCP7+PVEx59c3M8dsbHOM7x5gkfqD/XXnONHDlyJJN55s6dWyXJtSMoY2MvPOGN4xLofAk00RPqvArXEz6QwG60nTvuuEPlKECxK8Drc6Nuneqhus/vSYAESIAESIAESIAESIAESIAESCATAYrwFOF5WpBAVAlES4R3e1CxEuGt+huOCG8USHUy0WACvBYam1/7v8mAQP2KRTga3Q+jmIrPQh1Poovwc+fNk3m+H2O5+aab1GdXXnVVhs8hPpfxectDZLZTvBLhjXZm3K8bAV7boFnsXr5inYSyS2wbzMPdGP8ddWfMmGF7wsKqX3Y4sw4JkAAJkAAJkAAJkAAJkAAJkAAJUISnCM+zgASiSoAifOCY8FaDEK4IbxZIQwmj8ewJrxlpIR5/hzqeRBfhEWoGqyIw2bBhwwaVoBUiPP42x6XXgr3dxLFeivBO7SzYRceNJzzE94EDByoRHiWQhzvi1jdu3Fh9jxjwv//+u6NrH8PROMLFyiRAAiRAAiRAAiRAAiRAAiRAAgYCFOEpwvOEIIGoEoiWCB8sJjy8wmfOnKmO207seGN9Myw7Iq+dcDRWg+CFCK8FUvxvTsRq3m8iiPBOjsfO+BgZxGM4mny+xKuVfclWERMe/2/wxX//9ptvxJwv4BvfZ4sWLxa7iWO9FuHBEaskUJwkYg1kg0494du3b6/ivqM8//zzcv/99wc8peANj4St+D5YEtZAG1OEj+qtgjsjARIgARIgARIgARIgARIggaQiQBGeInxSGTQPJv4JxIMIb4wBb0eEN9Y3E7Yj8uKYIaDix47Ia9yHVyK8XctIFBHe7vHYGR9jW3bGx67IrdsNJHZv3bZLalarEPIwAvUHnvDffved5bZ2+xcJET7kAdmo4MYT/uWXX5axY8eq1p2GmbHRJVWFIrxdUqxHAiRAAiRAAiRAAiRAAiRAAiRgJkARPgYi/Nb0LTLl58+DWuODzbtK4fyFabEkkHQEoiXCuwUXiZjwxr7YEXmN9SnCux3Jf7ZLdBH+008/ldVr1mSAYBThIbh36NBBcF598+23ql60RHiEfpkzZ46tAWrWrJnt+OtuRHh0Ah7u5cqVs70fWx03VKII75QY65MACZAACZAACZAACZAACZAACWgCFOFjIMLf9mprKZlWRlLyFQxoiXv275TyhcvJoHtfpaWSQNIRoAgf/ZjwToyInvChx8euyK25h+MJj5jwSML67+XL/cNoFOF1/HcI4p9NmBBVEd4Ymz+UjYWK3W/c3q0IH6oP4X5PET5cgtyeBEiABEiABEiABEiABEiABLIuAYrwMRDhb321lTz30CBLq1vx1+8yfe7n8nXfGVnXMnnkSUuAInxokdc4+PHoCW9McOnUUJf7xORChQoF3czORIDd/Tr1hEcSVMRWD1YQwgihheyWcER4vY8TJ07Idl/fdvp+UlJSZPLn/1tNVcuX4wBJW0+cPBlVEd7u8TutRxHeKTHWJwESIAESIAESIAESIAESIAESiHcCFOGjIMKfO39O3pk+RP7YslLZw383/0cqlb1ATpw6Luu2rJGjx45Y2knN8jVlzoAf492OAvbv9OnTsnTpUrnyyisTsv/sdGQIxLsID4EVJZQQq+k4FXl18kw7dPPmySNPPvmk5M2bN2j1BUtWSPNr69lpMmQduwI4EnAuWbIkZHvGCg0bNrSVsNNuH+zs3On42GnTaR0vRHjjPiHI/7xokWU3IMrbmSRIppjwTsfETX16wruhxm1IgARIgARIgARIgARIgARIgARAgCJ8FET4YyePSqOnLpeH2z+Zweo2bl8vO9K3S4+2j1paY7/3n5A37xsitSvUDlhHx682flm+fHn58ccfg1r4tGnTZOjQoSHrhXOaLPKJRJ07d5aFCxdKyZIlw2mK2yYRgXgX4Z2idiPyInTIjp07g+4qn094r+kTU4sWLRqyS7EQ4UN2KowKFOHDgOdgU4rwDmD5qlKEd8aLtUmABEiABEiABEiABEiABEiABP5HgCK8AxF+7ty50qtXL5kyZYrUqVPHth1BhL/i6YbSt8tAOX/+vPy9a7Padqvv//0H0+Wmq271t5UrZ26pWLqy/2+I8P3a9pMrL7wq4P4gwr/55pty++232+4PKkZDhHfUIVbOMgQowns/1BThrZm6mSTxeoS89oT3qn8U4Z2RpAjvjBdrkwAJkAAJkAAJkAAJkAAJkAAJ/I8ARXgHIvzevXvl+uuvl2PHjsmXX35pW4g/e+6s9J/4vPyxdaXsObhL9h89IKlFfJ7hPkE+e44ckjd3Pv+IHD9xVDq36i4XXXCx+sytCI9QMM2bN5dbbrlFnnjiCUHfr7jiCnn33Xflc18sYaOn/IwZM6RWrVry2muvydixYwXbNmjQQMaPHy+5cuUSxKQuVqyYLFu2TDZv3iypqakyevRo//GjvQEDBsjx48czfAdv31atWsn69evVsaDdRx55RObMmaP+rlevnowZM0by5cvnnxS47LLLZPr06ZI9e3bp06eP9OzZU9W12gdP5sQjQBHe+zGjCG/NlCJ8cDbly6ZlqLB8xTrPQhu5tXTGhHdLjtuRAAmQAAmQAAmQAAmQAAmQAAnEKwGK8A5EeAwikt+1adNGEJPXqUc8tn9j2muydu8G6dbm4YA28f6Ut+TiavXk6kuvU9+7FeGx7YoVK+SOO+6QxYsXy1NPPSU5c+aUkSNHqnbNnvDvv/++jBo1SmbNmiWFCxeWu+66S4nkL730khLhIcBPnjxZqlSpIl26dFFtffTRR7J9+3a55pprFAvUHzhwoMycOVMQL9oswkOAX7lypUydOtUv7kOARzvoDyYL+vbtq9qfOHGi9O/fX9Xfs2eP5T7i9cRiv6wJeCnCb/l7p5QoXljKlykRM+TxIPJShLce/liPz/6DR+TwkeNSrGjGZLT79h+Ugin5pWjhlJjY7j/9OubrV+EM+4/1ObV1+x7Zs/egVChXKiH6FZPB405JgARIgARIgARIgARIgARIgAQSjgBFeIciPEY4HCF+zNyPZPis96RK2aoCD/mzZ89K7ly5/Yaz1xee5u4bO0rd6pepz+yI8GarM4anee655+SHH35Q3vvz589XAjuKWYRv1qyZdOzYUTp16pTpe4jw1apVk2eeeSbTdwcPHlRe871791bx3yGq7969W8qWLZtJhK9evbryrkdyRhR41Tdt2lQgys6bNy9TjHqE2oGXPtqy2kfCnXHssBrvcEuR4qWlUKGCcvLUKVm1dpNcWLV8zIT4WIu8YEkR3tqiYjk+ELp37t4npdNSfROXOTJ08syZs7JjV7qUKlks6kJ8sH6dPOk7p9bF5pyCAL/mr61Sq3olyZPnf/dFgIvXfoV7LeP2JEACJEACJEACJEACJEACJEACWYMARXgXIjxM47HHHpOvv/5aeYy/+uqrtq0Fwvv1/ZtI+5vvl02+xKybd2yUxvWb+bfPkzuP1Kr8v3jzdkT4YDHhESKmdu3aKpY9+qyLWYS/7rrrZOvWrRmOI4cvVM66deuUJ7yVCI8N1q5dK08++aSqC5Ef/YF3vNkTXovqCH2ji/4MbZgTxRrrW+3DNnhWjBsCXorwSpzzCfG7fELn3v2HYnKMhXzezLlz54rJvvVO0/cdjOn+43nnsRyfAvnzSaGCBTIJ8JoXhPhDh4/I0WMnooqwQP68vn6lWPYLgveuPdE/p4r7VguklSiWSYDXcOK1X1EdPO6MBEiABEiABEiABEiABEiABEggIQlQhHchwsO7fNKkSQLvcR3excno3/pqK3nuoUGy4q/fZeX6/0q7G+9Tm+/at0O6v9IxQ1N58+SV8Y9OcJ2YFSFg1qxZo8LGIA588eLFVfuBPOG7deumJhXMJZgID5H/0KFDkpb2T1zhcePGqZA0EOTNIryVJ/yCBQtkyZIlliJ85cqVLffhhDvrxgcBr0X4+Dgq9oIESIAESIAESIAESIAESIAESIAESIAESIAEAhOgCO9QhIfAjGSi8BxHLHM3xUqEhyjf74MnZECPN1WzO9K3yaRZY+W7fv+S8qkVAu4K3uJWnvBz586VRx99VInvSJx65MgRf58hwr/yyisqXjySr6INxGpH3Pfy5csrkR7iPWK0BxPhESu+ffv2KmxMjRo1/LHcA4nw5pjwCGEDEX/ChAmZJgVwsNoTHnWs9uGGP7eJLQGK8LHlz72TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAlElwBFeAci/Mcff6yE63AEeAzv8589K2PmfCTnff+aNrhR+rR7So26FuGnDZkjG7b9Ja+PedHnBf+Z1K5Q29IqIFQHKhDQERLmvvvuk549ewpit1999dVKjL/99tvV3zfccIOkp6fL7NmzpWrVqvLaa6/J2LFj5fTp01KxYkUZPXq0SsQaKhwNJiWGDBmiBPXU1FS1jxtvvDGTJzzahRA/Z84c1WUkcsW2iCNv9szH98ZwNFb7iO7pwr15QcArEd6LvrANEiABEiABEiABEiABEiABEiABEiABEiABEog0AYrwDkR4iMhffvmltGvXzpNxWbTmZ5n+n2+kTfP2qj0twg95bIQtAd6TTrAREogyAa9E+CoVS0e55+53t2HzDl/i2FTJnj27ZMuWTf2g6P/dt8wt7RAA/0SyFzvHxDqJSYC2mJjjxl4HJ0C7Ds9CyC88ftzaPQHannt23JIESIAESIAEnBDQ91yK8A5EeCeA7dSFCP/K1IFyYZV/PN137dspPyz9l5QsWiqkB7yd9lmHBOKRQFYV4cuWKqZEeArx0bdKvmRGnzn3GJgAbZGWkYwEaNfhjSr5hcePW7snQNtzz45bkgAJkAAJkIATAhThfbTS9x+R1BiK8BiwD/81Ug4dO6TG7uCxA7Jyy0p56Z6BQUPQOBlo1iWBeCOQVUX40iWLSI4cOTII8RgbesNH3kL5khl5xtyDPQK0RXucWCuxCNCuwxsv8guPH7d2T4C2554dtyQBEiABEiABJwQowseJCO9k0FiXBJKBQFYV4dNSCykRXgvxOiwNRfjIWzVfMiPPmHuwR4C2aI8TayUWAdp1eONFfuHx49buCdD23LPjliRAAiRAAiTghABFeIrwTuyFdUnAMwJZVYQvUSxFcubMmckbniK8Z6Zl2RBfMiPPmHuwR4C2aI8TayUWAdp1eONFfuHx49buCdD23LPjliRAAiRAAiTghABFeIrwTuyFdUnAMwJZVYRPLVpAifD4CRQb3jPAbCgTAb5k0ijihQBtMV5Ggv3wkgDtOjya5BceP27tngBtzz07bkkCJEACJEACTghQhKcI78ReWJcEPCOQVUX44kXyS65cuQKGpNm2bZviW7ZsWc84s6H/EeBLJq0hXgjQFuNlJNgPLwmEY9e8/4mEw2/fvn1y4sQJKVq0qOTLl8/LYWVbWYBAOLaXBfDwEEmABEiABEjAMwIU4SnCe2ZMbIgEnBDIyiK89oQ3xoVfv369tGzZUiFcsGCBlCxZMgPOBx98UHbt2iX4//bbb3eCmnX/jwBfMmkK8UIgHFt87bXXZNasWXLBBRfIRx995OkhXXfddXL06FF59tlneZ3xlGzWaMytXf/1119B739Zg154IvyNN94oBw8elG7duskDDzygrg8oM2bMkFq1amUVhDxOlwTcnrsudye817glx+1IgARIgAQSnQBFeIrwiW7D7H+CEqAI/7+48DoefLC48BThwzf0aL9kht9jtpCsBMKxRYrwyWoViX9c4dh14h99+EfgJT+K8OGPR1ZqwUvbs8ONIrwdSqxDAiRAAiSQjAQowlOET0a75jElAIGsKsIXK5xPhaMxJmfV4nvVqlXVyMEr/vTp09KuXTv5/fff1We5c+eWUqVKSZ8+feih6tK+Q71k4qXw0KFDcuTIETl79qyK2f/QQw/JE088ocajQ4cO8ttvv6m9YxXDo48+Kj179pRp06bJsGHDJD09XY4dO6a+L1GihNrmwIED6u8LL7xQvvrqKzX2s2fPVtueOnVKfYeVDW+++abLo+JmiUgglC2uWLFCOnfu7LefIkWKyNixY+Wdd96RH3/80X/I5cuXl0ceeUTZ386dO5XNNmrUSEaMGJHBXgsWLCjjx4+XOnXqiLntSy+9VCZNmqRs1Fi6du0qzzzzTCLiZZ9jRCCYXa9atUpatWqVqWe47mJFhxaNcf/DpPPKlSsFIVZwLc4q18lQ14W9e/fKvffeK3/++af/uQDXBHjB64n6m266Sd56660MnNu0aSM//PCDpKSkqOvH+++/L5MnT1ah7yZMmBAja+Fu44lAMNuD3cGG/v7770x2Z342Mt5rrOwVz03me83jjz8uTz/9tEyfPl3Onz+vnrGwogP3IFw78DtWeuB5GStFjffBeOLIvpAACZAACZBAKAIU4X2E0vcfkdSiKaFY8XsSIAEPCVCEz+wJbxThIfz+/PPPgs8GDBggt956qxIjBg4cSBHepR2GEjggBkFIb9CggfTo0UOJmChLly5VosbcuXOlcuXK8vDDD0v79u3Vd7DjefPmqfAdEEBnzpwpTz31lPznP/9REyffffedagfCPkQS7EOHE5oyZYoS4yH8Q+yH6MmSNQiEssVmzZrJ4cOHlX3s2LFDPv/8czWxg9ASZk94TAJp+5s6darUqFFD2RPE9rp1qvAelwAAIABJREFU68o111wjL7/8spoAmj9/vlx77bXqWvLqq68K6q9du1auvPJKNRFE78SsYX+ROspQdq33C3GuSZMmSmyDiHz99ddnEuGXL18uVapUUXbZunVrOXPmjDz33HNKhE7WEorfPffcI5s2bRJcH2655Rbp2LGjQvHrr7/KY489liFkndETvlq1anLRRRepupgMfvHFF2XPnj3SpUuXpOaZrHYSieMKZnu4n+A+gfsDno/wfApHEtxjrO41cCAJZq94pjWGPsN9Dfc5TDh//PHHyraPHz8u/+///T91H9MTeJiwQz9YSIAESIAESCBRCVCE941cvIrwxw5tl9/m9Fe2tX/3akmr0Ega3UxvyUQ92djvjAQowgcX4SGcnTx5Ut59911p2LCh38uNMeHdn0mhBA682ME7ffTo0SqGrlHEwCoEY9I7jA88wPCyiJdTvBimpaWp/80iKf7+5ZdflIcyXly///575XU8dOhQ9dIJD+fSpUt7Ht/bPSluGWkCoWwRggPEd9hkv379pFChQv4uBRLhjfaHitWrV1f14S1YpkwZJcTDXuFdD8/XwoULK0FfiyiYMEJdivCRHvnkbj+UXeujx30M183GjRvLK6+8oj42e8LDI75FixbKExaTz5gEhV2PHDkyaSEG44fzV69WwfMTzmHkicHnuPd0797dUoTH/ax3797Kgx4THrjHoWCCGe2wkEAw28Nqq8WLF0uFChVk1KhRUqxYMT8wq3sN6mmHg0D22rx58wwiPO5ReMbC/Q02+sknn6hnI0w+Y9IIE0b6PsXRIgESIAESIIFEJkAR3jd68SrCnz55WDatni6bV02XA3vXSYVqLeTyFq8msr2x7yTgJ0ARPrgIb47nypjw4Z88oQSiYCJ83rx51UTIli1bMnQEQqYTER4iSKBl1AgrwuXV4Y9xorQQyhYRWgbL8+HhCm9hCGUQJBBOJpQIbxX2A2xg41Z2BtGTInyiWFB89jOUXaPXmHgcNGiQ4JqKJORYoYESTITHag/zRFN8EgivV3bD+eBcNRfzM4L5GQKTGBAzsaIA1xOEovE6sXN4R8+tY0kgmO3BI71v375qZR9WUeGcxQoWPLcECjGF48DKDB0WKZC9mu81ZnvFOY/rRIECBVT4JIrwsbQO7psESIAESMBLAhThfTRjKcJDaN+/e02mMS1ZvoH67Lfv+8m2Db44joXLS+nK10qtht29HH+2RQIxI0ARnp7w0Ta+UAJRMBEenpibN29WsXfxMqo9Ep2K8BBAEGaoXr16fg/QaHPg/mJPIJQtGns4btw4GT58uPKGnzNnTkgRPpDHrG4PAijixaempiox1FwowsfeNhK5B6HsGmForrjiCnWIX375pZpU0oWe8CKh+GlGbjzhwfmyyy5TYa4QUxsiqfZUTmSbY9+9IRDK9vRelixZ4g+DhLwN5tUZxt4Es9dAnvDG1Z/0hPdmXNkKCZAACZBA/BGgCO8bk2iL8EcPbpO1yz+VnRvny/EjOyytIqXoBZInbxGpc2Vv2bhyqpQod5lUrNk6plYEj0940CA0AwsJhEOAInxwEb5///7+GOSMCR/c0uD5i+X2oUqol8xgIjwShkFAQnIwxOmH1yGKUxEeL546ju+nn36qvOi1KI+2WRKbgBe2iORziLuLgmSqGzZsUF6HSHgHER4xsmF3lSpVUkv2A3kJIxYvVl2gHUwgIZwAEtoNHjxYxYTXsbghxmsPY8SN17Ho4YV/1113JfZgsPeeEfDCrtEZ2BSSOyLGuznpr1mEN8eET+ScKF7xM8bYRuJ2LaIj6eoLL7yQIRyNDhNinOzAc8Vnn32m8pdAQNWrEDwzFDYUdwS8sD2E0kOoGEzc1K5dW2B7KOvWrVNx3wPdazDZC+91ncPAbK/33XefmhDS95pQMeHpCR93psUOkQAJkAAJmAg4vedm872QnXdLMVwRO9G3d8Jt367VsvCrh+T0qcO2NytYrJo0afuR5MpT0HIb/fJirBCJ8AZt27YVJHhCQjevinnpfL58+VQcUOzD7gsCxDOIDE69eiCkYUJBxySFByGSV73++uv+trCEF8nxIBrb7Y9XbJK5HYrwwUV42CJeWpDcCgWxMGGrffr0cWznyWxHTz75pEouiXMW16dgJRwRHgIQxHO8NKIglAKuVVjej7GyGxMewhM8kBHnG9uhlCtXTh1D8eLFk3mokv7YvLTF2bNnK8EDwgcKktXpcDRYkXHDDTeosAAQ4nv16pUpVAcmjLp16+a/fuTIkUPdx3r27KlCgOB+CbHf3PaHH36oPO1RkJwYCfhYsjYBr+zaKkySflY1i/C//fabHDt2TM6dO6cGAM93mIBKtOIVPxw3zmskpoXoqZ8LMEGHFVrmcDQ4dzFBh4L8I0jkinsPRHgwx+oaluQm4JXtIXcInAT27duXye6C3WuC2av5XoN7Epwdpk+friaJcc/CPvHMhGsHRfjktlUeHQmQAAkkOgE391yK8EVTbI87RFm89E6ZMiXDUlo7Daz+7RNZtfgdO1Uz1Gl690QpWvJCy+3w8oKXE6citOOORGAD/WIGzz54s+IhDwmkIHbhMzvFrQgPL8IvvvjCvx+MLYQLvKzgpQUFXBGXN9DSfTt9Y53ABCjCZxbh4anKYp8APCpxnkLARpk/f74StK1KKBHe/p5ZkwQyEqAt0iKSkUCs7BqCsjExa6KyjRW/QLww6QuvZUy+wfsYwj1L8hKIJ9tLXso8MhIgARIgARIQtcrTjSZBEd6BCI+ZfWRuh4eOOaZlKCM8deqUrFoywpdsdYqcOXUkVHXJl1JKalz+sFSu2UItH7UqwUR4PHjDwwDL2FEQi3jMmDHKixNeMkick5aWJlj6i5cec30sG9beR3gxgic8PBN0PXjswUMcD/QzZ85UbWhhHQ/6w4YNU55MxnaMx2EW4fEd2kY/sV+0a+wTvP+wxB7L9OENZEwKBDEeHqnw9IMXUHp6ujrOIUOGBHzh0Ptes2aNOobnnntObbNs2TKBFxYKlk+jXXgQ4n8sxQTLzp07qxcZzdbYL7Sl2SL51dKlS1X7iCXdqVMn1a5uC0nykPSoZs2aKrSA9oY1HgNCBowePVpN+gQaM9gkJoawH3iPWLEOaXBRrEARniJ8OOaG2ebvv/9eJkyYoK5nKG+88UbQJinCh0Oc21oRoC3SNpKRQCztOhlE+FjyM9ujcRUCnqmR6JIleQnEk+0lL2UeGQmQAAmQAAmIhHPPpQjvQISHsSFGa5s2bdRScSce8etX+Dw2s+eVkhWukX07l8vhfX8pMR6/o+TMlSKFildT4ntK0arq9/W/j5EK1ZtLsbSalnYeTISHSIzYj/AWhRCMlxsI0xCrIehCrIY4fNNNNwkEY10fXujwmLntttvk4YcfVktgjSI8ZnsmTpwoX331lRKOu3fvLhCUjSI8wmkgXAOWMt55553K49wcuzmQCI8DNe4LcSwRN1l7xqOvCFmjY4oaPeF1PF3EwYWAjj5ie6v4l0hUhVAWmFhBO/gdSyLxkoK+QviGAN6wYUP1fc6cOeWDDz5QExcQ9636pdmCM7aDJz04z5s3TypWrKg+Q3IsCO8omExAgiMsEUa4AcSO1seAiRJs/8svv1iO2YEDB1Q/IciDDS4IGLN4LRThKcK7tU293AvbI042Jv+CecDr/VCEd0uc21kRoC3SNpKRAO06vFElv/D4cWv3BGh77tlxSxIgARIgARJwQiDcey5FeIciPAbHjRC/Z/sfsmhGD8mVu6CUqdpCEO89V+4UyVsgTfIVLC2H9v4pZ08f9SVs3SmH9v0pO/6aJXlT0uS6Oz6S3HkLBRXhzV9qwRvJmeA1DhEZBQJv06ZNVYxzCMIQeOF1rYu5PuLDwuMcYrJRGEcCN0xEwEMcRYvORhEev+tiFTImmAifJ08eJYYjRA3E70KF/mEAcXrjxo2qTyjGtuE1v3v3bjWhgIK/IW4HmgDA9/qY4D1+9913qwkDeMRj+2uuuUYt38Vnej84Xp2wLli/wAMTFZiY0MXsVW+MY79kyRIV8xD7ChQCBxMtOgmkecz0JAU8gevWrZuJl5OLSbTqUoSnCO/G1ow3O2yPa1AoD3i9H4rwbohzGysCtEXaRjISoF2HN6rkFx4/bu2eAG3PPTtuSQIkQAIkQAJOCHhxz6UI70KExyAhcdrXX3+tRFk7yUoP7t0sZ8/nku3rZ8nuLQtk/85/ki6ai/aET6t4jZQof7WkpKSEFOGtYsJr8dbogW4UdM1CcaAkr5UrV1YhWIwivFlUj4QIr0Pf6HArEG4R9gVFh57RvxsFbXiNI9nqkSP/C/ljJcLDE/2bb75R7a1du1YJ54gNj2RX8LiHiK7jwZuPOVi/AonwwfjpyQhMXGDiA0mLzAV9w6SCeczwGSYrxo0bp2LpY4IEdeI5kSxFeIrwTm50qBvOzQ7bU4R3Spz1rQjQFmkbyUiAdh3eqJJfePy4tXsCtD337LglCZAACZAACTgh4NU9lyK8CxEe3tKTJk1SgufIkSNtjduaZeNky5qZUrHWncoTXhdzOBp8fvrkYdmxfrYKR3PN7aNcJ2a18oSH9zu8r82CLupbxbo3isgIn9K2bVt/jHMvRXhzTHh4oyPkzeDBg1UoHaN3vlmERzz39u3bK8/8iy66SCEONBGh2UP8RsidSy+9VG2H5LbYP7aFJzxitSNkj3k/+DtYv8L1hIdHvA5VYzSuQO3u2rVLrRIAm0OHDqmY8Eguq/ttyzijXIkiPEV4JyYX7s0O+6II74Q461oRoC3SNpKRAO06vFElv/D4cWv3BGh77tlxSxIgARIgARJwQsDLey5FeIciPMKhIBmg0RvbzuCZE7P6w9H4YsDD+13HiEc4muNHdniSmNUcE753794qESgSGgYSdB966CGBqAuvaoi68LAuVaqUCtViFOG153WwmPBuwtFs3bpVxaCHx7uOAQ/Bv379+ipMzM6dO+X+++9XcdWN4Wg6dOigwrnAi/3RRx+Vb7/9VvUbQjZWKVh5wmPcEBf+zJkz/gSqWmBHclZjKB+zJ3ywfoEtYsuPGjXKHxP++eefV8kkdUz4MmXK+I8BbUH4x6QIJgYQZgP9xqQAmPTr10/ee+89QSJc88SJngxAmBocBzz4KcLbOSOjWwcicLHC+dQKBYRXQhJdJFzOli2brF692p9k2HjeOO2hMQFbIJtHCCWc1/hJlOLFzY4ifKKMdnz3k7YY3+PD3rkjEC27TsT7jx2i0eJnpy+sk5nAtm3b/CEqveIDRxmskn355Ze9atLfDt5n8JwP56NQhbYXilDsvo/E9Q4rsPFuiRxgXhcnduf1vtkeCZAACSQCAa/vuRThHYjwH3/8sQp14lSAh2GZE7PqcDSRTMwKr24I8Qgng1KvXj01gQARLpAIb6wPIbxBgwZK/MXDoFGERz0kGp0+fboSEhF3HQ+lbmPC6xMP/UJiUQjQOpwK2oXAnp6eLqmpqXL55ZeriQIdJgahYzAp0KRJE7UqAR7g6BcKvNuRnNUopptPchwXwrjo9vA9xHuM87p16/zVzSJ8sH6BLURxxJZfunSpOpYBAwb448mjrdq1a6twN5gUQSx39F0/dGOlAo4DxwwmEOER9ijQmOGhDBMTSD4LYfeqq65S4j/D0cTX5dyOCK8FeNikMZ+A0QZwVObVHVgdgnMcwjvqWq3+uPHGG9WE2gMPPBAUjlUOh2gTRTJiY4JhJzHgzX0N5QlvXmHj5ljjhZubvnOb4ARoi7SQZCQQTbu2e//x4locrbGKJj+rY8JzIRKUa8eUaB079hPvY/XXX38pp5SffvpJSpYs6QmagwcPKmcXPG/hmR1iK5658d6BF3Q4z+gCx5nHH39cPefDAWfKlCn+53y8twwbNkytvsW7Ft5T8NyOVcpw9tKOSFadjrXtwekDebKMz6qeALbRSKB3IRubRbWK3eudk05h9f3bb78tderUUe/c2nHO/I4QzO6svrNrd076y7okQAIkkCwEInHPpQjvQITHwxLCtbRr186xTe3btVp+mtZVcucpZDsxa54CJaXpnWMkV56CjvcX6Q3AQgu9WnQ2JnmN9P7juf1QD4hZXaxjOJrAnvBGEV7nRICdY4IF1xxMiF177bUZRHbY2ksvvaRWgehJnGAhmOycN/Fin8YbXjgCPI6ZIrydkWcdO4IHbZF2kiwEonmNtcss3oVd43HEAz+K8HYty5t6/fv3l2LFiikHJ5SGDRsq4R35pZArTIvwOrQm7Llly5by4osvKscerETevHmzNG/eXAntVapUUY5GlSpVUs9yKFjh2qlTJ4GQGw/3pEB9oAjvjT3ZbeWzzz6TxYsXy/Dhw9UmjRo1UpMg9913n+Cd6s477xS8g5coUUI53AWyu2A2adfu7PaX9UiABEggmQhE4nmPIrwDET5cY0Ks979WTJUdG3+0TMyat0CaFCpeXcpUuU4uqNMm3F1GZHusCIDnrfa8MYZTicgOE6xRivDBB4wivDMRHjSNK1G0yI7VKnjwhncVPGN0sRLh0Qa8wvCSCKEd/3/wwQdy7tw56datm1p9YUzO3LVrV3nmmWeUx41ejYJVG1hdggk4PNBjtcny5cvVqg+9UgXboOhVKVgtg+XVeKHEixu8d9LS0tRKj2BeVMhxgPr6hSOcy0AwEd648qB8+fL+PgXqP1bJYDUR+o3jR+4IvHhjZZAumls4/eW28UWAthhf48HeeEMgWnat72H6/oNrbuXKlQUhDffv36/uDfAMDnQtxnW2Y8eOalVh0aJF1fVX3++wDVZD4h4DL9E//vjDf/02enziXvfmm28qaLj3XXLJJfLdd9+p/deqVcs1zGjyw6pHCLMIXwfP1yFDhihueN7EcRw9elTdi3EfRkhGTMob2eGe3adPHyXcBeKAezKeJyAQG9tHXYh7PXr0yODR/dRTT/lZh7pvBrvvY5wgLGrPbxwPVobOmjVLhWAM5EmOOvAcxzMEHBbgaX7xxRer5xUUvJPAcQEr6fBMo1fp4tgRghLb4xjxLGPHlowGgvoLFy6UwoULZ7Abs/MCPIvxDKGdk+CVf/PNNyshHs8R8+bN8+d+wkoG2LFetYz+4bkOgr1ViZbtwYbwzDZ//nz13KdtSIvwwXgG8vTHOQ72OFasesY1QZ/fZhsNZHcffvih4EcX7bzi9HkTdo594/kWBceDlaJ4PwHbQOeC2Y7xrIe+6OdYXI9gGxg3O8/b2C9sHBM6eA7HCgvYQqCwlLBphDXFpM/u3bvVCukRI0b4OcD+sH+s7Layu2A2iYbs2J3riyU3JAESIIEEJhCJey5F+CiK8IFsb+eWJepjeMgXS6uZEOYZKMyNXkqZEAcQ4U5ShA8OmCK8MxF+7dq1KhEyXtKuv/569VKJl268uMAry7j8GeTtivCoh4d4vITghRUiB14sjS+TWHrduHFjFZ7phhtukO7duyshBIIG9g1BAC+UqIdQUmgHL8L4HkvAJ0+erOrAswsvnQcOHFAvyJjAw36iVZx6wlv1H7kcdGJqiB54+dKhrOJlBUG0mHI/7gjQFt1x41bxTSCUXRtFKfwOEQzCK+4d8AoeO3asyv9j9oSHAJg7d24V4g/PVoMGDZLff/9dli1bJp07d5YvvvhCeRPj3gTxCtdknVvn66+/lgoVKqhrNgQ2iGa4TiP8B9qJp7B9ofjhHlq9enWVHwn3bPwNUQ33VcSJnjRpkhKUjV7VuEdv2rRJxZDGNhAW8fyl7/NGDrp9eGxDnIbIj9xIGB8dLgUCIEKlgC+ERvNYubnv430COZH08wcEyRo1aigBHfs1Hle5cuXUswjsACIkxh51jc/cur+6PaMIDzuA8IvwjkbP9GC2ZDzrwBBCfqBVv+b7f6D3AN0XMzezV/n27duVnRpDYkby7A9me9qG8Kyon/Pw/AYhPRRP5MGCrUFcRthMTCLpEKB4bkQbVjaK47WyOzNbN3aH9sH49ddfV8I2BGw8a8NhxOpc0HmX9POrtl09mQe7uvXWW5XtmkX4QM/b+hh1/jCdc84swmM/CPu6Zs2agNcsPaGAcxsivjl3mLa7YDaJvkTb7iJp02ybBEiABOKVgL7nUoSPsQgfrwbCfpFApAhQhA8twptjwkM80Muf8UBdtWpV9UIEzxh48xiLXREeLx3aC9C4jfFlEg/08ErTXmp4CUXyZPQP9V544QU1MYBi9NaHVyK8w/V3ePm67bbb1AtzLOKIhhI4zC/FVv3HhAcYYAIEBSIPYr3qFzqMkXlSJFLnEdtNTAK0xcQcN/Y6OIFQdm0W4bVXvPnaab4WQ3jG/QYToChYfYR7EmJw79ixQwlOKEaBCaIcktrr7zBRCo9TLZ4Z733xMq7B+GkRTgvo6DNyIyEsCu7RxpjwRn7m5JCaHe772nNWPwPo9vQqN4h+EAPBDmK3nmxGX9AuPOft3jdD3fdhGwi1h+cEeFZjbBFWQ+8Hx2scQ3MIHh1mAxxgKxhr7UVu9oTXz1ZGe8FxWNmS0T70qgMIyObipQiPttFvHAee9SJdgtkebAbnE4RqFG1TGzduzPAsZ+SJlQn4gX2iQFzOmTOnctAwXgeM7UGQN57fWNViZXdmMdnt8ybGHZ7jmNiBgI4JPzyzWp0LgULw9O7dW63GwIQgJg305I9ZhA/0vA3RHyvL9fO1FvnNIrz2wA80+QPbxyQHnklx/gQT2kOJ8NG2u0jbNdsnARIggXgkQBHeNyrp+49IKkX4eLRP9imJCVCEDy3CG2PCm00BL2fw5qpZs6Z68DbGg9cP0XioNy+zt/NSoF/OtZiMlxTj0l/dF7wkmMV+c8gcc78xkdC6deuEEOGNYXn0cRjDzCAuOF4w4WGoCz3hk/ii5eGhhRIrzcIWbdFD+GwqYgRC2bUbEV6LUuZOQxSE4Gq8TxoFJnNyc2yvQ6aYxeeIAXHYcDB+VuIcdmEWpI3Xjw0bNvhXCOju6GcDMwcIfPCohwBpvM8Hi9Fv91oV6r6vjwFh8eAZjVA0KGj/008/VYIuCvqMiZRAcfDxzIIVEVgdAI9/PRluR4Q3PrtopmZv4kCsjUMcCRE+0HOcQ7OyVT2Y7Vk5dZgFaeP5p1dLY5UGfkfRz09mEd7KRjER8+effwZMOGwWk63ukaHsTh8DnCmuvvpqtUoEk1BW50IgER7P32+88YZ6Fsfx6jCtdp63zccYTIS3cl7BflJSUgJORurBt+sJj/rh5pSyZXCsRAIkQAJZmABFeN/gU4TPwmcADz1mBCjChy/C65czvKSCp/ZSC/YQbeelwCzCm73gzC+dVp7wZu8pvV2sknmFEojMYoJV/3EceOlCSIATJ04obzs92UERPmaXlITaMW0xoYaLnbVJIJRduxHhA3mA6+4E816G5y2EW3i4mksiivD6vu7UEx5hNXB/grgOcdG84s3onYtEjxCykefFKAZC8ER4Gjue8G7v+xhnhNLp0KGDFCxYUPUDIWJgM3jWwQSK8R4dSISH+K5Dm2C1mg41ZEeEj4QnfDgx4fV4x4MnvDFkC/plxxMeSUSRu2Hq1KlSqFChDKskzSK8lY3CS9zK7swivFu7w/Hg+BBK8e+//86Q9DTQuWD1/IrVG6VLl5YHHnjAP/lj53k7XE/4QBNkwewuVEz4aNudzVsLq5EACZBAUhGgCE8RPqkMmgeTOAQownsnwuulqHiJQDImL0R4LO2FRxqW5+r4qm+//ba0bNlSeZnBA/Hll18OGhMeL8PGyQGI9YjZe+rUqbj0hIdnJV7c9TJzq/4j9AziF+MFDUlasFxaLyU2ckucs5E9jTaBUGIlbTHaI8L9eUEglF3bFeHN9g+RDquOcA+CsI5r73vvvadyjVjFhNcxvnE9r1evnhLzsC1EskQV4Y0x4eE9jNjT8LzV92TtgWsU5hCzG/UQJx5hWLSoHSgcDURwiPIQNBH/G969WPFmjgmP2PzI94I42HavVXbu++jbr7/+qp4vcJ/Vk90//PCDMk+E2oBAb+UJjzqYSEB8ec1CPw8ZE7MGCkcTiZjwOkQOnn3MMegRwxvPEYHi+KPP0Y7N7SQmPMIKDh48WCUANnpnG4Vx2BE4Q4xHQmHkCsIzaqBwNFY2WrZs2Qwx4Y12BxtBLHcdniWc502cL+gnbBmJjlGszgUrER77xzVm5cqV/skfOyK8PkY3MeHRX6wYQYJpY26LYHYX7LtY2J0X9x22QQIkQAKJRoAiPEX4RLNZ9jdJCGRVEb54kfwqLiZ+cuTIIdmzZ5ds2bIpMQEvIjoOpHlptHnYzctFdcK1KVOmqJeHcGPCI/wMXkx69OihhH286OD/9PR09eKFECzYDx7o4TW3fPly9TleKCBE48XMnLwZy4Lx0hCvnvB4KcYLGBK/zZkzx7L/4PLzzz/7hXcIOjrhmJlbkpyuPAyPCYQSK2mLHgNnc1EhEMqu7YrwZvuHiNerVy8VaxliU58+fdQ9BgViHxKW41561VVXye7du/3XZnhuDxgwQInvEHVxfyxevHjCivDgACEazwuIn43EqbhnBQtHg2cD3J/279+vEqwjvAe84hGP3zwZAa9rTHCcO3dO3dcRBkZ7YuMZAM8DZpZ2r1V27vs4DsT616FoML547sDnOF7EvcazBu7PgTzhUR98MFmhxVS7InwoWzKeQHj2WbhwoUo4aiyBVsJZccN2mCBCWEE8K+kEpFpMxfHBXnVc+0ifwKHyESBW+vz58zOcf6HC0RifDevWrSvnz59X42v2hA9mo1b8wOyKK65QjhBIXhvO8yaOA0mbdSgasLY6F6wmk3CtwcTU8OHD/UNlR4THZJhxX02aNJFFixYphxBzwTsCckDp2PyBQvDocE3B7C7Yd9G2u0jbNdsnARIggXgkQBHeNyoMRxOPpsk+JTsBivDBRfhwxz9aMR137typXsorV66skuDhJQEeaPUrmdkpAAAgAElEQVTr1w/3EDzfPpRA5PkO2SAJWBCgLdI0kpFAtO0awhuSN9auXVvOnDkjSJCISdSXXnopIfFGm19CQgrSaTyPwNtaT9Y4OT4ntgSvZ6zMwIRFpAomEjChYJxMiNS+0C5tzz1d2M69996rJhfcjBcmlpAEGc458O7HpECgyRd46y9evDiD0O++14G3jLbded1/tkcCJEACiUCAIjxF+ESwU/YxCQlkZREenk7wgg/kCY+h1t7wbobdmMQuGgm9MI7wVIM3HDzV4J2oPRTd9D+S2/AlM5J02bYTArRFJ7RYN1EIRNuuMQGM+w1WJqEg7Mz48eMzhGZIFHYUQsMbKaxQGzt2rPIs1wlZnbToxJYQngcOB/AaxsoKrwu8oJ999ln/ig6v2w/UXrTP3WgcUzT2oZ+5Ib5jVY7TAgEfoR3hSY/f4UCDsDZWdoX9YEUpVmN4XWJhd14fA9sjARIggUQgQBHeN0r0hE8EU2Ufk41AVhXhU4sW8IejwfJ5HY4GIWlYIkuAL5mR5cvW7ROgLdpnxZqJQ4B2Hd5YkV94/KK5NQRLiP4ICeR1QXLaoUOHRkTgt+orbc/rUYxMewhJhRUYCBXldYmF3Xl9DGyPBEiABBKBAEV4ivCJYKfsYxISyKoifIliKRniwVOEj55x8yUzeqy5p+AEaIu0kGQkQLsOb1TJLzx+3No9Adqee3bckgRIgARIgAScEKAIH2MR/tTRzXLi4Bo5d3KvnD6xW41dzrwlfT+pkrfQhZKrQAUn48m6JJAwBLKqCJ+WWihTKBp4wdMTPvKmy5fMyDPmHuwRoC3a48RaiUWAdh3eeJFfePy4tXsCtD337LglCZAACZAACTghQBE+RiL8vvWj5MCmT+XcuSOSr3hJyZXvvMoaj5ItezY5cyy7HE3f6RPrUqRopU5S9IIuTsaVdUkg7glkVRG+dMki/ljw2gtenfcMRxNxm+VLZsQRcwc2CdAWbYJitYQiQLsOb7jILzx+3No9Adqee3bckgRIgARIgAScEKAIHwMRfvu/u0qOPFulUPmykit/StDxOn3siBza8recO11ZStcd4WRsWZcE4ppAVhXhy5YqpuLAm8PQUISPvLnyJTPyjLkHewRoi/Y4sVZiEaBdhzde5BceP27tngBtzz07bkkCJEACJEACTghQhI+yCL9rxcuSM/8vUrhiVSfjJAc2bpJzpxpKyYueDbgdsqkjW/rtt9/uqF1WJoFYEfBKhI9V/93u9+yZM/94vRtC0FCAd0uT25EACZAACZAACZAACZAACZAACZAACZBAYhCoUrG0ZPOFQvknFoqLkr7/iKQWDe7RHazZRNt+7ty50qtXL5kyZYrUqVPHEbHdKwdJtlyLpWiVKnJ87245unu3nDl+1BeW5pyc2L9PtZWvSFHJliOHT6wvIAVKpPnC1ZSQ/es3iJy7WkrUfDrg/ijCOxoGVo4DAl6J8JUrlFKhnMw/OMQwLmueEdICO/7ftHWXlC+T6g9Ho2PBU4T3DHfQhujpFR3O3EtoArTF0IxYI/EI0K7DGzPyC48ft3ZPgLbnnh23JAESIAESIAEnBOgJ76PldBJg7969cv3118uxY8fkyy+/dCzE/730QTm+b6EvDnw+yV8yTfIWKeYLS5PfFws+hxq782fPyOnjx+XEgX0+kX6nnD1xQvIXbyxl6o+yHNtgIjz6i0mDpUuXKvGvdevWymse5cEHH5RixYrJsmXLZPPmzZKamiqjR4/2H9Pnn38u/fr1k9OnT0uDBg1k27Zt8thjjymP++uuu04eeeQRv/f9a6+9Jn/++ad89NFHqj6+mzNnjpw9e1ZtO378eMmVK5fab7B2jduirrG/GzZskC5duqi+oq0+ffpIz549ndg868YJAS9FeHXe/J8Qr3+Pk8P0dwNC+8YtOwXhaHAe6nA0+B+FQnzkR4wvmZFnzD3YI0BbtMeJtRKLAO06vPEiv/D4cWv3BGh77tlxSxIgARIgARJwQoAivI+WUxEegCEGt2nTRk74BHInHvGnj/0t25Z1kLSLL5BcBeytHjh15JDs+u96Kddgok+4LxtwfIOJ8Pfcc4/k8wn+I0aMEAjyzZs3lwEDBijxHCI8BPjJkydLFZ93PgTunDlzKiEdQnfTpk1l2LBh0rJlSyWc9+3b1x/2JpgI379/f/n5559lxowZqr833XSTtGjRQp555pmQ7UK8X7lypdr24MGDctttt8nDDz8s9957r7Rq1Urq168vL774okDEbdeunUycOFF9xpJYBLwS4bGUx+jxHg/e71YjARFeJ2Y1CvEU4aNju3zJjA5n7iU0AdpiaEaskXgEaNfhjRn5hcePW7snQNtzz45bkgAJkAAJkIATAhThXYrwboX4nf953Of9vk3y+8LMOClH9+yS47vLSKlL3nIswu/atUsKFSqkhHiUTp06Sc2aNZUgDhG+WrVq6neUadOmydChQ+XHH39UYvv8+fP9Qjq+N4r9wUT4ffv2KTEf+0UZOHCgbNy4UYn7odqtXr268ppv2LCh2tboYY8JBZRXXnlFKleuLOZjc8KUdWNLwEsRXh9JPAvw6pqxeYeUKlFYecIbRXgdlia2I5L8e+dLZvKPcaIcIW0xUUaK/XRCgHbthFbmuuQXHj9u7Z4Abc89O25JAiRAAiRAAk4IUIT30XLjCa8hIzTL119/LXfddZe8+uqrIdkfS18i6X8+IWUa1AtZ11hhx7L/SPELXpP8qY0CbhfMEx5e+927d5f169f7t+3atWtIEd4ofusN7YrwOgQOhFaEo0GBaA8RPlS72Ie5QHBHaJvjvjA9L7zwgnz//fdy8uRJ6dy5s38CwRFQVo45gUiI8MaDiidBXoeawQW3RLEUNUGlRXgdlobhaCJvknzJjDxj7sEeAdqiPU6slVgEaNfhjRf5hcePW7snQNtzz45bkgAJkAAJkIATAhThfbTcivDPPfecTJo0SZo1ayYjR460zf34/iWy9ZeuklIqzecRX9gXE76o5Myb37/9eZ9ojcSsKOd88eG3/7pKStR4QQqUbGq5j2AifKNGjdQkAUK6II660fs9mCf8+++/rzziEYZGF7siPDzWixcvLoMHD1Ye+EbhPVS78IS3irWPmPQlS5ZUx7F161a5+eab1eTHLbfcYps/K8YHgUiL8PFxlBl7gQtuatECSoTHDwR4ivDRGym+ZEaPNfcUnABtkRaSjARo1+GNKvmFx49buydA23PPjluSAAmQAAmQgBMCFOFdivAIrzJmzBi/d7cT6P/UPS8HNk2WI7tmy+mT2yV7trNy4tA2ZJeU3AXTpFC5YlK4YgU5vH2rnNhXTkpfOizoLoKJ8HXq1JEnn3xS7rvvPhVrHbHVEUs9VDgaxIRH/Pi33347YEx4CPhnzpyRTz75RAniHTt2VOFq4O2uY7djomLnzp1y//33S8WKFf2x5oO1+9BDD6kwM+PGjVMCPkT7UqVKyd133y16QgErENAu2qEI79z64mGLrCrCFy+SX00iBQpJEw/jksx94EtmMo9uYh0bbTGxxou9tUeAdm2Pk1Ut8guPH7d2T4C2554dtyQBEiABEiABJwQowrsQ4T/++GMVk1yHV3EC3LruOTl7+qjv62ySI1eKpK8dJJJjqe/3bHLq8IWSVtv3d5ASKISL7t/s2bPl8ccfV6FcEAs+f/78Kg48jiGYJzx2980338jTTz+ttm3QoIEsXbrUn5h1y5Ytcuedd0p6erqkpqbKhRde6E/qumLFCpXkVX93+eWXK2Fde9UHa/f06dOC5KwIP4NQNtjve++9pzzr0S6+wwQBhEx4+CPJLEviEcjKIrz2hGdy1ujaLV8yo8ube7MmEEtbxD0WeVvS0pzlpvFqPLGirWzZwEnmvdoH24kNgVjadWyO2Nu9kp+3PNmafQJZyfZifQ+0PyqsSQIkQAIkkIwEKMK7EOFx80a4FHiTR7LsWTNQju//TvIVuUtK1HwkkruybBvHCrFbF4j9X331lcC7PpwSqXbD6RO3jS6BaInwEJtGjRol06dPVytCbr/99ugeqGFvuODCE54ifHhDgJwT7du3V3kucH2ymxvCzksmJi2xgue3337L0El8dvDgQRk+fHjQzuMaiX6tWrVKevbsqUJ6sZCAmYAdW8Q2mCg32hBWlI0ePVqqVKniCKrRHr/77juVW8Vs444aDFIZ4ec+/PBDf42UlBQZNGiQWlH3119/qfBxP/30kwot50V54oknZObMmYLnCuOkvRdtsw1nBOzatbNWvamNVZX4gVMJzqMpU6Yo5w4UfD5s2DC/DY0fPz7Dsy/qwImkb9++MmPGDKlVq1aGTnXq1Ek5h+hzFbaI1aFwXME9qk+fPup+EKrY4QdnFIR8xP+6XHbZZeq+pZ9vsFp3z549MnToUFv3K1RCe7ivgk+gY9QNTZs2TZ1vWPXKkjwE7NiePtq5c+dKt27dZMGCBVKmTBlbEALlA7O1octKwezUeA/ks5pLwNyMBEiABEjANQGK8D50bmPCu6buYMPDO3+QgqWaONjCu6q7d++Wm266SSZMmCA1atQQPNR/8cUX/pcKt3uKVLtu+8PtYkMgWiJ8w4YN1YspVl8gjFGsRfhihfOpl3JjcladlJXJWe3ZIgQI5I6A6ABBHmGp3nnnHbn++uuDNmDnJRPiSb169WTs2LFSv379DCIHVg/deOONtkQNvtjZG8usWsuOLYKNcbUabBM2+Pvvv6vJcCclmvZoFlsgTEKwwf92BRu7x/bZZ58pwR+TrAhfhxV4RYoUCSk+2m2f9ZwRsGvXzloNv/ayZcvUZO23334r5cuXlxdffFGFUYSQrEMvIscTHExgQ5UqVZKXXnrJv2Oce1dccYXs378/k0ANQbJHjx7KtrUID/Ebn0+ePFlN3uIeZb6nBDoqu/xw/8OxVK1aVU343nbbbep5XYvuWCWKSS9MDgQretIYdRAKsnTp0opNsEIRPnx7jMcW7Noe+t67d2+ZP3++OlewOtlOiScR3tjfaN4b7XBiHRIgARIggeQnQBHeN8bxLMLH2gTh+YNwL/CMwdJ1JKAN1wsexxSpdmPNi/u3TyBaIrzuEcIz4WWBIrz9MYrXmkgyDY9ELehBqIR3baixtfuSiRdMeEhqEWbJkiXqZVN7HsJ2Ibog3JbZMzmQJzxEmMaNG8uzzz6rQmiZw3XBs7lQoULqGPQ+MMGAAtEVBdddeOnjmK28NjEhAQYI91G3bl0VAkxPPBk9M4sWLapymqBNCCoQdI8ePSrLly9XocUg7mgP0Xi1gUTvl11bNIeMg+1hTLXYZ7QljPnEiRP9CdghSiOsG/KmYCJdr8wwig6hxh9e5hC4kUAaAh8mobA9BDs8E+AcMK/2CCS2GK+/5nMEXrzoB/qL/utnDNg5Jtew72bNmskff/yRaV8QUeFRjzw0KBQIY3tm2LXraPcS4RMhul911VV+O4E9w3ZhM/p3KxvC9RjXzQ8++CCDCI/rapMmTdS1e9asWX77xHW+bdu26nqPgvMFYSBxPgUrdvkZ20deJqwsWbdunfJM1vcLHBdEejv3K+OKG0xSgEug+5S+Z2ClwKlTp2T16tUqtBT2hXuG+V5sPO/x+yWXXCLwQsY9BzzgeY/7DtrAvQehK5GviiX6BOzannZUwLsh3glh97pYjT9WTuj7hLYvvFciXxhWi+Da369fP//5AlvBuYpV5+fOnZNHH31UPc/g/oD7Ae5p+nnPHN5Uhy+FTVrZqfEeSBE++rbGPZIACZBAVidAEd5nARThs/ppwOOPBQGK8DlVcla8UNAT3r0F6hdCvORBEPdC4IAHI0SXX375RTWH348cOaKEGgjqV199tQrnASFkxIgRysNR1w0kwpuFVAiK+AwCxFtvvSU//PCDEnbw4vnuu+8qERL7wGoJLYZg4gG/a4/O77//XgoXLqy8H/EiC49HrBCAmIHQHxBQEDLt9ddfVy+rEIFy586t9oeXU9SBRzV+R96PYF6g7keHW1oRsCt4mD3hIcBrQVxP7mCi5oYbbpDu3bsrofDNN99U9nX48GGVOB0Ch5XoEGz80Q7EPXjzQmyDfc2bN08OHDigRG8I4LBZcwnlCW88R9AOBBWcS/DAhZCI1XfazrH6DqF3cGwI8xQqvBMm0CDu2fXOpIV6S8CuXXu7V2et4Z4BeypXrpyaaMV5hBVzsDvtCY+/dfgYnDsPPPCAEriR+8gYqgW2jvMME0lGId886Y96KKEEZrv89H51bidc43G+4hiOHTumrvm4B9i9X6Fvdu9T5msGWEJQxb5DifAIF4V7D1YD9u/fX11XcI1CP1u0aKHuWaEYORtt1rZLwK7tYfyRGw3nAc4X3B90eKZg42++L6AuCp6hNmzYoCat9GoRnD/40c9hWMWC8E64R8CJ6+WXX1b2rVeB6OcXODrACQG2GMxOKcLbtQrWIwESIAESiAQBivA+qhThI2FabJMEghOgCE8R3otzBC9ypUqV8nuMB2vT7ksm2sDLpX4hhMAC7yoIM3gBhHcVXkB1MX5vFuEhLPz5558Z4udCeLz44ouV+A0PeF0gHMJjGS+feNmEsAFPMwjuECchuOAz/BQrVkxthjBhEOshXGDfxhitRiEI4QuM4UCuueYa1fbatWszxPeN9pJxL2wgEduwa4vmmPCwF3imw5sQE08YQ22LECX0ZI1ZDAkmwhvjOxvHH5NFWHGiwzxhogdhL4xe9YHYm2PCFyxYUE0uweZQrPImGD2S0caOHTv84TXM3sqB9os6mHTCOWDMZZOI9pGofbZr17E6Pn0+IdwM7B4TVCgQFfWqo5o1ayoBT9sQrtfwxMV5ANvVIjzC2Nxxxx2yePFi1VY0RXhMFGPyCitdcK9auHChDB48WIVpwzHBOxjitt37FRiYRXir+5R5tYkWQnGPCiXCY3WLFmxxf8Jktr6+mPcfKxvJqvu1e+5iMhZOApikwjMLwn/pVYN2RXhMhGFCy/i8Ylz9B9sw2orxvDPeQ8y5DzCZg3CCeL/AhLHx3ma0U4rwWdXKedwkQAIkEB8EKML7xoEifHwYI3uRtQhQhKcIH67FQ6iDBzoS7NkR3ey+ZKJfeCGEuH3zzTerF03t6e4k1Mbdd9+tRBt4rEMQ0WXnzp1K3IR4g+8QjkYv88dLo45Ff+jQIRWjd9GiRcpLEN6NeHlFf/CCid9RunbtKq1bt1beyfAW1kWL8BBNdbgOI3N4TqJYibDhjg+3tyZg1xbNwhSW40Psgz2axW69N9iAFyI8bNdctK0FSzpsPEcgduA8gEgIWzcKKOYwAEah3XzcoUR4TEBgRYgOs0Tbiw0Bu3Ydm979s1dcNzFZA/vTqy5gbwirgZAq8KZFqBWcZ7hu41qrr99GMdAYEsZsn5H2hNdiIyaKIb5jYgB9wDHkzZtXTdIh9I3d+xW4mM+5UPcpY2JWPbHmRIQ3C6sU4WN5VojYOXe13Wnx3JzI3q4Ij3PP/LxitFW7Inwgm9F2ZXYwsLr3MBxNbO2OeycBEiCBrEiAIrxv1CnCZ0XT5zHHmgBFeIrw4dggBAd4pyO+rB0BHvuy85Kp+4RwGI8//riKSwoxXnt6wbMQITLwvy5WnvAIAYOXVXN8YONxjxs3TvADj0a84MIrEOE34AmPMAdDhgxRHsEQyiFiIhElhMapU6cqL3rjS6iVJzziFcPrDOecFkJ1H8xejfSED8cq7W9r1xaDiQyIkW62Rd0DL0R4eK5jogYrQIwllGhhtiF4TmLlhw4z4bUnPHIhIFY9BXj79hepmnbtOlL7t2oX5wqurzomvFEEhL2eOHHCn5DUaN9YDbJx48ZMzT755JPyxhtvBNwdJsEiHRMeO0bfEIIN4Zdwbun7BzyT4dWvV27ZuV+hvWAiuPE+Zb5nYAIMKwK0JzzORR0L3xwTnp7w0bZ8+/uzc+5i/PBMYi6jRo1Szy6wIavxN94XtCe88ZnErSc8VgbqVSzBPOGNdkpPePt2wZokQAIkQALeE6AI72NKEd57w2KLJBCKAEV4ivChbMTqe4gAeOmCF5aTBKJ2XjKN+2zUqJGKfw3BWy+htxtj1/iSh7AFeDH9+eeflaCPuLgIaQORBJ7N8CiECI8C77A9e/b4Pe8vvfRS5dWoQ47gJRhhZSDGQ3xEDF14yUOECRYTHt8hhM3bb7+twtnAmx6TGGBIT3i3luh+O7u2aBbGIIZB/NPxnmFLGNOWLVsKEghjLBEv1wsRHjGbcZ3WE04IHYH4z/AStusJD0I6sTHawoSZHRHebkx4LcBDwAmVmNn9aHFLuwTs2rXd9ryqh/AtmFSFpzjClyGMxW+//aYShOJainBJ+B33E9xbkC8Df5uL2Xtbf2/2hIcXPa7Z+ME9o3nz5v7wZsGOyQk/XMNxvsObX0+U4f6BBLRIdolzze79Cn0yXmuwndV9KlCsbWyP+xjOw7///lutHMD5bsxLYvZuZkx4r6zbm3bs2B6eNZCHxphzA3k4UIYPHx50/DGhi/uWXlUSKia8nXA0TmPCazulCO+NzbAVEiABEiABdwQowvu4UYR3ZzzcigTCIZBVRfjiRfIrIRY/TMzqzoLwMg+hwVggVIdK2mjnJdPYJkSC+fPnZ2oXttujRw9JT09XnogIJwPvdRQrgRGiz3//+18laEL4fuqpp1Sy19TUVH84GmxvTAKLv/GyW6JECXn++edV+/AgQ0LX5cuXq23r1q0r58+fV7HBIUhCiERiMsQ1hpACj3p4qOG7Xr16+cWZPn36KCGVnvDubDDcrezaojkmfFpamgqloeOrY6UFwk7AFo225IUIr0Mf6QkihDyCkOLUEx6sjOKNHREe20CEeeedd1QiWngw7969O0MuBtSxCsljTJ4Z7lhxe/sE7Nq1/Ra9qwlh/IMPPlDXUFy3EcZMT+LCjhDaJdB3xh7YFeHRDlZC4f4BMVxfb0MdjRN+xgSVul0cByZ7jTlL7NyvsL15ws/qPoV7BiaRMUGNCWYkA8dnYIn7DEK46XsjvPKRUBP3JbMIb76XoR149+uEuKFY8XtvCYSyPYw1JpMwwWNcUYcJUzyTrFy5UhBCz2r8tTMCEiLjngJnAIQQQ3vIY9CvX78MKyjsiPAggPwHyK+D9jBxBOcC2GIwO6UI763tsDUSIAESIAFnBCjC+3hRhHdmNKxNAl4QiLYI70Wfw20DF1yK8OFSdL99qJdM9y3Hx5aIgQrBHh7v8D5GIk38bw5BEx+9zdq9SHZbDHd0IdAhhEjt2rXlzJkzAm9LiDc6LFS47XP7yBCgXYfHNSvxQ8x5CKeVK1dWk+rw4oc3vc6JEh5Jbu2UQFayPadsWJ8ESIAESIAEvCRAET5ORfjd6cdk098HpXTJFClfpqCXY862SCAuCGRlER6ecfCCN3rCZ8uWLS7GJZk7kewvmfAIGzBggPJCTElJUQn7EAaHJf4IJLsthksc4hw8YuHVi1KvXj3lfWs3/0O4++f27gjQrt1x01tlJX54BsQqHnhIwxMa5zu94MOzn3C2zkq2Fw4nbksCJEACJEAC4RKgCB+nIvze/Sfkm3nrZe/+45Ivb07p0v5iyZkje7jjze1JIG4IZFURPrVoAX84GoRZwA8EeIrwkTdNvmRGnjH3YI8AbdEeJ9ZKLAK06/DGi/zC48et3ROg7blnxy1JgARIgARIwAkBivBxKsKfO3feJ8794xn7x9p0mTl3vTzWtYHkzkUh3omBs278Eoi0CI842fFStMCOC26JYikZ4sFThI/eKPElM3qsuafgBGiLtJBkJEC7Dm9UyS88ftzaPQHannt23JIESIAESIAEnBCgCB+nIvzuvcfk3TH/lqsblJUbG1eWdRv2y6z5G6XP/fWcjC/rkkDcEoiECB9Pwnsg8LjglipROGAoGnrCR95U+ZIZecbcgz0CtEV7nFgrsQjQrsMbL/ILjx+3dk+AtueeHbckARIgARIgAScEKMLHUIQfPOJXuaBCEbnj5uoBx2z/wRMyfc4GqVS2oDRuVF4++XKlNLi4lNSqVtzJGIesiwzyQ4cOlR9//DFg3QcffFCqVasmzzzzjCCR0sGDB6VGjRoh23VSIVLtOukD60aXgJcivFF8j2chfuOWnb48D0UyifAgTxE+8vbHl8zIM+Ye7BGgLdrjxFqJRYB2Hd54kV94/Li1ewK0PffsuCUJkAAJkAAJOCFAET5GIvyUb9dKvty55Oy5c3LoyEnp2OYi/7ht+P/snQnYVtP6xlfCOeXTnCaVQshcFOKEypQoQyLzIVPSMadMiUiIzGSKZK5MOZniOAqZKlNUomiSkikN//1b/dd71re/vfe7h3f83mdd1ze+ew37Xs+a7vWse81brqZ8uEAddsBWqqz6Rgqy/nRHE37ylO9V2SYbqc57N69Qx1tuuWW5/3HJ0RFHHKEuv/zytBeZRSHhBwwYoGbNmqWefvrpKHZW4Vmb2OfDTKWbqFASOacIZIqEb9GsoS435Lsh4AuRiIdkh4Rv0rBOuQtZkaMhCAmfffOTRWb2MZYcwiEgthgOJ3mquBAQu05WX4JfMvwkdnwExPbiYycxBQFBQBAQBASBKAgICe+gtWTZSlWvdllo3F577TV1zjnnqKeeekrtuOOOoeOZBwfd+B/1979XVccd3lr/a8YXS9Qfq1arnoeu9y6/dOhbWgf+2MO3U717bKc++2qJatJoU7Vq1Rr184o/1dYtalfIExJ++PDhqkePHvqz7777Th199NGqe/fu2oM9KEQh4SO/rE8ENwmfqXQlneJBIFMk/P/Id0j49WS8813/vj7kUxt+/b0ODv/Od020r12zZv1FrNaFrELAF4/dSkkFAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEIiDQMvmjVQVh7iKzVRFJbHdhSy2+EuXLlWdOnVSv/32m3rmmWciEfH3PPaJQ8Bv6MT9S/l4dNEAACAASURBVGu9m/DxzEWaiN9j18ZqwPVvqV+dzwf220Pt2aZxqDp1k/BEuv7667XX+qhRo9S+++6rzjvvvBRJb38GCX/zzTfr93j11VedC2E3UP369VNnn322ztsmzO14fPbKK6+oiy++WK1c6Wxk1Kun7rrrLtWmzXrd+ieffFINHjxY/f777/qz+++/X+dhe+03bdpUy+C403377bfVhRdeqJYsWaLKysrUddddp7p27arT5V06d+6snn/+ef158+bN9YZI3brrZXpI66GHHlJ//fVXhc9CgSkP5QSBTJHwdGDFEtj1bNygdjlPeE3Ir2fpJWQZAfH0yjLAknxoBMQWQ0MlDxYRAmLXySpL8EuGn8SOj4DYXnzsJKYgIAgIAoKAIBAFAfGEd9CKswkwe/ZsLffyxx9/hPaI/2zWUvWf975Xm5b9TddR+13Lk4effr5YffHNUscjflvVslnNKPWoiW23J/wJJ5ygOnbsqK6++uq0JDyE99ChQ1XPnj01KQ7xDsndunVrXxL+s88+0xjcfffdOv3HH39ck+WQq59++qk69thj1dixYzUpf9VVV+l0je682xPeJuG//fZb1aVLF11u0iBOnz591Lhx43R5yGvDDTdUjz76qKpZs6Y6+OCD1UEHHaQ9/jml0L9/fzVp0iRNyp955pl6E2DMmDGR8JSHs49AqZLwRhOezS7Id5Gjyb6tmRxkkZk7rCWnYATEFsVCKiMCYtfJalXwS4afxI6PgNhefOwkpiAgCAgCgoAgEAUBIeFjkvCAHJWIf27iLIc83kD96cjKrPhlldp3z6YV6urDGQvV6tVrVa/Dto1Sj+W8y4m40UYbqf33319fuMrv6Tzh3RezQsa3a9dOe6P7ecJD+k+fPl09/PDDqbJCukOKb7zxxmrFihWqQYMG+jOeQxrnm2++0X8HkfCk+95772lPehP69u2rCfdrr7028F2mTZumifsbb7xRHXDAATq6XY5IoMrDWUWgVEn4hvVrysWsWbUs/8RlkZkn4CXbCgiILYpRVEYExK6T1arglww/iR0fAbG9+NhJTEFAEBAEBAFBIAoCQsI7aMXxhDcgn3/++Wr8+PHagxxP8qBw75hP1FZb1FF//1tVNfHNOerko3fwfBwi/vff/1InHPm/y1rTVaqXHI0dJyoJb5PkfiQ8cjV//vmnlrvxCni3462OJ7oJYUh4tzQNccNK6/AsnvN45M+dO1dtvvnmWganZcuW6SCUz3OMQKmS8A3q1ahAwoskTW6MTxaZucFZckmPgNhieozkieJDQOw6WZ0Jfsnwk9jxERDbi4+dxBQEBAFBQBAQBKIgICS8g1ZcEn7gwIFabgV98nvuuSct7nc/+rHaomkt1cq5WHX0czNV5w5bqEabbeIZb8lPv6kPZyxSZx6/c9p0eSDTJHxcT/j58+erzTbbTHuxjxw5Ukv1oPuOdE23bt0SecJXrVpVe/YHbSjg9b569WpVp04drQmP5/x//vMfrXUvobAQKFUSvn6dMi2nhD0jRWNkaUQXPvv2KYvM7GMsOYRDQGwxHE7yVHEhIHadrL4Ev2T4Sez4CIjtxcdOYgoCgoAgIAgIAlEQEBI+Jgk/ZMgQ9eCDD2pC2M8T3F0ReL8vWvKb2rvd5mrpsj/U+H9/rU49xtsbnriffLZYfT1vmepz3M6qZtnGgfWajoTHmx1yGumY7777TqEXTxzKzsWsyM7wTkaDPYomPGm2b99eE+94oE+ePFk99thj+u8JEyZoORzSZsPC9oSHKEc2hhCkCT916lRdXjTn27ZtG0jCky/kP/rxDRs21Fr0QsJH6RJy92ypkvD1am+iSXi+hITPnb2Rkywyc4u35OaPgNiiWEdlREDsOlmtCn7J8JPY8REQ24uPncQUBAQBQUAQEASiICAkfAwS/oEHHkhpk4cl4KmUn5f/qW598EN1whGtdR399vtqNfb5z9WB/2ihmjQsq1Bv705boN775AfV/5+7qRZNawTWazoSft68eeroo49WS5YsUfXq1VPbbrutJgENCX/zzTerHXfcUXuMQwwOGDBAnXTSSTpPPzkaPnvllVfUxRdfrFauXKn13zkRQDp4oUOcv//++5qEP+aYY7Q0DcQr2u4vvPCCJv6RiyFPtwTN22+/rT+nvGVlZZrc79q1qy5PkCc8n19xxRV6A4AyNG/eXHvPUyYJhYVAqZLwdWtV120CT3jjDS9yNLmxTVlk5gZnySU9AmKL6TGSJ4oPAbHrZHUm+CXDT2LHR0BsLz52ElMQEAQEAUFAEIiCgJDwDlpR5Wggd5955hnVq1evKFjrZ1+ZPEct+HGl6rhnM/33Ukd2ZuJbc9Uff6xWzZvUUH/724Zq+S9/qnnzV6j99mqquu6/pVq7dp1DjFeJnJdEEAQKGYFSJuGNJ7xNwlNXIkmTXYuVRWZ28ZXUwyMgthgeK3myeBAQu05WV4JfMvwkdnwESsn2WMf/9NNP2nlMgiAgCAgCgoAgkGsEhIR3EI9KwietpP+8P1998+3Pah9HlsaExUt/Uz8s+lWtWbtWfb/gF7XQ+fvko7ZXrVrWSZqdxBcEChKBXJHwd955p+KLC4I5GZHPi3rpcPGEFxI+mUkuXbpUS2chb8Wpgn79+ikuik4Xwi4yOf3z3nvv6ZM7pG8HTuIQuAA614FyHXrooapHjx6Jszb3dJiEeM+TTz5ZXXrppYnTTpcA9XfOOefok1KE3XffXd1xxx2qbt266aJWms/FFr2rEnk8Tq/FaV+zZ8/W/YI58cedNM2arXd4CBsYJ/7973/rU4KNGjUqd9/P9OnT1RlnnKEWLlyoqlWrpk/dcX8OgVOBF1xwQWqcIe9SsmeDb1i7DlsfmXqO05b33XdfheSef/551bp1az1HuO222/QJSvqj0aNHp/p+TmVyetP9GSdQ3cFIVLrHqLB9a1j87D6Uzfw2bdqU60Mpm3m3IAzd7S1J+0tXV2HLlC4d+Tw7CIS1PXJ/7bXXVJ8+fRSnlhs3bhyqQO4Tz6EiJXgIW6bdep1Yf/nll9Xll1+uPvjgA31nGfPHOGNOguJJVEFAEBAEBIESRkBIeKfyc03C6wnMO/PUf6c5l5jWra423WRjR5aiilr5619q4ZJf1e67NFRd9t6ihM1SXr0UEMgFCT9t2jRNLL700kv6gmDuCOB/LE7zEehw69Ssphf39uWsxgNePOHD1cpxxx2nWrVqpbgcGzKiS5cu6oknntBkSlAIu8iE7GZBNnjwYNW7d+9UktgOJB+Lznws2LJBwpt7Orgr5JBDDtFEzj/+8Y9wFRHzKS4z5x6RQYMG6RQgM7/44ou8tcuYr5EomtiiN3xJSEDTL9DPX3TRRWrVqlWa0I8SIGPWrVunvyBdbQJnjz320GTNiSeeqDfokPiDhKpfv74mQSGZkM0j/6+++kqNGTMmStaV4tmwdp3vl/3222+1TOKUKVMUvzOGMC9o2bKlOu2009QWW2yhrr76an2/EeQ99xux8cJn2223nedmZd++fdWee+6pxwyvMWrEiBGqU6dOGRmjunfvrrbeemst1ch9T/Sh8+fPT9lcWMJbSPh8W2Lh5B+l7WLr3P9FezjvvPNCvUQhkfB2gYWED1V98pAgIAgIAoJABhEQEt4BMx8kPHX4119r1YczF6qFi39VG1SpohrU30Tt0rq+Q9BVzWAVS1KCQGEikAsSHvIdchHvRUK+J9tCwmfGFqnXDh066PslCO57IvxyCbvIhOzGI5ZgE2ksNrn/AuLakPB4x7IQxft211131RdIs8lCGpA23HkxdOhQ7cGOHbJwdXvv+6UBCQjp/9FHH6kmTZro+zy4a8N4wuOhCTnEPR6QjQceeKAuc5BXp8HGeMIbEp7/Qx4dddRROn37Xo/atWvri8i5WwPShouvf/31V10uykR94PVrNi9s/N3emHjQ9e/fv9wpA/I699xz1U033aQ22WQTXZ8777yzwluNvFq0aKFOOeUU7Tnv9kDmWd7XbMAY8okygDe4Ec9+h8xYYbJUSt0WbZvHhjih9OKLL5bzVsY2sTe8kmlfkI6Q4n72jS3ccMMNeoOH9oBnvE3C297q2Pjw4cN9K9FNGC1atEgTnXfffXcqjrG9X375Rd9hAyFP+Prrr/WGFkR8qYWwdp1vXCARsSf69Icffli9/vrr+icB71kIc/ruGTNm6P/tsMMO+qcfkQiRTx9vTk/Rn3G3kvESDruBGha/XXbZRbcLc9/RggUL9KYxp8K6deuWgtfYuO0RbN6B97dPB5x++ukV2p/XGNSuXTu9CeG++8k+kWb34dw5ZRO1lCkTp7nybUOVLf+wtke9s+mIvXEP2MSJE1NQuO3czM2wPzNnwiGG35ljBY3rzPGQfl3rnBBnzsAJJOZXzHeYUxkbYty45JJLdHr2qTozdrAZ+/nnn+u5AP9jrmKvBfK9LqhsdiTvIwgIAoKAIJAeASHhHYzyRcKnrx55QhCovAjkgoR3owchM2vWLHX77bfnBVgh4TMPO3aE1+HUqVNTpLxfLmEXmSwkIbSvueYaTcggY2QWnhxhhgRkEbl8+XLVsWNHfVH3AQccoM4880xN9kIykAbkHMQOxPGVV16p5s6dq0k84h100EGaUNxqq61804DYW7x4sSYof/zxR02ukI4hEN966y19AoAFJhhAJP3222/680mTJmk88PYkL7dcj5uE//LLL9Xhhx+uZTV4XwjsjTfeWEGgsHDF4/Ljjz/Wv7PgHTt2rCaAbK9RG3eInnfeeaeCdzvYUVeG8PKqKxbuLKbJ02xo8BzYQayyUfDQQw+ptm3basLej4QHLzDmmSFDhui6xPO1EEKp2yKnIWgjbDJhY2+88Ya2FS/PXMjvp59+Wm2zzTb6JBOnm4x9H3zwwZrI4SJ5YwuQLXvvvXeq7VLf2PsRRxyhxo8fryVqsA3aBsSjV0jntWmTrtiVW0KHzSB7g6sQbC4XZQhr17koi18e9L9s1Jgxw13XfqQcJB92g73ZJ6TIh36ZgPe8O5ixw4wlQe8eFj9IbTYXIdG33377CknanvBuWQ77fdN5wvNejC/012bc4j4sSHgzpjE+sanGyRDGY8Yddx9OAcN65+fTNko577C2h8088MADur9mDmCfQvQj4ZmTuNsZzwaN69gQpx0Zs+nzcUDglNGTTz6p52bYHG2VUyFmPnLZZZelToS45yrMz2jDOFYICV/Kli7vLggIAoJA/hEQEt6pAyHh82+IUoLSQyDXJLxZJEIM5kurV0j4zNm5rWkOWQuhli6EXWSyOESSBZLDeEsiS4DHFUSDIdwgVfAEM/JG2BgekBD07sXoPvvso8l5yB8Cl4JBzuMZ7peGO46dJiQmnpZG3gASksUo6bN4RVaGn25Ne4ORWxOe/5MGhCcBuR/ew3hyUhbKCVnv5VVpy3YEtTX3QtzWVTZe8zaxDoG17bbbltOeZWFOYPMjHQlviFCTDpsMbHzkO5S6LUJm7rTTTnpDp0aNGqnq8CIFbXuDROGrTp319+WwuYK0F6SgsQU2j9hEw4uZNkag7XEqynjGQ+RgC156wTwfRMJjS5D/kEK0GS8JHSHh893C/PN3b8aHIeGxLeyHTVf6QbtfTUey0283bNhQ91fpQth+gXQgv0eOHKnWrFmjjj/+eH0ngSlXpkh43puNZzPO8C6MibQ3M4aZNmbGCE4luftlyiskfLraz+/nYW2PDX82OdnYZzOoVq1aqc2nsCR83HHdPvHG2E7/j6OC6dfZKMJLn/UFTgn22GEIe04oCQmfX1uT3AUBQUAQKHUEhIR3LEBI+FJvBvL++UAglyQ8uuGQMiyCjWRHPt5ZSPjMow4xYjye8YwOCmEXmYZoQCeYC0TxxGLhid5z9erVUyS832V/LA7di1E/AiIoDXccO02vSwHx6oUcgTxnY4JymEsGkXox0gMQkngVg5shqVesWKE9hfHyRFbHljQwmAZJGxgyk8U1uBnvZHd9uKUfzOf2u9oEjpdsjk2ahSXhyceLGMq8RYZLsZRtEaKQkx1sIr377rvacxZC0cgd2V7lbi9e7AviB4KF3wnG7u36xVafffZZ/QUB6iWVZGQRvGosiIQnrbKyshTxIyT8/xAMa9fhWknmn8JmIIvZpDTjRRgSnpKw+YOMzeabb17O450+jQ0drzsASJvxg4t6/TZE7beMg9+cOXPUv/71L9WgQYPURcKZIuG9xiBDwnMqCe9i+8SH10aqVx+f+ZqVFJMiEMb2DMltLmTF7tkU54JTQlgSPu647ibh7U0ht525HQb43GyOCgmf1FokviAgCAgCgkASBISEd9ATEj6JCUlcQSAeArki4Y3XImRqvnVIhYSPZyvuWBw9xhPVaMJ7LcS8cgqzyDQLSUM0QOzh8cXxZ2zWlp7AmxaZDH66g9di1OhV86zxIoS08EsjyBPe/ZnX+0IaQZJAbiJtY4egRTCyL3ifG2kBO16QtAHPsSD//vvvfeVmjJyI0U52L5zdXpTGY84ui9sTHm9Qo41sa8LbmwzF7Alf2W3xkUceUXyhwZ3OE54TKdxPALmOB73d9t2bLOgHQ5CiWYzHJO0hjDcyNulHwnv9H1kT0YRf35LD9rGZGQmip4L9IElk99lBmvCcnGOcMZrwXhsuXNjLxpE55WRKxbOQ/dxtEYaAD4uf0X+37ydw9+duEp67NYwEWBQ5miBPeDam6a85zcL7+W2kevXx0WtOYmQbgTBtF+k3NvTd4d5779WnJYyUX8+ePfUj2A+bpm45mjDjupfMnJcnvN2vB3nCc0LvyCOP1Hd1CAmfbWuS9AUBQUAQEASCEBAS3kFHSHhpJIJA7hHIBQnPRJ/L0vbbbz/tIZzvICR8ZmoAchXCY9CgQdqjFs3z2267TUvIhBnw0pXCJvYgV/DSxUscvV+bhGHBh6f5Lbfcor3kIeMg6SHs3SS8WxMe6Zhhw4bpC0j90rA1d92a8HxGGzJkEpIBEO6UAY93LmxFJgDN9jAkPJ7whx12mGLxzKYDBAuSH7wbi1wW0hBKeL75ydGQN1rySOwEST5Rf5tuuqmWAqGM6HuzSWbkb9xkapB2LOVF1gRbAAu8q408kFsTHpLXXA6Xzgay/XkYwoMyVEZbxHPdnNCgHUOWYwvUD7bFZpW55NS96WPuY4BM5YQT+tS0f1uOZt26dVonG7s6//zztXaw2fyBiESugDyx61NPPdWzqr3IdrzrIfTdpKp9XwT2iG4xRI+XZ3S27Srf6Ye163yVE1vBa9w+EYe+P6d3vO65wN7Y8KFPQfbIvveDd6A/pI+0L6fk/9gtGz58HkX+Lgx+2BvtBzkkLkMl0GbsOy+QE+NSS/p++mXGAfo+TnLRL3LvB23O3d7cfwdpwpMO94iYtOmrgjzh7TLlq/4lX38Ewtge7QcHCPuiXU6HELhryd6EZ35C/4xtmnts6IvNZlA6TfgwJHxUTXjKid0LCS8tQRAQBAQBQSCfCAgJ76AvJHw+TVDyLlUEckHCsxB2ewCDN2RKPrzi6XDr1qquF/N8Va1aVW2wwQaqSpUq2gzMz1K1ibDvDSENSQx5ggceRIT74lGvtMIsMolnE5+GaIe0Q77A7QkJWYiNLVmyRNWrVy8lq+Em4SFOIKgnT55cocx+aRCHiys/+ugjxWWTpA/xgu0aWQ6ISwIEupGLoTyQKYasGT16dAVPTLcmPDjuv//+2qOT3yE4IcbRxbcxDvKE95L88GprkJ/oF1N29IyRUWChjnc/wU3C8zzyNpQF0h7deuNpx6IejHgGYmr+/PkpSQZIIv5HPC7MxYPaeMyHtbVsPVfqtgg5efHFF6uVK1eWazfY7J577qnYFILI9pKjMW2C9oB0EqQ7Ot3GbiCF6BuwFbw2DeHKJs3gwYO1rUBCIhHiR5B6kfBeElDkCalDGz7rrLNCpZ0tmyqEdMPadT7KChkNeeh1OTPE4NChQyv0mdgjG3tsatJXmc0j49lOPwQR7b6o1WjI2+8ZJH9knguLH2Ngnz591BdffKHLhW3iGd+yZUudFGOAGatwRGB8pM3RJigbbQC7dbc3r7/t9sY4xH0kpEffS7+8bNkyrZXPpfd4xZOfl/SXu0z5sAHJ0x+BdLZnNqsYT80pRFJjgxMbmTlzpu63DznkED0foo9FL97MWYhPX4ycE2N/0LjuJzPn9oQnf+7qwe7MHABnAfp17J+5z88//6zHA2yX//GZkPDSEgQBQUAQEATyiYCQ8A76QsLn0wQl71JFIBckfKFhKyR8fmsk3SIzv6WT3DOJgJfcTibTT5qW2GJSBCV+ISIgdp2sVgoNP8h+yM0WLVroi2nD3r+SDAWJnQ8ECs328oGB5CkICAKCgCAgCOQCASHh80jCr3Y8wJY5niT1Ha8vr7DSuVTv746H4IbOBWASBIHKhkApk/B40eEFb3vCixd89i1cFpnZx7hQchASvlBqQspRSghIH5ustgsNP+ZpeLCbkyV4wIc5dZYMBYmdDwQKzfbygYHkKQgIAoKAICAI5AIBIeHzRMJDwH/oaFSvnD1bbefoUzZy9CjtAAE/zTmqXa1RI9Xm+uuFiM9Fa5A8copAqZLw9WpvkpKjQYrGyNEICZ9985NFZvYxlhzCISC2GA4neaq4EBC7TlZfgl8y/CR2fATE9uJjJzEFAUFAEBAEBIEoCAgJnwcS3hDwZY4+XTPnkptpQ4aoVs6FeoaIh4D/1LkAcCeHnJ/nXAK20tG4FSI+ilnLs8WAQLZJeHSCCyUYgp0Ot36dsnJ68ELC566WZJGZO6wlp2AExBbFQiojAmLXyWpV8EuGn8SOj4DYXnzsJKYgIAgIAoKAIBAFASHhc0zC2wR8K+eCvWWff66qOZeLGSJ+U+dSJUPA/+5cbFN7u+3UV87FMtki4t2XDEYxnnw9ay4rvPPOO9Vmm23mWwwuSTv99NNVmzZt8lVUyTcAgWyQ8IVEvHu9Oh1uw/o1PaVoxBM++81FFpnZx1hyCIeA2GI4nOSp4kJA7DpZfQl+yfCT2PERENuLj53EFAQEAUFAEBAEoiAgJHwOSXg3Af/htdeqlc6N7dv16aM2dW6Rn+Z4v1etXl3tctFF6hfn/5/fe68qc/7fZuDAtET8bEfW5kzHm/4bx4senWmI5xEjRqiGDRsG2kMxkvBnnHGGviTqUkfOB0J+xowZ+sb78ePHq8cff1y1bt1av/PSpUvVAQccoJ599lnV3MFRQmEhkEkS3ibfC5mInzPvR9Vos1oVSHhqRkj47NunLDKzj7HkEA4BscVwOMlTxYWA2HWy+hL8kuEnseMjILYXHzuJKQgIAoKAICAIREFASPgckvBUzGfDh6sqa9aorXv3Vh86MjQr581LkfAfDxum1vz5p2p14onrSXnn82r166s2gwZpEl45lzm2di5IcgeI6N13312T8P/85z/1x1dddZV67bXX1JQpUwLtodhIeN7pmmuuUW+++aZ+r+sdvfzXX39dHXrooerWW29Vzz//fIqE5/OHH35YvfLKK2rMmDFR2oU8mwMEMkXCt2i2fqMJ8t0Q8IVIxEOyQ8I3aVin3IWsyNEQhITPvtHJIjP7GEsO4RAQWwyHkzxVXAiIXSerL8EvGX4SOz4CYnvxsZOYgoAgIAgIAoJAFASEhHfQWrJspapXuywUbnicN3IuS61WrVqF52fOnKm23377tOnYRLyRo/n0lltUa8cDnvCJQ6AjVQMR/3eHhA8i4Hn+s88+U926dVOQmjVr1tRpQMzvtdde2jN8q622UtOnT1d4kC9cuFCX/YYbblBdu3bVHuSQ17vttpuaMGGCviSyX79+6uyzz06lc95556lXX31V/33YYYep4c5GAmHffffV5P9bb72lljjSOXibk+4ll1yivnU8+es5Mjv333+/2nHHHfXzTz75pBo8eLD6/fffI31mA8omQ9u2bVPlsz/bcsstK5Dwy5cv12WEtG/cuHHaupEHcodApkj4/5HvkPDryXjnu/59fcinNnwVXQKHf+e7JtrXOptw/KzitDX98/+/coe85CQICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCCQawRaNm+kqjjEVWymKgqJ7fVyxRS/VatWqlmzZuqJJ55QdevWTb0OxPRdd92lBjrSMaeeemraOjREfFNHLsUQ8F/dfbeOxyWthoiHpPfzgLcz6dy5s1q1apX2DId03sjxmjcBIrpjx46qb9++6rTTTlNTp05VJzgk/6RJkzRxf6HjXT9gwAD9GaT9lVdeqdhQIA0IeH7Hw5x0unfvrs4991zV2/Hkh4RHkx1vc8LBBx+sJWBeeuklLYNz2WWXaTIe8n3atGnq2GOPVWPHjtVSOXjqQ4zztWDBArXPPvuop556Sn82xDkB8MILL3h68UPo49VuiH0bAy8Sns/ZoDjqqKPUSSedlLZe5IHcIZApEp4OrFgCu56NG9Qu5wkvJHzuak88vXKHteQUjIDYolhIZURA7DpZrQp+yfCT2PERENuLj53EFAQEAUFAEBAEoiAgnvAOWlE2AfAch7RGk9wQ8YaAb9++vSakbQI8qDIg4he/+67a2SGkIeCbdumiH//OIccNEV9/zz09JWjc6eL5ftNNN6lHH31Uk/G2JjyENh7qb7/9dioaRPkOO+ygyXE84Y28Cw/YZDabDqMdKRzejQDJP2vWLDVq1ChNwkPS9+jRQ38GeT5nzhz9GcGWusH7fcWKFapBgwb6MzzzIfTRsDfe6mwSnHzyydpTf9GiRapJkyblXvPrr79WBx54oPriiy88MfYj4fGe33rrrbWGvITCQaBUSXijCc+pEwh4kaPJnU3KIjN3WEtOwQiILYqFVEYExK6T1arglww/iR0fAbG9+NhJTEFAEBAEBAFBIAoCQsI7aEUh4Q25jOQKHvEdOnTQxHdUAt5U0kpH3uYzhzyHgK/vuVWW3AAAIABJREFUSML8sXixvpQVIr71BReospYto9Snfva7777ThDge7++//76644471Lhx48oR7SZRL014m8zmd3dgAwJ5GjcJbxP0Bieb4OdzsIKQNwESnvDll1+qixw5nq+++kpL6rCxgXe8HYzsjonjLpcfCe/eHIgMqETICgKlSsI3rF9TLmbNikWlT1QWmekxkidyg4DYYm5wllxyi4DYdTK8Bb9k+Ens+AiI7cXHTmIKAoKAICAICAJREBAS3kErKgkPwJDXEPFrHH3nuAT86pUr1YdOGoaA//DaazUJ38aRtDFEfBvHg33DsmC9+nvuuUf9+9//Vs8880yq7vGM33bbbbWMDDr2bk94tOFr1KihJk6cmNYTnnS95F+ikPCPPfaYGjlypJacadq0aUrHHkLd7SX/yCOP6E0ECHk7iCd8lKZd+M+WKgnfoF6NCiS8SNLkxl5lkZkbnCWX9AiILabHSJ4oPgTErpPVmeCXDD+JHR8Bsb342ElMQUAQEAQEAUEgCgJCwsck4Q0RD8kNCR5WgsaunJUOAT3NIeFbHX+8voR1mkM8E9oOGqRJ+K8cr/G2Dglf5uGNbqeD7noXx5P+4osvTumeI4szbNgw7QlPQBOeTQN02SE/jzvuOPXss89qD/QgORpzmSvEODIxd955p9Z7P+aYYyJ5whMPbXgufwUrSHb04SHhjV48WG6zzTYpXXo3Cc97iCZ8lOZd2M+WKglfv06Z2nDDDVO68EaWBiJeQnYRkEVmdvGV1MMjILYYHit5sngQELtOVleCXzL8JHZ8BMT24mMnMQUBQUAQEAQEgSgICAnvoBXHEz4KyEHPuol4no1CwJu0IdO5MNVItSDNcvnll6ckXdBgN4R6meNZD0GPvno6ORo86tF9R34Gr38ufUXehktpo3jCkw6XwbIpAAkPiY80DUQs8jMPPvig1rTHK75evXpq8ODBunzugL5727Zt1dlnn13hMy85GvLdfvvttRRP48aNM1Vtkk4GEChVEr5e7U00Cc8XBLyQ8BkwppBJyCIzJFDyWNYREFvMOsSSQR4QELtOBrrglww/iR0fAbG9+NhJTEFAEBAEBAFBIAoCQsLnmYSnsmwinr/DesBHqejK8iw693j02xfJBr0bMjgvvviiGjNmTGWBoNK8R6mS8HVrVdcbUVWrVk15w4scTW7MWhaZucFZckmPgNhieozkieJDQOw6WZ0Jfsnwk9jxERDbi4+dxBQEBAFBQBAQBKIgICR8AZDwNhHP72EkaKJUcmV7Fo/+1q1baw/9oLB06VJ1wAEHaL18PPclFBYCpUzCG094iHjjCU/tiCRNdm0024vMFStW6Bfgvg0JgkAQAmKLYh+VEYFs23VlxMx+J8Gvstdw4b5fodjeTz/9pOVP+SqFMH/+fNWkSZOCedVCw1/m1QVjGlIQQUAQyCACQsI7YOZTjsauSzziCek04DNY/0WZFBIzaNujM7/ZZpv5vsOZZ56p+vTpo9q0aVOU71nZC50rEh474Qupo+bO3QtcDpyvTRk6XDzhhYTPnHWfdNJJinsxwpyOibrIxG7uuusuhZyXHZDFOvTQQ1WPHj3U9ddfrz+69NJLtUwW8lpDhw7N3AtKSpUSgbC2iK3Ztt2gQQN1++23px3XktqibeO5rgAvmbywZeAieuYHS5Ys0dJ29PfNmjULG10/x1jB5v2oUaNUo0aN9L0/Jrzyyivqggsu0M8gzzd69OhYdwJFKlARPRzWrnP9SvTT9913X4VsuYsIpw76+ttuu00xv3TX65w5c7Rk4vjx4/WdRTxPQALRHZBpxG7cEoz9+vXzlFF0xw+LH04m55xzjpZ4ZDOfea6RijRlM+8WhLW7rSVpe+nq1EsyMl0c+Tx3CKSzPeZZ+++/f0pG1JSMO8hoFxMnTsxIYZEiRbL01FNP9U0PO33hhRd0WyuG4B7HKTN9xYABA/Rc8q233gpcz2b7HSkLfSB9Wxj845bH7gM+++wz3Semm7uHnctI/xK3ViSeICAI5AMBIeEd1AuFhM+HAUiegkC+EMgFCc+lvyeffLJ66aWXVNOmTdVVV12lvvvuu7xN3Olw69Sspkkb+3JW4wEvnvDRrPG1115TZ511lr7vId1EnpTTLTLduR900EEKL6Xhw4eXu6PCj4SPVnp5upQRCGuL2NrWW2+tN3kId999t/76+OOPswpfsZLwXDrfqlUr3ddfdNFFatWqVfry+SiBRf+6dev0F2SqIXoWLFigSSjk7bbbbjvFBiA/r7766ijJV+pnw9p1vkGAUITomzJlit7E7dKli4K0btmypTrttNPUFltsoesVoqhv374Ku2JzNYjY5rk999xT9e7dW9scz/K1fPlynf5DDz2k7zQKCmHx6969u+4XrrvuOrV69Wp1xRVX6LHKSC+GJaSEhM+3JRZO/mFsjzkR93th4yb07NlTdejQIe3p5Ey+aTGS8PY4nkksMpGWTcJnIj2/NOKQ8GHLE7bPC5uePCcICAKCQDYREBLeQVdI+GyamKQtCHgjkAsSft68eZp0Z4FAyKaXV5h6FhI+DErhnoEc22+//bQXER5YmSbhIWaOPPJI7Y0FEYP3sQl+JLztFR/kCcmCBy96vOzXrl2rT+xceOGF2qve7a3JBgDPSqhcCIQhPHhjNwnP/+zFJqc0IA3x/N511121RyKbfLYtkkaLFi3UuHHj1LJly/SGEl5vBDs+nuP333+/2nHHHXW+derUUS+//LL2+sYGsUVTJnMShL/tS9r5feedd9bxyA/PfeJCEFK+hQsXqvPPP1//zytv7nCx2wCXzVMWpAm4IB4ilLzti95tL2Pyv+GGG1T79u01EYpnvE3C084mTJigZcD4v9cF8MbSwHDWrFkpEp7xg3fC85MQ9Y6aymXB3m8T1q7zjQWEOaQYsobU5+uvv56qVzxsR4wYoe3NDkEkD+MFdsm8hvbnbrdhN7XC4rfLLrvoUxi0VQIbRIMHD1a0hW7duqWKbdqs7TVs7Jr3t9va6aefXqHtmZOnH330kZbMoI9o166d3hRMN8aZfuDmm28uR9DKmJZv64/fdukz6ffMZg8bTJzCePvtt7UzhN945O7D6f9NX0xpDjvsMM/xhRMfbHZ+/vnnegy46aabdJ9t+uJff/1VYZvYJc425pSrVz/PPA45U8YkxkvGQNsT214fGC/t3XbbTedF3oytpr0Rlz6CcaRz585qxowZgXNQr3Hc1AL9CuNcmDy9Tuv4je+kZ/cFZqxmUxlc3eMyJ77whLf7KruN165dW58IAoMg/En76KOP1pubps5wgnL3S9tss005/MPMZeKmbddtUNmD+rvCbLVSKkFAEChWBISEd2pOSPhiNV8pdzEjkAsS3saHyRUSRZtvvnnePBeFhM+cxUIk/PLLL4pFEgvDTJPwpP/DDz/oi6Ah9mbOnJmSnQhDwl955ZVq7ty5mtRkccGiBJtHrob0WHjh0cxnvXr10rICfGYCCwU8Mfk/pI6EyoVAWLItyBMeAqRjx47q2muv1fef0L+xUIbkcpPwLIi9vHIhEMgDCRfIsjfeeEM/x//sOHhA4lmOB6SbUHST8Mh54KGL3eJBDHnH38bWIckhAPzydm+Wkh9tHbKURX26tgVBQp577723lixAhowALhz7f+KJJzSpQ9kgXyGPvEI6Et6QHBAoEtYjENau84kX7YZNGshE+lx3PfvJJASR8NgkwZyKeOyxxzRhZdoc7Qc5G2OLfu8fFj82DxgbING33377CsnZZXV7Ddvvm84TnveirdD2wI33YLyChE/XDu1+gAKKp2o+rT593mFsj80e+nszX8Eunn766ZSd+41H7j6cfpn+mM1a7IqTHYxjnTp1Kje+mJNNAwcO1OMHf9Nu6beZm40dO1aTwvbpFb9+/ueff9ZEMCQ07+Bu524SnmfZ9MXTn5NVX331ld58MCdseW9OzjDuMgYEzUHDkvDp8pw0aZLusw4++GB1yimn6A0K91jtdeoG8hps2cTgJ3izkcd7gSeb2mwwu0l4Ni023nhjPTcAH8ZxTuHxux/+xEHGjbTZVKevMJKOfp7wYecycdLG8t0kvF/Zg/q79C1InhAEBAFBIDwCQsI7WAkJH95g5ElBIFMI5JKEN3qMHDFn8p+vC5+EhM+M9Rgv9XfffVfXZzZI+D322CO1KGRhBPFgjmCHIeHdl1vts88+WluaRY776K+bnDALJp6HLJJQ+RAIQ3jw1l6a8I8++qhe/GP72AhEH4GF7rnnnqvJADcJ7+e5jm3vtNNOekFtXyjsJtpJD21s8ktHwhttWUO8GS9J/rYJe7+8vUh4u/xh2hbEAR6TeCia/h7SHw1eSAgCBAZkhN9JEzc5a2RLDPHzr3/9S5NIQsL/r32Gtet8tmjGC044mNNNSUl4NvjxBrY3fHi/o446SnvpEmiX/fv3T/vaUfBjg3fkyJFqzZo16vjjj9d3FZgN20yR8LTXyy+/PNVmbDIxTDs0+vmmLwijU58WJHkgKwiEtT17PgRB3bVrV92XBo1H7jEDKUHslY0qTkjZwTxLn7/tttuW06DnJBUntMjL63QHBLtfP+/2vE5Hwvt5yRsHDXPCKswJWy9NeDNuuD3hDZlvp8tpNL54d8KQIUO0pCUEd9B4bHDlmYYNG+o5Lf2VG1d7Tmqnh7Qb5TEb1WYe++WXX/rizwbh4sWLdf9qymvK4UfCh53LxEmbvN0kvJ/tBPV3WWl0kqggIAiULAJCwjtVLyR8ydq/vHgeEcglCc9rMvHEA5OJtzlKm+vXFxI+M4iz8IPg4GeYBZDJNewiE88gPKuM9w6LrXfeeUc9+eSTOqkwJDwyGMZDyuRvCIh0JDwLWk5ssGCSUDkRCGuLNunltnW/yyZZ3Icl4X/88UdNTLOhhYedLUdjE9+2N21YEt7LU9wm4f3yTkfCh21beEQ+++yz+gsCwusiTSQ4jN6+29Lc5Cyfmws8+R2S/5NPPgl1CqdyWnHFtwpr1/nCg3kARBKXmBp99qQkPN7AXNhrzyvwqPz+++/1aSc2VdnEtclsv/ePgx+bY2wIIbNhLhHOFAnv3iC2+6Ow7dC8q3jC58vqw+Ub1vaMvSOnx2kH4xUfNB55yTEh78ImEtIwXnI0kOYQ/l6bnEGnO/z6efKwifW4JLzbqz3MHDSsJ7wf8U+/BQHNCQB+J5ixKx0Jz7wVT3Y2w9mk8xuXzea5Sc/g77aeIIkrNkHYLKCvMxf1Ggkh0vEj4cPOZeKkTb5hSfig/i5cK5KnBAFBQBAIh4CQ8A5OSUn4pPHDVZU8JQhULgRyQcLjBckxR6MJn2/5ACHhk9vw119/7avjnM4jNewik8UOnjLuYDx6w5DwHJvGCxAPYxY+9uQ+iIRngYt3GMeORYYmub0UagphbdG9eOeEBjaF9zaLa47Em80h+13DkvB2nEceeUTxhRa2e2GP5x33axhPeAhoNsEIbjmasJ7wfnmnI+GjtC2IHtoUhADkKwRC2NMlXiS8XWYjNRX14tdCtclMlCusXWcirzhpIBODLIzdZpJqwtMmsQHbrmgTEF94yBPs9hhU7jD4Gf13CH4T3HMbNwlv32UQRY4myDM0SjuknELCx7HY3MUJY3uUxsg5obsOKWw2n4LGIy8S3rzZihUrNAlPemz82s9iM0bGj+fDeML79fNu0t1oxDOvI3hpwnt5pcf1hPe7mDWMJ7yRt2JDmRNr9rwgiIRnA5DLop955pmUnn1YT3ivkwimzoI2QWyLNVI3SPm4+wC7PsLOZaKkjXSNV90GlV084XPX30hOgkCpIyAkvGMBSUn0pPFL3Qjl/UsTgVyQ8ObIKwQMnpAQSR988IHWPsxHEBI+86iH8UIyuYZZZBppAcg6+9JGtHDR4YSgD0PC48F1+OGHa496FnLESecJjycjG0ZPPfVUasGUecQkxUJAIIwtUk43CQ9hCLFMnwYZgifiLbfcoiUBWPCyeXTNNdeE8oTff//9dXwueIRAJF082QwJ79aEx7sX8h99Xrx8KQv9OF6+RufdvcHkpwkflDfvQHpmAe0mGcK0rXXr1mmtbDazuAiWUy2Un/IaAhZvPU6rbLXVVp4m4UfC00fQppEYgRSxJTcKwbbyWYawdp2vMtKP4zVu9+1umSFbX9oupxeJjAc87c94fZrnsXsuiYSIx3sTkhE5M7xXg0IY/LA/2i06zlzESqC90G6mTJmi/0ZGwhBv5mQXNlu9enXtXYw2PW3d3dbcfwdpJIdph3bbsMuUr/qXfP0RCGN7tn3Tl6KZbuS8gsYjdx9u7hMwG0nMrbxIeFsTnpMXzKkg/s1Yhw0T7L7ar59ftWpVOU94c6ks6wHkWWxt9yAv+SBNeDYJIMndkpdJPeHZ2Kb9QsabkzX0ZenkaNgoZyPQfdrL4JpOE57nkJShj6MfY/7LKSL6PT9JFzYl8eg/8cQTU/MDQ8LbfYCNcdi5TNi0g+o2iIQXTXjpIQUBQSBXCAgJ7yCdlERPGj9XlS35CAKFhEAuSHjeFw81js2ycGXhCcHJ4jgfgQ63bq3qWsuRr6pVq6oNNthAValSRRfH/MxH2Yo1z0yT8CwumIgbMsPgwuKHS/AMoW6kOmwPR/t3SD8uzlq2bJm+PBMNYjyYiefnCT9hwgSdhx2C5DKKtc6k3OEvsHQv3t2bRBDVkBcc6a9Xr15KTiasJzz2fvHFF6uVK1eWi0++EAnYO4tviBZzDB0S4JBDDtF50qfWqlVLE4I847ZtnuX/8+fPV9ttt53eOGDhjy67X968I957eEiyeHcTOGHaVt++ffXFsryDOQ5vjvSzyUCwJRC8bNKLhDcexxCykPh4XUr4HwJRiLxc4wZxB4nk7tspBxtKEIqG4GZjyn0SyYuEh+SCGDT3hZh3wu7POeccLdXBOJ/O1ky8sPgh5dSnTx/1xRdfaE14c9E3d0UQ6BPM2MiYAylGe6M90EZp0xCY7rbm9TeXNqNtT//ChcdobpNemHZok/DuMuW6/iW/YATC2h6pMB/iEmL7wnr+7zceuftw7Iwxw6wDvORoGDdoR8jzcTmw3ZcHEal+/bzXhcuMaffee6+eh9vyYkEkPO8JKT5ixAgdD8eJRYsWaScL+1SYjXZSEp53stshOvpsNAfd0eIlJ9O0aVM9ptvjMmmxeWDuLLLryu7H6A/Z9KPtB+FPv4AXOmnadebul+irbPmdMHOZsGnT5/nVbTrb8evvpP8QBAQBQSCTCAgJ76CZlERPGj9TFbrS0YEllDmLQwmCQKEjkCsSvpBwEBI+v7URZZGZ35JK7pUdgVKxRS5wq1+/vvamgwSFUOEn+vMSKh8CpWLX2aq5QsMPsh/CvkWLFlqOCu93yHujp58tHCTd3CNQaLaXewTC5QghjtTlDjvsoFavXq3Y8OUOHzYldtttNy3pJqejwmFZaE9Jf1doNSLlEQQqLwJCwlcSEh4C/kPHy3JD56jpTo4XpxDxlbfRVpY3K2USHo8SvONsT3jxgs++ZcsiM/sYSw7hECgVW3zxxRfV4MGDtdd8WVmZGjZsmO+dDuGQk6cKGYFSsets1UGh4cc8DQ92c6oEz1W+JFQ+BArN9goVYTalaAPvvPOOLiJyL5ycgZhHXsdcjlyo5Zdy+SMg/Z1YhyAgCOQKASHhKwEJbwj4rY8/Xm3qHA3/1NFuEyI+V01I8omLQKmS8PVqb5KSo+Eoq5GjERI+riWFjyeLzPBYyZPZRUBsMbv4Sur5QUDsOhnugl8y/CR2fATE9uJjJzEFAUFAEBAEBIEoCAgJX+QkvE3AN3J0hwkr587NGRGfTo/Z1sHjmBd6sOjUSRAEsk3Co5dYKMEQ7HS49euUldODFxI+d7Uki8zcYS05BSMgtigWUhkRELtOVquCXzL8JHZ8BMT24mMnMQUBQUAQEAQEgSgICAlfxCS8FwFvKj9XRHwUEn7AgAH6csKnn346io3Ks5UUgWyQ8IVEvHtVGx1uw/o1PaVoxBM++4Yui8zsYyw5hENAbDEcTvJUcSEgdp2svgS/ZPhJ7PgIiO3Fx05iCgKCgCAgCAgCURAQEr5ISXgvAv6nTz7RdV9n5531z1wQ8VFI+CiGKc9WfgQyScLb5HshE/Fz5v2oGm1WqwIJT20LCZ99m5dFZvYxlhzCISC2GA4neaq4EBC7TlZfgl8y/CR2fATE9uJjJzEFAUFAEBAEBIEoCAgJn2MSfvbs2apRo0aqWrVqFepp5syZavvtt09bf14E/FKHgJ/uaMEjwLHz+eerOjvtFJqI/+yzz1S3bt1Ujx491IQJE3S8Y489Vt/0TrAlZfjbJt75/eabb1Y77rijevXVV7W+db9+/VIXN9lxr7/+eu0JP2rUKJ3u9OnT1RlnnKEWLlyo8bjhhhtU165d076/PFA5EMgUCd+iWUMNCOS7IeALkYiHZIeEb9KwTrkLWWkzBCHhs2/XssjMPsaSQzgExBbD4SRPFRcCYtfJ6kvwS4afxI6PgNhefOwkpiAgCAgCgoAgEAUBIeEdtJYsW6nq1S6Lglu5Z6PEb9WqlWrWrJl64oknVN26dVPpDB8+XN11111q4MCB6tRTT/UtSxABv/avv9aTeRttVJGIHzFC7XTFFapsyy0rpG1I+IsuukideeaZCnK0V69eauTIkerAAw9MS8JfeOGFaujQoapnz57qzTff1M8///zzqnXr1uXi2iQ82vAdHQ37vn37qtNOO01NnTpVnXDCCWrSpEmquXO5rITKj0CmSPj/ke+Q8OvJeOe7/n19yKc2fJX1bVL/qKKJ9rVr1uifVRzyXf/8/6/KX+PyhoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAIlC4CLZs3UlUc4io2UxWFhPaCuZTi4zkOad2iRYsUEW8I+Pbt26uHH35YbeSQ6H4BEn7axRerVg5hbS5i/enTT9Unjjf6uv8n4Tdw4u/4r3+puiFlaQwJ/42TtglsBqxcuVLdeuutaUl4noF8NwEyvl27dvo9/TzhX3jhBe35/vbbb6fivfTSS2qHHXbQmxQSKj8CmSLh6cCKJbDr2bhB7XKe8ELC5672xNMrd1hLTsEIiC2KhVRGBMSuk9Wq4JcMP4kdHwGxvfjYSUxBQBAQBAQBQSAKAuIJ76CV600AiPhLLrlEk80dOnRQjz76qApDwJuKDSLicbiNQsCTphcJb3utp5OjcZPw9vN+JPwIxzN/3Lhx5cj7KIYrzxY/AqVKwhtNeGRoIOBFjiZ3tiyLzNxhLTkJCS82UHoISB+brM4Fv2T4Sez4CIjtxcdOYgoCgoAgIAgIAlEQEBI+DyQ8FWSI+DWONEUUAj6QiI95MWuheMKjDV+jRg1PvfwoRi3PFgcCpUrCN6xfUy5mzZOJyiIzT8BLthUQEFsUo6iMCIhdJ6tVwS8ZfhI7PgJie/Gxk5iCgCAgCAgCgkAUBISEzxMJb4h4tNPvueeeQAkavwr18ohPkfRz56pPnYtad7rySk8deDtNQ8IPGDBA67MbTXg06jt16qTwip84caLWa//999/1M4sWLdJe7EZeZ8iQIfoy16ia8JwIIB55HnfccerZZ5/VWvISKj8CpUrCN6hXowIJL5I0ubF3WWTmBmfJJT0CYovpMZInig8BsetkdSb4JcNPYsdHQGwvPnYSUxAQBAQBQUAQiIKAkPB5JOGjVFQUIn5lBAKedA0J36NHDzVhwgSdFZfDXnrppfp3LlHt3bu3+vzzz7WX+r777qtmzJiRIuFvdvTod9xxR/Xqq69qaQ3I/JNOOknH9ZOj4bPp06erM844Q+EBX1ZWpoYNG6YvgpVQGgiUKglfv06Z2nDDDVO68EaWBiJeQnYRkEVmdvGV1MMjILYYHit5sngQELtOVleCXzL8JHZ8BMT24mMnMQUBQUAQEAQEgSgICAnvoJVrTfgoFRTmWdsjftPmzUN7wJu0veRowuQrzwgCSRAoVRK+Xu1NNAnPFwS8kPBJrChaXFlkRsNLns4eAmKL2cNWUs4fAmLXybAX/JLhJ7HjIyC2Fx87iSkICAKCgCAgCERBQEj4SkDCU+GGiN9ok01CSdDYRiIkfJQmI89mCoFSJeHr1qqu5aeqVq2a8oYXOZpMWVVwOrLIzA3Okkt6BMQW02MkTxQfAmLXyepM8EuGn8SOj4DYXnzsJKYgIAgIAoKAIBAFASHhKwkJb4h4fpZtuWUUG0jJ0XzzzTeR4snDgkASBEqZhDee8BDxxhMeLEWSJolFpY8ri8z0GMkTuUGgMtjiTz/9pCXq+JIgCIBAZbDrfNZkNvDjLqe//vpL1ahRQ8s/NmjQIJ+vKHkXKALZsL0CfVXdHhi/pC0Uag1JuQQBQUAQqNwICAlfiUj4ym2q8naVDYFck/DcQdC9e3c1fPhwxf0H+Qh0uHjCCwmfHP3ddttNLVu2LJXQ6aefnrrHwi/1sItM7rLgkmkTmjsyX/fff79q2bKl/teWzkbnwQcfrG6//fZyWZlTRZTlggsuUNtuu616++23VePGjfVzPXv2VG3atEmV88knn1SjR49WXNDtDsS78MIL1ZIlS/TJiZNPPjnt+yVHVVLIFQJxbRHC+4orrtC2FBS4NP3WW28tZ8dR3w17Pvvss33T4A6XY445Rt8hk4kAKXLvvffqu2kuuuiicv00beGFF17Q5Mnuu++u2w3tgnDnnXeq2267zfOzTJRL0giPQFi7Dp9i5p585ZVXdL8MKU2f/tRTT6m6deumtSE/+8IWTzjhBPX+++9rW+zXr59uLwT7M9rsTTfdFOrOo7D4MUa99957inmUaQcGKe5tIpgxjDnPJ598ottMq1at1EMPPaT22muvWMCm6xNiJSqRCgKBsLZHYV977TXVp0+fcvObdC9x/fXXq1mzZqlRo0alezQjnzMGMmZ45ffyyy+ryy+/XH3wwQfaES1onMtIYSQrlo2DAAAgAElEQVQRQUAQEAQEAUHAQkBIeAeMYteEF4sWBIoRgVyT8N26dVNffvmluuGGG/JKwtepWU0vmu3LWY0HvHjCh7dkiPCop3fCLjLtC6UhU6699lr18ccfq3HjxukCkjenGCBfatasmSr0lVdeqR5//PHUxdadO3dW/fv3V4ceeqgmZbjAeuutt06R7gMHDtRxSd8OLAqPOOIINXLkSNWlSxf13XffabIH4tWQPOGRkicLEYE4tsh7zJw5U/Xq1Uvdcccd6h//+Ifvq+WChM80ru3bt9d984svvqjOP//8VD/92GOPqfvuu0+T8xCap512mtpuu+30ptS3336r2wgbWWyS8dkWW2yhrr766kwXT9ILgUBYuw6RVEYfof9lAxTijX70qquuUl999ZUaM2ZMoA0Z+xo7dqzuv237YpMLMvKJJ55Qy5cv13YIwd22bVu9gcom8d13363eeecdTVi6xwuvFwyLn9koHjx4sOrdu3cqqWnTpqljjz1Wb/zaG8mZAlMIy0whWXjphLU9St63b181efJk3R7OO++8UC9TSCS8e74lJHyoKpSHBAFBQBAQBDKEgJDwDpBCwmfImiQZQSACArkk4R9++GH13//+V5PwLBjy6QkvJHwEI/F59Ouvv9ZEJF5MUULYRaZNwpM+tgopaEgNSHgIw65du5YjQCBp2rVrp4l2CEJIdkjDQYMGqalTp2pvyM8//zzlvcjG0BlnnKFJejtgo2vWrCnnaT9lyhRtw5QDghWvRrzkyQtPL8p41lln6f/Znvtu0sQmZ006P//8syaimjRpotM23qFRsJVnoyEQ1xbJxbZPTvhAhFDvu+66q94Ews4grU1gs4o42Jnp+/CWNX2h7bVbu3Zt9eCDD2rC0bYdfsdWOb5PXrQFO03SI+277rpLrV27VpOOEJEEPJDJi/9zggTvxKANNLtsxJ8xY4ZOZ4cddtA/bTKHvv31119X/CSQ9ogRI9Srr74arULk6YwgENauM5JZhETcdx/Zth1kQ+7NLNu7FjL/qKOOSp1KoX3QH2P32DCbqLQjAs9Cjqebe4TFj7aHRz+BjQQTaGcrV67U7Ys2mq7/Z2P5119/VR999JGqV6+eeumll3T/T5/A+0C02l7+Jj1OooEF4xt9jnlP+7QB74oXPiGof4hQjfJoFhEIa3tmQ4sNoHvuuUdNnDgxVSq/cYZ+2cyfmjZtqn/Hfk855RS9OeU+4YW9dOjQQT3zzDN63MCZASklbA0Jx6FDh6baEpu2l1xyiU6PU1JsUGPDZn6zatUqPe+y5zfusU1I+CwaliQtCAgCgoAgUAEBIeEdSISEl5YhCOQegVyR8HiodezYUXusHXnkkULC576qM54jxONxxx2n1q1bl1p42fIUfhmGXWS6PeEhvln44flIgIRHouCWW25JLUAhH/gbL8hNN91Uk/AsAlk0IjsDccjpBxaDlL1Tp05aGoDFqJGrMeWGnDee717vQrpIkjz99NNqm2220V6Ye++9d8rLE+9LPDIh7tORMCYdvIjPPPNMjadN6mS88iRBjUAcWyQeG4kQfxDNEGH0bZykOOCAA3T9QaJDfLnJwyASHrJt4403VjfffLOOd9111+mTH26iArtkw8fIXbhJeNoFtkf7ZJMMcoUAMYLMDPGGDBmiSf4oJLxtMtgn5YC8wQPY7V0pnrr5bWBh7Tofpdxjjz30JqbxhMdTnT49yIboW9lwpU80nvD8DWnn3iwiHQJ9v5uEd2/sZmKMQg7qmmuu0RtPbLza3v6MT2FIeMhLLy9/TnXNnTtXt2cwOOigg3Tbhyyl/UGCuk8UmBNc48ePV82aNdPPIVeFPBt4ePUP9kmyfNiE5Pk/BMK2XcaIBx54QJ8+ok1wEqR169Y6oaBxxt3OeJaAjc2ePVuPa+YkCfbCF44MzGOQ42NOxAkW5lPYPeMMNofMpLHhyy67TM2fP1+3V8pp27c9vxESXixfEBAEBAFBIJ8ICAnvoC8kfD5NUPIuVQRyRcLjGQZR6bVozjX2dLjiCZ8c9Xnz5mmv8MMPP1wnxmKfr3THosMuMt2a8FxohxQGHlwEyAT0eFkkGgIEYh3PeLxyjSf8ggUL9DPIHlA+POK/+OIL/TckJTaJ9rs72OQOC0njUWw8yNxap17a8hC0eISxIWB7ebk94W3dcBa1bFRRPgnZRSCuLUKCQWph69genojmTgHq79xzz9XkWxQS3r0ZtM8+++h0CcZ2vMhtNwkP8WfIGNoI5WLTwBA2pOf2SPZC2U1ummf4P9JMbDxQPjx0hYTPrp1GTT2sXUdNNxPPM2ZA5BFq1aql3njjDX1ZaTobwn6NZBgySLQtbC+IhEeugw0jsyl10kkn6U0jCPqgEBY/2h5yVGx0Md7QHyDbhFfw0UcfnboPIt0mrK2ZbeNAH8BmHhsOBHMJ85w5c3zHE56nfZrNasYlNqfNxp1X/2D6i0zUr6SRDIGwtsdch01/xgbsjrZk5L/CkvBsGLnvzLHl+WhbQfZi5AjZ1F28eHHK5tgwQnaK9QVzMdu+DWHP/EZI+GS2IrEFAUFAEBAEkiEgJLyDX75J+KT5JzMBiS0I5AeBXJDwSIDgCTNp0iTPRXOu31xI+OwgzmIfr3B+ZorgMEQ66eHNDrGARxbBEIx4gBHwroSswN743Y4LGY6HPAtW47nFBX5ovnNZniE77XK7ZQ74zE2e+5EnJh1DEJkNKHMUPIiEN+8WVWs/O7VauVMNS3gEedBCmtmyMwYx6i8sCY99sEHkDhBqtu3EJeHZvLIv40tCwlNGiE0Izs0331wTP+kI1MptRYX3dmHtOtcltz3aIekgxyGs2SgKsiE01mmDSG4gcYGnLfIWjAdBJPzSpUs1GY7MF17qEJVsAGRSjoZxBh36c845R49NZiO4evXqiUl4M8a5SfIgUt+9eU0dm43jdKRqru1B8quIQJi2a0huc+E8myyQ50YaMCwJ7zUO2O0wnb0YEt5rfLQ3gN0Xs5p4QsJLCxAEBAFBQBDIJwJCwjvoJyXB8x0/nwYkeQsCcRHIBQmPzIKXNjCepOk80uK+V1A8IeEzgypk9yabbJLSiM42CW/IaQgbSAmzyOP/J554oiZXIBpvv/32cnrdfI4Nrl69Wr84HoEEiHm8j5ETwEPSHZACgMQhPROCSHiv97c94SmD8bgXT/jM2GDSVMIQHuQRRMIH2b0XCY+9scFDMAQiOvF4JNIfu6Uh0hEVufKE52JLymY04e13E034pJaY2fhh7TqzuaZPDZthoxZvcRMMIRdkQxCDf/zxh5bBINhtIkgT3i4RXr977rmnPk3llh5zlzwsfna/QFtmkxeJDtoxxKM54WTucvDr//02c0mTS+yjeMLjlcwmmfuicdPfiCd8ejvN5xNhbI865M4Rd0BuDIk97NJrnGHzySbZjSe8Pe7E9YS3bS7IE94+6ZdubMtnPUjegoAgIAgIApUfASHhnTrON4meNP8oZsqR0vvuv1/94Mgk+IVGjRurfs6Rdo69SxAEsoVALkh4d9n9ZA6y9Y5eC2yRo0mONkQKutJGhiMbcjS2N/sjjzyibrzxRu3JTrC9BNHKRYPUaJm6SVOzaEV73RDuHOHmqLStpWqjgvckHo4XX3yxvnSTRSbxIfq5SM8tRxOkCW8WpcSDbEUX1VzaZ2vLG014ymE2C5LXlKTgh0AYwoO4QSQ8dYveOictkEJicwpSzehEQ6IZ8g2C4/vvv9cXmNL3IofE55AjeNDWqVNHp4OtYZ9IGaEJnVSOhsvwkmrC04aeffZZ3d65V8HWvjdtxUvXWqwv9wiEtetclwyPdi5GxYY44UGfzh0I3H0QZEOMNVywSv+JJzwEM3H4G6Kb9PiiLdJnm3HAvB9zbk5uIAvmderJa47QsnmjtPDY/QLluN+Z13O6itMh9iZVuv7fj4R3a8Kjuz1s2DB9eaufvBkYo91NH8NpA06Q0Z+ceuqpetNPSPi01ZrXB8K0XeY7XK5tS/9h3wScBoLGGU5XMYcyl2in04QPI0cTVRPezG+EhM+rqUnmgoAgIAiUPAJCwjsmkJQEz3f8KFaMJMHkd95VbTse4httyr+fVYcd2lW1a9cuStLyrCAQCYFSJeHr1qquiSS+qlatqi/8rFKlisbO/IwEZIk+jE46noUE9EmNRnQQHGEWmcR3H6tv0KCBJizRySXYJLwhaYxUjZs0ZdEJgWGObxPfkN+G1PcqM1raZ511liaIsBNIDYhRiCA3CU982hPPL1myRMsfQMpArBNY/OKphq3hpYYMjtENh1RCF5l8IExJmzwkZBeBKLZobwi5S4Vd0Raodwgy6p3L8oz37YoVK7TGPycrDjnkkJR92PIYfIakBfrSaF0jlwTRlo6oCOMJz8kRJAsgbdauXav2228/fZ9DkO27N0t5lwEDBuj2vmbNGk3q2xcxQ+pwUSTPuT/Lbi1K6m4Ewtp1PpDj5MjgwYM1MWy3FcoSZEN48EKuY1/0rU899ZTuI/mbU0aTJ08u127Mu9E+2BiDuMQ+aVvpQlj87HHGbMZBenMxuPsUTFD/70fC+71bkBwN72ZjbGMlJHy6ms//5+lsz2xWMU7Yp6bMBtfMmTMV443fOEN85h9IiXFClXbIBdukh9MXjgb2Sa0wJDyoISuF7CTp0f/b8yTGiZ9//rnC/Cbd2Jb/2pASCAKCgCAgCFRmBISEd2o33yR60vyjGOjLL7+sPprxpepy9Klq3vwn1KJvl6vVq9akkqj+923VnM8+Ug3q11U77bSTXszjISdBEMg0Avkg4TP9DlHTo8MVEj4qapl7Pt0iM3M5FUdKbrKmOEpdOUpZSrb40Ucf6VMYbDyymQUBMmbMmMpRkfIW5RAoJbvORtULftlAVdIMg4DYXhiU5BlBQBAQBAQBQSA5AkLClzAJ/8ITl6i/VtZTZTW8vR5/++Vn1WzzJqpPn9OTW5qkIAi4EChlEh6POLybbU948YLPfhORRWZ5jIWEz77N+eVQKraIRy3yOHjI8junSPDYldMW+bO9bOZcKnadLQwFv2whK+mmQ0BsLx1C8rkgIAgIAoKAIJAZBISEL2ES/rERV6jOR52iGmzewtOaFn4/R7369INqxIgRmbE2SUUQsBAoVRK+Xu1NUnI0yIMYORoh4bPfPGSRmX2MJYdwCIgthsNJniouBMSuk9WX4JcMP4kdHwGxvfjYSUxBQBAQBAQBQSAKAkLCCwmv1vztQzX1xQ/Vbz9X9bUdLms93bkgMJ00jbkgCoI1jP5lFGPNxbP5vrgzF+9YKHlkm4Rft25dobxqSuudDrd+nbJyevBCwueummSRmTusJadgBMQWxUIqIwJi18lqVfBLhp/Ejo+A2F587CSmICAICAKCgCAQBQEh4YuQhH/ttdf0JWpcDoVme5Rga8IbT/hvv52ovv/8Z9XhoF6+SX04+WV1UJf9017Wuscee6jVq1erf/3rX6p3795RilYQzwoJn7tqyAYJX0jEuxeSdLgN69f0lKIRT/js254sMrOPseQQDgGxxXA4yVPFhYDYdbL6EvyS4Sex4yMgthcfO4kpCAgCgoAgIAhEQUBI+CIk4ZcuXao6deqkfvvtN/XMM89EIuK9SPjv5kxRP/2wXB3Q80y19Jd/K7VudTkbqrPpAY4szSNq1x22UQcffLCvfb3yyitq4MCB6txzz9WarxMnTiz3LJqwV1xxhdaF5Qb7+fPnq/PPP1/16NFDvf3226p///76FvvmzZurWrVqacL/0ksvVf/85z81sT9jxgy1yy67qFGjRqnZs2er0xzP/G+//VZVq1ZN3XTTTerAAw/U+QWlRd7nnXeeevXVV9WaNWt0OUaPHq1mzZqlunXrliovZDz52M/z4WGHHaaGDx+un7PLgNd/v3791Nlnnx2l/ZX0s5kk4W3yvZCJ+DnzflSNNqtVgYTHEISEz35zkEVm9jGWHMIhILYYDid5qrgQELtOVl+CXzL8JHZ8BMT24mMnMQUBQUAQEAQEgSgICAnvoLVk2UpVr3ZZFNzKPZuP+BDARxxxhPrjjz8iecR7kfDff/OFWvLj9+rAY05XM77trdau/aPc+23ffLR6/ZmxaUn4vn376svWINYht8eNG6dat26t04Is33///dVtt92munbtqi9pGzBggCa0Dz30UNWmTRt1yimn6LiQs7169VKnnnpqioSfNm2aevDBBzVBv+mmm+r0jzrqKDVo0CD14osvas/7999/X1WvXj0wrSuvvFK988476vnnn9flYlPhoIMO0vkQ3J7wEPYzZ87Uzy9fvlx1795dbzLg5Q9p37ZtW3XVVVelyszmA/+TkB6BTJHwLZo11JlBvhsCvhCJeEh2SPgmDeuUu5AVORqCkPDpbSbpE7LITIqgxM8UAmKLmUJS0ikkBMSuk9WG4JcMP4kdHwGxvfjYSUxBQBAQBAQBQSAKAkLCO2jlg0S3Kylu/nGIeC8SfvbMD9XPSxepg487KzYJD0ENMW5I6OOOO05tvfXW6uqrr9avCtk+efLkFPnN/7bcckv9f7zIIeSnT5+eggUy3JDjeMK3aNFCE+6EF154QRPfH3zwQbnnIczTpfXTTz9pPe4aNWrouEOGDFFz5szRXu8ENwnfqlUr7Snfvn17/fn111+vveZ5nnckXHvttbp8Cxcu1OnimS8hPQKZIuH/R75Dwq8n453v+vf1IZ/a8FV0CRz+ne+aaF/rnMDgZxWHfNc///8rPWLyhCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCgkCxItCyeSNVxSGuYjNVcUlkA5jEj++Jj+f4+PHjVc+ePdXQoUPT2qAXCb9gziy1+Id5jhzNaWr12pUYQ7l0qlbdVE166oFAT3guZIWAnzJlio773HPPaekZc0GrTV6bxA0Jz9/Ef/PNN1P5ukl4CH3jrU7aF154YYV3PeusszSxH5QWUj7o6VMu5GgIRnrG/A6Zj0QOgfTcAcIdOZvff/9dXX755WrSpEnqzz//VCeffHKqjGkrQh7QdZA01KrbSNGBFUtg17Nxg9rlPOGFhM9d7YmnV+6wlpyCERBbFAupjAiIXSerVcEvGX4SOz4CYnvxsZOYgoAgIAgIAoJAFATEE95Bq1g3AdBfHzt2rOrcubO65557QtU7RPfb/52qdv3HQY7O+4Oq81GnqO+/+dyRo5mv5Wg+enOCWrlsqdqj67Fq+n9eUb8u/0nt1e149fpzowNJeIjs7777rkIZBg8erKVb7rzzTk2yI0NjgiHh8R6/5JJLKni2257wNgmPJ/wNN9ygtd/dgUtrg9LCex3JnGHDhmmPdffmgJcnvJ/uPpr2m222mfa+590POeQQvRGCvI6E9AiUKglvNOGRoYGAFzma9LaSqSdkkZkpJCWdpAiILSZFUOIXIgJi18lqRfBLhp/Ejo+A2F587CSmICAICAKCgCAQBQEh4YuUhEdGBY1024s7TMUjx3LvffepH3/4QT8OCW/L0Xw29XVNvO+ybzf11bS31G+/LFdt9j88kIRHrx1P/Ndff11rtpuAR/nixYvVmDFjtCZ8ly5d1C233OKpCY+UzYknnuirCW+T8EjfdOzYUWvIcxEqHunkdd1116l69eppWRy/tIyOOxsYP/74o06DMttyNMcff7y+9JVwxhlnaJmZRx55RJP2bCY0bNhQHXPMMWqPPfbQ781pBNLi/YSED2OF658pVRK+Yf2acjFreDPJ6JOyyMwonJJYAgTEFhOAJ1ELFgGx62RVI/glw09ix0dAbC8+dhJTEBAEBAFBQBCIgoCQ8A5axeYJ/8ADD2gd8qgEvNsw+vfvr0n4BXO/VosXfKvlaPxCkBwNF7JChBsi26RhLmM15DwXqOKlzrMQ5VykiiY80i8QssjJLFmyRJPiK1as0BevIkGDJrxNwpM+evgQ5eSBJ7otBROUFrrzxCMfCPt27dppkt146I8YMUIT7fvtt58+XfDXX39pgh/5GeRrKPcdd9yhvelJi89MGSDk8fyXEA6BUiXhG9SrUYGEF0macDaT9ClZZCZFUOJnCgGxxUwhKekUEgJi18lqQ/BLhp/Ejo+A2F587CSmICAICAKCgCAQBQEh4YuQhIcYRiKlV69eUeq6wrP33nufmjd/gVq3dp36W7XqzsWsZ6pprz2nflm2WHU47CT18eTntVf83oefrN4Y92igHE2YglBuCHMTkKMZN26c2nHHHTXZbX/GBgNe7hDbUUMm04qatzwfHoFSJeHr1ynTlwNXrVpVS9EYWRqIeAnZRUAWmdnFV1IPj4DYYnis5MniQUDsOlldCX7J8JPY8REQ24uPncQUBAQBQUAQEASiICAkfBGS8FEqOOhZpGk+/fRT/bXitz/Vgb3OUF98MFn9tuJntePeB6mvP35X/b5yudq5Y1f1+rOPJCLhFy1apA4++GAtTbPNNtso5HSefvpp7Q0P+d6+fXut8w75jlf6oEGD9IWntrxN2PfOZFph85TnoiNQqiR8vdqbaBKeLyHho9tNkhiyyEyCnsTNJAJii5lEU9IqFATErpPVhOCXDD+JHR8Bsb342ElMQUAQEAQEAUEgCgJCwpcwCW8M5b333lPPv/iyat+lu6/tfPTWRLXPXu01SR43QK4j14IcTYMGDbTcC17wBC5ZvfDCC7VMTFlZmb449cADD4yVVSbTilUAiRQKgVIl4evWqq43nvCEN97wIkcTymQSPySLzMQQSgIZQkBsMUNASjIFhYDYdbLqEPyS4Sex4yMgthcfO4kpCAgCgoAgIAhEQUBIeAetYtOEj1LBYZ6FFL/1tttSl7V6xWnYsJHq0+d0VadOnTBJyjOCQFoESpmEN57wNgkPYCJJk9ZsEj0gi8xE8EnkDCIgtphBMCWpgkFA7DpZVQh+yfCT2PERENuLjx0xucuMUKNGjWQJ/X/sTKeXkUIVQCLz589XTZo0KYCSFE8RkOlF/QAHSAmCgCBQGAgICe/UQ6mT8IVhilKKUkMgVyT8ww8/XOHC3G+++SYvcNPh4gkvJHxy+Nk85N6Id999t9zFzEEph11kchn0m2++qZPi1ML++++vbr311nL3VsR5A+7BeP7551Xr1q3jRNeXVB966KH6Mus4gZNM3333XYWo6S75ptzp2sxzzz2nXnjhhQoXdMcpZynEiWKL7ovJM4lPUptyl+Wzzz7T7dK0n0yWNdtpzZkzRz344INq/Pjx6vHHHy/XTnfbbTe1bNmyVBFOP/10fXE8i1tk9egffv75Z/XKK69ku5gFnX5Yu87HSwTNBTiJSf9Ffe6+++5q9OjRqf7e/dkdd9yh6tatq5YuXaqOPfZY3TcyTpx88snaJgj0me6Qrp/l+bD42WMU8ZBuvP/++1XLli3zAa3kWQkQSGd79O3dunXzfNPhw4f7zkvCjgm0jzvvvDP2/CjfVcC4V7NmTTV06NBYczXmUIwjZuy008v0u4Wdi9IfMt/8/PPPlRnzMl2WdOlhF+edd54ux9dff63nwG+99ZbabLPN0kWN/Pn111+vZs2alWgem2k7Dtt+gl725ZdfVpdffrn64IMPImMiEQQBQSA7CAgJ7+AqJHx2jEtSFQSCEMgVCc+kimAWx/msFTrcOjWr6QW7fTmr8YAXT/hwtcPCgDsmuP/hkksuCe15lG6RaXKH4DDEJ95IZ555plq9erW+ryJJCLvw8csjU4SpWUynI9ZNOYSET1Lr3nHj2GLmS6FikQVB5cjEgjEb75kuTcrdt29fddxxx2kSxb1Z5tcGIJ8g4dlYe+ONN4py8yEdNlE+D2vXUdLM1LN+c4HHHntM3XfffWrChAmqWrVq6rTTTlPbbbednjN4fVarVi1NlmErrVq1UgMHDtSEfJcuXdSIESNUp06dKhQZ29pzzz1V7969A18nLH72GMV4eO2116qPP/5YjRs3LlNwSTolhkBY2wOWKGRl2DEh0+RlPqsvzlzNTcJns/xh56JsTHJf2+uvv57YCSXu+9gkfNw0wsaLYtd+aWbajsO2n7DvKM8JAoJAYSAgJLxTD0LCF4YxSilKC4FckfBnnHGG2muvvdRJJ52Ud4CFhM9MFbBYwVM1KikedpFpExyUGJKjTZs26qGHHlJt27bVL4F3JKQNl+tCyHCHhXuybBZVeHfZHmTGa8ykQXqHHXaY4v8E7rU466yz9P0ZeDg+9dRT2vOScrVo0UITLXjlkidpmzKecMIJmhCsXbu29ug1d264Ufcj4b3eibg2AQkWXvnYnvCkf8QRR+iLuMGNts77cOeH7bHJc7RPNjwmT56syw0GfOF5Va9ePfXSSy/pd69sIa4t2jjgdX3BBRdUsBPqAhv59ddf1UcffVQOR+oP713+z5FuMKY+8TKDSOQnx7133XVXtXDhQnX++efr/7Gw3HnnnRUeVaTNseajjz5affvtt5q4vOmmm1JtwF2nti3aZSZdY/Okz9933XWXWrt2rSN/10e3MchLCG68ApcvX56yJzwOsf0vv/xStz8/uwQvnoMcpa127txZzZgxI5AsdxMUeN/16tUr0IsslwRKIbeFsHadj3fwmwtgD4QddthB/7SJmFGjRmmPS9N/2/3cueeeqwYMGKAaN26s4/kRb7QRvDfpB9mADwph8XOPUaRNWzVetEF9Lm2Jkx28C22XsZSxIqjfyEd9SZ65RSCs7bnbiCmlXx/snhcFjQHGE562iuPD3XffrZOnnZn5ln3ihHaATCrjEvMlxhBsmY1UexwhDcaYDh06qGeeeUZ/1r9/fz3GYf+MDcQhvt88jrYV1EbsTT67L2CMmzhxot7Ypb3xjrc5ErD2qRvGTzYCTcBBwk6PZ4Mw8JsX+lmQPcb5jb28K2OwCZSfuVpQOXi/V199VWNJ4ETRqlWr9HyO+QbvyZjOXJCNTvKgT2Tu4TWfsE8UGU98ez5KnZ9yyil63kveVzt6o10AACAASURBVFxxherZs6fO2++9+MyrDnC2Mf1n06ZN9e9B8wpOVvGe7tNTfvkau/LqeynTiy++qJ2KeCdOY5kTV2579HvOvJfXXCdsG8xtjyO5CQKljYCQ8E79Cwlf2o1A3j4/COSKhId8/+KLL/SkzyaL8vHWQsJnBnWOpiL9MG3atNTCy5B5QTmEXWS6CQ7S5H8sGliUkBfHYZ944gm9uMAjEk8hymRLcbiJOXvhg4cR6bB4hFzs3r279mZkgm7kEPD0HzJkiF4UQmhTBggdFkPEwfPSbAywaN14443VzTffrBc21113nfaM9ApeJLzfO0Ew2Ysev3wMOcWimVMK55xzjl7QUs69995bH4VlccTnlHnKlCn6vSC3eDfe9aKLLlLPPvus3nSAvKftGq/TzFhO4aSSxBZ5C3DFTsaOHatJB7x3N998c21D1AWLOfuzLbbYQl199dXafhcvXqylK3788UeN/5VXXqnrCjtmoYztTJ8+XRPPeMEZEp78+IxFs/ECvuqqqzSJweKao86mTlmcUt/YL7Zu6pvNGeRemjVrpvM+5phj9DF3Fq7YGfZh8mZhTbuC9GfBi1cy72DKhH3Qbiifn13SR0DaPP3001qqg4U2BEeQXI6bhKc8vO+6detSC2RbroT6EBJ+fdsKa9f5aIlh5gIQINglxI6X1zoEEkQUY5AdzEYtts5Gox1oXwRsN10Ii5/bEx4C3mwIh+lzTfuk/X711Ve6Dw7qN9KVWz4vfgTC2h5v6uUx7NcH2wSg2aD3GwPMxioEJHMjxhrygtg18x7GJcYM2iftwJD12P0//vEPfeKE8Y15P+MDTg3MYxhj+OLkCuMR4wIb0LQBHDquueYaPfakI+H9xlYvEn6rrbbSfQkbDzgTmPFo0qRJWrqGuRKf0ze5xxA7vXQY+M0L/azSTcJ7jb2Uz6tMQXXxyy+/6LGatRZxIcVxpGjYsKGuL+bLvDtYMH9ljsCc2W8+QfndnvD2fJT6JzBvmD17tjrqqKNSc2K/OQXzH+YMpg6Ygxx00EG6HG67TjevMO/GvIL5F328X744NzC2ePW92By2auZsl112mXaGoF92tx+/54LmOmHbYPH3YvIGgkDxICAkvFNXQsIXj8FKSSsPArki4Y0nLSSfmWiH8UjLBtJCwmcGVUNGQ9iySGMhYxZlQTmEXWT6kfBGogZvWryBjOyAIQO32Wab0CT8a6+9pr2Y8RLG69gEbBTC0Hj52xcquT0t7cUJsggQi8Yrc5999lH33HOPp76qFwnv904sVuxFj18+eCRDQBFsDXPeA8KSBbQJbDSwyN50000D8arMOvNJbBEc3RdtgTMLfTx33bjZC0vsgg0X+kOCbVPUsyEs3Itf9xFrPAjxQKT9UZZtt91Wk9tuAoPPtt9+e70Qh0znTgI81wl2md3pG5KATRhOfECOmHb5ww8/6DSwI9oRZIGfXeI9aZ4nzzBkuZuEnzdvnvrvf/+rDj/8cF1uFtJ82URsmHQz0/sVdiph7Tofb5FuLoANYp8dO3bUfafba506ZgOINuL+DNuEaGITzA5B5LwXBmHxc2vCcxkkto4HZ9w+N6jfyEd9SZ65RSCs7VEqLxLerw/meeOcwNgTNAbw3LBhw1KkNXEZsyDKzXwLkhdvYOw8aE5kxjDjXe83xpg7esw8Jx0Jb999Y+PgJuHZDIActk+CscnHF2MngU1qpCmRvgoi4ZNg4GVFbhLe1uK3P3OXKUo50vUnNl5+8wn3PIS/TT2ZeYc9Z2GDhUA/HDSn4DPmoPy0+3K3XfvZNGsP6tH093a9+uVrtwP3XAQ7YHPAzI3sU3+Q8ab9BD3HKUK/uY5t00FtMLc9juQmCJQ2AkLCO/UvJHxpNwJ5+/wgkCsS3v12bhIql28vJHxm0HYvvIx8CQRkUAi7yEznCe916R6bAEjKhPWEp5x4EI8cOVKf0jByNEGalH4LTsh/rwvT/C5L8yLh/d6JxaG9OPXLh/fB64lnIUcHDRqkq8LrfczmQbpNCyHh15Pkfhezgu2jjz6qF4NmsZqOhHcTzMamjA3Z9wTYmzzuhSULXzwCWTyb4EXCm3KxyMdb3u2Bbo59BxEk5rNTTz1VE6D04bw33v+k53dhIPYPYWLjF4YsT6eX694ocy+oM9PLFWcqYfvYQng7r7kAbQlvd+PVaMrJJhAeq14yX7RDPGs5weMm5yEM2RzDozFMCIufu19gLIHAoRxx+9x0pFmY8sszxYtAWNvzGteD+mB7nHdvHpGWPQaw6coJLUh2I0Pn7o/tPryQSXi8vjmdyBzPSANCHLN5ywkvficYmZUgEj4JBl4WGZeEj1KOdP2JTcL7zSfM/MFczMrf7vmoPWex+76gOQXzBk71Ede+iNuOH2VeYWMch4T3mucZrEnbrCuCnmN+5TfXsUn4oDZYvL2XlFwQKD4EhIR36kxI+OIzXClx8SOQCxL+t99+095hHF81QUj44rcdjojivWQ8USHbZs2apb0Xg0LYRWY6TXg/GzIa5ywoCEFyNHY5ufwVEh6pEBZmtt59GE949IbxRKZN4RWcLniR8EHtwu155JWP0UrlGDhpoW/KwtOLsBRP+PCyHX4kPEeP+YwTBpAY9uIxF57we+yxh25/6Mvb9uTlCY9tQkRy1Nr2HguzcKWd491GG6E/Z5OBI+xIfkBw4IlmPOK87BJcknrCT506VW2yySYpzXAh4f17mLB9bLo+KtOfB80FkLOg3zSa8O5+G71iTmN4EfA8a0tnuMtNO4EcNydP0r1XWPyCyBg07u3TVOQZps9NR5qlK7t8XtwIhLU93tK90RPUB9tjAp68QWMAhDX9OCQ1G1gE99wkF57wzDG95nFBbcTtCU+fwTjFZjXSJ2zQIalGP4InNadX7HaczhPePsEWBQMvq4xLwkepi3T9iY2X33yCsvvJ0XjZXBhPeHPygbSxRaRkmKsy/7btOt28AumdTHrC2+0iyBPe77mwnvBBbbC4ezApvSBQXAgICe/UVymS8Iudheta52K/vzuXDNZ0FtESBIFcI5ALEp53YnKHXirEjcjR5LqWs5OfkXLhsqvq1atrAjtbcjSQf0zSIWqMRAwav9iv+Ru9c56pX7++1jJHdgPi0a0/zdFWLgVjwk8ac+fOTV08hqQOiwAWObYmPBrv6M+TZpDXF5qaHHG+5ZZb9MICghRyCHzcwYuE93snNE1tORq/fCBZzTFt6ofFEItYyK8gTfigkwPiCe/vCW8wfuONN3T1IomEvE86T3hjd3E04e0j69gwf2OvHLm/8cYbU3I0tu4pCz40ZPE8M5qlEAi0EzabsFU83IO81nhXLvbFpnhPc9Eqi04jUeBnl3gjJtWEN8SJkVQSORr/fj0KkZed0cE/Vb+5ABuGkGLUL9IQ9NvmkmhDwGN7SHPZgf4JEsboPbtz5v/0x4xTYUNY/Nwk/COPPKLbIB776TTh/frcdKRZ2HeQ54oTgbC2x9t5nbbw64OZ5xibCzsG0Mei701/n04PHScE0zbdhK09roSVozEEqNc8LgoJb8rFXKysrEz3FYxdjIWMKfQtOAihR86JQ+ZPRu7KYMxPPouLAVImXCztPqETl4SPUo50/YlNwvvNJ3h/pBK5qN1cuBpFE95LZodL6enzcdBCu54TdYaEZ6ODPtRsAKWbVxhNeNaYf/vb37TUXxxP+Fxqwge1weLsuaTUgkBxIiAkvFNvpUbCr/npJ7WEy9WcS8r+ci4yaeAMGl5hlXNMayPnMpsqziAlQRDINAK5IuGZUDHJQvKDifDtt9+uiaN8BDrcurWq64U+X1WrVtWXqVWpUkUXx/zMR9mKLU8m17fddptau3ZtSsol3TuEXWTaxzVZvLCY4jIls5AxR4ohFwlGSobfmYTfe++9ul7xhPrkk09SEhyQ7Mbbic+4FMy0AzsNyGtIRwhKPKmQOeBodhAJz4KOy1C5zJJy9uvXTy98vYIXCR/0Tvaixy8f94KLxbO5KJR35H1og7wPBDCXZAZpr1JuIeHXk/BuCRdzfN3YEwtJNnFYXGKTQYtf6hnvdZ7lEtZ69eppO4TEoG75ycKdS4ghI4wWr3thCcEIuUD7Iz3kYfjfqlWr9CWppI0tQmbaHsRsXA0ePLiCbQcRJIYUMdqvCxYs0H04F++ZNhlk/4a0p0126NBBLVq0qNwdBe424iVHA9Ys2glsKrk1w8PI3KTrnyrD52H72Hy8q99cgDbBHR/U75o1ayrIE0DYuAOEPf0r+tZ2MNIa/A/SiHsEvC549Xv/sPi5+4UGDRpoAs/MbeL0uelIs3zUmeSZOwTC2h4l8iLh/fpg9zgfZgygrR555JHq3Xff1R7jpn3Sh7OpCjFNyIYcTdA8Lg4JDy6Mb8x72Hw24y9jL/cBceE34wn9EDryOH5wWbJNUtt9VBQM/KTV4pLwUcqRrj+x389vPoETCP0vzzKHZBy256PMkZEJY67BPAhJREPWB80pSIdND97HlqPhglvm5sxdmUsFzSsg6lkXuNOIQ8Jjc0gwcWqCd6JMONEw73e3H7/nSMNvrhO2Deaut5GcBAFBQEh4xwZKjYRf6Xjl/O4cZa8DKeKQ8bUdr5+NnYHOHRY6g1Rt55mNHY1fCYJAphHIFQmf6XInSU9I+CToJY8bZZGZPDdJQRDwR6AQbZHLdTnNwYkKJFjYSOFnGImjQq1rFsjIcyA1wmkWL73vQi17MZarEO26mHAU/IqptipXWcX2Kld9snkNmTtz5swKnvCV603lbUBA5jpiB4JAcSEgJHwJkvBI0WzseCEiQ2P/nk8S3j5aG3QxYbrmxYU+TDy4CEhCYSNQyiQ83pt4wdue8OIFn317lUVm9jGWHMIhUIi2iIcVXurm1NCwYcO0V1gxB7zK8Fh+55139GvgiTh69GghJbJUqYVo11l61awkK/hlBVZJNAQCYnshQCqiR5A+5K4kc2qgiIouRY2BgMx1YoAmUQSBPCIgJHyJkfBGisa2uQ2c4+L1Hb3LpCQ85DlH0hkIOBbGUXWOzYcJcUl4ty4mRxaZdHAplYTCRqBUSfh6tTdJydFwrNTI0QgJn317lUVm9jGWHMIhILYYDid5qrgQELtOVl+CXzL8JHZ8BMT24mMnMQUBQUAQEAQEgSgICAlfhCQ8l5Sh/YtOMJeJRAlI0fzq6JwZHfhVX3+tljmXqnlJ0kSRo4GAR0/ziSeeUGhicvwNHcyLLroolB5mpkj4KFjIs/lFINskPDqLhRIMwU6HW79OWTk9eCHhc1dLssjMHdaSUzACYotiIZURAbHrZLUq+CXDT2LHR0BsLz52ElMQEAQEAUFAEIiCgJDwRUjCc1FIp06d1G+//aY4bhaFiPeSn4Fs/3vbtlqexg5hSXh0yLbffns1atSochdeQsxzBJwLrAhcqsZlKOao+3WOHn3Xrl31Z0EkvH2JDxfZcLkN78zlLCaYy7DcUjbp8kT7lpvCuYzFTpt0Seuhhx7SOmv25YhRGpg8649ANkj4QiLevd6cDrdh/ZqeUjTiCZ/91iKLzOxjLDmEQ0BsMRxO8lRxISB2nay+BL9k+Ens+AiI7cXHTmIKAoKAICAICAJREBAS3kGrGC9mnT17tjriiCPUH3/8EcsjPoyRhCXhuXW7W7du6ptvvvFNFpK7S5cu6uqrr9Y3w7/55puqT58+aty4cap169a+JDwEOc+PHTtWa7leddVVOi5fBLccjU3Ch8mT9PHeb+lo5J922mnaQ5nNBE4b9O/fX02aNEnfTn6mc3ktMjtjxowJA508EwKBTJLwNvleyET8nHk/qkab1apAwgOXkPAhjCbhI7LITAigRM8YAmKLGYNSEiogBMSuk1WG4JcMP4kdHwGxvfjYSUxBQBAQBAQBQSAKAkLCFykJTyVnm4gPS8I/99xz2sM9iIQfPny4eu+99xRe7Sb07dtX1axZU13rXBTr5wkP8b1ixQrVoEEDHW369Omqe/fuqbyCSPgoeZI273Hrrbdqgt+Q/zfeeKM64IADdN52OaI0MnnWG4FMkfAtmjXUGUC+GwK+EIl4SHZI+CYN65S7kBU5GoKQ8NlvKbLIzD7GkkM4BMQWw+EkTxUXAmLXyepL8EuGn8SOj4DYXnzsJKYgIAgIAoKAIBAFASHhHbSK0RPeVPL555+vxo8fr3r27KmGDh2atu6NBrz94EaOF3ids8/W/1q9YIHasHFj/btNwnOh6wbOZatVnC93COMJ75aJIQ37f0FyNPaFryZvQ/gHkfBR8iRdm4Tnb8h4JHPmzp2rNt98cy2Dg8e8hMwgkCkS/n/kOyT8ejLe+a5/Xx/yqQ1fRZfA4d/5ron2tWvW6J9VHPJd//z/r8ygKqkIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAIFCICLZs3UlUc4io2U1XMJDYVUqzlHzhwoJZp6dy5s7rnnntC2ZYh4etddpmq6uihQ64vcYjmGg6JX61dO7Vo0CD19x12UDV69UqR8JDvP915p9r08MNVtd13r5DP8uXL1e7O/4M04f280qtWraq9z/1I+Mcee0yNHDlSS+6g++4m/ON4wnvlyUvZJDxe76tXr1ZoxqMJj7f+f/7zH/Wqc6mthMwgkCkSng6sWAK7no0b1C7nCS8kfO5qTzy9coe15BSMgNiiWEhlREDsOlmtCn7J8JPY8REQ24uPncQUBAQBQUAQEASiICCe8EVKwg8ZMkQ9+OCDat9999Xkd9jgR8LXdjTPN95qK+0JD+EOEf/7Bx+oGkcfrX5xLlb9m/N3TYeY9wt4nUNQUybI8pkzZ6revXurK6+8UvXo0UNffGprwk+dOlWdcMIJ6vHHH1dtnUth/Uj4O52yIGEzYcIEtdFGGynem40H2xMeohzZGEKQJnxQnsS1SXhD/qNZ3/D/2DsPMCuK9OsXC7qKSI4mxIgBA+qKOYFZV10VTJhzBv1MmDDnLEbEhAFRMPNgzvGvriJmUVdFRUGMa8Dv/sqta01Pd98ONw1z6nmGGe6t1KdOVVedeuut7t2tL3qJ8ElZlixecxXhnU943NAgwMsdTTK+lCOWFpnlQFF5lAMBcbEcKCqPekNAvM7XIsIvH35KnR0BcS87dkopBISAEBACQiANAhLhm6AIP3LkSGuZnVaAhxhh7mjmKojg7QqXn7rghPg/Cv7YzZxzmrmWXz5WgHfpfLcxbdq0MVjq4ybHhSeffNL6jp82bZrhe1y9bLbZZvbrKBEeK3TE+hdffNGK8AMHDjQ33XSTQcDFn/y9995r88RdDJsAQRc0ScukDkF3NCeccILdAKAOPXv2tBb7ffr0SdO/FDcGgeYqwnfv0k4Xs9aoZ2iRWSPgVWwjBMRFkWJ2REC8zteqwi8ffkqdHQFxLzt2SikEhIAQEAJCIA0CEuELaDU1dzSIwmPHjjWDYizTo0gQtIQn3lcFQX/ughDfZuONi8kQ4r8+/3zTsiBudz7ssDScUlwhkAiB5irCd+vctpEIL5c0iSiTO5IWmbkhVAZlQkBcLBOQyqauEBCv8zWH8MuHn1JnR0Dcy46dUgoBISAEhIAQSIOARPgmKMKnaeBg3CgRfs7ChaO+NXyeMpRWCCRBoLmK8F06tjGtWrUq+oV3bmkQ4hUqi4AWmZXFV7knR0BcTI6VYjYdBMTrfG0l/PLhp9TZERD3smOnlEJACAgBISAE0iAgEb6ZivBBknQ799w0vFFcIZAbgeYqwnfuMI8V4flBgJcIn5tKiTPQIjMxVIpYYQTExQoDrOxrgoB4nQ924ZcPP6XOjoC4lx07pRQCQkAICAEhkAYBifDNTIRPQw7FFQKVRKC5ivCd2re29xu0bNmyaA0vdzSVZNpfeWuRWR2cVUppBMTF0hgpRtNDQLzO12bCLx9+Sp0dAXEvO3ZKKQSEgBAQAkIgDQIS4SXCp+GL4gqBsiHQnEV4ZwmPEO8s4QFWLmnKRq/QjLTIrCy+yj05AuJicqwUs+kgIF7nayvhlw8/pc6OQK249+mnn5r5558/VcVnzpxp47dt2zZVOkUWAkJACAgBIVAPCEiElwhfDzxUHZohAtUU4e+77z5zWuEC4i+++MK8//77NUObARdLeInw+Zpg0UUXbZTBuuuua6699trYjJMuMvfcc0/z2GOP2bw4tbD++uubiy66yP6dJ1Dve+65xyy99NKZsqFem2++udl6660zpX/zzTfNFlts0SDtKqusYi677DLTqVOnTHmSKO65/LZq06aNOe6448z2229fLCss7Zlnnmm/P/roo42rc5J+++STT5ojjjjCTJs2zbbVbrvtZvOox5CUi9T99ttvt+PX999/b8Dw9NNPN5tttpl9LHh/+eWXZ+aUw4Z2SIJxFiyz1pHnHj58uPnpp5/M3HPPbU444YQG3MlSF/85szyzzzHqtPPOOxc5dtddd9lxwo0dSev3+uuvm3333de+n4LP+fXXX5vtttvOfPTRR/a78847z2y00UZJs656vDS8rnblrr/+essnPzjOM27ce++95tdffzWMiTfeeGNxvP/www/NddddZ8aPH29uueWWYl8j7osvvmjbfMaMGWbChAnFrGm3HXbYwfYpxqJDDjnEHHDAASUfOSl+/juKTHv27GmuueYas0jhficFIZAFgSTc49387rvvlpxrJS3/vffes3OaJ554wnTt2jUyWXBspS+1a9fOnHHGGSbvvChpXRVPCAgBISAEhEC5EJAIX0By2vTvTecObTJjWuv0mSuuhEKghghUS4Rn8n7yySfbRfSKK65Ywyc2hgG3Y7u57aLcv5zVWcDLEj5b8xx00EFmtdVWMzvttFNsBkkWmWTAom7xxRe34hoWV/vtt5/57bffrBiaJ9SLCO+EJ8RNhE0W1ePGjcv8aKVEeLfxMGnSJNtGhx9+uNl1111teeUS4RHrt9lmG3PJJZeYAQMGmE8++cTssssuVrRNIn5lfviMCZNyEWFw2LBh5uabbzbLLLOMef755+1zIQautNJKs60IH3xuuDNo0CBz4YUXmg022CAj6n/yzfE/rQj/2WefWbyvuuoq+9txbO+997a8zirC9+vXz3J08ODBhvciojti/3zzzWcY23gvnH/++QaxHgwQfhGg6jEk5XUt6u5v7vnl07euvvpqc/fdd9uNjr322ssstdRSxU1A2mDHHXe0gp+/iXpu4S4l2oJN1UcffbTB5gvxl1hiCbvpiCDPmHTbbbeV3CxLip//jmIzgE26V199Ndc4Xos2UZn1g0AS7pVbhE/69HFjq0T4pCgqnhAQAkJACNQLAhLhCy1RaxE9b/n1QibVQwikQaBaIjxiyVlnnWVWXXXVNNWrSFyJ8OWHFQtRLKngUylL9SSLTGroCxz8H5Gjb9++ZtSoUVb4JGA5iWiDOyEsIbFORQhGTHOWsG7hiKWyb4GOeIM1u8uD/LbcckvD5wQEuP33399aAGPhOGbMGGupTr169eplhZbp06fbMsnb1RFxFlGoQ4cOdtOpT58+DQAPsyr3P+M5jznmmOJz+ZbkYRa5Cy64YOhz+YUGRXasRU888UTz3HPP2WjlEuEPPfRQ8/vvv5tLL720WDxlPPPMM2bIkCFWIMW6FSt5Nlg4NQFnwJnPfEvSqHakXV0+WL7CPY7R81nakwRJuQhvtt122+KmBQ93/PHH2/IOO+wwKwbDpREjRphZs2aZffbZx/KKANZDhw5txKMwLHxBGrEXIRJc2LhE8KdvJbXKJh51ws0A6bHwvvLKK60ACcdK8ZS689z9+/c3tKsLd955p/nll1+sEO3nE7Q0Dlre+xyLEuGT1AtrTURV+qcLiLKI8/RHhFwXEPrpr4i6Dz30kBVww06wfPnll3Yj7Iorriim9eu/8sorN+jLYEK7M+bVY0jK61rUndMGq6++eoO+RD3eeOMNW51ll13W/o4SGqM2G8MEwvvvv9+sscYaxc0S2hQulzrFlBS/4DuKsYxxzr17So1t8Ip6w0/6N+8K/s+75YcffjCvvPKK6dy5s+E50o5ttWhblZkfgSTcixPhma/svvvudg4SdqIn+E6Ar3zmj8nMZy6++OIGJ1I4/RMcW/0NNV+EZw714IMP2s0y6qAgBISAEBACQqAeEZAIX2iVvCJ4rdPXI7FUJyFQCoFqiPCII7htWHLJJWPFyVJ1Ldf3EuHLheRf+SDoEjjtUCokWWSSR1DgcJ9hHYnAyUIPQQ7LxsmTJ1sryUceecS6JAgT4Z0w4os4WPqSzwMPPGC+/fZbs9VWW1lrRsQR5w6BjaNTTz3VivujR4+29UL4ZYFJGqwr3cYAAtOcc85pLWYRU3BZgmWkH4IiPMLjsccea9566y2bJwtbBEOXP2Kns/Il/x49epiTTjrJ4N6JUwKItYSklvCuLsRHIF5sscXKJsIj2jrL9zAegAli5x133GHHA/Bbc801raCNtTwiKFgi3JcS4V0+uH7glATiA+2TJiTlIta0CGNRLowQ98CT+vuW0tQFHt16661WYENUX2CBBSzHgli4NkQ4Bpd11lnHxttwww3t87GpA1fjOOA/O1xeYYUVLFec5b57hiQ8JS/qDKbBjSRXDv1+ypQp1gUHz431OO8ULMSziPBJ6uVcldAvzznnnEb+iINiLP31u+++M7hBSSoIBTcVg32r3q0+k/I6TV8pV1xO3zDWsbkU5dqHvsxYgpgYPFmVRoT36wwveUfQF0qdYEiKX9ASHkHTbQiXGtt4PjaFGPfoo++8847ta/D3qKOOajBmLLzwwonereVqI+VTOwSScC9OhIeTBN5FH3zwgd08dvMT+M+GNfMS957COMYX4XFNw/8nTpxo+8nAgQPNxhtvbOdUwbE1TIRnPkG/ZW6hjaPa8UglCwEhIASEQGkEJMIXMKq1iJ63/NLNrBhCoP4QqIYI70RHhEz8s2LxhdWys8KtNioS4cuLuLNQ9hIq/AAAIABJREFUR9DGkrlUSLLIJI8oEd65qMEaFYtx5xYDcQfhEXE3qQj/8MMPWyvloJskXN4gFDvXNzzjN998Y7p169bI96lvXYlYi9iPCwvCWmutVbQ+driE+YRHWLrhhhtM9+7dbRpEGfdciIcI7tQFK86vvvrKWpp37NixAdRZRHjn1iHMvz+ZI/6n8QnvY8GC3VmDY63vLNjhibs3gGfCMp56uMAGCP7x55133sh2DIoBCAr/+te/rJCVJiTlYikXRlGCM1x1vKFePC/iBM/PM/hY8L2zRuRzrNYdLjzfwQcfbDGM44B7dvjau3fvoiDO534dk/DU1cdxBMHFWUK6ux94NoRUJ277fM8iwietF1b+bNyw6UY/QFSiPEKYCJ/mDgew22STTexmUpS7JonwaXpZw7jOqptNFPrDKaec0uAElXMxxCYUfSB4siqtCO+Pt/AEUbFUSDouBH3Cc0ElJ7MY7/KMbf64UCvXI6Uw0veVQSAJ96I44cZ950aLGnJqiMCGLn3H/85/X7t3j3P3xTuY7/3+V0qExx0h4n/YCcDKoKVchYAQEAJCQAhkR0AifAG7vCJ4rdNnb36lFAK1Q6BaIrwvivK0pSxLK4mIRPjyootIjLCY1Ao5ySKTGpayhA8TjhGNcSmTVISnHDaF8GGOZaZzR1PK0swX9dxCFvE/eOEq+Tu3Nw71UpecBkUmf+GLhSjiI0e9Cf4FkVlE+HJbwmPVieWdf+mrX/+g8ByGs49nVDuGuZ5I61sc/JJysdR4FSc484w33XSTtdQnOAE7ToT3BW+/t2IlH8UBJ14SH+EcLvqXvLo68n0UT4ObJkE3LKT12wxLS6z0/XKcaJ9WhA/bnHL9J1gvhwmiExsTRx55pD2tQr/MK8Iz7nDxLhvFLsgSvrzvDD83Nm4YI31XdXAcH/CcGgmerkorwruyuDsA3rMB5tyZRT1V0nEh+I7yDQzyjG0S4SvHt3rPOQn3ouYnYXMLFxdjg7B3gnPP5L8/GVPZsGJc9y9ILiXCcyKRk4DMp6JOT9U7/qqfEBACQkAINB8EJMIX2rrWInre8psPXfWksxMC1RDh3fFW3184ohYWcRxdrXaQCF9exLnQEMEqqb//JItMaljKJ3yYeEM6FqK4tXA+o4MLxygRh8tfEeER/BD3EFTSWMIjAAatj8OQLiXCB5/Lt4T383MuRpz1dxoRvlI+4XFPgpWy7xM+ToQPnjjg+XxL+Kh2rLYlfJRPeCxfEYCjBGfERHiMMI11rC+exInwYbiEcSnIAV+cjrKExzo/CU/JC/cF9GvfJ7z/DHyPix7cZ2Ax6XMQTHwxppRP+DDr/bBndv7f4YYLQVwZj5z7qTRW61HilnzCl+ed8eOPP1pLcVxsueDGOy7dxv2F8wkfdQlkGhEeN1CcanDuZ8I2dsOeLOs7irxc/fBx75+mCo5tcRuMEuHLw7emmEsS7pWyhHcuwXj+tJbwPma8v9hkRVBnXlRKhOd+HE5D8j7AnU2p+4GaYvuozkJACAgBITD7ICARvtCWeUXwWqfPQ8c/ChfZvV/wy9elMIFp978LB/Pkp7RCICkC1RDhqQsiFmLOsGHDrNsNLn6SO5qkrVS/8RBzL7jggqJldpKaJllkko8vmCCQsxhEqHHCOIIv/HX/x0KcOF26dLEXuOL/GrHRWeo6UY4NoLFjx9qFpfNp7S5kRLBhsYkw5PuEx8c7/ufJMyjq+Ue6ESVxjwEmLGARLznW3bp16yI0pUT4OJ/wbHgg3gwePNg+O2KWE+H95wq2gy9cTZo0yfpZPvzwwyPdbZDe9/daqs6uPHxp4yP///2//2f9n4MBvtvfffddi11QeI7zm8x3Ue3o+1N3PuGpg3Nzk4SHxEnKRUQxxi7uH+DEgxO/2ajBqjZKhP/888+tCPLoo4/aKuHeBDc7pdzR8OzwDx5xnwblUQdcd8RxwH9uuAgnwnzCJ+EpeeGuiUtzr7rqKvuM9EPadaGFFrLWy4zr//znP+1n9C+34YAwz2mI5ZZbzuJGH8V1lO/+yFnP+xaYSepFnbgUFT/0vFOo0zbbbGMv4MRqGpzwc+w24YL9lYtq8YscDO4yQe6HCIpHWGXD5aDP/1K+xZPysNzxkvK63OUmyQ/+4jsdfvjuaHB1xKW/cKRVq1YN7kHw800jwvvzjqlTp1rf1lw4ufbaa8dWNSl+QVGfuQ33FOA+qpRPeInwSdjS/OIk4V6pk3qgltUn/M0332zdjrFZhpsxxnYnwgfH1qiLWZn3cJoIFzgKQkAICAEhIATqFQGJ8IWWqbWInrf8POT6ZNT1ZuoX081vD4wzqxUWsgpCoFoIVEuExzqWS/sQ6Tp37mwFlFodV2XA7dS+tV3o89OyZUt7mVqLFi0s7O53tdqgKZeDkIIIF7w8L+6ZkiwySe/720UUw9Kci+ycQIblLIs9LjElOFcy/I2ghnBIu2Kd9dprrxUtY32LLr7D97PrB34eiHgIkIhvWHeNGTPGXjQWJ8LD8wMPPNBeQEw9DznkECua+6GUoM1zIViyCKb+u+22m/XLTkDcwQL4iy++aHSpof9cYOUH33UP/Y+j6b7LmDBhK0yED7ar74bEfff2229b3Ojr9C2EdDYiwC7M+hvsiY87IHBmbEBYj2tH8mGBjyU65SCq8lnai+CScpG6IBgOHz7c8gGBgeP6COSEONcrrl0QNNjkeeWVVyxn4yzhyRP+kRZc/DEzjgN++8BFLthDdF5xxRUtZ/CxjUCehKcuL8R1LBupB5xef/317ckX/qYuXMI3ffp0e5Esmy3EhX98xx0g4MWGAvVw5fvCu/930npxRwLtzzMF60T/wTcx4jwbVH5/xd8x9UdMCp7CCnNv5VwHUS82UHC3EHWZaD2N42l4Xe16wwuEPfhEP+LUDJue/rj3e8EwxXeDERzL3GaO/3mY5TzCOxs7jBFR43HY8yfFL+gTnjtD2ADieQhRY1upS6dlCV9tVtZPeUm4F+auzI1VjLeMycxBGKvYBHfvev+dwAX3bBS5+2f8cZj3Dhx0l2Bzbwv9Jzi2RonwlEN93EZp/aCrmggBISAEhIAQ+AsBifAFLPKK4LVOn5XQCPBfTPvOmG0HG/PrL+a3vbcz/R7702quKYdnnnnGLqJ0HLG+W7FaInw9oSARvratkWSRWdsaqvR6RyDKVUXaeouLaRFT/KaAgHidr5WEXz78lDo7ApXkHhvknBTktB6nq9hY5He9nujJjqJSCgEhIASEgBAojYBE+GYowmPp8/F115mvZ/z8pwDvwv+E+GVuvMHMNc885m9zzWVaeq4M4ujkW3IhfmMNhkVoWuvA0pSNj/Hll1+aNddc04waNcqsvvrqebNT+goi0JxFePoIlrq+Jbys4CtItv9lXclFZuVrrxLqAQGJ8PXQCqpDvSKgMTZfywi/fPgpdXYEKsk9ThBxmsudQjn77LPtSUEFISAEhIAQEALNEQGJ8E1QhMcvKW4HcFGQxa3GKwW/kR++975Z6JizG3F+5tSPzRxH7l9wlTGHWemOMWbOwjH+JAERHtGdI+gcxeZYLJMu5xohSR6K07wQaK4ifOcO8xTd0eDyw7mjkQhfef5XcpFZ+dqrhNkJAXFxdmpNPYtDQLzOxwXhlw8/pc6OgLiXHTulFAJCQAgIASGQBgGJ8E1QhMfn3QYbbGB+/PHH4iV/SRv9q/vvN59+/LF5vtXfzUr9/2U+fnmc+eWH6TZ596XXM3+79VbTcvGlzd832tL8duBOpu8NoxIJ8b4I7+rCRVT4ocV3MsH3Mxvm1xYXMlxA6PzzIuTj4zXMl7fvIzfo59v3MYzfTI4/vvzyy6H54FcQq3n8Dfq+l5PiqXjZEai0CP/HH39kr1yZUzqBnQG3S8c2DfzBS4QvM9gx2WmRWT2sVVI8AuKiGDI7IiBe52tV4ZcPP6XOjoC4lx07pRQCQkAICAEhkAYBifAFtGrt0z1L+R988IHZZpttzM8//5zaIv6tt94yjz/1rBXhnxixs/n+yw8sZ9ZqvY6Za8U1zRz9/7zwjZBUiA8T4RG4uSzt2muvtQL4gAEDzMknn2wvTOPCtX322ceMGzfOXtbGRTpdu3Y1119/vS0X8Z7NhvsLmwbdu3c3xx57rM0D8R1BnTxuLWwYcPEel/uQHz+EoAhP/Ntuu81euMelXFyISZ04UXDYYYeZiRMnWrc5++23n73IbfTo0Wn6kOJmRKASInw9Ce9hsDDgdu/SLtQVjSzhMxIpRTItMlOApagVRUBcrCi8yrxGCIjX+YAXfvnwU+rsCIh72bFTSiEgBISAEBACaRCQCF9AK4sI7oNcq/RZhfgwEb7XZ+3NgpsNNm22HNSIPz/utY1Z6IILzMJ9+kRyK0qEf/TRR82ECROsq5oXXnjBiuguHHTQQfZSntNOO82K8FjM486GcOqpp5oPP/zQiuUE3w8vQjkub7p162a/e/31181WW21l3n//ffv/oAi/+OKLm6OPPrpRPk7MP6fgnmfDDTe03/v5pulIipsegXKK8L74Xs9C/IcfTzU9urZvJMKDnkT49BxKm0KLzLSIKX6lEBAXK4Ws8q0lAuJ1PvSFXz78lDo7AuJeduyUUggIASEgBIRAGgQkwhfQqpWI7hoqT/lDhgwx48ePN9tvv70544wzErV9UITv8fKH5ssOPc0SQ84wHTt3M7/+NNPm0+Jvrczf2xRcuTw01ix3x21mpZtvjnRNU8oS3reKd5X0PwuK8MH4wcvw+P6mm26ylusupBXhSYf1/Omnn26mTJliFlhgAXPNNddYi3mFyiNQLhG+10LdbWUR350AX49CPCI7Ivz83Ts2uJAVdzS2vxW+V6gsAlpkVhZf5Z4cAXExOVaK2XQQEK/ztZXwy4efUmdHQNzLjp1SCgEhIASEgBBIg4BE+AJaeURwwK5V+uOOO866ZOnfv7+58sorE7c7l6XeV3DzMv9CvcwvU142v8/6r/n0xznNOlvvYWbN/Mj835jjbF5tui5i1t7/JivCr7PmambhNm3M33v0MC1atmxUVimf8FGW8C0LeV100UWNLOHjRPibC5sBl1xyiXXDs+CCC5o333zTbLHFFqkt4bF6/+2336zPeHzCY5H/1FNPmYceeigxloqYHYFyifB/ie+I8H+K8YV/7d9/hlr6hv9TWP9TX29hhfZZv/9uf7coiO/29/9+siOplEJACAgBISAEhIAQEAJCQAgIASEgBISAEBAC9Y7AIj0LumpBuMqsVNVKhHbANsfycddy3XXXWfHauWxJSrQZM2aYN954w7qCceG+++4zfdfb0vzy9buRInzv3r0ji/BFeMTtI4880jz//PMGwX+OOeZo5BOe73bZZRdzyy23mJVWWimVCH/55ZdbtzZ33323zRss2IxIawnvxHz80uN3Ht/yEuGTsih/vHKJ8AxgTSWw6zlftw4NLOElwlev9WTpVT2sVVI8AuKiGDI7IiBe52tV4ZcPP6XOjoC4lx07pRQCQkAICAEhkAYBWcIX0GpqIv7IkSOLftTTCvBR5Lj00kvN0v0GmB+/fCuzCO/yRhhfbbXVrB94Ljx14cknnzRHHHGEmTZtmmlTsKrHDcxmm/15CWwadzRYrSPgO4F/4MCB1jUNoi4bC0l9wlPuCSecYAV98uzZs6e1yu8T4/s+TedS3HgEmqsI73zC44YGAV7uaKrXU7TIrB7WKkkivDjQ/BDQGJuvzYVfPvyUOjsC4l527JRSCAgBISAEhEAaBCTCN0ERHsF47NixZtCgxpeopml8P+75559vFu69vPn9+8/NlOdusl/N3a6HWXLAoWbSS0+a9dddxyy33HJZs1c6IdAIgeYqwnfv0k4Xs9aoP2iRWSPgVWwjBMRFkWJ2REC8zteqwi8ffkqdHQFxLzt2SikEhIAQEAJCIA0CEuGboAifpoGTxuVCUjwSzTnnnI2SYLm++eabmyWXXDJpdoonBEoi0FxF+G6d2zYS4eWSpiRdyhJBi8yywKhMyoCAuFgGEJVF3SEgXudrEuGXDz+lzo6AuJcdO6UUAkJACAgBIZAGAYnwEuHT8EVxhUDZEGiuInyXjm1Mq1atin7hnVsahHiFyiKgRWZl8VXuyREQF5NjpZhNBwHxOl9bCb98+Cl1dgTEvezYKaUQEAJCQAgIgTQISISXCJ+GL4orBMqGQHMV4Tt3mMeK8PwgwEuELxulSmakRWZJiBShSgiIi1UCWsVUFQHxOh/cwi8ffkqdHQFxLzt2SikEhIAQEAJCIA0CEuElwqfhi+IKgbIh0FxF+E7tWxsuL27ZsmXRGl7uaMpGq9iMtMisDs4qpTQC4mJpjBSj6SEgXudrM+GXDz+lzo6AuJcdO6UUAkJACAgBIZAGAYnwEuHT8EVxhUDZEGjOIryzhEeId5bwACuXNGWjV2hGWmRWFl/lnhwBcTE5VorZdBAQr/O1Va3xmzlzpn2Atm3b5nuQOktdzef66aefzK+//mox/OKLL0y3bt3qDI3w6tSae00CpCZSyU8//dTMP//8TaS2yar5zTffmLnnntv+1GOo5hhTj89fjjo11bEzzbM3V57Qtvx07NjR0JfnnXdea5DYnINE+ELrT5v+vencoU1mHtQ6feaKK6EQqCEC1RDhzzzzTHP11Vc3esp77rnHLL300lV/egZcLOElwueDngXuLrvsYl588UX7Ej/kkEPMAQccUDLTpIvMPffc0zz22GPF/Hr27Gm4vHqRRRYpWUbaCHfddZe59957zbXXXlsy6ddff20OPPBA+9yEVVZZxVx22WWmU6dOJdMqQn0hkJWLCDqXXnqp6du3b+wDvfnmm7ZP+DzOisCiiy5qosbMeu0r1NkPfh9Oig1986KLLkqN4Ycffmiuu+46M378eHPLLbfU5F2Tta3zpkvK67zlpE1fai5w+eWXm4svvtiKp4yrN954Y3GBGPUd4/EOO+xg3n///UbvIf8dhWh03nnnmY022qhktdPgd/vtt5vhw4fbhS1lnHDCCWb77bcvWUYwAtgQjj76aDtmtGvXzpxxxhmp8ylngieffNIcccQRZtq0afbZdt55Z1u/uMBYtPnmm5utt966UTT/ufzn9f9OU/91113XwIuweeS5555rXnvtNcuhJZZYwowaNcqsvvrqJum4k6Ye5YybhHvg9e677xbnK/SBDTbYwBx77LGpuff666/b/gN/eb/cfffdDfKmD9GWkydPNnvvvXds+8e1RzkxSpNX1veHX0Ycp6Pq8t5779l+8MQTT9j+k2YeAEe32GILO6alCeXgNm146KGHhvZf6sL4OXDgQLPHHnvEVq1UPqWeK+uz+GNMlnbLOp7XivtZcYrDP2rsJE3cPLRUmwa/D85b+R4ck6zD0pYVjF8v79g43mThYik+jBw50o7x48aNMyuvvLI55ZRTzCabbJIKzqT9Ki9X0qzLUz1AILJE+AIgtRbR85afhwBKKwRqhUA1RPjgs3300Ud2Evfcc8/V5LEZcDu2m9su2P3LWZ0FvCzhkzULwhiLNn6+/fZbM2DAALvQXWmllWIzSLLIJANe9Isvvrhd9LEQPO2008yrr75qJw/lDmle9v379zerrrqqGTZsmK0Gostbb71lcVBoWghk4SJPeMUVV9gf+BgXSk2I06BVSoSvx77i15k+zOLK4ZYUmywiCnkfdNBBZscdd7RCZq02fNO0bznjJuV1OcvMkpc/F+Bv3iG0FRute+21l1l44YXNySefbNx3t956q+nTp0+D72hjRNbjjjvOIEaSx2233WaFWQTk6dOnW849/fTTZp999rGbpwjccSEpfmzc8h64+eabzTLLLGMmTZpkBg0aZC688EIriqYJWYXoNGWkifvZZ59ZQeSqq66yvz/55BO76Y4Qu9NOO0VmlXSBXmkRPqqCScedNFiVM24S7vkiPOMqIgrzklIbJGH13HfffU2PHj3MSSedZL8OCvxw/KyzzjKPPPJISYvJWgmRcfhneX8E80vK6XJxrp5F+KRcr5UI79cvbbvlGc9rxf1qj2d5hdVg+7h5a1JezW7xoniTlYvV4EPSfpWXK2nW5Xl4IRG+gF5eEbzW6fMQQGmFQK0QqIUIjzjCixdri1oEifDlQd0Xyckx6Ys5ySLT5edP0ODqkCFDihax/H///fe3VkZBK/k4q8ldd93VWnX5lpG87BH3f/jhB/PKK6+Yzp07m/vvv7+RdfvDDz9sDjvsMEPZ7ggfi+CDDz7YWlkiFrGoxVKaemEBHVXP4GTJXyzyNxZ8M2bMsHlypJnPZG1fHu66XLJykfT+BDOujeEDPH788cdNhw4drHU2QiJhwoQJZujQodYKEWtDLJAITMyXX35588ADD5jzzz+/wVhJnKCVabAv1kNfCWLkMHe48X/fOjCsz9Kn/FNUWAYGresXXHDBWCv5vAuB8jKuOrkl5XV1ahNdij8XuP76663Qx28Ci1DE7IceesiOff5pCH9xxji9xhprFIV1X/zh70suuaTY37BQx+o3zErbr2VS/LBWRfz05zJ33nmn+eWXX6wYn7SP8+7BOo2AkOoL1PTtXr162fcTGwpYotJXCGw68Cy4vVhxxRWt2xXekXzmnwLwx52k7zoseNnYwBreBTZIEOcZ0yg77F0aV98o4T24AcHmCXjgJpB255l5XwbfrbQvzzpixAgza9Ysu8lCWkKp9y5WgGDBPICTMqXG5Gr1lSTc84Vy8Cb41qP++wPeMB/Zbrvt7FzCn/f4lqiMo4yV7tQW/4fXDk/KoP15l0WdgIxqj2DbwV/6jh+cBWwcb/3TisGNCPo1czfmSszf/vGPf9jsg+8PPgvjF5/DdeaUvI+ZU44ZM8bOueI4HcdB8OSd5c/1MFhZZ511Yk8tBEX4uDKYQ9BO8J/NGE5/0IZx80sfA/7ecsst7dzDf7ey2cbnwT4XnOeHYRnMhzGNExdsrDIvZqyizzGHpr0pg/mRf6LW1T+sn8aNYcGx053K4fkefPBBy+EoVzp5x3PeQ2PHjrVtwTqB+U3YuOXP+3yeBUXHIMfT4hTVzu695POGvhXkKvHcuzfYZ908NMkcljEo7LRScN4aHA+ixvYoLpEfbcucAeML0lNv5hG8S3hXv/HGG7Z/JHnnxI35cW2V9p195ZVXNsInCRfj3pNJ1hxpuBccX3kHRM0zcPHrj++OK2nHgKRzlbzvZonwBQRrLaLnLT8vCZReCNQCgWqL8ExAsSJ+/vnnS1qjVQoPifDlQRbrPwRFZwm/8cYbW9cPvNjjQpJFJumDlvCIC25RDo/WXHNNc/zxx9vj11g6YoXP6QqOATM5mDhxouUYpy6oGxNi32qSCQH/h4uIP0cddZQJs7T0n4UJHfGdUBR8Trd4YkHMwimunqVEeCzs77jjDmsVut9++9mF4ejRo8vTeMrFIpCFi6TzLeFLtTGTURYE8PTUU0+14iI8pf232WYb22cWWmghO2mFqyx+4Q7uOE4//fTiZk8aS/h66CvgFKwzuOG6ib7n8//ll182u+22W7HPIibsvvvuVuSLsmR0FqBgGOcGSyJ8fXb24FwgaIEbFK6YNzD+OUt4/h9sd+Yzbkxn7A+K8HGLfh+lpOMCdXF1CkM5TR+PEqipM+Jp2IkznhXRkXGCPoXwj9Uy7z8EmznnnNNu4tGHiMPJHf5O8q5zLoHA+Zxzzmnknz7qXcrYE1XfJCI8C3Y2ADjNwGY55fB+ZkOaMdK9W8Gb9qV/M66453du4qLmB+4d7cZkLMDfeecd245x7VWtXpSEe66vcOqQTR82a32/vsH3h2srnhXxk83Nl156yT5SsE8E+2Fw/D3xxBPNlClTrGtAMEfcp9+5/hbWHmwSBdvO4elc6VAnTo/E8TZKhKdOcIV5GeMK8z36AuJvsP5R/JpnnnmKLrDgPO9q+AAv4vpgFAfBI0yETzIGhYnwYbhiNEL5bt5K30eALCXCgyM4wBvw2mqrrexJU/D3NzGD81nHF1/YDuur8803X4N83MYDZWy44YZ2PsvGIHVwfKIPu7ajjyOm+nMnv5/GjWFhIvxiiy1m5xMIxnGGLHnH82Ab0dfcc/hrAuZ2/lpjgQUWsPjHCbtZcIpqZzY2qIM75QTXWcvFifBuc86fT6V5v4WNn6VE+KixnU2sMC6R33fffWfHAXB380p/HcUzBkX4qDEBHkeFUiJ81DuQvrbCCivYk0esJRGzwzYpSnGx1HsybM1B/8rCPcT+r776yo75U6dOtf0SPsbNM4Lz/yxjwMcff5xorpL33SwRvoBgXhG81unzksClZ6LZvn37cmWnfIRALALVFuGxasKXJf6UaxUkwpcP+W233dZaHxGwBsf6o1RIssh0k33flzYXrGEdh4UWvvKwFPddwDCxRODjexYS/M1v32K9d+/exQUjZWA5yAU1TFajFnj+8wQXqL7Fj6uLb90bV08uxPHjBi3hfctPFrv/+te/rFigUD4EsnIRy8KbbrrJbpCkaWOELdxWYL3LxBsXD7QzgXxYJLrFWtDXcSkRvt76ipuE+63l+9L3RVb/sijisyjEVViYiOLyoy/y/gK3uCARvnz9pZw5BecCcSI85eLLlIU3YamllrKChRvbnVjEd4jNbGYRsLSHW06kZVMHVyql3HYkHRd8bvn+7p1VLwvlpH08ToT3faz7IhnlY73rxAL/O1z0MCa479Zaay2Dxd3bb7+d6F0HfgikbHQjgvOeBFvKYByLepcisEXVN4kIj7XiMcccU3TnQ5shXCy55JKN/GpTF3+cdO2BtWPU/CDuvRvXXuXkflxeSbgHjlj1YnHLRgvCqx+CuLh5jrM8pu2cv/G0InzwYk7HKyxdo9qDukX5RKf87t27F/t2Ft5SLjx1LqD8ZwqK8FH8gtOIde59wv95Vt5ZQetvv59FPTN4BEV4Ngd8X/5RPAgT4aN47tfZf6fybYmcAAAgAElEQVTGGXlwopMTeAivWKUHueN8woe5tvCxiMIScc7HiLk1Y4+bIzOfZb3A+AR/6HdsfBAcv7jTJW5+HDVfD4rwq622mh3//ROIUbiXczwHJ95Tm266aYPn8HlFPfx5X5ywmwWnqHamHN6nrj18vpU6QeFjlOb9Foa5fxLHfe9cB0b1qw8++CCSS8F+Chc+//zz4hzbHwt8nsTxOIorpUT4sHcgnwXfm8HndOWV4mLS96S/5sBAzo1pebjn4xw1Xrvxz7VnljGAd1ySdXned7NE+AKCtRbR85afhQQsuLHacKL7H3/8Ydj54aXPxX/1evt4lmdVmvpEoJoiPC8DJhKIo6X8hlcSLYnw5UGXnfD//Oc/doLLYh3LI38hFFVKkkUmaYOLQ6xKEG6wIg4KNsT3J/1M7hEMWGi6C/5Y/ERddhU3ofKfI+gyIThhCi424+oZFBXiRHjydQu68rSecgGBLFwMLurTtLHjKQtqLP+CF7Y61yphE3N/Uu42f1z8eugrLDCc6wJ3gV+cAO4v9ng3sPBH7ONvgssjzBLebUo9++yzJV00SYSvv74eNheIE+GxaIPjLMqwZOQCSly+uA0s94QI3s7iljkG7yXnhoMFKHNtd4w6DpWk4wIbv0FxJ+gqJGkfTyvC8/4Ivs/cO9B9F3xG5+4qbGEb1n9detqL5zjyyCPtBhmbj1Hv0jjBMokIH3Q35cYCXGMEhdwooSZ4uag/P4h774aJQqXcXZW7dyXhnhPhOe2Hiw/EPn9jKYgLGzWcfkCMdyGrCI8IxkaLf2loKeEsOC9ydUCA5KQG9WODwN9M83GN4y2b1sExPk6Ej+IX5UUJ5OUQ4dkYpGws5KNOUrpnTirCB3meVISnHObTuOrCPYxzR+P3E4T0UiJ8FJZw0Z+P+xuUfrs693Jhd7aUOimaVITnhAQbVb5bsqg+W4nxPGzcAg+MONggdpjD47h1SNQ8ppRoHtbOYe9aN56Xys+vR9x4GSUu+9iXsoQP23iC876LKX88C/bTYP5RInwUj5lvMKcgBC9JziLCR72zwy4XL8XFrO/JcnDP4Rw3z2D8iNpISDoGJF2X530HS4QvIJhXBK91+iwkQIxce+217eVTBKwaOPaJ/0OOqUiIz4Kq0qRBoJoiPO5LcL1QynIxTf2zxJUInwW1xmmYZLGA6tu3r/0y6GMvqpQki0zShk3QfEs33wKI+M4S3lnU8BmTXBaMHO1DICS9OzrN92kt4d3xRt8nPPm4evF30BI+qp5Y5HH02vnclSV8eXiZJpesXOzXr58VNZhoMp7FtbHPB2dBygY8x5Hhp7Pu9etdSoQPPmM99hW/X4T5A/UXe861Fa4VOPESJ6I4ARe3F7j4KRUkwpdCqPrfh80F4nzC8275+eefi5dH+tyhH+G+yF22GrWwhzdYRbKIjztmDhpJxwXcfPC+8X3C+wIHgnXSPp5WhHeL3DBL+DCLO9fKSRe2vv93l9Z/tqh3aV5L+KDFpys7TBCMs4RPOib779249qpWL0nCPb8dnDsXLI3d3CeIC+8rOIpf36DAm9YSHs4znvP+Qzj3x9c0lvDUm/6ID23njz/shIXPW06POQHbxyCNJXwUv+ABgmWlLOHdXI93FidI495dSUV4TnzEWcJHzS99Ls+cOdOK8MyPGTd88byUCB+FJfn7+YTNkVwdiIcbnUpZwqOnsAELX9m08t02Bft0OcdzTvDA66AlvNtQZnxlg8/nsfOBHcXxtDhFtTP9LM4SPo43fn9P834LGz+ziPBBzvv5ZrWEj+Nx1Lgf11ZRm3ZpLOFLcTHpe9Jfc+AShrql5V6wLPd8cfOM4Pw/yxggS/gUs45ai+C1Lj8FVMWovgiPdSeTdQYYBm587jFJOeSQQ+wxUAUhUAkEqinCcxTz8MMPt5tMtQwS4cuDPpMErBIR4hm7mMhz1B8L1riQZJFJ+uAE7YYbbrCblFjBxvnhRuDBUgKxhdNEWIo5Ed73Y4tF1z//+U9rfcumZ9Jjb1iMIKA7v5VM7NkwxVIQd2K+6BpXT75jA4OFJUcUnXUZ+TDBC/qEBxP/8rXytGLzziUrF1kksWBnkpjWJ7zz2eo2dMgLHpAf/WiPPfZodKyfVuLYpy9YBBcf/iXG9dJXklrCYwkE7+m77lQN7wss6uiXLD7dZhWXReKXMmlfkAhff308bC6AD9UBAwaE3ssBL7BkZKzkncPGFf7N+T/jMQLOsGHDLC/I++KLL7YGLi5wBBvXNIzbiJWlQtJxgeP+XOTofOsiaPG+4Y4HrHfT9PEsInycT3i+Y+1wwQUX2HEFEZY1BxuASd517hJy/MCCL8/G/QtcPnjyySc3uF/Ff5dyGi6POxpO2PlupsiPdyMnH5JawuMnP84nfJSbi7j2KsWZcn2fhHtBS1bmC7QJl1s63+y+dSXzH/6PmMLJReZRUZbw8JY5lhMCgyeR6G/Mm+A5Y7YTddK6o0GE5r0XdA0VxVt3qR9ltm7d2vZ7xFXeA3E+4YPvjyh+denSpYFPeOa1+DtnjCmHJbzjHOMca6Cnn37ajmX4y+/atWsDcTipCA/PfR/Pvk/4uPml718c3rKJ6UR43FxwwTHtU0qEj8ISH+x+Ps4XNWPRZpttVpxvn3LKKY18wuN66uyzz7aX65bDHY0bixj/2rRpY98djGW//fZbI20l73jOXMO/nwLuEPznoAzmMI8++qj9DrHerSdYh7h+FcZxdCHnOz8JTlHtzDgQ5RM+jjfBeWjS91sU3llEeMf5MC4F+2lSn/BxPI4a1+PaKm688O/niPMJX4qLce/J4D1Ubs2Rl3thPuGjxmv4669ZsowBrAWi5io+p9wY6k6WYMiTJsgSvoBWrUX0vOWnaXAX14nwc801l72EiImNC//+97/N999/b93T4LutOQnx7NxxZBhXPQh6PD9/r7766llgLlsa6lUP9SjbAxUyqpYIz8uGSRCbTbUODLid2re2Pof54SZvLvxs0aKFrZr7Xet61nv5vCARn+kTYOgfaY2re5JFJumDRx1x08UigwkkAe4igHCclsUYEwSOyRNYUPDydpfL4R8WCxjqzKSXI6oI9LgEYUGU1DqQvHnRMyYxsfn999+t+zBXr7BFS1w9WfAi4MA/6vHaa6/ZhS31YbHAZIJFGxNPPou7VKre+VKP9UvDRV/khlcICLQf7RbVxvABqyLaj37CZWS++wqsQ4YPH245BYfHjBlj2zjMEh5OO0GEhaUf6rWvJBXhwRMrTe6XYPGNn1rc8yGYOgtmJt3ciRB2DDd4VNjHRiJ8ffW8uLkAwh8XigXHbZ4A4ZHLt/nO7ysI7ywEGScZ4zFc8S9spW9QJuI8ecdZQjqkko4LxGe8xsqS9xB5r7/++tZNjisnaR/PIsLzPsMinkUoLklY6HLhG76x/fezj0uad919991n30OcGAs+W9S7NK87Gueayvk5d/OKNJbwCMJxY3KUuEd7RrVXtXpREu6FuUADd0LYnSJsvDD/5rQ14yyuMPgMsTQohDmRmMsiaYOgCI8YziWX06dPN1yQiAsX+O+sqMNcSFAvH/MwtzPO7U8Ub10e1Ju5G+9I3ps8b/D9wfsWEZgyg++PKH6RPxu9zCmD7+NyivCUgwUxa3y4FvZ+SirCw3O/bRHT3RyScqLml26N7dZ//twdAxb4BQ5BK27y9LGIw9LPh7kL2PKbcZJ3PPN1NofIgzkSG0j+OFUudzROhIdXcIZyEcCjXA/lGc+XX3552x70M+7Hgn9h45aby8Fj2ox5jxvvSBPF8bQ4xbWzz5v11lvPPPPMM3bzLY43fBechyZ5v4WNV45LQXdttFHYGOb3kyguBfspZTAeXXjhhXaNxQbyl19+aS3B/fdtHI/jxv2otoobL/x3NvNc3q3Mc8NOi8ZxMe49GbfmyMo9Nz9nbKX/Ord+ceN1kCtpx4C4uQobeKwHwI6LbtFQMdb48ccfbZunCRLhC2jlFcFrnT5Ng7u4ToR3E/nddtutmA078AiE+DKDuPhiLOUjPmxxysQGQrIzFhVYwAZ9siIsuUuYwtIF/QJy2RxiEhfs5A3Ul4Gdm9t5Zl4OYPPUU09Zi4FqheBEqFb1qOTzVkuEr+QzpM1bInxaxMobP8kis7wlNr3cwvxgN72nqP8ai4v130aqYXoExOv0mPkpmgp+XLKKBS9GOmw0sMHMb+eaJx8KSl0LBJoK92qBTVSZbMQhnPfq1cv6cPbvhainegbr4qxDJ02alGhzsJ6fpSnVDUt0rM9LXdDdlJ4pbV0R/jmBi86EERF6x+jRo9Nmkyh+rfBG18K7xLLLLmtPPnAajs1FTg0pCAGHgET4AhK1FtHTls+xDqxAsVxz/uzSUjqJCI/1N0dqXnrppZI+4hHh2fnGMiYqBIVlFw8rCW6RZpcY60t24DiSxhH54CWazgch1hDsBDK4sbMPJuWwdI7aNU2Lb974UVjlzbee0jdnER6rCyy4fUt4WcFXnp1aZJbGWCJ8aYzKEUNcLAeKyqPeEBCv87VIU8EPS3VO0mBdiqsF3DjU2t1fPuSVuqlwr55ainUMVpdY8WO4xbrUPw1TT3X164J7OSyym7MYXIu2wfKfE4nN9WQp4jSWxBg78jfaEVpPpfCoFd5szDEO4PqJwOlVdyq6FrxTmfWJgET4JijCOyGaow9RflpL0S2pCE8++L/EwoWJRlTII8JzBAhRHUsaFzjWy+3HbDb4AZH8hRdeMFyi5gIDOdbwI0aMsEdhg0dlGPx46TFBcgITFynit5ljQu4IcfBYPceGCO7mbv7mZABHvfC/zLHk9u3bm3/84x92IhN3G7YT1dmkoA7kjcV/mEuN4G3ubG4Eb7bO+ow8g3+Eyz+aV4oz5f6+uYrwnTvMU3RHA/+cOxqJ8OVmWOP8tMisPMYqIRkC4mIynBSraSEgXudrL+GXDz+lzo6AuJcdO6UUAkJACAgBIZAGAYnwBbTSWqIHAa5FelyycFHRzz//nMkiPk6ER3RH6PYvGODoKWJwVMgjwpMvVvCI/FzIEnexQdxlGq5uWNZzxA6hHotj0iDA4+sLAZxyjjnmGHsJCTuwXDLhjuQFLeF9i3Tni5cNgyFDhli/j4MGDbKX2SUV4YnP7iiubdh0oF5cdsLGCheDYVmEUB+0hA/+P+szfvXVV9avNaco2JzgFAH+q8txiiDNwEPcSovw+PWtl+AEdgbcLh3bNPAHLxG+eq2kRWb1sFZJ8QiIi2LI7IiAeJ2vVYVfPvyUOjsC4l527JRSCAgBISAEhEAaBCTCN1ERnkbOI8THifCIlxyt8wOXVpUS4YPEw9rbv/AhzsUKR1u5qJBy43zCYzXPJVdxR+i4FZljP6uuuqqtEnlyYRWi7yOPPGIvrvIv5PAv3YgT4RGrEe/dBSLk7dcniSX8W2+9VfS/x6UYbDg4f/uI8lxwxbOVEuGzPqO73Rv/ZPi6p2wuC+HzaodKiPD1JLyH4cmA271Lu1BXNLKErzwDtcisPMYqIRkC4mIynBSraSEgXudrL+GXDz+lzo6AuJcdO6UUAkJACAgBIZAGAYnwBbRqYcnuN1Ke8rHIHj9+vLUgP+OMMxK3fZgIjw8rLN5xPYMQvvDCC9ubfwlcJlFKhM/qE96vNHXglmH8Szr3Mv73SSzhw258d5/xfFlF+DBfyWlFeC6idSF4wSyf77333olE+DzPCAZctsvtzlyiRbthHV/tUE4R3hff61mI//DjqaZH1/aNRHiwlwhfeQZqkVl5jFVCMgTExWQ4KVbTQkC8ztdewi8ffkqdHQFxLzt2SikEhIAQEAJCIA0CEuELaOURwQG7Vum59fnWW281/fv3N1deeWWadjdhIjy3vJPP8ssvb/j7v//9r70gFWvpSonwU6ZMMdttt511C7PYYosVn8G3CvcfDNcxWKLH+YSPshLHnzsbDFlFeC5/Peqoo+xFtS7kEeH79etnN08OPvjgotucxRdfPJEIn/UZe/XqZWbOnGk3WQg33HCDdUmDIF/tUC4RvtdC3W3VEd+dAF+PQjwiOyL8/N07NriQFXc0BInwlWegFpmVx1glJENAXEyGk2I1LQTE63ztJfzy4afU2REQ97Jjp5RCQAgIASEgBNIgIBG+gFatRHTXUFnKRzjlslFEYHydpw1hIjy+yQmIw1w4igsaXLrg/qVSIjzlcfHpvPPOa32j454F/+w77bSTtdbmtx/cpbS4U0Go/+2336yIzA3UzsVM0F86cbGwHz16dPFi1izuaPAJv8oqq5jBgweH+oTHlc2DDz5oJk6caMvD5zyuXigrzBVPnz597DOSn3tmfMb77mjwzc+t4aV8wid9Ruq1ww472IthuezV+cRvyiL8X+I7IvyfYnzhX/v3n6GWvuFb2BoU9Hf+tUL7rN9/t79bFMR3+/t/P2n7sOILASEgBISAEBACQkAICAEhIASEgBAQAkJACDQdBBbp2cO0KAhXmZWqLCKyD4/Sf286d2iTmDEjR440p512WmYBnoLIo0uXLmauueayAi+Xi+KvHNc2G220kb3wFavxgQMHmu7du1dUhEcYHjp0qPXXjtDdpk0bWx/E9LDgu3Fp2bKlvWCUTQXEagJ5kPahhx6y/+d7Niyw6A9zKZPUJzx5Yb29//77m2nTppmePXtaq/Jtt93WCufffvut3TSYPHmyLYsNkjfeeCNShJ8wYYJ9bp4fX/CtW7c2WMLTtoTNN9/c5oXl/iKLLGI3K5w7mzzPCBb436fczp0728tgafNqh3JZwjOANZXArud83To0sISXCF+91pOlV/WwVknxCIiLYsjsiIB4na9VhV8+/JQ6OwLiXnbslFIICAEhIASEQBoEZAlfQKupbQIgwI4dO9ZgNZ01fPbZZ+bxxx83n376qc1i3333NbiGwZIbMRlxnuCE8FKW8Fnr0dTSgf0cc8xRrDZC+wEHHGDdyiikQ6C5ivDOJzxuaBDg5Y4mHW/yxNYiMw96SltOBMTFcqKpvOoFAfE6X0sIv3z4KXV2BMS97NgppRAQAkJACAiBNAhIhC+g1dRE+DQNXCoultX333+/2W233YpRX331VWv9zo8LEuH/RAL3PGeddZa1cr/99tvNsGHDrPsZrOIV0iHQXEX47l3a6WLWdFQpW2wtMssGpTLKiYC4mBNAJa9LBMTrfM0i/PLhp9TZERD3smOnlEJACAgBISAE0iAgEb6AVnMW4XFJgk/1+eabL5I3xCEcccQRabg1W8blcldwwB0NbnPOPvvsmrhymR3Aba4ifLfObRuJ8HJJUx1Ga5FZHZxVSmkExMXSGClG00NAvM7XZsIvH35KnR0BcS87dkopBISAEBACQiANAhLhm7kI78jifI2HkQf/5nEifRrCKa4QcAg0VxG+S8c2plWrVkW/8M4tDUK8QmUR0CKzsvgq9+QIiIvJsVLMpoOAeJ2vrYRfPvyUOjsC4l527JRSCAgBISAEhEAaBCTCS4RPwxfFFQJlQ6C5ivCdO8xjRXh+EOAlwpeNUiUz0iKzJESKUCUExMUqAa1iqoqAeJ0PbuGXDz+lzo6AuJcdO6UUAkJACAgBIZAGAYnwEuHT8EVxhUDZEGiuInyn9q3t5b4tW7YsWsPLHU3ZaBWbkRaZ1cFZpZRGQFwsjZFiND0ExOt8bSb88uGn1NkREPeyY6eUQkAICAEhIATSICARXiJ8Gr4orhAoGwLNWYR3lvAI8c4SHmDlkqZs9ArNSIvMyuKr3JMjIC4mx0oxmw4C4nW+tqpn/GbOnGkfrm3btvkeUqnrEoF65p4DTBysS+qoUkJACAgBIZASAYnwEuFTUkbRhUB5EKiWCD9hwgQzdOhQwwXDPXv2NGPGjDGdOnUqz0OkzIUBF0t4ifApgQtE//XXX80uu+xiXnzxRcOdFeedd16iC5KTLjL33HNP89hjjxVLhTfXXHONWWSRRRrUZIsttrCfXXTRRQ0+9y9wpn4777yzOfroo22cYN58tu6665prr702HyhK3aQQSMpFHur22283p512mvn+++/theCnn3662WyzzVI/L9zbfPPNzdZbb90g7Ztvvmngsguc1Nltt92KnE1dUIkE8P3yyy83Sy+9dGxM+vmhhx5qHnroIfP777+bRRdd1FxxxRXFfsj/77nnnpL5BAv5+uuvza677momT55sxw/63qqrrprqMV9//XWz7777mi+++KLRGET+2223nfnoo49SjU+pKlCnkdPwuhaPcN9999m+RLu5u5DCxmTq5r6HqxdffLGBj6ussoq58cYb7Wk2wsorr2ymT59efJS999672G+YcxxwwAHm2WefTdyfkuJHnRdffPFcfTRqPIhqF56lXbt25owzzsjUdHfddZe59957U7/rwJ0xi/7q45upEkoUiUBS7jG/Oeqoo4pjH23COE1Iy6m0zZGXg2nLU3whIASEgBAQApVAQCJ8AdVp0783nTu0yYxvrdNnrrgSCoEaIlANEZ7FW9++fc3xxx9vtt9+e3PSSSeZd955x4wePbomT86A27Hd3HYB71/O6izgZQmfrFmOOOIIK3wgyD399NNmn332sYI8AkFcSLrI9AUOOIRo8+qrr5px48YVs0dgQ9AkwGUnynz22WdWVL/qqqvs708++cRuGLBQ3WmnnewiNa94kgwlxapnBJJyEdFq2LBh5uabbzbLLLOMef755y2fbrnlFrPSSiulesRSIrwTHeHspptuai677DKz9tprpyojSeSkIjz9/OOPPzbXX3+9HS8Ry0eNGmWee+45W0xWEf7EE080U6ZMsRtr5D1+/Hgr5qcJ/fr1swLr4MGDbf8fNGiQmTRpkh0HDjroILvpy/iEWM93ScanNOXXa9ykvK5F/RGBTz75ZHPdddeZFVdcMbIKbNzDC+YJjPMDBgyw/GDDda+99jILL7ywzcdx0PUbP0PeG5tssond3EGwTGo9nhS/crxHKi2YBgHOKsIzBp511lnmkUceKb5na8Gf2b3MJNxjw3abbbYxl1xyie0XvCvYwD3yyCOL85uwjd7ZHTs9nxAQAkJACAiBNAhIhC+gVWsRPW/5aRpccYVAvSBQDRHeWXi6RTL/RzjxrZyriYdE+PKgjYjHIrBPnz42QzZYdthhh0YWvsHSkiwySRMUOODqkCFDGvAG6/cvv/zS/Pvf/7ai20YbbWSLe+KJJ8xxxx1nsBZzAQEHcR7L2XKIJ+VBUbnUEoGkXETg2Hbbba3ltgtsKnKa57DDDjNRVteMdfCtW7duZtq0aZa7SUV4ymHDiHKxQEVQPOaYY8zdd99t3Wf5VvJxVt8ImVjNBi2I6b/kO2LECDNr1iy7iYbgHgxbbbWV2XHHHW3/dmG//fazfX2PPfYofnbuuefav7FQ5lnZ5EKwj7JgBgc2F8AUwfXSSy9tIML7p6eop8vfr9+tt95qxXUX/A0Bng/LUHfiIOmmQy35WK6yk/K6XOWlyYd2QMwtdeph4403Nocffrgd0+Ew4i+/CQjCF154oT2d8d5771kOvPTSS42qgeDMRhmnWNKEpPhFvUeCQveZZ55p3n33Xdsf6If0nVdeecXMP//8pnPnznZDD0MFhFM2jAi8vwhsPhN4z9InbrjhBvt/d6qL/gUWjAn9+/c3b7zxhh1nosYE6sZG9g8//GDrQPn333+/Hcv8021sZB1yyCF2rkYaf2xwJ1/4zI1HvItpKze/43QC6TjlQhu4eUKadmiOcZNwj3GN01iOG+A0cuRIa6TAaRF42atXL9vOGErQLvCE4Ldxhw4d7GYYbUNbMXb/8ssv9rQD3OR0I/MqxvOlllrKxoEX8NnnYBgPmmPb6ZmFgBAQAkKgaSEgEb7QXnlF8Fqnb1qUU22FwJ8IVEOEpxwsFhFQnSU8C4Og+5BqtYlE+PIgHRThkwrbSRaZ1DBoCQ9/EBp83lAHxNC3337bvPzyy8Uj9k5wROg555xzGllAJq1reZBSLvWKQFIuLrHEElbQiHLdgkhNHE75IDghXiAKug1IxDe46ngd547GbVbC6X/+859WeMMVE8IHoiMC2LfffmuFR3eyA6G/R48etnxcfSDQIebRJxDrEdm6d+9uEM8XWGABa0FMfZxrmThLccQbTpTQj7C6DAZf+EakOeGEE8wdd9xhllxyyWL5EydOtCdksErefffdrfDub0ZQFzYY3Caas/TEOn6hhRayVp4DBw60zxsVEFrPP//8ooU+lvb/+c9/ipbwbBhgCe9Oy9QrJ8tRr6S8LkdZafJgExQXTnCDtvBFQD8feHvggQcW29IXsYnnb+TDXfrfH3/8YU8++K5qECtnzJhhech3UZs5wWdIil8WER7B8quvvrInQKZOnWq5DVepm/9OXXPNNe3JEwR1nvHggw+2f/sCqOvf9DdOCNC/GT+IFzUm0Ec5FcAGFuKrf6rAP51CmbhzYo5I3yUd715nPMGmGJvdt912mxVtaQM2SsCbZ2Ljrx5OPqbhZz3ETcI9NlvoH0GXZq7+8JLTI+5dwbjN6SVObcGLOeec046VtClu1RDv3djt3hVsANOujN1s0JAH7cmmjM/BKB7MN9989QCn6iAEhIAQEAJCIBIBifAFaGotouctPy2/n3np32b6t98Vk3Vq39b0W+lPi1IFIVAtBKolwj/zzDPW2ovQvn178+ijjyY+Gl5uLCTClwfRoLsHhDUWbs5CL6qUJItM0gZ9BONKAKu7BRdc0GbtBAjEAud+xnc3gSUgAj3CQMeOHe1i0xdCgycxwtwZlAcp5VKvCCTlYimXK/i2hmMIvGwA9e7d24phYad+SlnC+1jRpxC1CWuttZYV2TfYYAP7f6yCEdwRnxEbEfawJqceLpx66qlWfHQWk/zND3GCluFxz+h8eH/zzTdm/fXXt5sMWLgSgiK872/aL4+41AdhkTHCx4ENDERBrIEJCDu4WHAbbjwjmxFhd6H1BXgAACAASURBVDY4K92///3vVthcffXVbR6UDVa0DQFs2ARoDiEpr6uNhduUggdYg7NhRRs710auPrxbOEnhfFzHifC4SmJ+wYYVAQGYH9I6MfLOO++0fZP2dxtXcc+eFL8sIjz9GH67kwB+P6DObFDQN+nrcPjKK6+0Qigu/OjHvgDK359//nmxn/hCedSYEGelT/+mX7u+TV0pn83HoAiPEMzGmRuPGKs4NUP9/ZOOwXTV5lxTKy8J94KnfILPGHzH+PEZa5n7OJHctTGbvv7YHexzQd5RJuN4FA+iNgiaWnuovkJACAgBITD7IiARvtC2eUXwWqdPQ8/X3nzXnHvVaNNrkV7FZO+/94E55sBdzLJLLpomK8UVArkQqIYIj9UmC058uyKy4KMXUSet/99cD+ollghfHiT94+5Y6rK5wkZLqcVXkkUmNQwKHEHBhuP6XJLphDrcFyDs+C5DyAdRlEUn/lIRf7BCliV8eTjQ1HNJysVSlvD+JXkOk1IiPKLH1VdfbaMjyiFeIR66zaCZM2dav79YjrO5FRTJfXELsY4NpwcffNDm5y5JjuN5lAiPgIYATghuTCHSIbzxOVb5hDgR3l3qykYYfxPcpY6+UMSzIDBicc87IuySTjbf4lyY4aefvs9vLHexzEU8xJc/WGNJj2U9Y9XsHpLyuto4hG1KBfsW75U11lij2I7UMU6EDz4DGzZYhvM7KEbSz7DuLXUBd1L8sojwwX4c7AcIoe6eCcYATriwycD7jXerL4YGy08yJsSJ8B988EHRmt7h6lzPBMV0niMY6NtbbrmlRPgcHSsJ95JYwvunrZwI794xweo5V19ZRPgoHpQyxsgBkZIKASEgBISAECgLAhLhCzDWWkTPW34aJrzw6iRz672PmIMPP7CY7JyzLjL7DNzMrLDMEsXPXpjyjfnHwn9ZtaUpQ3GFQBIEqiHCs3hjUcylhi4wca+V5bFE+CTMSBcHgW211VazluqljiEnWWRSepjA4QsYHKX/8ccfG1QU0Q3RwPf/7iL4Qo5E+HTtO7vGTsrFKJ/wnM5gcwd3W1iesgnk34GRxRLeHxd9zgYtaH1LeL993KWxWM6S/rvvvstlCY+LC6zx/X7t98M4EZ4xH5/DWCKDld/vggIp7yJEdH7jM9y34A/jH5u7DzzwQAOf8L7FJ/XCP7az6o06gTA7cjspr6v97PhvR0j2L9FGhMcFxmKLLWarg0uU3377rYG/6zif8PB9nnnmMcsuu6xN74vwuN7gneAs6hEb8c2OdXdcSIpfnAiP+yrnwz6uH/u8hNNYluNaBkt4+i4bali7I5CyuZTUEj5qTIgT4d3GFe5qODkQ7Nu+O5rgeOTKC455soRP18uScC/KJzwnAbnjI8oSHmGeU1rOxZBfszheEC/KEj6KB+meWrGFgBAQAkJACFQfAYnwBczziuC1Tp+GNojwF1xzu+m78grFZE89+aw5cr8dzZxdFjJ3vfaZefitL808c7Yyx23S2/Tv3TVN9nURF8szFgz4oU0bsPrBr2e1fbfWqty0+JQzfjVEeNyGIE4hjGKJw8Vi+KPED2UtgkT48qKOdSzuA+add96S4gYlJ1lkEi8ocMAb/FLjfgbXFPjW9cUcfKDiKgOrW8QeLszEPQWnMJxVMRaW+MOWCF9eDjTV3JJyEQEMi2r8HzOGOaGb0xlYrbIhhO90BAlO+sDTUpbwwRMjwQus4SxWpb4f3iif8GwCYME+ePBg2yfwF48IH/QJz70KuG1BjEzqjoYNCKzHeSZ3ySJCqXP9hIg6duzY4uV+vjUlmGC9jhiPhTP1wqLXd0eDSIroiH9s6sSpAkRHfNkjYmIZD86I8v5FsHAO3DkBAEY8t/NLzYYBmPA5z4xl/6abbmouu+wyexns7B6S8roWOMAnxmT6E2M6HHHuaNjMpb3hkH9igbEdn9RhfszdRo87Wee7o3n44YfN0KFD7QmR1q1b2/5UDXc0jA/4Wof7lOv6EBb4vt/1oE942oO4uJZymKywwgrWBZt7vqQ+4aPGhDixlbJx6+PqznsyyhKe56DPuUtv6Yds2HGxp9zRZO9ZSfquuzODdw1jJuMbbceGMKem4tzRMEbijuyCCy6wYyqCPuMic6oslvBRPHCbatmRUEohIASEgBAQApVFQCJ8Ad9ai+h5y09DEUT4G+6cYHbZY+disitHXGd+WXR182urv5sNlpnfrLZYF/Pse1+Z9z+bbs7a+k8Ln1Ih7Fggk3cWOUzQogJiQfDYeLdu3Rr4UPbTsghwx+j5nLgIXix4Xdh2222tT08uZ4oLQeHhyy+/NFxIxSVCzrdrqecux/e1Krccdc+TRzVEeOrHQm348OF20t+5c2crjiKg1CIw4HZq39r6JuanZcuW9sLPFi1a2Oq437WoW1Mrk8UeggPCGn09ycZZkkUmOARdUjDOYCGL0Inoz2VhCOp+YIG53HLLWZHP+bHGJzT1QqDHko+/JcI3NaZVpr5JuRgcw9q0aWPfj1wySUDAQMyYNWuW3XC86aab7GdBQcrxOu5iVvekQc7yjsYVDKdNGK8Qqd2RfzamsPqF6wjlzh0NeSFk0zfdZcU33nij7QNJRXjGbES1Z5991ubh90PyZzPMWbvyvS/k8H/weOWVV+y4v+KKK9oLNLFEdkIR/ZQ7QqjTIYccYssK4o0gO2bMGNvn/cD7a//99zfTpk1r9Ny41kBMRMAN5l0ZNtVPrml4Xe1a+27MgnMBuEq/wXVdMETx2HGQfkFg/gi/3LuI+e/FF19s+yYivHO9EffcSfELc5vk3C3BY56F/khfox8hwvt9Yv7557f9wnfjFnSzxrjSpUsXu2lB8EV4/s/zXXjhhXZMYJOZuSzCedSYECfCkwb3V9OnTzfrrLOOPTWAVTzjVdCi3a0ZnFsqh60s4fP1qKTcY7OSsdeNffDOnfiIE+Hpf1zq6i6pdmNuVkv4KB7kQ0GphYAQEAJCQAhUHgGJ8AWM84rg1U6PhQ0TGRaGacXEKHc0S666jnnvpznMkE2Wsax75/OZ5oSx/2cmHrq2aTtXq5JMRIRngRHnkzkoertMmbxhfYY4yrFxLHj22Wcfa4Hm/FO6uCwCsCxy/llZYDNxJ75bQJes7P8iRNUnaXrFy4dAtUT4fLUsb2qJ8OXFM21uSReZafNVfCGQFgFxMS1iit8UEBCv87VSU8EPARSXS7jiwYUPm9MLLLBAo83pfGgodTURaCrcqyYmKksICAEhIASEQCUQkAhfQLXaInqwIdOWjzUBvhvxSeyOYiclR5QIv9PWm5iDH/iPGbrpsubNT2eYtq3nNG/+Z4bZqk93s/UK85XMPo8Ij6UOQrp/qSEWEhy9Z7PBD0ERnu+C7iGClqZYbGAh56zx8BOLVapvUe82EHw/lEErC44qkxbrImeZs/LKKxetA31LOt/iA2tn3wqK+rFoYQHDcV8slOLK9dPOThZ2zVmEx1IOXviW8LKCLznM5I6gRWZuCJVBmRAQF8sEpLKpKwTE63zN0VTwc6dUnn76afvAzI/dSZd8CCh1rRBoKtyrFT4qVwgIASEgBIRAuRCQCN8ERXgaHzF2m222MT///HMqi/i4i1lPefprs+xCncw2K/c0beeewzzz7pfmqcmfmxE7rFiSb3lEeARwrOARy3ErgzV8VAgT4Ynri9i+CE/eWM5zRB8/8VjrIKJfeumlDS6xc+X5+WChP2nSJHuxm3MjQVpEc0R46ssRfY6dY7WPf0LiExfXFMTFbyKCPD5FcYnCSQHqh79cBH2OuuMjMaxcjvVyWdZWW21lDj74YOtvEdc+nA7g4iznfzfsxEDJBquDCM1VhO/cYZ6iOxqOcTt3NBLhK09KLTIrj7FKSIaAuJgMJ8VqWgiI1/naS/jlw0+psyMg7mXHTimFgBAQAkJACKRBQCJ8ExXhswrxcSL8tJbtzS0v/8cM2+qvS1v3uOpJc9Pu/zDzt587lldhPuHdpUouYZz7F3yz4ksWH6qlfML77mh88RxhfZNNNmngc7l///7WVY3zGf/xxx9bC3QuSgurjy+Gc+kblj1c5EVwly8iHnMBI9b0zi1OcCMA/7hsJiDEE7DyX2qppYqXwvXq1avoZzOYNlguGw/4x0T8R9wnnHbaaYY8guWk6fy1jltpER7/v/USnMDOgNulY5sG/uAlwlevlbTIrB7WKikeAXFRDJkdERCv87Wq8MuHn1JnR0Dcy46dUgoBISAEhIAQSIOARPgCWmndwQQBrmX6IUOGmPHjx1uRudRFpNQ7ToRfYZklzCpnPmJG7r2mafM/P/BXP/qO6d15bjO4X89YXuWxhPcz5ojrzTffbM4++2wzYsQI63bHD2kt4Xv37m1xCfNVX0qE9wV5Vwf32dtvvx0rwnNSYb/99jNcPOuCuzQr7GJGv6ywDQ0Edy6hAp/jjz/eTJw40fz3v/9tcEFemo5fD3ErIcLXk/AehjEDbvcu7UJd0cgSvvKs1CKz8hirhGQIiIvJcFKspoWAeJ2vvYRfPvyUOjsC4l527JRSCAgBISAEhEAaBCTCF9CqpYhOY2Ut/7jjjjO33nqrwdr7yiuvTNTupUT4o8e9YRbt0cH0X7aHze/fn0w3l06YXLigdc3Y/LOK8FOmTDHbbbeddeey2GKLFcvwLcf9gtP6hA9awiNiz5w501rblxLhoyzhn3zySfP888/HivD9+vWzGyO4kXGubBZffPGiJbz72z1b0AI/ytf/p59+arp27Wrz/OSTT6xFP5sMm2++eaL2r6dI5RThffG9noX4Dz+eanp0bd9IhKddJMJXnp1aZFYeY5WQDAFxMRlOitW0EBCv87WX8MuHn1JnR0Dcy46dUgoBISAEhIAQSIOARPgcIrgDOquInif9qaeean2Kc6kpbkqSBkT4ETfdZfpv1L+Y5O5x95vD99ze9Ou7rJk89TtzxJ2vm/026G0mfzbDzPjxF/NcwTf8ZYNWNEt1nzeymKwiPBni53zeeee1/tNx4YJfdfyfH3nkkfa3H4IiPBbhxMPlzAEHHGCjhvmEx687rmGwTm/VqpXdtHAi/AsvvGA6depk08b5hMefPCL+6NGjixezRrmj6dOnj63X4MGDi88zaNCgRCL8vvvua93M3HDDDbbOl19+uenevbsZOHCgceI+JyCmTp1qfc03dxG+10LdbdshvjsBvh6FeER2RPj5u3dscCEr7mgIEuGTjmLZ42mRmR07pSwvAuJiefFUbvWBgHidrx2EXz78lDo7AuJeduyUUggIASEgBIRAGgQkwhfQqoWI7jdS2vJHjhxpfYKnFeApExH+qlvuNpttsWmxCmNuv8scttu25h8FEZ7wjzMfNtut2susulgXs2DHecz4lz82P/74szl2496R3MojwiNsDx061PpZ//XXX02bNm3MHnvsYbgYNRgQ4a+++urix1i0H3bYYUWf73wRdPfCBar33nuvmTVrlunbt6/1844lOQEL8smTJ1urdv72RXjqQh1wA0MgLRsfCONczBrnE37ChAn2mXg2fMG3bt3aYP1Ou5VyR+OX+/vvv5tVVlnFXHbZZXaj4PXXX7d1wj89z4C1PRe+NsVQLkv4v8R3RPg/xfjCv/bvP0MtfcO3sDUo6O/8a4X2WYU25XeLgvhuf//vpym2oeosBISAEBACQkAICAEhIASEgBAQAkJACAgBIZAMgUV69jAtCsJVZqUqrYgcrJbSf286d2iTrLUKsRBpcVeCZXXaUModDfld8tj75ttf/zA7rb6ImfjG5+aRNz8zHQs+4i/fYcW0xSm+EIhEoFwiPANYUwnses7XrUMDS3iJ8NVrPVl6VQ9rlRSPgLgohsyOCIjX+VpV+OXDT6mzIyDuZcdOKYWAEBACQkAIpEFAlvAFtJr6JkCaBn/tzXfN+VffYhZa+K+LVj/84CNzzIE7m2WWWMRm9emMn8w/Rzxr/law3l2vd1czoPDTv/CjIATKiUBzFeGdT3jc0CDAyx1NOVkl4bN6aKqkPAhI8MiDntLWKwLidb6WEX758FPq7AiIe9mxU0ohIASEgBAQAmkQkAjfzER4yPHc/71hZnz7XZEnHdq3NauuuEwD3rww5RvTu3tb07ZgAa8gBCqBQHMV4bt3aaeLWStBqAR5apGZACRFqQoC4mJVYFYhVUZAvM4HuPDLh59SZ0dA3MuOnVIKASEgBISAEEiDgET4ZijCpyGI4gqBSiHQXEX4bp3bNhLh5ZKmUixrmK8WmdXBWaWURkBcLI2RYjQ9BMTrfG0m/PLhp9TZERD3smOnlEJACAgBISAE0iAgEV4ifBq+KK4QKBsCzVWE79KxjWnVqlXRL7xzS4MQr1BZBLTIrCy+yj05AuJicqwUs+kgIF7nayvhlw8/pc6OgLiXHTulFAJCQAgIASGQBgGJ8BLh0/BFcYVA2RBoriJ85w7zWBGeHwR4ifBlo1TJjLTILAmRIlQJAXGxSkCrmKoiIF7ng1v45cNPqbMjIO5lx04phYAQEAJCQAikQUAivET4NHxRXCFQNgSaqwjfqX1rM8ccc4S6pCkbuMooFAEtMkWMekFAXKyXllA9yomAeJ0PTeGXDz+lzo6AuJcdO6UUAkJACAgBIZAGAYnwEuHT8EVxhUDZEGjOIryzhG/ZsmXREh5g5ZKmbPSSCF9ZKJV7TgQkeOQEUMnrEgHxOl+zVAK/n376yfz666+mbdu25osvvjDdunXLV0mlni0RqAT3ygkUHP7mm2/E33KCqryEgBAQAkKgJghIhJcIXxPiqVAhUC0RfsKECWbo0KGGhegqq6xibrzxRmuJXovAgIslvET40uiz4HrxxRfNRRddZGbMmGFoRxf4bpdddrHf05aHHHKIOeCAA0pmmnSRueeee5rHHnusQX7rrruuufbaaxuV8fXXX5sDDzzQOD7379/f1tlxbNFFF7X88+t35pln2nyOPvroknVWhNkTgaRcdE9/+eWXmxEjRpjXX3+9IoDA0/fff9/mTf/aeuutzeTJk83ee+8dy1PS3XPPPWbppZdOVS/6za677mrLmHvuuW3fWnXVVVPnscMOO9h609922223Yl3Jf7vttjMfffSRzf+8884zG220kc0fDPfdd18rSAa/S1UBRW6EQFpeVxNCfy7Qs2dPM2bMGNOpUydbBfrXxRdfbLkfNk+4+uqrzaWXXmo6dOhQfDfAMZ9/Ue8heA4Pg++UsGdPih/vqBdeeMG+d4LzGd5VBFfeueeea1577TU791liiSXMqFGjzOqrr54J+jfffNO+y5I8S6YClKhmCCThHnMX+oIfFlxwwarw4YEHHjDHH3+8eemll2qGkQoWAkJACAgBIVAOBCTCF1CcNv1707lDm8x41jp95ooroRCoIQLVEOE/++wzs/7665vRo0ebpZZayoo+/D755JNr8uQMuB3bzW0Xzf7lrM4CXpbwfzULwgEiO+Leo48+2mCRh8j98MMPm9tuu818++23ZsCAAVZYWGmllWLbNckikwwQOBZffPFEIvkWW2xhlltuOTNs2DBb9kEHHWR+++03c/3119v/I1Jy4uHZZ58tCj4S4WvS/eqq0KRcdJXeeOONzaeffmroF05MLucD+SL8vffea8466yzzyCOPlNywzCrCn3jiiWbKlCnmmmuusX1l/PjxVsxPE3bccUcrKh533HEGQZRx4MILLzQbbLCB7YeMp+eff74V3QcNGmTHk3bt2pl+/fpZIXHw4MFWxOS7SZMmlXzWNHVrrnHT8rpaOCGu9+3b14p422+/vTnppJPMO++8Y+cGCORwB/4tssgiZq+99jILL7xwcZ7AeP3QQw9Z8bFXr17FKofxj3eSvyHFe2r//fc38803XyKhMil+bqN4+PDhZqeddirW6eWXX7YbA0nLS4u/RPi0iDWd+Em4R1949913Qw0Sms6TqqZCQAgIASEgBGqLgET4Av61FtHzll9bCql0IZANgWqI8HfddZcZN25cURB9/vnnzVFHHZVoMZztqeJTSYRPjyptiOjuW94homy77bZWTCFg1YpofsQRR8QWkGSRSQZJRXj4hBU8AruzRkTsWWaZZWx9EUIQKRFlunbtWly4SoRPz4PZLUVSLvLciIT/+te/zB577GEQwbDIdQGr1+WXX95gJchYh8U3QiF/T58+3Qr2WPkSiMvfTiT0BXQnwtPf/H6EMIn7iqBVOdaPbEC5wObAkksuafsi8adNm2b7QJSFMX1s7bXXthujWCjzTL4I71stY5VP/sFw8MEHm2OOOcb2M9dvN998c2vFv/LKK5vrrrvO9OnTx37HCZXDDjvM8P2tt95qhXcXsm4kzG6cLMfzpOF1OcpLmgf9Br660x6+mMwmEBtObuOUTSg2cxDeGc/h0NNPP13cRHVl3n///WaNNdawGzuufx166KGWfwTSrrfeepZzDz74YKJ5R1L86D+c7iOwkeAC5X///ff2Oel/QdHcf5+6+dEPP/xgXnnlFdO5c2fDM3E6gLrTlx9//PEGp81cfvQv0nOS5JZbbin2s6h+y9gDLpzmmTVrltlnn31Kvq+Ttq3ilQeBJNyLE+HhZNS7xz+9yGkSNzbDIU5o8L5gDseJKDgEj+HJJptsYuiP8DnI5STviPIgo1yEgBAQAkJACJQXAYnwBTzziuC1Tl9eSig3IVAdBGohwgcX4tV50r9KkQifHvEwEZ4FvS92JBW1kywyqWFSER6BEcvDoJsaxB4EU0QHBD5EEgQNBFKsdJPWNz1aStFUEEjKRZ4Hvnz++ed2AxHu+1bb/B/3GaeffroVy+Auoj2CdvCUSBIRnvKCfQ7u9ujRw1oP33ffffaEiHOL4wvYbnylP1AWfQMXMRMnTrRCJYLK7rvvboV36ukEc+IipjsLf/LZZpttrHX8QgstZMXTgQMHWtc4UcFZOiPY4GokKKz75fl53H777dZa/rnnnmsq1KnreqbhdbUfhBMQQ4YMKVrCs0nFBm9QWPTFPizZORXC6Sb61fzzz2/7h3Nj456B+QyW8WzMOlGefL/77ju7IRTcSI569qT4wWf6yymnnGJFSjjvW/vzbkoiwjOmsCnFRoN/AsCdVLniiivsOMJJHPo1ojv98Ywzzmh0oiCu39LH6ZPkFzyZUm0eqLxwBJJwr5QIH/Xu4R0y55xz2rGW/sP76tVXX7V/n3DCCeaOO+6wm7hwjffZVVddZd8hp556qhXsgyJ8lneE2l0ICAEhIASEQL0gIBG+0BK1FtHzll8vZFI9hEAaBKohwrtj5m6Refjhh1uLUWcNl6a+5YgrET49irUS4YM+b8P8XkctSH3Bz4mBb7zxhl2APvnkk1aMJ8gnfHo+zC4pkgge7lkRD0877TS7gYMAhhW3c0ERFNaDYrO/YZVVhGfD66uvvrLW6h07dmzQBEER3vcXjaUuPy4NggpuuOC9X09cyjBG4y6EgNX7J598YoVLAkI5Vo9hdzK4ypBf9+7dLU6EUiK8s/j/+9//bl3iZPWRPbvwsVzPkYbX5SozaT7PPPOMvUuE0L59e+vmjMtK40R4eIJQjbUudxb4bmzIx2088TfCIptFBHd6hVNSiOSVEOE5SYKLJSyI6aM333yz3STj1Iorr5QlPHVz/crHYa211rL90N3TwIWYCPAffvhhA5/w/vs5rt/GjT1J20/xKotAkr4b5hOedsfgIO7dwxjvTgfyFPDryiuvNG+//bbtH46D8GnkyJHFU1G+4YzP5SzviMqip9yFgBAQAkJACCRHQCJ8Aau8Init0ydvbsUUAvWDQDVEeJ7WuUPgbyzHuKCsVpeKSYRPz79aifBJfMIntYR3Aj7uc/AfjxBJkAifng+zS4okggfPimUtFqrO8hxxDdcYCNOEaojwCOn40salBsG/5DROhMcyF3EQVx/8TXAXvfqCDX0c8RzrR4T4sIuR4y7/QxjCkp2LNv0Lkf2NsyhLePDFMt+3YJ5dOFaL50jK62rXDQtbBGVOJcExLLIRrOFIKRHeFwnfe+89O48IbuSzacQGGWIid5P4LtPC3mFRz58UP3daC1/2uESD/1jib7bZZqZ169a5RfgoF01xon5cv5UIX23Gpy8vCfdKWcK7003u3cT4j4W777rM1cy5GIvaCCJelAif9h2RHg2lEAJCQAgIASFQOQQkwhewrbWInrf8ytFDOQuByiFQLRHefwIsHhGznIVl5Z4uPGeJ8OkRr3ef8AikcDnoEx6f3PjeDoqUuNnAj3ASkT89WkrRVBBIInjwLIgYiBTBwIkKfKGnFeEvueSSov/mMJ/wlBMnGiJWY03MpZaEOBEey1xcCdx5553W4th38xQUxelDiOH8xv0Hwr+zao9rU+p62WWX2RNOrg8SP8onPBaYxPV9wgfdWzUVDtVjPZPyutp1hye4vICTLrh7EOJ8wtP3OAHiNqAQ4TfddFPLf05v4GLJuZ9x/Oa+kqjLk0udwkuKn9+X4C8nUHBNQ//xLe8RMXEFwngR7NtgEiWAkif9MI0lPCddovqtRPhqMz59eUm4l0WER5jv3bu35abrK652QQ4mtYSP41r6J1cKISAEhIAQEALVRUAifAHvvCJ4rdNnoczX331kjrhhMdN7/nXMUVs9lCWLBmlYzAQDlmtYioZZQLi4LEiC1nJc6saxXibtwRB2FJKy+dwdZc/9MMqgKghUU4SHY1i/c5EfgpC7mLAqD+oVIhE+PeJhgiCbKFgwhvm9jishySKT9HE+4d2xfI7mExjfsG4fNmyY/f9BBx1k/Qe7S/6CFoXOx6mzCE6PiFLMDggk4aLz8YzFoC/q4Z8Z8Q+BPo0I705iwFUs6fHD7qzFnSAJtsE+hzscRL7BgwdbIQUB24nwuBkYO3asFfaDVrLOLzXC59dff23TUXffHQ1j8SKLLGKmTp1qnwWxEP/3+JKnD/Fe5+JHxD3uWfCDs6DHVU3Q1jVMXgAAIABJREFURzf9kDRhPqipK5b94OF8eWOt7y54nR34VatnSMLrWtSN+wl22GEHy3csc2+44QbrHgy/1EG3db5vdPogPqqPPfZY63KDjSG4j0U9Yz8iNf0J/sLtiy++2F44HORpJdzRuI1c8sbAgA3ek08+uUH/5QQAfYhNYYTQ/fbbr3hpa5wIH/QJv9VWW5mzzz7bXt7qu5zyxwp3B0RYv5UIXwvWpyszSd/NIsLTbzilgVuyCy64wI7LvLvYPGXs9jeCkvqEj+NauqdWbCEgBISAEBAC1UdAInwB81qL6GnL56Iojp9y9JrFZJYw/sVTzLgXhtuk5w5+z3Sat2eWbIppWMA7v4BRGUVdislkjEU3iwis5RBL99lnH7vw5livH5gAYpHk3ImwQGLRM2rUKPPUU081srLI9VBKXFEEqiXCO97BUYQXLCFrFRhwO7Vvbd2R8NOyZUvzt7/9zbRo0cJWyf2uVf3qsdwwEZ5+j3Xf448/bq1fDznkECsMlApJFpnkEXbUGREBVwOIEfx92GGH2eIQFxmPHZ/79+9vT1pEucWg7nCQfOSOplSLzb7fJ+EiAgViWPDSUETtq6++2r4H04jwnAJCiEQEQVj89NNPrV9ed2LDWekG+xzp6G9ffPGF9Qvtu6M54ogjiqIfYrov0MF1ynvllVeseLfiiiuaP/74w5bpLOFxCYJv7mA/ZpNg+PDhtq5cOsl8Jyi08+y4AfGDc1tDv8SyfvLkyY3qTF/df//9zbRp0xp9N/syrjpPloTX1alJ41J8TsFH5pxuDo1wzGWjTnTHB7wbw+E/wjx88bmI8I64iIgf9x6qpDsa3iFOuHRz5mB5zM1x9cRcw3fJFyfCR71j49zRgHhUv5UIXyvWJy83Sd8NM4RyY26cT3g3T+IOA7+vBDlIbXnvsS6cNWuWWW+99Qx3OdAHg9xL8o5I/vSKKQSEgBAQAkKgeghIhC9gnVYEDzZPtdMzmeGCth9//LFogZaWMkfesLhZaoGC1dnkUWarf5xg/rnK8Q2yOGtcf/PWp4/bz5JYy+cR4Zmc77777nbB7AKiGtZKiFt+CIrw7jvf2jRqoeXEWKwymPg5C0DyRMRn0RFc7PvfIVq4hRmTTaxduWxxhRVWsOLcBx98YBdqpRZkadtqdo1fLRG+nvCTCF/b1kiyyKxtDVV6c0FAXGwuLd28nlO8ztfewi8ffkqdHYF64R6btpzawFAFl0is3Th5oiAEhIAQEAJCYHZBQCJ8oSWrLaIHyZOlfARfjp7+/PPPqS3i3/7sCXPmXRuYo7d+2Dz91o1m8n8eM+cMfrdYLT7DSp7P+Puah/ewcZecr+ERW/858ojwWOlgkYRFHcfDsYaPCmGW8AjgHCvGwgJ/nVje4auTI7gnnXSStRbkx4nwHInHWq9r167miSeesBatEydOtFZ2HNXF8o4JH0fpsR7C8h4/htSNPDnuiwjPcUj83SLcc8ySo8lY7lOmO7IfZs0/uwweeZ+jOYvwWAJhBe9bwssKPi+jSqevl0Vm6ZoqxuyOgLg4u7dw83w+8Tpfuwu/fPgpdXYE6oF7GENxtwHGVPzN2pJ1VPAUVPanVEohIASEgBAQArVHQCJ8ExXhoU5WIX7kI3sXhXdfkPdFducz3lE0iQgfpLOzNHefR7mj4XuOpHPEHSvytD7hiY+1BC4eENBnzpxp8yBwhBG3Dxyzd+W/9dZbxWPGzk/oOeecYzbccEObxqXHrQQX0DkLff+ILyJ8r169in6gScexZAI+Q/mOo/tsKDjf0bXv7vVVg+YqwnfuME/RHQ3Hw507GonwlednPSwyK/+UKqEpICAuNoVWUh3TIiBep0WsYXzhlw8/pc6OgLiXHTulFAJCQAgIASGQBgGJ8AW0slii+yDXMv2QIUPM+PHjrZU2/iyThN0vm6NRtLWW2s3ssf7V9nPnLx7hneCs5itlCe9XBhEdf7dcADVixAjrdscPUe5ognFuuukmK8i74Ivwzu+t+w4reS6CnTJlillggQWsVT6+bcP8zWK5zKVcYRc3Uh4+x7Gq/+9//2svlpPP52hGVlqEx/dwvQQnsDPgdunYpoE/eInw1WslLTKrh7VKikdAXBRDZkcExOt8rSr88uGn1NkREPeyY6eUQkAICAEhIATSICARvoBWLUV0Gitr+ccdd5x1u4LFNhedJQlh7mWwjMc3/HUH/mqz8P/vC/KVEOERvrfbbjt73HCxxRYrPgLW50sttVQjEbuUCI+Af8kll1gXPVwW5Fvfh1niY/WOb3fcyXD0ESt2Lnh96KGHLK5cEMsGRzCEifBccoeLG1yNcFncpptuajdGNt988yRN0+ziVEKEryfhPaxBGXC7d2kX6opGlvCV7wJaZFYeY5WQDAFxMRlOitW0EBCv87WX8MuHn1JnR0Dcy46dUgoBISAEhIAQSIOARPgcIrgDOquInif9qaeeav2RY62NT/SkgQtXp838qIEPeOeSZq8NRpo1eu9ifFc0XMrKBa1hl7f6ZebxCY8v9XnnnddcccUV1n3LpEmTzE477WSOPPJI+9sPpUR4/LjjS/Duu++2Yjg4sVERZQnvRPtx48aZ7t27W3/uToTHV/2dd95pbrvtNivo444GVzbHHHNMqCV8v379rGDP6YSpU6eaAQMGSISPIWY5RXhffK9nIf7Dj6eaHl3bNxLhgUkifNJRLHs8LTKzY6eU5UVAXCwvnsqtPhAQr/O1g/DLh59SZ0dA3MuOnVIKASEgBISAEEiDgET4JijCjxw50lpspxXg0xAjbdw8IjxuXIYOHWoeeeQRa43epk0bs8cee5hDDz20UTVKifCkx487l7Qiwg8cONDgmgbBF0t1BP+gO5oTTjiheAkQl6xedNFFpk+fPrZsyhs1apStF985VzVhlvD4n6fO+LWnbAT54cOHp4Wy2cQvlwjfa6HuFjPEdyfA16MQj8iOCD9/944NLmTFHQ1BInzlqa9FZuUxVgnJEBAXk+GkWE0LAfE6X3sJv3z4KXV2BMS97NgppRAQAkJACAiBNAhIhC+gVQtLdr+R0paPIDx27FgzaNCgNG2tuEKgrhAolwj/l/iOCP+nGF/41/79Z6ilb/gWtgYF/Z1/rdA+6/ff7e8WBfHd/v7fT101jiojBISAEBACQkAICAEhIASEgBAQAkJACAgBIVBWBBbp2cO0KAhXmZWqtCJysPZK/73p3KFNWRtVmQmBekegXCI8A1hTCex6ztetQwNLeInw1Ws9WXpVD2uVFI+AuCiGzI4IiNf5WlX45cNPqbMjIO5lx04phYAQEAJCQAikQUCW8AW0mvomQJoGV1whUC8INFcR3vmExw0NArzc0VSPkVpkVg9rlSQRXhxofghojM3X5sIvH35KnR0BcS87dkopBISAEBACQiANAhLhJcKn4YviCoGyIdBcRfjuXdrpYtaysShdRlpkpsNLsSuHgLhYOWyVc+0QEK/zYS/88uGn1NkREPeyY6eUQkAICAEhIATSICARXiJ8Gr4orhAoGwLNVYTv1rltIxFeLmnKRqvYjLTIrA7OKqU0AuJiaYwUo+khIF7nazPhlw8/pc6OgLiXHTulFAJCQAgIASGQBgGJ8BLh0/BFcYVA2RBoriJ8l45tTKtWrYp+4Z1bGoR4hcoioEVmZfFV7skREBeTY6WYTQcB8TpfWwm/fPgpdXYExL3s2CmlEBACQkAICIE0CEiElwifhi+KKwTKhkBzFeE7d5jHivD8IMBLhC8bpUpmpEVmSYgUoUoIiItVAlrFVBUB8Tof3MIvH35KnR0BcS87dkopBISAEBACQiANAhLhJcKn4YviCoGyIdBcRfhO7VubOeaYI9QlTdnAVUahCGiRKWLUCwLiYr20hOpRTgTE63xoCr98+Cl1dgTEvezYKaUQEAJCQAgIgTQISISXCJ+GL4orBMqGQHMW4Z0lfMuWLYuW8AArlzRlo1ddi/AzZ8609Wvbtm1lH1i51y0C5RI8fvrpJ/Prr79aLn3xxRemW7duJZ+Z+N98803JuOJpSSgVIYBAuXjdXIGtBH5Zxojmin9zfu5KcC8Lnryb5p57bvujIASEgBAQAkJgdkRAIrxE+NmR13qmJoBAtUR4JvRXXXWVufvuu82RRx5ptt566yI6EyZMMEOHDjUsUnv27GnGjBljOnXqVDH0GHCxhJcIXxpihMIXX3zRXHTRRWbGjBmGtnIh7ru4nJMuMvfcc0/zwgsvGDjKqQU/rLvuuva/jz32WOmHiIhxwAEHmHbt2pkzzjgjMo8333zTEC9JOYsuumgxHzZ2+vbta6677rpUi1gwPfTQQ/8/e+cBL0WRtf1DUsFLzkmCZMGEiAomgkhcZRVBxYCIAURk8VsUEyqKLiqKwCqCCEhQQQkSVJBgQIVFJYhE4QoCkrPEb57irbFuM93T3ZPvPPV7eReZ6qrqf5+urnrq1Cn54osv5Pjx4+p9eOedd6Ry5cq+75MX2hPwYotVq1aV3r17q8KWLl0qN998s4wdO1Y95wEDBshPP/0ko0ePlmrVqsnIkSPliiuucEQ/Y8YMefLJJ2XRokWO+dzYabhnDNucOnWq1KpVK1zWLL+vX79e2fDkyZNl3Lhxwethpx07dlR9A97N7t27q/cEyXwPdGF4X4cPH+6pbmb2T8CtXfuvwf+VTt/7IUOGyBtvvKEWtOrVq6feJ9332/3mZIs7duyQDh06yNq1a1U5d911V/Adjvc3yk8fYddGL98l/0+KVyaCQLh3d8OGDdKoUSM1LsL4Raf33ntP9dEzZ86MSrObNWsmt9xyi3Tq1Mm2vI8//limTZvGvj0qxFkICZAACZBAvAlQhA8Q375rvxQrnOGbfaKv991wXkgCCSQQLxG+fv36Snj/9NNPpWfPnkERHhNoiFj9+/eXli1byjPPPCOrVq1S4lasEjrcIgXzqkm5eTir9oCnJ/zf5CEcQGiDePfll19mEaOdfouWwAHx+9lnn5XbbrstWOTixYuVsFKmTBlX4ngkduRF7DCFTiwo3XnnnXLOOecogdZtuu+++2Tfvn3y3//+V4n3EC7xdy12ui2H+dwRCCd46FKwIKRFeAh7jRs3lqeffjrLYqK7GhOTy48ID9vv1q2b3HrrrWqhyhTxsSg3e/ZsmTBhguzZs0eaNm2qFh7q1q172g2ijMsvvzzLO5wYCulTq1u7jjcR/b3H4lO7du2yfO8hLsKOYGdYdOzcubNUrFhR+vbtK/q38ePHS506dbL85mSLsF0sivXp00fw3qL8gQMHqvc3lb9RXr5L8X7GrC8yAm7e3euvv14tgprjIrxPDRo0UIv48UoU4eNFmvWQAAmQAAnEggBF+ADVRIvokdYfC8MQOREoNmdsimapJBAgEC8RXsOGRyQmCdoT/rvvvpNevXrJggULVJY1a9ZIixYtlBAfq0QR3jtZTLYgdoTyCHf6LVRNbiaZuA7CJ8RsJHNRBvazf/9+5d2I9lgFCbM9+Psnn3wiBw4ckCVLlkixYsVk+vTpaqcFFn6Q4N0McQgC+Lx587J49uqyL7nkEkFZEMbhbQYhyJqsQqeVC+wcO0FwCDBYwtPMTJs3b5Yrr7xS5syZozzgdYJgdccddygRGEzQBnjKQxht1aqVPPbYY8FyTU9P5MXv+l0z3z38/YILLlA7G06cOCE9evQIejJ7t47UvcKLLYI/duw0b95cmjRpksWjFv3oAw88INu3b8+ye8HJfqx2C09fCISwD5S/bNkyZd+mnTrZM0RGeOdDsISNvPLKK1K+fHlp3bp18AHpBSF4GKOtuCc3HupW24bgc9NNNykhFQnvDsqCjZsJbYENhtrNkrpWk/wtd2vX8b4T2DzsEX03kvkOwJMXfR/+Fwketngf0NdZ+1JT/HOyxYceekj1j1iw1d8Us0+0u3+3/GL9jfL7XTJ3G6D/1+89+n3899ChQ1W/36VLl9Pe2XjbBOvLSsCN7WH8gLGzHhdhIRTOLBhHw9axUwuLWOjjL7roIjVmgdOJdfwAW9DjErSiTZs2QVsxxw/4tsCp4Jdffgl+WzB+cfoeobxQYx688/heIGQb2ofvnrnb0HzXw42/7L6ZtCkSIAESIAEScEOAInyAUqQieKKvd/OgzTwnThyRDSuekIP71theembeElKoeBMpVvYmr8UzPwm4IpBoET6UgAvBR0/SXd2Ex0wU4T0CC2RPlAiPid5zzz2nBBkI06YnJSZgbkT4f//73xLKg9IUN+HV/Ntvvymvc0xo4WkGcRJiJkQjCN5Wz00rRSdPeIgg8+fPV57DmMjCQxOCkxaHUBY8i7ETRC9IhXpKmBjDUx5CFdqGe4BIBe9RtLt9+/Zy7733Kg+5cCI8wj288MILasKO6zBRD+XJ7N1aUucKN4IH7kZ7wv/xxx9qAcgUrsG9YcOGKrQMbAQ2BK/whQsXKpHRzn5MARK7O7CA8tFHHykv4Pvvvz+4yGQV4e3sGcJG6dKllQ1hxxEWl/BskUzbxLv81FNPqbqqV6/u6mFZRXjrYqrZRrNAvFdI8GZmih8Bt3Ydvxb9XdNll12mdsPp/nTXrl1qURI2tHr16uC7Zb4feMewmw6io/aEx39DvHNri/rbob8lTvfulh/6hVh+o/x8l8Ctbdu2KoQUdmKh/0FYEXwXwArvMvoo3e9jl5UZ1iQRNsE6/ybgxvawYI9nqZ8dxgPoz/U44Oqrr5Z+/frJddddp74lhQsXVuK6dfyAdwH/jtBoeMduuOEGdR12ipjjB3NHCewG/41FAIxh7L5HdmMehDWETeIbintwcqJw+n46fTNpTyRAAiRAAiTghgBF+AClRIvokdbv5kGbedYt/X9SpEQtyShynu2lOXPmko2/jpUCRRpLkVLNvVbB/CQQlgBF+NzCg1nDmknCRPirrrpKTTThZQsP+Pfff18JjPD41Z754TzhzZilptBjCofwQMekEcIOkj6UDDGx7by0rNSssbDhzfzmm28qDzT8HR6ZOgwCvMow4TXPRrAudGCCmpmZqapB25DXKqyj3RBddbmYjIPPBx98EFaEN3ekoD0Qt6yezOEtI7VzuBE8cIfgDq/ugwcPKk5vvfVW8MbBGp7lEEB0ws6JwYMHS/78+cN6+Wlvdwj8sGkk0xasIrydPeN5/vnnn8rmihQpkuXBWEV4r3F8/YjwXkTP1Lai5Gu9W7tORMu/+eYbFUoDqVChQirMGQ40dhLhkXfEiBFKIESqWbOmekfQt7oV4fEOlypVKliG07275YcyY/mN8vNdwrcC3w3dl6B/gme8Fj2xeK3PhvATpioRNpNOdbq1PQjZWDzHgjsWtBDOEd9x9O34PunvEURz7AjBd8Y6fsDCP3Z34dwPeMybSefFzpEaNWpkiUGPw8fxjUFddt8juzEPFn7NMVU4Ed5u/IX+wu6bmU72wnslARIgARLwT4AifIBdpCJ4oq/3+viXf3ujVL/kccmdJ0MOH9wie7YtCmwPPXJaMQf2rJOTJ8+UomVaBYT4Fl6rydb5OYGI/PFShKcI78aKEuUJD/EdcXy7du2qPIvhgYXJZr58+aIqwtv1JU4TRCs3swwzhjjyhTqsEp6J+qBP5LGGZtLlmyKTdRLtFAInnCe8KcLbeTK7sY1UzuNW8ADLY8eOqUNyYY9WdqYHL3joZ2YVHEJttdfiiHnwqx8RHqGb4I2vD+ZDOBod8igRIjwWhCD+xfJ8j1S2vVi23a1dx7INoco2PdoRPgMe2Vg0hGDoJMLD6xXvIGwbocQef/xxOXLkiPoGuBHhUTa+Hzj03XrId6h2uuWn+/lYfaP8fJfQJmvYOISlwr+BFUX4eFu9t/rc2p7uXxFaCLvatFc8bH3YsGGnVYrdpdYxATJhB9ygQYNUaJhQ4WjwDTNDSJkFW2PCm++w3ZgHdURDhLeOsbyGRfT2VJibBEiABEggOxKgCB94qokW0SOt36thahH+2NH9smn1WClcsr4cP3rYtpiD+3+TjIJXBMT4trZ5Qg16MPjGoNuMC2stAIMzeK1BWMD2Qvwd8foQqgCDdjPp7YF2jYhlGBFrnW5FeGscUq/PKjvnT7QIz5jwqWFdiRThIVSjH8LEDaFpYLPwvjI94RGKQ4dxscaEd+MJj/JfeumliD3h9eGVeqv0V199pbb6Wz0a7QQqTKY///zzLDHhnUR4a7lWT3iIsDputzUmPD3hRdwKHuaEH56F2Inx9ddfK0EQnqYIBYD/1SkRnvCmTaFfhbexPlsj2iK8m5jwCDuCd1TvLkmNni57tNKtXcf7btE3413BjiaddPg5p5jwEPcOHz6sdv0gmYuj4WwRdWJXCkJuuBHgUb5bfma/EItvlJ/v0vPPP6/OUtG7BsxnTBE+3hbvvT63tqcXtLB7DfM2vdgZ6nukWxFKhNe/7d27V4nwKA/e72ZevKMYd+mwRW484e3GPFbHBh0jPtT4zckJgp7w3m2LV5AACZAACWQlQBE+wCNSETze12MbH7wz4VkT6pC+cEauRfgdm76UPGcVCXi5N3C85Pix/bJ+6XCpctHQQL4cIfNioKTDFtgVZidIQ5DB1j54+mFrMLxmcGiTU5zgRIvbFOHDWVn43xMtwpsxvsPF3A5/N+5yMCa8O05mrkSL8BDz0Dch1i3iS5vt0YeS4QBWbJs242k7eWo5xYRHqJiXX35ZHeTqJRyNFuHBDvbcoEEDtbiJ2L5417RQC49ltLNKlSpZHgbyLl++XMaMGaNCJ+Dv2HIOEQlhD6yTaKeY8H369JHff/9dxY9H3SgHCw0IawMxxhoTHvx0mALvFpKaV7gVPKxed5o74vGHiwkf7tA5fGu9xIS3W1SC6I26cIivft5ahK9WrZpMnDhRjVWs74QOvYQzBuyS9VuL9xG2rmMQwxMYcfD1mQLwgH/ttdeCXvmpaR2p22q3dh3vO4Sdd+jQQdkNPGxHjRolr776qvz4448q3BPsKNT5HRDt4a2LPgoLXxCYcQ3+28kWYevIC3vEdW6TW35mvxCLb5Q1Jryb75LuS9DvY7cBxvAQ5Tt16kRPeLcGkMB8bm0PTcTOQPT1OLNGh7bD9wjfdvS/2DWIBVl8M+DAYB0/mPaF8nDoeCgR3owJv27dOvnHP/6hhH9dtj4jxfSEtxvzYAeL+U10Gr85ifCMCZ9AI2XVJEACJJBNCFCEDzzIeIvoVtvxWj9Oi0ccXsSI1ZNbL/aoRfg/Mz8PhKTJL8XLN1GXH9i7XiDM585TQMpU+ftA1mNH9siq/w2QWpd95DhR9ivCQ5S5++67VUxBnbp3764mSlhsCJXsRHh4NGAgh+2NELEgnmHyr/MjDAMm7CdOnFCeF5deeqk8++yzaqKAwSPi68JjSYcAWLlyZbAsTChwcB2SKQzgeaCd2JKJGN96W6V1a6bmg4Fk586d1cQP4oO5dR9CmW6P2X4vzzdV8iZahAcn2MsDDzygnj8O38TClpcJs1fW6HCLFsonuXPnVn8YEz48wUSL8HpiqRcFre3Be/32229Lzpw5VQiOn376SS0kuhXhsRgEb/p58+apvgd9HyaKfsPRgCiEH/SD+h2DwA7RFsnc9m3SRzvQF6F/xN8zMjIEYrr2ZrdOopEHseanTJmi7h2He+oQN+gTW7RoofpOvFeIvwzvaC3C47/Rt6If7tGjh7rfdEtuBQ+rCA/uECwQ9xa88YzRh2nW+ObhO+Ul3i12rA0cOFA9RyzebNu2LRimA88F9TjZMzz0YcPwUrR+02CH+p1B200hH8Ievv+wAbtkFeHt3hd9PewVQg3iFTPFn4Bbu45/y0QtRNqNryAcQ1CEfZljQbQTYzndL5rjBCdbNM/V0PeqQ7M43btbfma/EItvlN/vksnYZEVP+ERYvLc63doeSsXiFJwSsFhv7vKwm4OFGj9gTKDHKKHC0WC8gLEE5oY4VN78tjh9j/TuauuYx/pNxH3Yjd/Cjb/svpneiDM3CZAACZBAuhKgCB948l5FcKuxJOJ6CLnwzMQ2Wa8e8aFE+IN718m2jTOlxDnN5a9DW2XP9mVS8bzO6lZjLcJjEAThAJN1TKDhDR8uhRLhtTcTtsSiHHg5YUKAeJw6/6OPPqq8QDHww7b+hg0bqtigGLRdd911SszAgA8DRoS3gWcURFlcs2nTpqB3nSkMwFMDg0OUgwEjPKow0cMA0tpOPcG76aab5IknnlAxSR955BEl4B84cECFjsDzhBcR7gOCBdqfHVO8RfhkYEgRPrFPwcskM7Etzb61W+MoZ987db6zZLFFfJOWLVsmtWvXVrHnu3XrJuXKlVMCCxMJeCWQLHbttd3Jkp/8kuVJpF87aHvunjm/me44MRcJkAAJkIA9AYrwKSrC45H6FeJDifAbfxkhxcpdK/nyV1LWkvnraClUvK7kL1LLtQhvNTMzPAJ+cwohAzEaXpgQ0u1iwpvlhyoLYv7333+fJT6uFstxrfWAHwjePXv2DG6lND2LrN6HetsivDzKlCmTxRMe3n9YONBb6iHi16xZU3kPWtsJUR2xRRctWhS8HS1KNWrUSHlgQQSBVynKg0di2bJls2Ufls4iPDyH4AVvesLnyBE61FO2fPgJuilOMhME3qiWIvwpGMlii9gFhJ0IiDOPhAVgvSMs8dbCFqQagWSx61TjpttLfqn65FK/3bQ9d8+Q30x3nJiLBEiABEjAngBF+ACbRHiym48kkvohIk+ePFl5fmMrrZsUSoTfvOYjOSt/OSlS8jJVxG/L/yslK7SUvBnlXYvwfsPRmG3G4AbbHBETeejQoSrsTqgUSoS3hn/R1yFeJrbnW0V4qxjkJMKjLNP73fw7FkN0LGhdJ8LehBLhsYUSHv/WBA98/Puvv/4q8NZHPF0cRASmWCzIjildRfhihc8OhqNB+Af8gQBPET72Vs5JZuwZswZ3BGiL7jgxV2oRoF1H9rzILzKJYhpGAAAgAElEQVR+vNo/Adqef3a8kgRIgARIgAS8EKAIH6AViQgO2Im6HvF6ES4FsWHfeustl8/9hKz5satUrnOvbN0wM0tM+N9WvBPwzD1Tjh87KHt3LJfzr3pDlRnLcDS//fabCguDeMvmQYGmN3moG7PzhEdsWsT2tKZQ+b2I8E6e8DiUDosgDz30UDCefNWqVW094XFAITzqrQkLEHv37lU7AZBwcBhC0ugD7lw+4JTJFmsR/uTJk0nDQgvs6HCLF8nIEg+eInz8HhMnmfFjzZqcCdAWaSHZkQDtOrKnSn6R8ePV/gnQ9vyz45UkQAIkQAIk4IUARfgArUSJ6PpB+akf4uy7776rDjXTp8O7ffDbN30kB/YslKN/7ZKCxS4MHsyK6/ftXCG5zsgv+QIe8D/PfyggxA+KqQiPOuGhnj9/fhVTHWFdcNAPDlWDR7jd4WqhRHX8G+LkY0cA4rFnZmbKU089JYMHDxaI/V494REaZ8yYMcGY8PqwOrTZ9ITHwa9o6x133BFse/v27bOI8AiTg9jyEPOvvvpqdRAtQgBAeMehiS+88IJs3rxZOnTooA7Ew6G0WJh4+umnKcI7GHahoqWlcoXSwRzJJLyHajY63FLFC4YMRUNPeLc9mP98nGT6Z8cro0uAthhdniwtOQjQriN7DuQXGT9e7Z8Abc8/O15JAiRAAiRAAl4IUIRPQRF+xIgR0q9fP18CvDaOXVtmyPbNUwJx32tlEeGtxrNn+49ydoFKsup/A6TWZR/Z2hZEab/haCBE/+tf/5I5c+aoA1IzMjKkU6dOSpy2S3bx5eFhjrAu27dvVzHVIcLDS92PJzwOqVu5cqUqC3HZR44cqcLaWEX4WbNmqfbjPhALPl++fAJPeDwjpFatWskvv/wiCIuDvyN8TefOnVX8e8QGR/x3hK5BwsIKYuOjrGLFiqkDXps1a+blnU6ZvNH0hDfF92QW4tdv3CKlSxQ6TYTHQ6MIH3vT5SQz9oxZgzsCtEV3nJgrtQjQriN7XuQXGT9e7Z8Abc8/O15JAiRAAiRAAl4IUIQP0PLjiW5Cjvf1EKonTpwo8LaOJO3YMl327/xCylW7VU6eOG5b1P6dy2T3jjVS8Tx3MecjaVOyXGs9mDVZ2pWd2hEtEb7SOaUUFojvWoBPRiEeIjtE+LKlimQ5kBXhaJAowsfeujnJjD1j1uCOAG3RHSfmSi0CtOvInhf5RcaPV/snQNvzz45XkgAJkAAJkIAXAhThA7TiLaJbH1Ck9Xt54Na8OzZPkl1bP5Mjf223LSZv/ipS6bznA7/njqSqlLqWInzsH1e0RPi/xXeI8KfE+MD/V38/lRIZGz6HakFAf8f/V0L7iePHTx3EahzISgE+9vbGGkiABEiABEiABEiABEiABEiABEiABEggkQQQUjlHQLjyrVRFKiLz+v1SrHBGAm0Aj/6UWMh0igBF+NhbQrREeDMmfOxbHVkNWPUsU7JwFk94JcifUumZYkyAnl4xBsziXROgLbpGxYwpRIB2HdnDIr/I+PFq/wRoe/7Z8UoSIAESIAES8EKAnvABWqm+CODlgTMvCSQLgXQV4XVMeIShgfjOcDTxs0hOMuPHmjU5E6At0kKyIwHadWRPlfwi48er/ROg7flnxytJgARIgARIwAsBivAU4b3YC/OSQNQIpKsIX6p4QR7MGjUr8lYQJ5neeDF37AjQFmPHliUnjgDtOjL25BcZP17tnwBtzz87XkkCJEACJEACXghQhKcI78VemJcEokYgXUX4ksUKnCbCMyRN1MzKsSBOMuPDmbWEJ0BbDM+IOVKPAO06smdGfpHx49X+CdD2/LPjlSRAAiRAAiTghQBFeIrwXuyFeUkgagTSVYQvXiRDcufOHYwLr8PSMC581EzLtiBOMmPPmDW4I0BbdMeJuVKLAO06sudFfpHx49X+CdD2/LPjlSRAAiRAAiTghQBFeIrwXuyFeUkgagTSVYQvVvhsJcLjDwR4ivBRM6mwBXGSGRYRM8SJAG0xTqBZTVwJ0K4jw01+kfHj1f4J0Pb8s+OVJEACJEACJOCFAEV4ivBe7IV5SSBqBNJVhC9aKJ/kyZMnZEiaqMFlQSEJcJJJw0gWArTFZHkSbEc0CdCuI6NJfpHx49X+CdD2/LPjlSRAAiRAAiTghQBFeIrwXuyFeUkgagTSWYTXnvC5cuUKesIDLEPSRM28YibCHz16VHbu3CklS5aMbWNZerYmQMEjeo9306ZNUrZs2egVyJJ8E6Bd+0anLowFv0OHDgm+WwUKFJCtW7fy2xXZI8q2V8fC9pIJ1t69e1Vz8B44pVT+nrgdn7rN58TJbRmpzDOZ7JdtIQESyF4EKMIHnuf2XfulWOEM30820df7bjgvJIEEEoiXCA/B9O2335YpU6bIo48+KjfeeGPwrp1+iwUadLjwhKcIH54uBvg//PCDvP7667J7926ZNWtW8KIdO3ZIhw4dZO3atWpXwV133SW9e/cOW6jbSSbK79q1q6ofCyUXX3yxDB48WIoWLSozZsyQJ598UhYtWhS2PmYgATsCbmxx6dKlcuuttwr+V6dLLrlE+vTpE+zHnn/+efnzzz/Ve5Kd0wcffCDPPvusQFDMyMhQDNq1aydr1qyRVq1ayfz586VEiRJJj8Cpb/n444/Vc5w7d67n+1i3bp3qE7dv3y7FihWTDz/8UM455xxP5YDtZ599JsOHD5fSpUvLW2+95el6ZHZj154LjdIF+Ib861//UjZUoUIFxQh9OtKQIUPkjTfeUGJ1vXr1ZPTo0erbgtSrVy+ZNm3aab9Zv0Pdu3eXBx98UF3j9JvT7bjld88998j3338vGEfpdupyr7nmGvVXbUcDBgyQn376Sd1TtWrVZOTIkXLFFVf4orpixQp1j35s1FeFvChuBNzaHho0e/Zs6dKliyxYsEDKlCnjqo39+/eX1atXq/4lHsnan8JuCxYsKC+++KJt9cn+PcH717p162D74Qzy0ksvyZVXXqn+ze341Jrv3HPPlalTp0qtWrUcHw2eIRLG227qSnae8bBD1kECJEACoQhQhA9QSbSIHmn9NG0SSEUC8RLh69evrwSrTz/9VHr27JlFhHf6LRZM0eEWKZhXTZrNw1m1Bzw94f+mDuEAIjgmBV9++WWWST+ESYgJEOIgdjRt2lQGDhwojRs3dnxsbieZN9xwg1StWlVeeOEFOXbsmDz11FMCb56xY8fGwixYZhoScGuLsPPp06dLlSpVBBNw2Gbz5s2DojuE6JYtW8qdd96ZbSlCYMei2EcffSTVq1eX5cuXS/v27ZWYWLdu3ZS6b6e+JRIRXveJzzzzjFpsPnLkiOeFGYhUJ0+eVH8gRvsRy9zadbwfGu4Hi6lYQMU7A06rVq1SffqGDRvUNwQiVOXKlaVz585SsWJF6du3r7z//vsybNgwtYifN29e9VvNmjWVCBXqOzRhwgT1zXL6zene3fKDCA8hHAtTt912W7DIxYsXq8UYCKOxEMopwsfbcuNXn1vbQ4u6desm8+bNU+/Dww8/7KqRiRbhXTUyyTNpER4OKEiff/65+jZigQ3zGb/Jjwjvty5eRwIkQAIk8LfTSo7AoPukXyCRisi8PjJPfD/PbeGmI4HQF6GvzH9GTqlVLLccOyFy6NjfZpH/DJsL/DSA16Q9gXiJ8Bo0vMMwWTA94d38Fs0HRRHeO81QwtRDDz0kjz32WNADC4IEvGFDPVuzRreTzAsvvFBNaurUqaMu37x5sxI7/vvf/yoh1PQENL0rUT8WD5Bgbw0aNJCJEyfKiRMnpEePHioUwLhx41QIInhj6fY6lYE8Q4cOVWXA8wxemUjwjsYEWHu+vvPOO8H2eqfMK+JNwK0tQjC86aablHD43nvvKY9viIfwQESCjeIdgUhv2sRFF12kbA0Lfng/ICB+8cUXQS/ATz75RA4cOCBLlixRntMQ+rVXMGwMoiPsFJ7ZzZo1U3Z/3333qVAWsDmrwHf99dcr8VcvhMH+8Y42atRI/a8uz9y1gnZVqlRJ0JZdu3apeuCRbE0QQb/66it1/zrBSxtCI7wCISBoUcKJQZEiRZT3Hjyh8V6BHd5D67sFwbZjx45qEbBw4cLy7rvvBjnbccNi4M0336wEXbB+5ZVX1P1Yk13fAtEX96kT7gfPFf0QeGNREKK4ncc2eMMjEkIMnhk8483dEaGeqZ3NRyKWubXreL9vVvHK7MdhV3PmzAnaF7zesaiL92XZsmWqqbVr11b/a7LBO4M+Ht61us/XYwyn35zu3S0/vDuwYyRzcRj179+/X70PeEet3yvze4q/29kz3gG87xBa0YdoL39dHnbk4HrYOvoZ/a308y2Lty2wvtAE3NqeXtDCmAj98MyZM4MFWsdietyNd0p/M8qXL6/+Dvu9++67VT8LO4KzA75z+l1yO34K1Sei/7X2p6YXN+rQfSL+3qZNm+DYze33xPpNxT3qhUuzn3D6zuG7gW8RnDzwzcYY0eosZD4taz+G39DPf/fdd6ofCDU+RZ+AbxwW79FG9A06H9iZnvUYv6I9druGTIbWutzwdPq2mt86jOf98ET5WITEuAYh6jC2ufTSS13tlGW/QAIkQALxJEBP+ADtVF8E8GowI346IF9nHpIaRXKFvHTOxmPySP0CUiAguveavUfl2bTvmCzoWFzKFcjttTrmJ4GQBCjC51ahTiB00RPe/iUJ5x2qJ4QYsCPEgFNyO8nEpAUTQ0zizjvvvCxFmhMP/L1t27YyefJkFfoBk5lbbrlF7r33XiXC4w+89RcuXKhC5kDYgwcmQms899xzSjQNVwYmhBD/kRfev2gXRJ8mTZoocRUTjldffVXtFoAnJ1NqEHBri5j07tu3T/r166eet17owYT74MGD6r9hG3v27JGrr75a5bvuuuvk/vvvVwIyJtW4DmVAbIRwgHfq3//+t4wfP16JZ6bnL/JD6IdH7y+//KI8eiFQIiQU7Bsigw53YZI224lFKwjQaBf+HWImbBNthA3j/YD3LtoF0Vr/Bm/kUN7t2lO5U6dOaiEV92AmLZqEY4BdLXiXkO+qq66Syy+/XLB4tXLlSrXDQIdWgPh4xhlnqPcKrLAj5scff3TkhmsQwgXvN3ZdwVPaDCOk2+vUt1j7Ovw3hCm9AwBezuhH4P2IPgCiCkQs7ILAM4GgAuGhYcOGSsDQ/aHdM7ULI5EdRXjwv+yyy5TApT3hsfADAct6v3be3hAN8Q6Auel9jrIxnsG7AjFMi/L6mTv9Zu2t3PYLeHfwjuE7op+16e0PW3Ajwtv1A08//bT89ttvwfcFi2x49/HugQEWr6w7Cvx+y1Kjx87+rXRre+iXRowYofptfD/07g8QshPh8Z2yvmfIi4Q+GYuGWGzW/b/b8ZNTn2jtT00BGe8M+kUsyuJ7gP4f304sIrv9nli/qU6isd13Dn0G+mx8Y/QYD4updg4loUR4vUMOi/Nm34X7QmgthOMET4Suw4KyKcLrhRHTE15fZ44PypUrp/jYifBueOJZO31bzW8dnp0fnui3MG7BWAf3gX4LYw434Sqz/xvOOyQBEkgmAhThA08j3UT4V7/bKxcWOSH1SoUW4Yf+fFRNQHvUOxUnv/7IbQFBPqeMblNYSmWEviZeRv3rr7+qCU6pUqXiVaVjPU7e1aEGS0nR6CRpBEV4ivBuTDGcCI+JHPoDTBDCJbeTTJQDcW7QoEFy/Phxuf3221UsYXgEmpMcTOIyMzODHqcQ1+FBpIVKCCE6xqZ1u6+e6PktA0LI+eefr8TUcAeNhePC3+NPwK0tIvYuBC8I2RA84BH+8ssvq3BMEMQg+GLCiQkrvBL1Qgwm9Ngxgkm2VRhxmuBicQee69qjHQIvBAqEgXGKBY334o477lBnJaA96N8hcCJWLYRpXR5+Q5vxrjgJNqeJkwGR5vHHH1flwmsc7ybahKTfJS8MrN9uLWLjfQVbcNMiNe4BbDH+sBMGIK4jNv+bb74p8Lh3SnZ9SygR3qwPIjD+6PIhqiCsGQQG3X6M3SDOwoNbL1bYPVM7oSe7ivDffPONWghFKlSokFq4RN/pRoQHX/T1WOiCLeg47GaMZghpWITVyek3O/tw2y/g3cFCEhZlsUsC9ofQOXi3sCNDny0QzhPezp5h8/g26RAXOD8H9rR+/fos/YBps36/ZfHvfVljKAJubQ/CMRb68D2A3eFdQugmJLciPBaMatSokSWmPBwWkDCWM/tj3cebMct1n+/UJzqJ8PiuYkwHURoe6Gby8z0JJxqbOzXNbw/qMuPqO80p0UY7ER7jQau4bi6WWK+19gvm+NR64Ko5rrUT4d3wRBvcflv98gQ/hBzT4w3YI/pHivDs80iABJKNAEX4wBNJZxH+4bmHZW7m8aBd6qBEOlRN8Xw5ZH7HEtL6gx0yqrW9CI8PuDXpLYfRNHp4SuCD6nSwjtf69OQq1HV6a55dmRThvdL+Oz9FeIrwbqzHSYTHhABe5jhgz3o4XSSTTPNaiA6PPPKICsMB8cWcvOi4vGZ+3e+5nUT6LWPLli1KLP3222/VwiTD0bixpuTJ41bwgDcXYlnDQxDiO4QIvBMIAXDWWWcJ7A3bwPEumNvv9Z1iYu5FhA/1LYfnOrbrmyK8WZ/+Tmqbh+iuPXWti0/m+2wn2EDs1vdi/QZDdEEIDYg+kyZNUotcWjTxwsBOhAc3c3u+5qjDTNmJlmgXJv86NIMOR6N5hhoPWfuWcCI8xBGIXtiZgL8j4dmYIjx4oK1ggz9YoLR7pnbCRHYU4fEeQVDGDhK8T/C+hWCN98mNCA/WeMaIhQ2vUC06avuAQK93iljPKXD6zdojue0XtLiE3SOICY3vIMRRnA+RL1++iEV4uxjRTqK+329Z8vTK6d0SN7anv0daOIbTAcRzfVC9WxE+lJhsvodux09OfaKTCI8njTBKWMxFuK9Q4Wi8fE/8iMZYRNbiubY8vyI8FsqtnvCh+rVQYj3qtr7vuHbMmDHBkFdoF5xLnMLRhONpLkqab1qob6sfnlhUtt4HRfj07tN49ySQzAQowgeeTqqJ8FhxxqAbwpOOw+jFyExP+AtGH5CfOp4dvPyumYfk8fpnSrXCOdW/dfrssHz4z+Iyf+NfcmmZM+Ss3KHjwuPDF06w9tLGROUNNwCytosivP8nRRGeIrwb67ET4fHvgwcPVtuJ3QjwqMvNJNOM/67bZ04YTRECnqgQZkJ54budREZShm7fqFGjBH/gLc2UGgTc2KK+E3gyI7SI9uiCEAJPL3ggwvYgLsJbDWFL8L/W5EWEt3rAmu+Akyc88mGCjpAvaAc8dPFeWsvz4wlvxn/X7TEn11qE98LAToQHY3ho4vtkDSviJAyYzBGSBB7XEEXMFK5vCSfCw9MZnpsQ1+HBbTKw9jcQRMAaiwJ2z9TuTcmOIjzYwi7BUCdtN04x4b/++mtlBzomvPmMEK4BIYG0nZjPw+k3px7Kbb9gffZ4NxGaBnaLhSLTEx4hIPQZEtaY8HaLSrAnfcYA2uvGEz4a37LU6L2zZyvd2B5292GB0ZoQ8gTfJL34asZ21+ckmP2K9oQ3+1k/nvBOfWI4EV7fw969e5UIj8VseKz7+Z6gLiwO63NLrDHhY+kJbxcT3q8nPEL84DligRKLx+a9OInw4XiGeub6Guu31S9PesJnz76Jd0UC2ZEARfjAU001ER4HuWCwg3iwOPTPqxDvR4QPZ/xOIrz2VNACEbyQMJHUsWkRdxVepjhIBV571vymh4I58dD54ImByT62YJuHzmDFH9sN33jjDXUojVmO3f2EEtUxecHgDN4S1gPXkB8x9xBDF79DKMHiCA64s3p6IOYhYu+GOrgN4gEOOYKgh4Nk0sGrlSI8Rfhw/Qp+DyXC498gPuLd14dJuinLzSQT/QreaYhoOIwOCWIE+hZ4G5oivI5HiokX+jUIX3iHEbvarQjvpwzEEEUbcZAVBFjUCy8livBurCA58rixRd1SiBiwP3jx6vAQ+L7Bw1aL3TqO62uvvaa8YSEE4xoIc15EeMRURd+sxXx4dyO+/JEjRxzD0aCteDcQjgMhOxCWBSlcTHg7ccJ8ShB+sMiEbytEAe1ZjINgEZvbjOGL98INA6dwNPAoRsgXlIP3Gfyx4If+xk60RLxxCKEIyQN+iENrFeHD9S0oG32NKZia9ek43xCeMA5EHYh5a3rCnwxsZ8Q5Fogbj/jnCEtk90xxmG+olB1FePSzOD8DwhI8UGFPGHsi1r8+cyDUGQlgjkUPXIfQP+ZZC3gH8T4+8cQTgp1JeBYYbyJMjNNvTj2Q237BHAtDhMOYEeeTwEPf/GZqz2UIhFhcQvv1oa1Oi0rWmPDwtMVOHIxPzcU4sy4/3zIdri05euX0boUb24ONY+EJfaJO2B2ChD4fQvrvv/8eDEmGPkrHOIejFvojLVSHiwnvJpyfU59o7U9NAdm0b7Qd92QV4b18U/G9xfwOYcywEwXvP+aDGJc57Q5wigmPw1pLlCiRxcnEOq9EPw+nPD0W9BsTHmFitJ4ARz88R4TrQkJIuvz58zt6wrvhibLcflv98mRM+PTuw3j3JJBKBCjCB55WqonwMDAIuhhwHz4c8FT36BFvFeFrFT3l9Y60/+hJOTNXDgn8n+QMxKRZt/u4rLgvfPx1JxEeg7Xly5eriQzEcgxIIGZjcIIBPAY+CKuAQRDEJZ1fH9aGwT9i2+qD3LQ3ICYeEJ8wuYAQh8kFBkA6Lh4GQRgAYms8Bn6Ik2nGFAz1olon5noQBg8feHagPnzkcT+4F+THxEzH4TUHK+ZgSU++EU4HEzZsg0aICwgoBw4cUJ5qeI4Q8lCXFvxSqTPx2tZ0FeGLFsqnbAZ/eDBreKsJJcKHCiHlJvyVm0kmWgRBpUuXLurARsSE14ejVq5cOYsIj7zmApq5COdWhPdbBgTB//f//p/s378/bRbuwltL6uRwa4vaPvRBvvoOISjAS9c8jNdcMDYXc72I8HaL4HaHVVqJw+7xPceiOBLKw39PmTJFHUKNg0V1GBQvMeERngYiD+wd4wec06DL0SI86nPLwEmEh8ANYUMvcGAxDsKjk2iJMQY8jrdu3XraYr3JyKlvASscFgvPTAj41vrwO4RkOCzg+SKWMUR37BTQ/Q0EMetCv5NjQ6g3JjuK8NZ+1ursAGEQYQ71WA2iFsZ4pv3iW6AXP/EbniVEJfDGf2s70d8Qu9+ceim3/YIpwutxKsanCIVj/WZC/ISnMt4/vJc//fSTGis72TPuG/Y8b968LPfmFI7G77csdXrt7N3ScLanF6v04fCahl7gwrwIfVeLFi2CTknYrQWHBoQKwfWwP4RzgsMAFjhxyDHKQ5+OgzlND3o3IrxTn2jtT00RHr+hXXoeEiocjZfvCfLiG4FxGe4F/THuL5wIj28N2EBwr1mzpjpMVJ+hEioklDWkC8acWHjDHBLJ+n6iPZhTwxHt2muvFZyLgW+VNR/m4brfwMK4/m/cC+bm+Obgmdl5wrvl6fbb6pen1R6gKWAnIZ4NEwmQAAkkEwGK8IGnkYoiPIzIrxBvivDnjzogj15yRtAmS+TcJztP5JNjcuoA1vG/HpX5d5QMa7OhYo5qwRsr7HqVHgVhINaoUSM1+EFsU3gjac8v/G7Nb93Wp0V4fFixEKE/rlrQN0V4/F0nN6FmrHnwQd+2bZtaHEDS2+n0vVnzm9vQTREeojoGVjpuIsrS14IFJnaYPEOgwKDHrDMs/BTNEG8RPhkwocOlCJ+4JxFukpm4lrHmdCNAW0y3J54e90u7juw5k19k/Hi1fwK0Pf/s/F6J80+KFy+udl5h/ghHLvwvEuaF2uHLb/kQz7EDBk4/2JGAeSl21GXXhIVRLH5UqlQpuGMOCyHWczqy6/3zvkiABFKHAEX4wLNKVREeZobtxpMnT1beA24PK3UKR7Nq41YpX7KI5D0zj7JiHRM+nEk7ecKHWs3X/4YBiI5dqesIJejjg4pVeGscTB1rENfGQoRHufB0RegLeODpZCfCW2NH60NwdNusHB944AHlcQAO2FoP7zfEF4XnkvZsCMc+VX9PZxEeXnPwgjc94XPo05BT9YGmQLs5yUyBh5QmTaQtpsmDTrPbpF1H9sDJLzJ+vNo/Adqef3Z+r8SuaIQiRTjTjIwMFfIJuwUQGmb16tXB3V5+yofTGHbQYQ6Lv2Nujd0yXkI4+qk3kddgXok5td4NBic9esEn8omwbhIgATsCFOEDZFJVhEfMNsSwhEc4tiO7TVYR/uNGh4KX7j90OCDAnyG5AttWkV5bmVdG3hBZOBo7T3h4v2PF3yrCm7HprPdkivAQuBHeBZ4DSLEQ4fU2S5SNOKtI5qKCF094M9areV9YtccWTsTFR0KsUoSkscaTdft8UyVfuorwxQqfHQxHg+3h+AMBniJ87C2Xk8zYM2YN7gjQFt1xYq7UIkC7jux5kV9k/Hi1fwK0Pf/seCUJkAAJkAAJeCFAET5AKxVFeIi0ONwUIjC2WnlJn63/S56dv0fK5s8pP2w5Jl/flDt4eebWnVKiSAE5M8+pf3vkq+Myvq27cDTw3kZsO2uyxoRH2BUIz9gSFyres46rCjEaoVkQF7BUqVLqwDdThNeHtTnFhI80HA0OqOnRo4dMnz5dtUHHDTU94bHNT8e7t4sJjzh/OKwO8Q+xKq8Pe3vhhRdk8+bNWQ4M03HnKcKHt+pCRUtL5QqlQ2ZErNxkSVpgR4dbvEhGlnjwFOHj95Q4yYwfa9bkTIC2SAvJjgRo15E9VfKLjB+v9k+AtuefHa8kARIgARIgAS8EKMKnoAg/YsQIFR7FjwBvNY7KQ7bITx3PDv5zLMLRWA8Fw+GjWECAwB5KhDfz64OwBg8erLbQmSK89cA3xL3DgTPRjAkPMNjahkPlkHAoGkRyHeMezwBx++bPn6+2E+JgHSYG6bwAACAASURBVAj1aKv1FHvE8O/cuXPwEC/zgDrweOWVV5Q4jwPDsD1RH2zn5YVOpbyx8IRPJuE91LNAh1uqeMGQoWjoCR976+UkM/aMWYM7ArRFd5yYK7UI0K4je17kFxk/Xu2fAG3PPzteSQIkQAIkQAJeCFCET0ERHuIz4sW1b9/ey7MOmbfhe9ukcYXckv+MHOr3Ajn+kgOSR46fPBWO5pPVR+WrO0tEXE+sCgALxNdGgqBvPeQ1VvWy3MgJRFOEN8X3ZBbi12/cIqVLFDpNhAdNivCR21S4EjjJDEeIv8eLAG0xXqRZTzwJ0K4jo01+kfHj1f4J0Pb8s+OVJEACJEACJOCFAEX4AK1UDEfj5SE75d3710lZsf2obZZyBXJJufy5olVdVMvBjgAc1qrD8SBGPOK2I8Y8U/ITiJYIX+mcU2cWQHzXAnwyCvEQ2SHCly1VJMuBrAhHg0QRPvY2y0lm7BmzBncEaIvuODFXahGgXUf2vMgvMn682j8B2p5/drySBEiABEiABLwQoAgfoJXOIrwXY0m2vKHC3CBMjPaMT7b2sj1ZCURLhP9bfIcIf0qMD/x/9fdTKZGx4U/tMAno7/j/Smg/cfz4qYNYjQNZKcDz7SABEiABEiABEiABEiABEiABEiABEiCB7E0A5xrmCAhXvpWqVBexU7392ds8eXfZlUC0RHi7g1mTkRtWPcuULJzFE14J8qdUeqYYE6CnV4wBs3jXBGiLrlExYwoRoF1H9rDILzJ+vNo/Adqef3a8kgRIgARIgAS8EKAnfIAWRXgvJsO8JBAdAukqwuuY8AhDA/Gd4WiiY09uSuEk0w0l5okHAdpiPCizjngToF1HRpz8IuPHq/0ToO35Z8crSYAESIAESMALAYrwFOG92AvzkkDUCKSrCF+qeEEezBo1K/JWECeZ3ngxd+wI0BZjx5YlJ44A7Toy9uQXGT9e7Z8Abc8/O15JAiRAAiRAAl4IUISnCO/FXpiXBKJGIF1F+JLFCpwmwjMkTdTMyrEgTjLjw5m1hCdAWwzPiDlSjwDtOrJnRn6R8ePV/gnQ9vyz45UkQAIkQAIk4IUARXiK8F7shXlJIGoE0lWEL14kQ3Lnzh2MC6/D0jAufNRMy7YgTjJjz5g1uCNAW3THiblSiwDtOrLnRX6R8ePV/gnQ9vyz45UkQAIkQAIk4IUARXiK8F7shXlJIGoE0lWEL1b4bCXC4w8EeIrwUTOpsAVxkhkWETPEiQBtMU6gWU1cCdCuI8NNfpHx49X+CdD2/LPjlSRAAiRAAiTghQBFeIrwXuyFeUkgagTSVYQvWiif5MmTJ2RImqjBZUEhCXCSScNIFgK0xWR5EmxHNAnQriOjSX6R8ePV/gnQ9vyz45UkQAIkQAIk4IUARXiK8F7shXlJIGoE0lmE157wuXLlCnrCAyxD0kTNvCjCxxYlS4+QAAWPCAHy8qQkQLuO7LEkkt/Ro0dl586dUrJkychuglenJIFE2l5KAvPYaL/vF97JvHnzqj9MJEACJEAC2YMARXiK8KdZ8omTJyVnjhzZw8J5F0lLIF4iPAawb7/9tkyZMkUeffRRufHGG4NMhgwZIvhz6NAhqVChgrzzzjtSuXLlmDFDhwtPeIrw4RFjwvLDDz/I66+/Lrt375ZZs2YFL9qxY4d06NBB1q5dq3YVdO/eXR588MGwhbqdZN5zzz0yd+5cVR7Kb9SokWoH/h5JOvfcc2Xq1KlSq1YtX8WgXa1atcpiw14KWrFihbRu3Tp4Ce7nrrvukt69e4ct5pprrlHvit+2h60gzTL4sUUgwkT8qaeeknbt2oUlhmf28MMPe7aXSO0sbMNcZujfv78MGzbM1l7dttMPh6VLl8p9990nW7du9cTc5a1l22xu7ToRAMKNBd544w3Bd6devXoyevRo1d+b3wKzzfj2IG/Hjh3VdyrUd+iSSy6RXbt2BS+79957w/a1bvlZ2+V3/IJvAr6d+N7NmDFDnnzySVm0aFEiHg/rTDCBcLZnHT+YzR0wYIDn70yibvfjjz9W4zk9xrNrB96xqlWrhn1n3d6H2/cL373Vq1fL8OHDVdHNmjWTW265RTp16iQch7mlzXwkQAIkkNwEKMIHns/2XfulWOEM308q0df7afiUH1fKZ79tkv6trpGzcucKFrF0y5/ywoz50qfJFXJh+dJ+iuY1JOCKQLxE+Pr166vJwaeffio9e/YMThQWL16sBMjp06dL+fLl5ZlnnhH8G0TSWCV0uEUK5lUTdvNwVu0BT0/4v8ljUgdxA6Lvl19+mWXCdOutt0q1atWkT58+AkG+adOmMmHChLACcbhJpq7dnHzt3btX7r//fjl27Jh88MEHEZlGsojwEJCQMjMzpUWLFjJ48GC56qqrHO+Nk7+IHv1pF/uxRRSyfPlyad++vetnluoivClGwF4het52220CQTOWIvxll12mxMk77rhD8K26+eabZcGCBVKmTJnoGkI2K82tXSfitu3GAhs2bFDfEHz7sQjfuXNnqVixovTt2/e0ZmIx+L333pOxY8cqIQ/X4M+ePXtUGSNHjpS6deuq69Df677W7f265Wd+o7AY0K9fP/nxxx/lk08+cVuVymeK8J4uZOZsR8Ct7eHGrUJxKsFIlAjvlpETW47D3FJkPhIgARJIbgIU4QPPJ9EieqT1ezWxMYuWy7SfV8o9TS+XuuVLZbn8+ImT8vPmbfL27G/lkUaXy2UU4r3iZX6XBOIlwuvmWL0hIb5D1IG3Y7wmoxThXRqHkS3UhAnPrkGDBlKwYEGV062nq9tJptUDCiLHxRdfnEVg6dWrl9pdgYN1IcbAW8kqaOi2w4Pc9EDXXmO6DNxDmzZtBP+OBLHvgQceCO7Q+PDDD6Vo0aJKdKxUqZISWuBhiTpRNpLplVm4cGF59913pU6dOlmAa082UxiCoHnTTTepxSknz04wRp6hQ4fKiRMnpEuXLoL263uG1yfuF57a48aNO61u708+e1/h1xZBxbRP9KOwle3bt2fZzQMBUCftgQtbCeXti+eOnSVLliyRsmXLSrFixZTYjeeNRS4I0BAq8WxfeeWVoK2j74Sn4Lx58wQ2B/vFn19++UWVgfcUdosE8fJf//qXsmmUq20ddnXBBRcoL1zYtbnTIpQYYf6bKcLbtdPKAW0xvevx31Yvzm3btqndBv/973+DDCl+uHsf3dq1u9Jik8v6vYCoPmfOHCWuI02bNk0GDhwoX3zxxWkNuP766+WRRx5R74D1O2Ha45o1a9RimVevcrf8rHWjH4CTgfbuxU4OLCagX7joootUn6w9+/Ee495efPFFqV69etAT3vx+oS/H+3jgwAHVL1jf59g8GZaaSAJubQ9tDNU3wyZN28KuvVA7RcKNGezGRfpbgW8JxiA9evQI7oC0+w6iLnynEGIJ7wLeX7P/d1okc/KEh1PPv//9b/U9w84ZODLobx2+s+g/MDZs0qSJLFu2TL2X1vFhqPs0d7jAOQjXmf2K+R3CfcE5BN+pSHdpJtLuWDcJkAAJpCMBivCBpx6pCJ7o670abo+PZspFNSpK69rV1KV/HTsuL8+YJ20vOV/OK11M/dunP6+SHbsPyKK1v8mtdWtLi/Ore60m7vl//fVXJcqVKpV1YSHuDWGFrggkWoS3NhJCKrwu33zzTVft95OJIrx3auG8lmBH8Iz/7rvvgqK8XS1uJ5mhJl/4t5o1ayrhGaLd/Pnzlfc9BEfUDxEHYXP01n60wdp20xMeQg/KgfgIL8obbrhBeTNCzNbhEOC5+fzzz6vJGzwv0QaIoaE8LzEhO+OMM+TVV19V9b7wwgvKM9JMVhEefeY//vEPJZAinMHTTz8tv/32mwrLBBEH4iv4ol/F5A/tx4QPv0Fgwk6FTZs2qQUGCDoIkYIdJatWrVLtZbIn4NcW8cywaIJJPmylYcOGKoQE2OPZwBN34cKFqmJTbIQoCPH7888/V88T29shSMBeYdN//vmneu5btmxRzxO2gPx61wmeK4Q8iPAQFrUt4TnDThHqa9KkSYIFIyxY3XnnnVKoUCG1QIW8bdu2lcmTJ8s555yjykf9WBxAG2HvsFerkGAVetA22B3uFe02xQm7dlo5mE8E7wm8nXU4EbunhXcOghLeBYodzm+1W7tOZN9gFeGtdmbnHY6dcl27dg2+X++//75a7NT9Md4n2Dj6UvSRsMmTgfCOWqjTIW6c7t0tP6snPAR4vSCM78nVV1+tvifXXXed2smlF8lw3b59+9SCAwRT816tIjxExvHjx6sFVafdAYl8lqw7egTc2h5qtBPhTduyG084jRnsxkWNGzfO8q3QYxB8k6pUqWL7HdTfKYR2wXsfalxmR9BOhEeZGK/pd+Pxxx9X4yB8C/UO248++kjtqsG7B6HfKsI73aeVbSgRHuMACP8YP/KbFL13gCWRAAmQQLwIUIQPkE60iB5p/V6Npcu4T6VGxTJy1+UXyL6/jshjH34ml9eoJG1qV5H8Z52ZpbjvN2yWMfN/kDZ1akq7C2vYVmV6m+lMehXfa/vc5rdOpCBMwCsPYhBT8hNIJhFeC45ff/110JslFgQpwnunaifCm/FJIeBB1AuX3E4y7UR4HR8U3k2PPfaYYGKIBMERkzLTqzDUZM8U4WfPnq08gyHiwFNRJ4S8wQROh74xD/Oyht8w+0CE58FET4fLuPLKK+Wtt97K4lkcKqYr2g6vXyTrAWBmGVZPYH0vuM5p4SHcM0nX373Yohm7FsIZxGuEmYGNQNgzQ2hBmMfkHMK4aR+bN29W/43f8L/mxB3PGQtCuAbJtDPERC9SpIjKD1usUaOGEhXsdn3otuK9hdAA8QNlY9cRBHkktBsLP1oYsTtrIFRMeIjh+MZrr159RoJdO1FfqJ0y8JzH+4t3RN93KFvEPTdv3lx5dOJdYXIm4NauE8nRrwjfrVs3NcbEu6cTxp3wFEd66KGHlHcu0saNG+Wbb75Ri5xIWHjCH/PaUAzc8rPGhC9QoIDamYVxN9472LXuFzC+QdusXrWo30mE1+8v8qVy+JFE2loq1e3W9uzswTo+sRtP4Hq7MYPduChUP47+GAtEWNi1+w7mz58/S10oJ5xjh35mdiI8HCOwaK2/Z1j0wsIz5jTYKfjHH38EfzPrMt81p/sMJ8KD3csvv6y+odr7PpXsjG0lARIgARIQoQgfsIJIRfB4X4+PN7xx4HFmDTfgxqg7j5sqV9apFvCEryqfLlsj36xcK/1uaibHAx472OJnpjy5csn8NZny6aKlMqx9K9viIcjE+2AetyEo3DBhnvgTSBYRHmIMtpbDawz/G8tEEd473XATJoh7EDcg6OlYvHa1uJ1khvOED7XoCGEUIWXcesKjjfDiGjRokNomrcPROIkddiI8xH8z3I2+f2ufbPWER7x7eCjffffdKs72unXrgp5bugx9kCxFeO+263RFJLaoyw1lK+Z30fqNhAiHBSuI6Obhk9azCkw7Q2gkeMRC5NbJqwhvFQxRjl6kdwrzEk74c9NO1BVqrAABp1y5cqrfd0qoIyMjIyiqRNcKsl9pbu06kXfuR4THOAEh0MwdV/D0/f3339UOFPyOXRrYlaIXZ817tC6uRvsbhW8JREHsgrEuXpnvrfUbQhE+kZaYXHV7eXftPOHNg+PtxhO4a6dxUqhxUah+HG3QyTw7xMxrdYzAb+HGlLpMOxE+1L/rbyh2ipmHudqJ8HbjP/x7OBEeO8ywKwwhcSjCJ9c7xNaQAAmQgFsCFOEDpOItolsfjtf6tQfXwYMHZeLEiZ6E+EELl8jSzD+k/83Xq2ZMWLJCFq5cL691aCljvl8mk376NUvzJt37T5mydJXM/Xm1jLytta1dOYnwThMeDGbgZYctfNjyjbiT2BKvFxfgwYMwCxAA4AH40ksvqZjIpuCE8iHAWQdGGMhgaz482dC+UaNGBUPV4Bp4s0Jg0rF0ddxl8MUiB7ao5wosQpixmt2+WMwXnkAyiPDayxHPG6EXYp0ownsnHGrChG3A8E7VMeGdYneaNbqdZFrLs8aEt3oO6zp0/FEIl6Eme3YHs0IMRz+DsCCoC5NQL57wmPjCQ1mHjrGjHComvDnhQ/gExOSG6ApPY7O9FOG9267TFX5t0SwzlLBn5wlvXofwGNgmj+8sbM7JEx4HlMJ7FzHjTfvx4gkPz0HUGUrwjpYIb9dO3Ld1DIJQHNiBgtA8Tlv5wy0CRNciskdpbu06kXcbyh7CxYSH4I74y6YNoxyE/4IXLJIWBXv37q3E+rPPPltq166tfou1CI86dH+NGNTmbiqTNUX4RFpectft5d11I8LbjSdAwc3uOXNchDGO9b01PeGt9q6/g7HyhDe/Z3484U1LsN5nOBEejhsY65l9VnJbFltHAiRAAiRgJUARPkDEqwhuhZiI6+FhAA/Gw4cPe/KIH7t4mUxetkpeu7WVnJUnt4xZ+LP8mrlFnrv5Otu346s1G+W9Od/JxC724R4iEeEhwCO2MuLnIe5k7ty5laiu41piCzD+HZMabAnHxBkxN60DMlM4w/b2t99+W4nsiBGPeLYINaK3yuNa1DNmzBgl5EHQQzxPTJ4gOCC2MxYDIMjj3xHvFp6iTNEjkGgRHmInBvbXXnuteu7xSBThvVMOJcJjEQ4hJJ544gnlEYR3FAdOXnXVVY4VuJ1kmn0JJkgQLCHAaGEcggzsV/83vB+Rp3jx4kqQwYF2EMXNeKBoGELG6IVTHS9VH/6IPkgLomZMeIg8iD+PMp3C0WDCiwXN1157TQme6McQeiRfvnxBJqE84SH+6xjb4IrwCehvdegCesJ7t1k3V/ixRWu5+EY6xYTHQjMO0MXzRfxqHEiHkBVY0MYz1iK8GbvXGhMeefA9hVAPW/3Pf/7jORyNjpML8RvvBxaZYKOdOnVS33GncDRWD0c7QdGunchvctAezeF2EmIXycyZMxlz140xG3nc2rXHYqOa3Tp2hANI06ZNbeOf60VYhGfB2FMn9LnwREUfDXtGX4pxInZFmfHikT8W4WhMj1s4meDdhOMK+gV8Q/AtaNmypRo7o+3PPffcad8QesJH1bRSujAv764bEd5uPAFIdiK83bhIi/D6/BAdEx7jIhwmbvcdDHW+A94FOHRpZwmM8TC+w/jJ+n0x3zH9WzRiwjvdJ749uD99ULTdwazgi3BYDJOW0q8dG08CJJCmBCjCBx58IkR009781u9XiL/vwxnS9PxqUqN0iUA8+FnyePOGUr1MCfnfxi2y7I8/s7wKd9SvIwcDYuWTE2ZIpcKF5ckWV0mOHDlOe11ChWcwxRsIQtrT2By8WT1OTcHNOlBCpdOnT1eeRYgB6CTCY9JtxnDVkygI69ZYuSjXbBMGRxDsMaFBrGbENYRgj5ibTNEjkGgRHrYG0dOaYhlWCR1u0UL5lD3hD3Za4DA1/U6FereiRzw1SwolwkMohAAC8QSerN27d1eTunDJ7STTDJ+B8s041KgD/Qn6tC+++EJVae6Wgf1gARDPFeGNfvrpp+DiH+xN3w9+Qx+l3wOzDEwOH3jgASXsQPTRu3ScRHhzB48dE2tMeORr1KiRCmOAv2Pih9A0u3btUgf7QQCFV7yeAJtiKWPCh7M259+92GIoIUCXDvuBregdXfjGYUEbCaI7vm34HbaHP/iuwn7NcDT4b3i6I7Y1BA3sSINt4puNuLOwdYSqQx4sXOPfjhw54ujNaMaER1uwYPXss8+eZtPREuHt2olD+0wOEFvw32aCaGpdiA01ptG77iJ78tn7ard2nUgKocITQfDCWQPWdwPtxG+wL+th0+F2TeJ9w6IXEkRCxGkPd4iiW37WEE8lS5ZUwiIWy5DwDUH96BfMHab0hE+k5SV33W5tD3fhRoS3G0/g+2QnwuP9sxsX4b1FKJaVK1eq7xHOX9DjPrvvYCgRHnVcfvnlAvEdh8jb7XgKFUZNfysQCgZjI33oMhwedGgYjJNwcDrGgAhhtW3bNuUQZrbF6T4xrsX4EOHSMMa0E+HB95///Kd8++23DEuT3K8WW0cCJEACpxGgCB9A4lcE1zQTeX3Pnj1l8uTJytPN7YGkd70/VRrWqSLnFi0kA6YtkIG3t5SiZ+eVZZu3y8qt27MYyU0X1ZBjgcHOYx99JnUrlJcHA6J8qBSJJ7xd/DwMYuDlYB5KZ9btJMKHmmSZ/+YUIgeDIwyi4Fm0b98+5UWnRSr2IdEjEG8RPnot918SRXj/7KJxpZdJZjTqYxkkYEeAtkjbyI4EaNeRPVXyi4wfr/ZPINltL9S8zv/d/n1lnz59BGFrorEjFvNHhIOCsxgWfLGTG2J63759o9FUlkECJEACJJBNCFCET2ERHgMHxEaGSAwPG7fp/vHTpOlF58m11SvI8K9+lMwtW+UZy8Gs8MjNHVjFR1qweqOMnvu9fHRvO9sqYiHCh/KER2x4eKRjO70fT3gI+zg0y0mEN+vQsfrgCRrKa9otc+Y7nUA6i/DwhoMXvOkJTy/42L8lyT7JjD0B1pAsBGiLyfIk2I5oEqBdR0aT/CLjx6v9E0h224uVCI9diDgjJBqHnMIzHt752E2NhPBro0ePDrsDxv9T45UkQAIkQAKpSIAifIqK8DjoDIMGP9ujh339P1mwfqN0vPpSWbXlT/nm1/Uy6PY2WQ5mrV26uDzb6lR85U9+XClzl62VUbf7O5gVW+ngEYAtvZmZmWqrIUT7UIepmqEndEx4bPnDNniItghBMWnSJHV4IO799ttvV7FtkZxiwmObLkT9hQsXqrxOIrwZ5xPtRqxmivDR797SVYQvVvjsYDgabFfV4WgowkffxqwlJvskM/YEWEOyEKAtJsuTYDuiSYB2HRlN8ouMH6/2T4C2558dryQBEiABEiABLwQowqegCD9ixAjp16+fLwFeG8cnS1bItBVrpGGtc2Xx2kzpe5P9wazzVm+Qz5aslKHtmtvalpMn/MaNG+Xmm28OxqbEgYX68FWnmPCoDDHv7rvvPoF3ekZGhrz88ssqVh4SvNoRNgYHa2IngLUsxPkbOXKkivGJ9iG8DA5pDSfCI84n4iIvX75ceSojph9iPIeL5enlxWNeCcbCjoRFoaKlpXKF0pEUEddr0eEWL5KRJR48Rfj4PQJOMuPHmjU5E6At0kKyIwHadWRPlfwi48er/ROg7flnxytJgARIgARIwAsBivABWomM6Y6H5bV+iMoTJ06U9u3be3nWIfNm7t4nD06YLl2vbyAXlSsleXKdCkGj0/cb/5DR8xdL29rV5Z8XVo+4PhZAAppAunrClyxWIGQoGnrCx/7d4CQz9oxZgzsCtEV3nJgrtQjQriN7XuQXGT9e7Z8Abc8/O15JAiRAAiRAAl4IUIT3IYJbAXsV0aN9vZcHHirvvr+OCOLEt724trSoUzWY5XjgQNa+s76WttUry+WVy0VaDa8ngSwE0lWEL12iUDAWvPaCBxiK8LF/QTjJjD1j1uCOAG3RHSfmSi0CtOvInhf5RcaPV/snQNvzz45XkgAJkAAJkIAXAhThKcJ7sRfmJYGoEUhXEb5sqSIqDrw1DA1F+KiZlm1BnGTGnjFrcEeAtuiOE3OlFgHadWTPi/wi48er/ROg7flnxytJgARIgARIwAsBivAU4b3YC/OSQNQIREuEj1qD4lTQ8cBhv0pwD/zRwjsF+DjBZzUkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkCACONcwx8lA8lt/osOxpHv9fp8bryOBRBKIlghf6ZxSgu7L+gf3FkG3FjU0ptCOv5t/UAkF+KihZkEkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkNQEKMIXzvD9gBK9COC74byQBBJIIJoivBbcteieDOK7Fa1VjNe/U4RPoBGyahIgARIgARIgARIgARIgARIgARIgARKIIwGK8BTh42hurIoERKIlwmMrjym6J6MAH0pwp/jOt4AESIAESIAESIAESIAESIAESIAESIAE0osARXiK8Oll8bzbhBOIpgivbyaZBfhQQnzCHwIbQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEDcCFOEpwsfN2FgRCYBALER4k2wyCfL0eqfNkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJUISnCM+3gATiSiDWInxcb4aVkQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAYAhThKcLzJSGBuBKgCB9X3KyMBEiABEiABEiABEiABEiABEiABEiABEggwQQowqeRCJ+5e45rcyuSr6acfUZp1/mZkQTcEqAI75YU85EACZAACZAACZAACZAACZAACZAACZAACWQHAhTh00SEX7Vtgvy8baCcfWaRsHZ74sRxOXE8p7SuNT1sXmYgAa8EKMJ7Jcb8JEACJEACJEACJEACJEACJEACJEACJEACqUyAInyaiPA/bx4iu0/Ol8plLw1rr4eO7JMff5klN1/wTdi8zEACXglQhPdKjPlJgARIgARIgARIgARIgARIgARIgARIgARSmQBF+DQU4Rev/Fh27/vD0W5PnjwhOXPklhMnj0vzmuOkZP7w4n0iX4SjR4/KDz/8IFdccUXYZtxzzz1StWpV6d27t3i5LmzB/5fh448/ltdff13mzp3r9pJgvli0x3MjYnwBRfgYA2bxJEACJEACJEACJEACJEACJEACJEACJEACSUWAInwaivBzfhgijeo96MoQ12/+QQqcbCgXlO0aMv+5554rxYsXl4ULF572+9NPPy1jxoyRAQMGyI033hi2vmuuuUYefvhhV3mthX3zzTdy1113yVdffSUlSpRwrMsU4b1cF/YGwojwGzZskEaNGsnUqVOlVq1aWYq75JJLpGPHjlKvXj3X9+G2PcmWjyJ8sj0RtocESIAESIAESIAESIAESIAESIAESIAESCCWBCjCp5AIP3v2bOnatat8+OGHbbxgYAAAIABJREFUUqdOHU92YYaj0SL8th2rZMO2pQGP91ynlXVmnrxSveLV8vvWpWFFeFw8ZMgQadasWbAceHRffPHFcvDgwbiI8F5gmCK8l+vc5nXyhG/durXi0rdv32BxeK4PPPCA8uQvWLCg22pSNh9F+JR9dGw4CZAACZAACZAACZAACZAACZAACZAACZCADwIU4VNIhN+xY4c0btxYCdsTJ070JMSHEuEX/TJJShapLPnzFT/NdFZt/EqqntNAha0J5wlfv359df3YsWOD5bz//vsyaNAgOeuss4Le7RDm4en+xRdfyPHjx5XX9+jRo2X16tUCcVoneMQPHz5chYrR+fFbmzZtlKCPhDy1a9dWZcEDHr+hjLVr16rfFyxYIL169ZLt27dL3rx55ZVXXgkuEpgi/IoVK4LXQTzHNWYqX758MKxM//79ZeTIkapduu158uRR/33ffffJvHnzVF3ggXaECkejuZg7B7p166aqfPPNN8VsD/7NjsGsWbOkT58+smjRInUtFkE++OCDLG0FV3Bct26ddO7cWeCJj/Z2795dHnzQ3U4IH31K2EsowodFxAwkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALZiABF+BQS4WF3EFTbtm0rhw8f9uQRH0qEX7zyk8BBrZdI7lxnyfbd65VZF85fVgrlLyP/C/xWKfCbGxEeAjBE3Tlz5kiFChVUOe3atZMGDRoIhG0dYgbhab7++msVjgWpefPmcv3116vY7EjWcDS4bvny5Sr/nj175IYbbpCHHnpIbrvtNpU3d+7cMnToUClZsqT8/vvvQTEdeSGSP//886od48aNE9SNsiBC24nw5nutFzxwHULp4B7ffvttmTlzpvJWR7naox3iPP59/Pjx6jeI6nYiPET18847Ty0+QKzXOwawuICdBFYR3o4B6kc506dPlypVqqj2LF68WC0+lClTRrHo1KmTajv+XrduXXnmmWcEAnj79u0VE/xbIhJF+ERQZ50kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAKJIkARPsVEeBiKHyHeSYRftvYzKVm4quTJfaas2/y9NK7XzZMIDwEZIXIgKkM0hsd106ZNVXiVhg0byrPPPqvE4J07dyrhvECBAsreIZKvX79eeWuHEuGrVasWFKvxO8Ru7d0NER7CP8RnJFO8hrC9bds2KVu2rPoN/12jRo1gLHY3InyTJk0E8e7feustVQb+GzHb77zzTvXfZsgZp99CvdgQ6XPlyqUOb0U5L730UjCmvlWEd2KAe2/ZsqVanMAOCYj4uOd7771XCfQ6vM2tt96qmtGvXz+pVKmSbN26VT0DeO0nIlGETwR11kkCJEACJEACJEACJEACJEACJEACJEACJJAoAhThU1CEh7H07NlTJk+erEToF198Maz9hBLhtbf7inVfSI2K18iZeTLku+UTAiL8g5K59WcpUvAcOXR4jxSTf0q5QleHrANCNUT4fPnyKW9zhFnB/8KTHOFV9O8Q4fFviGkPERbhaJB06Bn9d/NgVlxrTRCREYLG6jVvFa8RmgWi8/79+4NF6ANRw4nwEPtRx4wZM5TnvG5bZmZmluZASF+1atVpbXGKCY8CvvvuOxUeBhwg6letWjUYI956H04M4J0P73cc9vr999+rkDxYNEBonIEDBwZ3HBw6dEiefPJJ+fzzz+Wvv/5S4Xv07oOwhhODDBThYwCVRZIACZAACZAACZAACZAACZAACZAACZAACSQtAYrwKSjCIxY4Qp/AA1t7aoezMCcRfueeTfLnrnWSI0dOyZ9RTGpVbBQoLkfgz0n1v+Wkp23xpsh+2WWXKbEXAi9ipyPcifk7PLKLFi0qL7/8svLCNj3btdBtivDwAreLfe8kwkOY7tChg/Iyh0c4EtrhRoTXh6R+8sknUqtWreB9g3WXLl2CnvcmEK+e8LgWrLCQ8sQTTyhxXIfxCeUJb8dg8+bNyvv90ksvVe3C3y+88ELlHZ8/f/6g0L5p0yYpUaKEWlDAQkKLFi3Uwk2rVq3CmU1MfqcIHxOsLJQESIAESIAESIAESIAESIAESIAESIAESCBJCVCETzERHiFc3n333Swe5G5s64eNL8r2o3OlVNFq8vPq6QFv94BH+v/FfS+cv9z/FXFSFq34SArmLy2Vy9SXXft+l183LJCGFQdJ2YJXhqzGFNkRXgUx2itWrKhipGvxG57yZmxyLCJs2bJF7r77biU+m+Fobr/9duUljgSPboROGTVqlBLt4fldqlQpueWWWxw94SGk9+jRQ8VLR/733ntPic7hRHhrHHjzhnEPkyZNkgkTJggOa4XAv3LlSnnsscfUYoLbmPC6TLB65513pGbNmupAVZ2sIrwTA1yDxQiwXLp0qRLZEerms88+yxLGB4I/RHqI/siLUEEU4d28NcxDAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAApEToAifQiL8iBEjVIgVM4SLWxP4edMQ2bD7M8l3RjH5ffeXSoRftXGBbPrzF+UBX6NCw4BAX0Pm/DBEqp7TQLbuXCNn5MkbCFGTT4rlbiYXlO0asipThNcHoiIcDQ5PRTJ/h1AMgX379u1SrFgx5cENkV2L0AihAqH92muvVR7+iOUOz3iEhkH4Ghy2OnjwYOVNHy4cTa9evWTKlCmqDfCKx0Gk+jBUu3A0ENOHDRt22n3ikFUk/A4Pf7QLiwcQ0StXrhxs56xZs5QQ/s9//lMdQDt37lzbxwMv9iuvvFLFy9eskNkqwjsxQH4saCCu/tixY1VdWBx46qmnlCivE/6uY/WjfRDkUW+iEj3hE0We9ZIACZAACZAACZAACZAACZAACZAACZAACSSCAEX4FBLhIcgiNEn79u0jspVRP1SVRvUekBMnj8uJE0dVWTlz5pGcOXIpEb5RICb8seNHJHeuM2T95h+kwMmGtiJ8RA3hxWlJgCJ8Wj523jQJkAAJkAAJkAAJkAAJkAAJkAAJkAAJpC0BivApJMJHy0pHfFdRyhRBvPOcpxW5+8DvcuWFnYL/vn7zd5L/5BUU4aMFn+WoA2kjTYWKBkImVSgdaTG8ngRIgARIgARIgARIgARIgARIgARIgARIgARiToAifBqK8Cu3vi9nn1EqpHEVOKuSFMxbOfjbwSPbAn8/GQhjUzLmxsgK0oMARfj0eM68SxIgARIgARIgARIgARIgARIgARIgARIggVMEKMKnoQhP4yeBRBKgCJ9I+qybBEiABEiABEiABEiABEiABEiABEiABEgg3gQowlOEj7fNsb40J0ARPs0NgLdPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAmlGgCI8Rfg0M3nebqIJUIRP9BNg/SRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAvEkQBGeInw87Y11kQAPZqUNkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJpBUBivAU4dPK4HmziSdAT/jEPwO2gARIgARIgARIgARIgARIgARIgARIgARIIH4EKMJThI+ftbEmEggQoAhPMyABEiABEiABEiABEiABEiABEiABEiABEkgnAhThKcKnk73zXpOAAEX4JHgIbAIJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEDcCFCEpwgfN2NjRSQAAhThaQckQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALpRIAifBqK8G+8MUjWrVsbtPNmzZpJ8+bN08nuea8JJEARPoHwWTUJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEDcCVCET0MRfuDrb0iefAWleu2L5Zs5n0q9iy+gCB/3Vy99K6QIn77PnndOAiRAAiRAAiRAAiRAAiRAAiRAAiRAAulIgCJ8morwRUpVkGoBEX7ahOFSsnhRqVq1qrL/66+/Ph3fA95zHAlQhI8jbFZFAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQcAIU4dNEhEcIGsmRQxnc5k2bpNZFl0mZcyqfEuFLl5Pjx4/L9m1/yMCBAxNulGxA9iZAET57P1/eHQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQFYCFOHTRITv0aOHVD3vIslfoJCyAAjwSBDh7+31vPyRuV793Y8IP2zYMHn99dfl0KFDkpGRIb1795YOHTrE/V37+OOPVTvmzp0b97pZoXsCFOHds2JOEiABEiABEiABEiABEiABEiABEiABEiCB1CdAET6FRPjZs2dL165d5cMPP5Q6dep4sj6I8K1uuUcyAiL8vr271bU7A57v3345XYnw38//TH76fr5UqVJF/VamTBlp27Zt2DoGDBggY8aMkffff1/OO+88WbJkidx9993SpUsXefDBB8NeH80MFOGjSTN2ZVGEjx1blkwCJEACJEACJEACJEACJEACJEACJEACJJB8BCjCp5AIv2PHDmncuLEcPHhQJk6c6EmIhwhftERp+evwIdn/fyK8NkeI8HNnTFTe8NUC3vL43zPz5JQeD3d3tNijR48q4X3QoEHSrFmzYN5Zs2ZJr169ZOnSpbJixQpp3bq13HjjjTJlyhSVB17yffv2Debv37+/jBw5UlBevXr1ZPTo0ZInTx6BqP7qq69KyZIllbi/du1aWbBggSp7+/btkjdvXnnllVdU3ffcc08WD/ipU6dKrVq1xCz73HPPlVGjRkmpUqWytAv1ID/qwSLHDz/8ILly5ZI2bdoIFhmYokuAInx0ebI0EiABEiABEiABEiABEiABEiABEiABEiCB5CZAET6FRHiY0rp165SH+uHDhz15xM+YMUNZ4urVq2X/oSPyj9vuz2KZEOH379klrdp3lsVfz5adWzaEFeG1wA5x3Ex79uyRiy++WAnbSBDhH330Ubn//vsFAmz79u2Dwv2QIUPk7bfflpkzZ0rBggWlXbt26lqI9BDHIbg/9thj0rx5cxXqBiL9888/r/KNGzdOnn76aVm+fHlQtDfD0eiy0Q4I788884x8/fXXSqzXbUdb4LFfokQJVdfu3bvlnXfeESx44JBatPu2225L7rc4xVpHET7FHhibSwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEBEBivApJsJHIsTjWojx//txqVx6TXP5ff1qOXhgnzKgrZs2yNkZBYIi/LqVP8pl9esHjQuCtDWhrG7duikPdWuC17kpwpt5+vTpI/v371fx25s0aSIdO3aUO++8UxVhhpTRnvDwfkeCp/y2bdukbNmywf+uUaOGqgde79ZwNNaycT0Efojs+fPnV4sDK1euVAI+EgR9iPT/+c9/5KKLLpKdO3dK7ty5pUCBAhG9ZLw4KwGK8LQIEiABEiABEiABEiABEiABEiABEiABEiCBdCJAET4FRXgYaM+ePWXy5MnKI/zFF190bbMQzhEuBunkyZOSv2Dh4GGtRQLhaq5o1FJWLfuf+oP011+HZeefW0Ie2OrFE94U4REiBh75w4cPl2uuuUYyMzOztB+hYFatWnWaqI5MH3zwgfTr10+J+DrZifAo++GHH1ahcHTS/1a9enUlwpvtgkgP73mErNm3b59aIMBCgRbpXUNmRkcCFOFpICRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAulEgCJ8Corw8CQfP368Eonfeust3/aKWO4FS5wjdRs0ti0D8eGnTRgeUoT3EhPeyRMeh7hiMcGarJ7tixcvVvHk8e+IRY+kPe69eMIPHDhQSpcufZoIv3XrVuX1jljze/fuVTHhW7VqpcLUMEWPAEX46LFkSSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAslPgCJ8ionwiIf+7rvvKg9yeJJHkiDCHzxyQkqXr6SKyV+gkFSrfbE6mHVz4A8SDnGFVzyE61AJB5eOGTNG3n//fSWMIz47YqhDWEesde0tj7junTt3DsaEHzp0qDpkFtdPmjRJJkyYIOXLl1cCO0LEIL9VhJ89e7bggNnp06erGO/vvfee2gVgesLDS/7bb79V3uvWmPAvvfSSTJs2TRYuXBhsl7k4cOutt0rRokXVYbDHjh1TcegpwkdiYaGvpQgffaYskQRIgARIgARIgARIgARIgARIgARIgARIIHkJUIRPIRF+xIgRKhRLNAR4mCTE742Zvyvr3LVrp+TLKBSMCb/sf99ImTKnYq/nzJFDund/yNaKhw0bpsK2HDp0SB2e2rt3b+WxjqRFeISEmTJlivq3Tp06qTw6ITzNyJEjVcz3ChUqqJjtlStXDhmOBl7puhzUgcNZR48eLfUD8etxIOx1110n27dvVyF3qlSpImbZ8JpHqBkI+KFC6eAw1rvvvlstJCAkToMGDdShsQxHE90OjCJ8dHmyNBIgARIgARIgARIgARIgARIgARIgARIggeQmQBE+hUR4iNQTJ06U9u3bR92qECv+5+W/BkX4nVs2SI+Hu0dcj13c+IgLZgEpS4AifMo+OjacBEiABEiABEiABEiABEiABEiABEiABEjABwGK8Ckkwvt4vq4vgQi/aMnPctm1LWT18iVy5MBuivCu6TGjFwIU4b3QYl4SIAESIAESIAESIAESIAESIAESIAESIIFUJ0ARniK8smGI8AjholPlyuc6hqBxa/j0hHdLKn3yUYRPn2fNOyUBEiABEiABEiABEiABEiABEiABEiABEhChCE8Rnu8BCcSVAEX4uOJmZSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAgkmQBGeInyCTZDVpxsBivDp9sR5vyRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQ3gQowlOET+83gHcfdwIU4eOOnBWSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkkkABFeIrwCTQ/Vp2OBCjCp+NT5z2TAAmQAAmQAAmQAAmQAAmQAAmQAAmQQPoSoAhPET59rZ93nhACFOETgp2VkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJJIgARXiK8AkyPVabrgQowqfrk+d9kwAJkAAJkAAJkAAJkAAJkAAJkAAJkEB6EqAITxE+PS2fd50wAhThE4aeFZMACZAACZAACZAACZAACZAACZAACZAACSSAAEV4ivAJMDtWmc4EKMKn89PnvZMACZAACZAACZAACZAACZAACZAACZBA+hGgCE8RPmj1J06elJw5cqTfW8A7jisBivBxxc3KSIAESIAESIAESIAESIAESIAESIAESIAEEkyAInyaifBTflwpn/22Sfq3ukbOyp0raH5Lt/wpL8yYL32aXCEXli+dYLNk9dmZAEX47Px0eW8kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJWAhTh00iEH7NouUz7eaXc0/RyqVu+VBZbOH7ipPy8eZu8PftbeaTR5XIZhXj2FjEiQBE+RmBZLAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQFISoAifRiJ8j49mykU1Kkrr2tWUMf517Li8PGOetL3kfDmvdDH1b5/+vEp27D4gi9b+JrfWrS0tzq+elIYbrlEff/yxvP766zJ37txwWfl7nAlQhI8zcFZHAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiSQUAIU4dNIhO8y7lOpUbGM3HX5BbLvryPy2IefyeU1Kkmb2lUk/1lnZjHE7zdsljHzf5A2dWpKuwtr2Brpueeem+W3vHnzStu2beXJJ5+UPHnyJMy4KcInDH3YiinCh0XEDCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAtmIAEX4FBLhZ8+eLV27dpUPP/xQ6tSp49kMO4+bKlfWqRbwhK8qny5bI9+sXCv9bmpmW878NZny6aKlMqx9K0cRfsCAAXLjjTeqPJmZmXLzzTfLDTfcIL179/bcxmhdQBE+WiSjXw5F+OgzZYkkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALJS4AifAqJ8Dt27JDGjRvLwYMHZeLEiZ6E+EELl8jSzD+k/83XK2ucsGSFLFy5Xl7r0NLWOqcsXSVzf14tI29r7VqER8b+/fvL6tWrZfjw4XLNNddI7dq15YsvvpC77rpLCfMLFiyQXr16yfbt2yUjI0NeeOEFadny73bgt2nTpsnRo0elXr168u677wo87PHfDz/8sCoLqU2bNoIFACT8dt9998m8efNU3vr168vatWtVOJoVK1ZI69at1X/rhHahLCwehGtjsWLF5J133gnyxv2NHDlS1VmhQgW1KFK0aNHkfcuTrGUU4ZPsgbA5JEACJEACJEACJEACJEACJEACJEACJEACMSVAET6FRHhYwrp161S4l8OHD3vyiB+7eJlMXrZKXru1lZyVJ7eMWfiz/Jq5RZ67+TpbA/tqzUZ5b853MrHLLbZ5EI7G6gnfsWNHufrqq6Vv375K4M6dO7cMHTpUSpYsKbt27ZKmTZuq3zp06KBE8i5dusgnn3witWrVUmXNnDlTxowZIwULFpRu3bopUf3NN99Uovny5ctl6tSpsmfPHuVt/9BDD8ltt92mhH9cN378+OB1XkT4UG18/vnnpV27dvLqq6/KBx98IAsXLhTsRujRo4d8/vnnSni///775dChQzJ27NiYvqjZqXCK8NnpafJeSIAESIAESIAESIAESIAESIAESIAESIAEwhGgCJ9iInwkQvx9H86QpudXkxqlSwTiwc+Sx5s3lOplStjayMGAp/eTE2ZIpcKF5ckWV0mOHDlOy2uNCY848I0aNVKHouLvEOEffPBBJWYjQWT//vvvlaitE4R2CO79+vWTJk2aKFFe59+4caMsW7ZMWrRoIdWqVZPRo0crL3ck0+Me10H8v/POO9VvZjgaN57w4dqI+4T4D8Ediwf/+c9/5LrrTi1g7N27Vy0wMLkjQBHeHSfmIgESIAESIAESIAESIAESIAESIAESIAESyB4EKMKnoAgP0+vZs6dMnjxZidUvvviiK2u86/2p0rBOFTm3aCEZMG2BDLy9pRQ9O6/ttcdOnJDHPvpM6lYoLw/WDx2D3uoJby3MDPuC30zhXOc1/61GjRrqfnSMebM8q+CP3ypVqqTC01jr8SrC69A0uo3Dhg07jQsWFlq1aqW89xFC57fffpNy5cqpUDWVK1d29QyYSYQiPK2ABEiABEiABEiABEiABEiABEiABEiABEggnQhQhE9BEb5Pnz4q7Aq8v9966y3X9nr/+GnS9KLz5NrqFWT4Vz9K5pat8ozDwawLVm+U0XO/l4/uPeXFHip5FeHtPOFz5cqlvOetnvDwPNee5vCEt4uFH6knvCnCo41Lly6V995777RbRluOHTsmRYoUUTHh4b3/1VdfBePUu34YaZyRInwaP3zeOgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmkIQGK8CkmwiNOOQ4qhec3Dj71koZ9/T9ZsH6jdLz6Ulm15U/55tf1Muj2NrZFfPLjSpm7bK2Mut3bwaxmgVYP9Q0bNmSJCf/dd9+pMDLjxo2TunXrBmPCT5o0ScWCR8x1xGvHYgMOXt26dauMGjVK/TZkyBApVaqU3HLLLY4x4SGWn3feeaJjvCOeO8rVseytbUT4GsTd1x75mZmZ8tRTT8ngwYNVmJtBgwapGPao+5lnnqEI78UIA3kpwnsExuwkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIpTYAifAqJ8CNGjFCe134EeG2lnyxZIdNWrJGGtc6VxWszpe9N9gezzlu9QT5bslKGtmtua+RePeFR0IIFC6RXr16yfft2ycjIUKFdWrZsGawDv02bNk1OBMLhXHzxxSoOPOLLQ0yHxzrCzxw/flzq1aunhHEckPr/27sTcC3LOvHjP0BETEGFAlMgJSFRJkZDzdxyicxgRGdwyzRBcLdSEvdlNMHQv9SguaCpua8JmSYYppm40iCoIJuODjigKSYCLv9zP85hzsv6ngd4z/J83rm8Us5zP8vnuXGu68vt/Vb/7JFHHsmOPfjgg+Mvf/lLtnVM+tx6663x7//+79lxadybb76ZbemTtr1ZNsIve48p+KcIX71Pffr7tKd9OlenTp2yFfzdu694u54G/W+HdXTzIvw6gnVaAgQIECBAgAABAgQIECBAgACBeikgwjegCJ+ib9qO5dBDD13jyfTG3xfECXc+FCd+91vxz1u2j+bNmpac85nX/ztu+fPzcdD2XePgHl3X+HpOQKBaQIQ3FwgQIECAAAECBAgQIECAAAECBIokIMI3oAi/tifmgkWLI+0Tf9AO28f3um+z9PSfVK1Av/CRv8RBXbeOb2695dq+rPMVXECEL/gE8PgECBAgQIAAAQIECBAgQIAAgYIJiPAFjvAFm+set54IiPD15EW4DQIECBAgQIAAAQIECBAgQIAAgYoIiPAifEUmmosQqBYQ4c0FAgQIECBAgAABAgQIECBAgACBIgmI8CJ8kea7Z60HAiJ8PXgJboEAAQIECBAgQIAAAQIECBAgQKBiAiK8CF+xyeZCBJKACG8eECBAgAABAgQIECBAgAABAgQIFElAhBfhizTfPWs9EBDh68FLcAsECBAgQIAAAQIECBAgQIAAAQIVExDhRfiKTTYXIpAERHjzgAABAgQIECBAgAABAgQIECBAoEgCIrwIX6T57lnrgYAIXw9eglsgQIAAAQIECBAgQIAAAQIECBComIAIL8JXbLK5EIEkIMKbBwQIECBAgAABAgQIECBAgAABAkUSEOFF+CLNd89aDwRE+HrwEtwCAQIECBAgQIAAAQIECBAgQIBAxQREeBG+YpPNhQgkARHePCBAgAABAgQIECBAgAABAgQIECiSgAgvwhdpvnvWeiAgwteDl+AWCBAgQIAAAQIECBAgQIAAAQIEKiYgwovwFZtsLkQgCYjw5gEBAgQIECBAgAABAgQIECBAgECRBER4Eb5I892z1gMBEb4evAS3QIAAAQIECBAgQIAAAQIECBAgUDEBEb5gEX7W5Pfi14Ofj+N+sWN8ZbvWK5wbEPuvAAAgAElEQVRo15/1Yrw28d3sZ4cM7hb//O32K52QM2bMiOOOOy6mT58ezZo1ix122CGuvPLKaN9+5WMqNrtdqF4KiPD18rW4KQIECBAgQIAAAQIECBAgQIAAgXUkIMI3oAg/bty4OPHEE+Puu++O7t2713pKVAf4NHBlEf7FP82JO38xJYb8ZteYOfnv2d8PfWjvFV5ryZIl0bNnzyzC9+/fPzvmggsuiHSfTz/9dK3vz4BiCIjwxXjPnpIAAQIECBAgQIAAAQIECBAgQOBzARG+AUX4+fPnxz777BMffvhh3HvvvbUK8dUB/js/3Dr+eHPV6vVVrISv/s3x2B2zsmNXFuGnTJkSvXv3zvb4bt3681X1Kczvuuuucfvtt8dXv/rVSCvlBwwYELNnz46WLVvG5ZdfHr169cqOfeKJJ+L444+PhQsXRqdOnWKTTTaJI488Mvr27ZtF/W222SaGDBmSHXv//ffHiBEjYvz48UvHnn766TFv3rxo27ZtXH/99ZlH9XHf+MY34sEHH4ymTZvGKaecEieccMLS+0vXqA7Bffr0iUsvvTSaN2+e3fupp54aY8eOzY5NPxs+fHj29zWfIx1b85z+ZVI7ARG+dl6OJkCAAAECBAgQIECAAAECBAgQaNgCInwDivDVMfiggw6Kjz76KNeK+HK2o0nXqQ7waUX8Jl/aYKWzfN99943FixfH0KFDs1XxKVBXf6pXyv/rv/5rnHPOOfH73/8+fvKTn8Szzz6bHbLbbrtlK/vTSvoUZo866qi46KKLVhvhU9Dfb7/94uKLL45+/frFFVdcEXfddVe2+j5F+BTnzzzzzCz+pz8MOP/882Py5MnZvQ0aNCgWLFgQo0aNyqJ7skx/kJDie/orHTd69Oh477334sADD4yTTz45jjjiiOyYHXfcMVvpn+710EMPzc6dfs2ndgIifO28HE2AAAECBAgQIECAAAECBAgQINCwBUT4Bhbh1zTElxvh03X+/vZHMfTop1a5L3wK2Wl1+29/+9ssxtfcE37MmDFZtH7uueeW/i7Za6+9stidgvjKfra6lfBpdfozzzyThffqT+fOnbN4/uqrr5asmE8/r/5Zt27dokuXLiX/FcFLL72UBfdvfetb2c9uueWW2HnnnbPTpj9YmDZtWhbsDz/88OzXLrnkkthqq61i7ty50apVq2x1v0/tBET42nk5mgABAgQIECBAgAABAgQIECBAoGELiPANMMKnKffTn/40fve732UrwdN2KuV+Vhfha25BU06Er3ndN954I1udPmHChGy1e4rwaVX6sp+0BU0K4zW3l0nHVAf61UX4FMevu+665c6bzpf+UGDZ81ZH+A033DDbzifF+hTkl/2k45b9pOCetqdJW+ace+658eijj8aiRYvi6KOPXrpVTrn2jvtcQIQ3EwgQIECAAAECBAgQIECAAAECBIokIMI3wAh/9tlnxx133BFpK5hrrrmmVvO1ZoTf5IstspXuaX/4mn8/9tYZ8drEd7Pz7vTdL8dBp3xthddI1/7jH/+YrSyv/qQI/rWvfS0L3Wkf9WHDhmV7vy/7WdUq+dVF+LQSftKkSXHTTTctd95l945PB6xqJfz7778fH3/8cWy22WbLrZKvefI333wzvvSlL2Ur+NMfNnzve9/L/vDj+9//fq38HSzCmwMECBAgQIAAAQIECBAgQIAAAQLFEhDhG1iETyvNb7zxxmzVeNompS4/1Xuz/+xnP8v2c0+fFMYvu+yypfu+77nnnvGjH/0o+2LUtJo8bUXz85//PNKq9FXtCZ9Wuz/88MPZyvM0Lu3v/vbbb2dfzJq+EDbt5Z4ieAr2KYqfd955MXLkyHjkkUdWuR1N2hM+Rff/+I//yO437fX+3e9+N1uxn36Wtpm5+eabs21mrrrqqmjfvn0ccsghscsuu2T/1UH6LxDmzJmT7UkvwuebfVbC53MzigABAgQIECBAgAABAgQIECBAoGEKiPANKMLfcMMN2Z7k9SHAV0/3tAd7+vLS6dOnZ7+UVp2nbVt233337J/TavgU0FOwT6vIa27jklbIp61pUmTv1KlTpFXpaZV/Cutpn/b0hagvv/xyFsTTM6f921OET580NoXzefPmZT9PET5F8tWthE8r9Y888shsS5SmTZtmK9nTyvr0ST9Lf0iQtp/55JNPsi+aTWG/TZs22cr79LPq50jXSl8i61N7ARG+9mZGECBAgAABAgQIECBAgAABAgQINFwBEb4BRfgUidPWL4ceemjDnXGruPOae8I3ygf0UJmACG8iECBAgAABAgQIECBAgAABAgQIFElAhG9AEb6xT0wRvrG/4c+fT4Qvxnv2lAQIECBAgAABAgQIECBAgAABAp8LiPAifL35vSDC15tXsU5vRIRfp7xOToAAAQIECBAgQIAAAQIECBAgUM8ERHgRvp5NSbfT2AVE+Mb+hj0fAQIECBAgQIAAAQIECBAgQIBATQERXoT3O4JARQVE+IpyuxgBAgQIECBAgAABAgQIECBAgEAdC4jwInwdT0GXL5qACF+0N+55CRAgQIAAAQIECBAgQIAAAQLFFhDhRfhi/w7w9BUXEOErTu6CBAgQIECAAAECBAgQIECAAAECdSggwovwdTj9XLqIAiJ8Ed+6ZyZAgAABAgQIECBAgAABAgQIFFdAhBfhizv7PXmdCIjwdcLuogQIECBAgAABAgQIECBAgAABAnUkIMKL8HU09Vy2qAIifFHfvOcmQIAAAQIECBAgQIAAAQIECBRTQIQX4Ys58z11nQmI8HVG78IECBAgQIAAAQIECBAgQIAAAQJ1ICDCFyjCT5n3cSxY/Olqp9kWGzeLLav+8iGwLgRE+HWh6pwECBAgQIAAAQIECBAgQIAAAQL1VUCEL0iE/+PMRXHRn9+LL2/cdLVz8a0Fn8YxPb4Qx3z9C6s91gEEaisgwtdWzPEECBAgQIAAAQIECBAgQIAAAQINWUCEL0iEv/LZD2Lx4sVx/D81X+18fXbOJzHxnabx051brfZYBxCorYAIX1sxxxMgQIAAAQIECBAgQIAAAQIECDRkARG+gBH+ty8viT+98clK5+2HSz6LDz9pEu2+0Cy2qFo5f95uraNViyZrdZ73798/ttlmmxgyZMgKz9u5c+cYPXp0dOvWba1e96qrrooNNtggjjnmmJWe97777oupU6eu9N7W6g0V8GQifAFfukcmQIAAAQIECBAgQIAAAQIECBRYQIQvYIT/+i3/iOv326Bk2k+Z/2m8+cGnsV+n9Up+/XfTP46t2mwQP+650XK/TVJIHz9+/Ap/+xx77LGrjNh1EeHHjBkTV155ZfzhD3+I5s2bx1133RUXXXRRLFy4MDbaaKO47LLLolevXtnzpPvbcccd44QTTijwvx7WzaOL8OvG1VkJECBAgAABAgQIECBAgAABAgTqp4AIX9AI/7cjS/d7//3Mj2Pi25/E2Tu3KJmpV//nklh//fVXGOFrHri6qL7s9F/d8Wt7JfySJUuiZ8+ecdttt2Wr68eNGxc//vGP45577omuXbvG7bffHueff372hwpf/vKXY/78+fGtb30rJkyYEK1bt66fv3sb6F2J8A30xbltAgQIECBAgAABAgQIECBAgACBXAIifAOJ8DNmzIjNN988WrZsudyLnjx5cmy33XarnAA194RPK+GXjfBjZnwc//k/n8RZazHCp5B94oknxrPPPhvNmjWLPn36xPDhw7P7TBE+rUZP277Mnj072rZtG9dff3107949+3nNCJ8C+qmnnhpjx47NflbzPMllwIAB2TnS+U455ZQVrl6///7744Ybbsi2uEmfkSNHRhp7+eWXL3VbNvwffvjhsdtuu1kNn+tfLSsfJMKvZVCnI0CAAAECBAgQIECAAAECBAgQqNcCInwDifBdunSJjh07xp133hlt2rRZOqlS1L766qvj7LPPXuU+5zUj/D/d/EFs37ZZycRcVLVF/MeffhZfaF669/sXN2wS/9S+Za6V8Clipz80+PWvf52tLN9vv/2y7V/69u2bRfjnn38+Hn744ex5zjrrrCzWV29vUzOIpwCf/qAhBfT33nsvDjzwwDj55JPjiCOOiN69e2fbxlxwwQWR4u6hhx6arWpPv1bzk87xxS9+Mc4555wV/oZMK94HDRqU3UOK+emT9o9P95O2rfFZewIi/NqzdCYCBAgQIECAAAECBAgQIECAAIH6LyDCN5AIn1Zyn3766bHVVlstDfHVAX7nnXeOm266aWk8XtG0W3Yl/O/+pXRF/fv/+Cg+WrwkvrTpxiXD73/t42i1YYtcEX7u3LnRqlWrpav3jzrqqNh2222zveKX3Y4mxfUddtghHnnkkfjqV79ashI+/QHELbfcEuk502fo0KExbdq0GDVqVKTQnz6XXHJJZrPsNasfZt99942BAwdGv379luNJf0Cwzz77ZNvRpD8gqP4k8xEjRqx03/v6/9u7ft6hCF8/34u7IkCAAAECBAgQIECAAAECBAgQWDcCInwDifDp9acofMYZZ2Qr4tN+5b/97W+zML26AJ/Grm47mnff/zA+WLgoOrTbtGSmrcme8Gm7l+OOOy6mT5++9JzVX9i6oj3ha65+X/bvl53+Kbin7WnSl6qee+658eijj8aiRYvi6KOPXuEXwu61117ZljY1I3s6ZwrwaTX9QQcdlP0hR83PpEmTslX3Ne9/3fw2LNZZRfhivW9PS4AAAQIECBAgQIAAAQIECBAouoAI34AifM0Q/8knn5Qd4JeN8Dv+9h/xhwM+LZn7H360OBYt+Tg23XjDkl9/5L+axuLmG+VaCb/LLrtkK8/T1jFpi5ea4b22K+HvvffepfvF17zBN998M770pS9l53/jjTfie9/7Xlx66aXx/e9/v+Q5VrQSPgX8FODTz9Lq/GU/VsKvm389ivDrxtVZCRAgQIAAAQIECBAgQIAAAQIE6qeACN/AInx1iE/7o19zzTWr3IKm5pR7+s3FMfChd2LbNuvFxLlLYsz+pRF+4aIlsbgqwrfeqHSbmrH/3SwWrZcvwqcvWR08eHD88Ic/zPZ0T3u4pz3bq7ejSXvCp+do3779KveET3u1p21mbr755mxrm7RXexpzyCGHRHXo/+lPfxpz5szJ9p1fUYRfdk/49GWv+++//0oDfLKzJ/y6+ZeWCL9uXJ2VAAECBAgQIECAAAECBAgQIECgfgqI8A0wwq/pVNr6qjnxtyO/UHKad97/R/wj245ms5JfX5PtaNL+7qeddlq2ZUzaC37DDTeMbbbZJtu/Pa2ET6vXp06dGrNnz462bdtmX6i69dZbZ9evuR1NCuYpoqftZ9J/AdCzZ88YOXJk9oWuacuY9LN0jnS+tPI+ffnrsp+0qv2GG27Ion/6VO+xv+xxaduatNd8+qR7TF/wesIJJ6wpufE1BER404EAAQIECBAgQIAAAQIECBAgQKBIAiK8CJ/N988j/OLce8LX9980KeTvvvvuWYjv1q3bam83fVFs2m9/woQJ0bp169Ue74DyBUT48q0cSYAAAQIECBAgQIAAAQIECBAg0PAFRPgCRvj97/ifaLV+k5LZ26LpZ9G86q8PPm5a8utvfvBpDN9nk9hli/Ub/GwfM2ZMtoXPfffdt9ptfNIq+D322COOOuqoBv/c9e0BRPj69kbcDwECBAgQIECAAAECBAgQIECAwLoUEOELGOHThEp7xJfz2bJVs9hy42blHNogjkn7vG+wwQZxzDHHrPR+05fATps2bYVf1togHrKe36QIX89fkNsjQIAAAQIECBAgQIAAAQIECBBYqwIifEEj/FqdRU5GoBYCInwtsBxKgAABAgQIECBAgAABAgQIECDQ4AVEeBG+wU9iD9CwBET4hvW+3C0BAgQIECBAgAABAgQIECBAgMCaCYjwIvyazSCjCdRSQISvJZjDCRAgQIAAAQIECBAgQIAAAQIEGrRAkynvfvxZg34CN0+AQL0X+MEZ/7H0Hq8btPsa3+8mbTaPrTttvsbncQICBAgQIECAAAECBAgQIECAAAEC61pAhF/Xws5PgECI8CYBAQIECBAgQIAAAQIECBAgQIBAUQXWKMJ/8bOF8T9NWua2M75u/XK/OAMJ1FJAhK8lmMMJECBAgAABAgQIECBAgAABAgQajYAIX+A/RGg0s9iD1HsBEb7evyI3SIAAAQIECBAgQIAAAQIECBAgsI4ERHgRfh1NLacl8H8CIrzZQIAAAQIECBAgQIAAAQIECBAgUFQBEV6EL+rc99wVFBDhK4jtUgQIECBAgAABAgQIECBAgAABAvVKQIQX4evVhHQzjVNAhG+c79VTESBAgAABAgQIECBAgAABAgQIrF5AhBfhVz9L/veI2176MG79z3+UfXw6cOCOX4h/6bphrcY4uPEJiPCN7516IgIECBAgQIAAAQIECBAgQIAAgfIERHgRvryZUnXUkLHvxqlfXy96tm9WMuamKUvis88ijt6uecmvv7/oszhh/OIYuu+mZV/DgY1TQIRvnO/VUxEgQIAAAQIECBAgQIAAAQIECKxeQIQX4Vc/S/73iJVF+BteqorwVf/Xf/v1lzvXDx5ZJMKXLdx4DxThG++79WQECBAgQIAAAQIECBAgQIAAAQKrFhDhRfiyf4+kCH/sdutFjy82LRlz68ufR/gfbFsa4Zs2bRLHPybClw3ciA8U4Rvxy/VoBAgQIECAAAECBAgQIECAAAECqxQQ4QsS4f9r9sz4Yrv20WKDlstNiOmvTI7OX9tutb9VUoRfvOTTWLD405JjP/m0ai+aqk+zquhe89Nh46bx4adNV7kSftqUl+Lff3pcvPM/b2f39uPzL43dv/O97DTpni88dWD89xuzs58d/MMBcfigk7OfXXDqsdF8veYxa/q07OebtGmbjb37xmti8ovPZcef9u+/iF33/k7MePXlOOXwf4m9Dzgwxj88Ohu//0GHxvFDzs/+/uMlS+Kys34STz8+Lj795JPY7p+/EZdcfVOs17x5PDbmgbj12l/Gdj2+kY1t2rRpHD7w5Oh3zHHZz64aen7c8+TfsvN88P57cei3e8Yvb/tdbN1129V6FukAEb5Ib9uzEiBAgAABAgQIECBAgAABAgQI1BQQ4QsS4fvstG1svmXHGHb9bbHJZm2WzoGb/uPyLFwP+OmZceARP1rl746VbUcz9533sz3h27dptdz4VW1Hk6J1/957x6HHnhh9f3BMvPT8M3HW8UfFNfc+HF9s/+U4Yt9dYt8+B8ePThmcBfkz+h8WgwafG3t//8Aswr8xc3oMu+7z57nwxwPjxaf/EkOv/W1sv+NOcfdvron7b7khbhs3YWmEP+rk0+Lfjh4UL//thTjj2CNiyNARWaS/euiFMfGZp6ri+QPZ/Z/Q74D41t694pgfn5GF9ivO/1n0/8mQ7B7/cO8dcfWwC+O+v/xnduyh3/5G/Ozn/y922mPveOie2+Lem6+PUQ8+5t8yywiI8KYEAQIECBAgQIAAAQIECBAgQIBAUQVE+IJE+OqYvEWnrZaG+OoAn6L1xSNvzFZ+r+qztiP8nx/5fdz4y1/Ejb8fv/SyT479Q7Yqf9rkSfHryy7KInr157ZrfhUTJ/wlLrvhjizCd9zqq1koT58/PnB33HnD1UsDePXq9zHPT10a4dPfV39+dfE5sfDDf2QB/b1334n11lsvvrDx53+IcN3lP483X58ZF4y4bulK+Jph/fs7dlm62v3SM06JjarGnXzOxcvdU1H/pbKi5xbhzQYCBAgQIECAAAECBAgQIECAAIGiCojwBYnwaYKnEH/lRWdmK+J77LRr/P7uW7NV4+UE+DQ+RfifdPkgNl3/8+1nqj+LqrZzSSvhN1i/NOI3X69pnDnxCyvdjubWX/8yHnvogRWuHK/eBqZm/K75a8tG+GWPX12Ev+HKYfH6zNey0P73d+bHpT87OV7+zxez7WjS5xu77VlWhH/qsT/Gf1xybvaHBf+629fjslF32IpmBf82FeGL+v9iPDcBAgQIECBAgAABAgQIECBAgIAIX6AIXzPEp9hcmwBfHeF/vP1n0XXT0t847y74MIvwm7XasOQHaf/0QY9/ttIIv6KV8PPfnhsbtWoVEx5/bIUr4Z9+fGy2Cn1NI3zNlfBDBv4gNtm0TfzkwqHZXvI1A/2K/jCg5kr49MApvn/vXw+Pvzz2iK1oVvLvVBHe/7MhQIAAAQIECBAgQIAAAQIECBAoqoAIX7AIXx3i//zHMXHO5Vevdguamr8x1vZ2NNV7wh9dtef7/gcfmu3VfuagI+OKm+6Jjlt/tWRP+Hlvz4lTDz8w0r7uKXjnifDV+7pX7wl/zvCR2V7u6Utbu319x2xf/HSd808eEJt36FjWSvjkk4L+ow/eGwcefvTS7XGK+i+UlT23CG9GECBAgAABAgQIECBAgAABAgQIFFVAhC9ghM872VcW4d9+d0F2yi9tunHJqd9f9FmcMH7xSlfCp4OnTXkp/v2nx8U7//N2bPiFjeLHFwzNviw1fdKXsV546sD47zdmZyvUD/7hgDh80MnZz/JE+L0PODDGPzw6G18zmKd7SF/s+vf582KTNm1j+3/uWXU/c7O958tZCT/p+Qlx5sAjl+4Tn9e3MY8T4Rvz2/VsBAgQIECAAAECBAgQIECAAAECqxIQ4UX4sn+H/O7VD+PW//xH/GNJeUO+ULVF/BH/9IX4l66l29SUN3rtHVVzf/i1d9b/O1OK8FdeeKataFaBK8Kvi5nnnAQIECBAgAABAgQIECBAgAABAg1BQIQX4RvCPF2je1yXEX7RRwvj4tNOiG3/aYelq/TX6GYb6WARvpG+WI9FgAABAgQIECBAgAABAgQIECCwWgERXoRf7SRp6Aesqwj/+ozX4oR/+158rXuPGHrdrbXaX7+hm9b2/kX42oo5ngABAgQIECBAgAABAgQIECBAoLEIiPAifGOZy56jHguI8PX45bg1AgQIECBAgAABAgQIECBAgACBdSogwovw63SCOTmBJCDCmwcECBAgQIAAAQIECBAgQIAAAQJFFRDhRfiizn3PXUEBEb6C2C5FgAABAgQIECBAgAABAgQIECBQrwREeBG+Xk1IN9M4BUT4xvlePRUBAgQIECBAgAABAgQIECBAgMDqBUR4EX71s8QRBNZQQIRfQ0DDCRAgQIAAAQIECBAgQIAAAQIEGqyACF/gCP/FzxbG/6zB8zfYWe/GKy4gwlec3AUJECBAgAABAgQIECBAgAABAgTqiUCTz6o+ee9l3rsfRNtNN8o7PIxv2H65X7yBhRZ44YUX1vj5N2mzeWzdafM1Po8TECBAgAABAgQIECBAgAABAgQIEFjXAiK8P0RY13PM+QmUCIjwJgQBAgQIECBAgAABAgQIECBAgECRBER4Eb7i8/3Fd+bEQ29MXe6632zXIfZuv1XF78cFKysgwlfW29UIECBAgAABAgQIECBAgAABAgTqVkCEF+ErPgO/9/DNsUP7jlV/bbn02gsWL47/98xjMfFfT6r4/bhgZQVE+Mp6uxoBAgQIECBAgAABAgQIECBAgEDdCojwInzFZ2CK8AN67BrfqArxNT+DHr4z/vDdIyt+Py5YWQERvrLerkaAAAECBAgQIECAAAECBAgQIFC3AiK8CF/xGbjT/VfHlzfeJNq03DDWb7pevPLO3OwePvns09i4eYvs73/y9d1i3wpsTdO/f//YZpttYsiQIRV3KPeC8+fPjx/96Efx4IMPrnLIwQcfHCNHjoz27duXe+o6OU6ErxN2FyVAgAABAgQIECBAgAABAgQIEKgjARFehK/41EsRfv1mzWPj9VvEC3PfiKt79Su5h7Q1zZ1TnouHvvvDsu5t6NCh8dvf/jYWLlwYLVu2jFNPPTWOPfbYssY2hAi/7777xoknnhh9+/bNnik952mnnRZ//vOfY+edd45Ro0Zlvz5p0qQ4+uij4+mnn47mzZuX9fx1cZAIXxfqrkmAAAECBAgQIECAAAECBAgQIFBXAiK8CF/xuVdzO5qeNw2PZ486fbl7OO7hO8qK8CnApxXid955Z3To0CEmT54cRxxxRAwePDj739V96nuEv+qqq+L5559fGtqXLFkS+++/f3Tu3DkuvfTS2GyzzUoe8eyzz4711lsvLrzwwtU9ep39XISvM3oXJkCAAAECBAgQIECAAAECBAgQqAMBEV6EL2vazZgxIzbffPNspfmynxS+t9tuu7LOkw7a/w83x36bbRnbtmoTRz/z+9h8o1bLjf34k0/jpX6nrPKcKUin66aV4LvvvvvSY1OY/8tf/hKjR4/Ofu2JJ56I008/PebNmxcbbbRR/PznP48DDjgg+1nNCL9skL///vtjxIgRMX78+Eh/f8UVV0T37t1j7Nix0bRp0zjllFPi/fffj9/85jfx6aefRp8+fWL48OFLz5sCeQros2fPjrZt28b111+fjU+fdI9pXHqGTp06xd133x1t2rRZ7nn32muvOPfcc2OfffbJfnbrrbfG7373u7jrrrtWaJOul1bDp1Xx9fUjwtfXN+O+CBAgQIAAAQIECBAgQIAAAQIE1oWACC/ClzWvunTpEh07dsxWnNeMxSk6X3311ZFWYB9zzDFlnSuthP/RdjvHDu22jG/efmX8pOe3lxv3yPQpMb73gFWeb8qUKdG7d++YPn36So9LAXy//fbLVoYfdthhWVAfOHBgPPDAA9GtW7daRfgU8lPwT2H89ttvj3POOSeOPPLI7NnnzJmThfJbbrkl2yImBf0UxJPX1ltvHQMGDMhWqKfx48aNix//+Mfx6KOPZpbHHXdctsXMbbfdVvIcb731VvaHC6+88srS7WWOOuqo7Jh07jRmRQE/hf4U/NN91MePCF8f34p7IkCAAAECBAgQIECAAAECBAgQWFcCIrwIX9bcSivBU4TeaqwQCm0AACAASURBVKutlob46gCfYu9NN91U9j7kWYTf/vMIv+ttI+Kpw09d7h5OHnfvarejqb6nVUX4dI/PPPNMycrxk046KVq3bh2XXHJJrSJ89ar4dLNpBfvXvva1bLV9ivnpk+J82o8+7d2+qlX1KaCnPxD4xS9+Ed/5zneysWlFfbt27UocxowZE8OGDctW8ld/0jVSzE974K8s4Ne8j7JeboUPEuErDO5yBAgQIECAAAECBAgQIECAAAECdSogwovwZU/AFL3POOOMbEX8t771rSwE1zbAp4ul7Wi+87/b0RxVtR3NTTt9vjVMzc+IWX+LP+y/6i9mLWclfNr2Zdq0aUv3VE/XqPlrtdmOpmaET+dJ+7LnifBpbFqRn7bFmTVrVmy55ZbZyvW0Yr7mp+Z2ONW/vmxgT9vOHHzwwTF16tSlQ9Nq+W233TaGDBlS9rut5IEifCW1XYsAAQIECBAgQIAAAQIECBAgQKCuBUR4Eb5Wc7A6xH/yySe5Any62Nr6Ytb33nsvevbsuco94Ve2Er5Zs2bZfu91EeHTqvePP/44+1LVtKI+rch/8skns73ma35WtBK+X79+2R+ApBX36bOiCG8lfK2mtIMJECBAgAABAgQIECBAgAABAgQIrFMBEV6Er/UESyE+rQC/5ppryt6CpuZFUoTfs1OX6LLZF+O4h++MP/bpv9w9nDnhkdVuR5MGpVXtKV7feOON0aFDh0hfEnvEEUfE+eefn20Ls+ye8BMmTMj2cU97uu+4444lET6d6+GHH872ak/7rad93N9+++2lX8y6tlbCpy9X/dWvfpXtS9++ffu44IILVhjhV7QnfLJP+9sn/zR2RfvJ2xO+1lPaAAIECBAgQIAAAQIECBAgQIAAAQLrTECEF+HX2eRa2YnHzpkZV0z8fJ/z5+f+V9yzd7/lDv35S0+tdjua6kEpnqetcVI432ijjbIvSk0rxqs/aU/1tJ/9vHnzsp+nbWAOOODzLXBqroRPK+tTwH/55ZejZcuW2R7vL7300lqP8Om65513XrZPfVoJn75cNQX+FM+X/aR7OPfcc7Mvfa3+pGPTl+Gmsem/BBg5cuTSL8tNW/Qccsgh2Qr5+vqxHU19fTPuiwABAgQIECBAgAABAgQIECBAYF0IiPAi/LqYV2Wfs91NP49njzp9ueOPe/iOslbCl32hBnpg+sLbP//5zyV72q/qUdJ/AZA+abV8ff2I8PX1zbgvAgQIECBAgAABAgQIECBAgACBdSEgwovw62JelX3OzrddHsP3ObDk+P/+4L14fPa0uHPvQ8o+T2M+cN99943BgwdHr169VvmYafX78ccfH3/6059ybRNUKUMRvlLSrkOAAAECBAgQIECAAAECBAgQIFAfBER4Eb5O5+FjVVvT/GXO68vdw/Hddoq267es03urLxefP39+/OhHP4oHH3xwlbd00EEHxVVXXZXtFV+fPyJ8fX477o0AAQIECBAgQIAAAQIECBAgQGBtC4jwIvzanlPOR2CVAiK8CUKAAAECBAgQIECAAAECBAgQIFAkARFehC/SfPes9UBAhK8HL8EtECBAgAABAgQIECBAgAABAgQIVExAhBfhKzbZXIhAEhDhzQMCBAgQIECAAAECBAgQIECAAIEiCYjwInyR5rtnrQcCInw9eAlugQABAgQIECBAgAABAgQIECBAoGICIrwIX7HJ5kIEkoAIbx4QIECAAAECBAgQIECAAAECBAgUSUCEF+Fzz/d5734QbdfAL/eFDWzQAiJ8g359bp4AAQIECBAgQIAAAQIECBAgQKCWAiL8GkTkNY3QRR9fy7nq8EYiIMI3khfpMQgQIECAAAECBAgQIECAAAECBMoSEOFF+LImyooOWtM/RMh9YQMbtIAI36Bfn5snQIAAAQIECBAgQIAAAQIECBCopYAIL8LXcsr83+GVjvAvvjMn3l+yqOR+m1T90x7tOuV+BgMrLyDCV97cFQkQIECAAAECBAgQIECAAAECBOpOQIQX4XPPvkpG+BTgT35ydGy8/gYl97tg8Ufxsx57RJ+OXXM/h4GVFRDhK+vtagQIECBAgAABAgQIECBAgAABAnUrIMKL8LlnYCUj/J/mzIpxVX8N7LFryf1eO/GpaBFN4twee+Z+DgMrKyDCV9bb1QgQIECAAAECBAgQIECAAAECBOpWQIQX4XPPwIYY4Z966qno2bNnNG/efLnnHjp0aEybNi1GjRqV28TA1QuI8Ks3cgQBAgQIECBAgAABAgQIECBAgEDjERDhRfjcs7mSEf7OmZPjrKcfrtqOpkXJ/S5YvCj27bBNXLNbn9U+x9tvvx277bZb/OY3v4lddy1dUZ8Gi/CrJVwrB4jwa4XRSQgQIECAAAECBAgQIECAAAECBBqIgAgvwueeqpWM8GPemBrXvvJcfHOLr5Tc71/fnBVdWreJ4Tv1yv0c1QNF+DUmLOsEInxZTA4iQIAAAQIECBAgQIAAAQIECBBoJAIivAifeypXMsKvrT3hO3fuHKNHj45u3brF/Pnz46ijjoqXX3452rZtG506dYqNN97YdjS5Z0R5A0X48pwcRYAAAQIECBAgQIAAAQIECBAg0DgERHgRPvdMrnSEHzPz5Thk6+1L7vfOGS/FJi03LPuLWWtG+P79+8eCBQvipptuiiVLlsRBBx2UhXh7wueeEmUNFOHLYnIQAQIECBAgQIAAAQIECBAgQIBAIxEQ4UX43FO50hF+dFWEP2yZCH97VYTfNGeE79KlS9xyyy2x8847Zwa2o8k9FWo1UISvFZeDCRAgQIAAAQIECBAgQIAAAQIEGriACC/C557ClY7w4+bMioE9Sr9Q9dqJT0WLaJJrJXzNVfEifO5pUOuBInytyQwgQIAAAQIECBAgQIAAAQIECBBowAIivAife/pWOsI/+taM6N/981Xr1Z9RkyZEy6bNckV4K+Fzv/o1Gvjee++t0fg0eP7fP4ytO22+xudxAgIECBAgQIAAAQIECBAgQIAAAQLrWkCEF+Fzz7FKR/h7XpkYvdttVXK/o+fOjPabbJorwtsTPverX6OBIvwa8RlMgAABAgQIECBAgAABAgQIECDQwAREeBE+95StdIRf29vRzJ8/PwYNGhQvvvhitGzZMvbff/945513fDFr7hlR3kARvjwnRxEgQIAAAQIECBAgQIAAAQIECDQOARFehM89kxtihM/9sAauNQERfq1ROhEBAgQIECBAgAABAgQIECBAgEADEBDhRfjc07SSEf7xqi9lHfa3J2LH9h1K7nf866/F4K/vHn06ds39HAZWVkCEr6y3qxEgQIAAAQIECBAgQIAAAQIECNStgAgvwueegZWM8OkmH3z91Zj8ztyS+91us3YCfO43WDcDRfi6cXdVAgQIECBAgAABAgQIECBAgACBuhEQ4UX43DOv0hE+940aWK8ERPh69TrcDAECBAgQIECAAAECBAgQIECAwDoWEOFF+NxTTITPTVfogSJ8oV+/hydAgAABAgQIECBAgAABAgQIFE5AhBfhc096ET43XaEHivCFfv0engABAgQIECBAgAABAgQIECBQOAERXoTPPelF+Nx0hR4owhf69Xt4AgQIECBAgAABAgQIECBAgEDhBER4ET73pBfhc9MVeqAIX+jX7+EJECBAgAABAgQIECBAgAABAoUTEOFF+NyTXoTPTVfogSJ8oV+/hydAgAABAgQIECBAgAABAgQIFE5AhBfhc096ET43XaEHivCFfv0engABAgQIECBAgAABAgQIECBQOAERXoTPPelF+Nx0hR4owhf69Xt4AgQIECBAgAABAgQIECBAgEDhBER4ET73pK90hH/xnTnx/pJFJffbpOqf9mjXKfczGFh5ARG+8uauSIAAAQIECBAgQIAAAQIECBAgUHcCIrwIn3v2VTLCpwB/8pOjY+P1Nyi53wWLP4qf9dgj+nTsmvs5DKysgAhfWW9XI0CAAAECBAgQIECAAAECBAgQqFsBEV6Ezz0DKxnh/zRnVoyr+mtgj11L7vfaiU9Fi2gS5/bYM/dzGFhZARG+st6uRoAAAQIECBAgQIAAAQIECBAgULcCIrwIn3sGivC56Qo9UIQv9Ov38AQIECBAgAABAgQIECBAgACBwgmI8CJ87klfyQh/58zJcdbTD1dtR9Oi5H4XLF4U+3bYJq7ZrU/u5zCwsgIifGW9XY0AAQIECBAgQIAAAQIECBAgQKBuBUR4ET73DKxkhB/zxtS49pXn4ptbfKXkfv/65qzo0rpNDN+pV+7nMLCyAiJ8Zb1djQABAgQIECBAgAABAgQIECBAoG4FRHgRPvcMrGSEXxt7wk+ZMiV69+4dp512Wvzyl7+MTz/9NPr06RPDhw/PDObPnx8nnnhiPPvss9GsWbOSn/Xv3z+aN28eU6dOjdmzZ0fbtm1j2LBh8etf/zo7vmXLlnH55ZdHr16f/2HAkiVL4tRTT42xY8dm/1zzOrnBG8lAEb6RvEiPQYAAAQIECBAgQIAAAQIECBAgUJaACC/ClzVRVnRQpSP8mJkvxyFbb19yK3fOeCk2ablhWV/MWh3hDz300Ljgggti0qRJ8W//9m8xevTo6NatWxx++OFZTE9hPQX5/fbbLy666KLo27dvpAg/ffr0uOOOO6JNmzYxYMCAePLJJ+O2226LnXfeORtz/fXXx3PPPZfdXwrwkydPzs6dovOBBx4YJ598chxxxBG5vRvLQBG+sbxJz0GAAAECBAgQIECAAAECBAgQIFCOgAgvwpczT1Z4TKUj/OiqCH/YMhH+9qoIv2ktI3yK6dWfvfbaKwvmKbTPnTs3WrVqlYX49DnqqKNi2223jSFDhmQRfptttsn+Pn3uuuuuuOqqq2L8+PHZP1cH/upzd+nSJW655ZYs0KfP0KFDY9q0aTFq1Kjc3o1loAjfWN6k5yBAgAABAgQIECBAgAABAgQIEChHQIQX4cuZJys8ptIRftycWTGwx64l93LtxKeiRTSp1Ur4lUX4GTNmxHHHHZeteK/+HHvssSuM8Pfff3+MGDFipRG+c+fOy5lttdVWS7enyY3eCAaK8I3gJXoEAgQIECBAgAABAgQIECBAgACBsgVEeBG+7Mmy7IGVjvCPvjUj+nf/fGV59WfUpAnRsmmztRLhd9lll+jXr1+2bUza/73m6vdlV8KvLsKnlfD33ntvdO/ePbdvYx0owjfWN+u5CBAgQIAAAQIECBAgQIAAAQIEViQgwovwuX9nVDrC3/PKxOjdbquS+x09d2a032TTtRLhUzAfPHhw/PCHP8z2c0/7t6f941e0Hc3qIvygQYOy7W1uvvnmbHubtHVN+/bt45BDDsnt3VgGivCN5U16DgIECBAgQIAAAQIECBAgQIAAgXIERHgRvpx5ssJjKh3h1/V2NI888kicdtppsXDhwmwv+A033DDbB/6SSy5Zbk/41UX4JUuWZHvNjx07Nj755JPo2bNnjBw5MvtS16J/RPiizwDPT4AAAQIECBAgQIAAAQIECBAoloAIL8LnnvENLcLnflAD16qACL9WOZ2MAAECBAgQIECAAAECBAgQIECgnguI8CJ87ilayQj/eNWXsg772xOxY/sOJfc7/vXXYvDXd48+Hbvmfg4DKysgwlfW29UIECBAgAABAgQIECBAgAABAgTqVkCEF+Fzz8BKRvh0kw++/mpMfmduyf1ut1k7AT73G6ybgSJ83bi7KgECBAgQIECAAAECBAgQIECAQN0IiPAifO6ZV+kIn/tGDaxXAiJ8vXodboYAAQIECBAgQIAAAQIECBAgQGAdC4jwInzuKSbC56Yr9EARvtCv38MTIECAAAECBAgQIECAAAECBAonIMKL8LknvQifm67QA0X4Qr9+D0+AAAECBAgQIECAAAECBAgQKJyACC/C5570InxuukIPFOEL/fo9PAECBAgQIECAAAECBAgQIECgcAIivAife9KL8LnpCj1QhC/06/fwBAgQIECAAAECBAgQIECAAIHCCYjwInzuSS/C56Yr9EARvtCv38MTIECAAAECBAgQIECAAAECBAonIMKL8LknvQifm67QA0X4Qr9+D0+AAAECBAgQIECAAAECBAgQKJyACC/C5570InxuukIPFOEL/fo9PAECBAgQIECAAAECBAgQIECgcAIivAife9JXOsK/+M6ceH/JopL7bVL1T3u065T7GQysvIAIX3lzVyRAgAABAgQIECBAgAABAgQIEKg7ARFehM89+yoZ4VOAP/nJ0bHx+huU3O+CxR/Fz3rsEX06ds39HAZWVkCEr6y3qxEgQIAAAQIECBAgQIAAAQIECNStgAgvwueegZWM8H+aMyvGVf01sMeuJfd77cSnokU0iXN77Jn7OQysrIAIX1lvVyNAgAABAgQIECBAgAABAgQIEKhbARFehM89A0X43HSFHijCF/r1e3gCBAgQIECAAAECBAgQIECAQOEERHgRPvekr2SEv3Pm5Djr6YertqNpUXK/CxYvin07bBPX7NYn93NUD9xrr73i1FNPjb59+67xuZY9wbo891q/2XV8QhF+HQM7PQECBAgQIECAAAECBAgQIECAQL0SEOFF+NwTspIRfswbU+PaV56Lb27xlZL7/eubs6JL6zYxfKdeuZ9DhF9julqdQISvFZeDCRAgQIAAAQIECBAgQIAAAQIEGriACC/C557ClYzwa2tP+LvuuisuuuiiWLhwYbRt2zauv/76aNasWfTu3XupQ1q1PmrUqEj/u/3228fYsWPj6KOPjiFDhsQTTzwRp59+esybN2/p+O7du2djV/SzlZ07N3ojGCjCN4KX6BEIECBAgAABAgQIECBAgAABAgTKFhDhRfiyJ8uyB1Y6wo+Z+XIcsvX2Jbdx54yXYpOWG5b1xaxvvfVW7L777nH33XfHDjvsEBdffHGMGTMmnn766eycy24Zk/55vfXWi6uvvjratWsX7777buy3337ZuH79+sUVV1wRKeqn8bNnz17pz1Z07tzojWCgCN8IXqJHIECAAAECBAgQIECAAAECBAgQKFtAhBfhy54sdR3hR1dF+MOWifC3V0X4TcuM8Cn+9uzZM0466aRsZXvLli3j7bffji222GKlEf6EE07Ignv6DB8+PJ555pksvFd/OnfuHKNHj46HHnpopT/r1q3bcoE/N3ojGCjCN4KX6BEIECBAgAABAgQIECBAgAABAgTKFhDhRfiyJ0tdR/hxc2bFwB67ltzGtROfihbRpKyV8Gngq6++GoMHD46pU6dG69ats7CeVsenz4pWwtf8otahQ4fGddddt5zXiBEj4qWXXlrpz77//e+L8DXURPjcv+UMJECAAAECBAgQIECAAAECBAgQaIACIrwIn3vaVno7mkffmhH9u+9ccr+jJk2Ilk2blRXh0z7w77//fra1TPrcfPPN2dYyKciXE+FTsJ80aVLcdNNNy5mt6mcrOndu9EYwUIRvBC/RIxAgQIAAAQIECBAgQIAAAQIECJQtIMKL8GVPlmUPrHSEv+eVidG73VYltzF67sxov8mmZUX4559/Pg477LBs+5iuXbvG7bffHueff35JhP/BD34QAwYMWGGUnzJlShx00EFx6aWXRt++feONN96I8847L0aOHBmzZs1a6c823HDDbCV8zXPnRm8EA0X4RvASPQIBAgQIECBAgAABAgQIECBAgEDZAiK8CF/2ZKnrCL82tqO58cYb4/LLL4+0Kr5t27Zx0UUXRa9evbJHu/LKK+Oqq66Kb3/723HNNdescAuZJ554Ik4//fSYN29etqd8ivDVe8av6mfLnjs3eiMYKMI3gpfoEQgQIECAAAECBAgQIECAAAECBMoWEOFF+LInS2OI8Lkf1sC1JiDCrzVKJyJAgAABAgQIECBAgAABAgQIEGgAAiK8CJ97mlZyO5rHq76Uddjfnogd23coud/xr78Wg7++e/Tp2DX3cxhYWQERvrLerkaAAAECBAgQIECAAAECBAgQIFC3AiK8CJ97BlYywqebfPD1V2PyO3NL7ne7zdoJ8LnfYN0MFOHrxt1VCRAgQIAAAQIECBAgQIAAAQIE6kZAhBfhc8+8Skf43DdqYL0SEOHr1etwMwQIECBAgAABAgQIECBAgAABAutYQIQX4XNPMRE+N12hB4rwhX79Hp4AAQIECBAgQIAAAQIECBAgUDgBEV6Ezz3pRfjcdIUeKMIX+vV7eAIECBAgQIAAAQIECBAgQIBA4QREeBE+96QX4XPTFXqgCF/o1+/hCRAgQIAAAQIECBAgQIAAAQKFExDhRfjck16Ez01X6IEifKFfv4cnQIAAAQIECBAgQIAAAQIECBROQIQX4XNPehE+N12hB4rwhX79Hp4AAQIECBAgQIAAAQIECBAgUDgBEV6Ezz3pRfjcdIUeKMIX+vV7eAIECBAgQIAAAQIECBAgQIBA4QREeBE+96QX4XPTFXqgCF/o1+/hCRAgQIAAAQIECBAgQIAAAQKFExDhRfjck77SEf7Fd+bE+0sWldxvk6p/2qNdp9zPYGDlBUT4ypu7IgECBAgQIECAAAECBAgQIECAQN0JiPAifO7ZV8kInwL8yU+Ojo3X36Dkfhcs/ih+1mOP6NOxa+7nMLCyAiJ8Zb1djQABAgQIECBAgAABAgQIECBAoG4FRHgRPvcMrGSE/9OcWTGu6q+BPXYtud9rJz4VLaJJnNtjz9zPYWBlBUT4ynq7GgECBAgQIECAAAECBAgQIECAQN0KiPAifO4Z2Jgi/Jw5cyLF4a5drajPPSHKHCjClwnlMAIECBAgQIAAAQIECBAgQIAAgUYhIMKL8LknciUj/J0zJ8dZTz9ctR1Ni5L7XbB4UezbYZu4Zrc+uZ8jDTzzzDNj2rRpcc8996zReQxevYAIv3ojRxAgQIAAAQIECBAgQIAAAQIECDQeARFehM89mysZ4ce8MTWufeW5+OYWXym537++OSu6tG4Tw3fqlfs5DKysgAhfWW9XI0CAAAECBAgQIECAAAECBAgQqFsBEV6Ezz0DKxnh18ae8Pfff3+cfvrpJc/boUOHGD9+fAwdOjRbCT9q1KiYMmVK9O7dO/r27RsPPvhgdvxhhx0WF154YW4rA/9PQIQ3GwgQIECAAAECBAgQIECAAAECBIokIMKL8Lnne6Uj/JiZL8chW29fcr93zngpNmm5Ya2/mHX+/Pmxzz77xPnnn5/F9hVF+MGDB8dxxx0XL7zwQhx66KHxq1/9Knr1suI+94T534Ei/JoKGk+AAAECBAgQIECAAAECBAgQINCQBER4ET73fK10hB9dFeEPWybC314V4TfNEeH33Xff6Ny5c1xzzTXZ868owk+fPn2pzdlnnx0ffPBBjBgxIreXgZ8LiPBmAgECBAgQIECAAAECBAgQIECAQJEERHgRPvd8r3SEHzdnVgzssWvJ/V478aloEU1qtRI+BfexY8fGH/7wh2jevHlZEb5mpM8NZqAIbw4QIECAAAECBAgQIECAAAECBAgUTkCEF+FzT/pKR/hH35oR/bvvXHK/oyZNiJZNm5Ud4ceNGxfHH398PPDAA9GtW7el57ISPvc0qPVAK+FrTWYAAQIECBAgQIAAAQIECBAgQIBAAxYQ4UX43NO30hH+nlcmRu92W5Xc7+i5M6P9JpuWFeGX3Qe+5olWFOHPPPPMGDBgwNI94a+++upsH3mfNRMQ4dfMz2gCBAgQIECAAAECBAgQIECAAIGGJSDCi/C5Z2ylI/yabkeTQvt111233POmvd9XFOHTF7Y++OCD2fHHHHNMDBkyJLeVgf8nIMKbDQQIECBAgAABAgQIECBAgAABAkUSEOFF+NzzvaFF+HIfdMqUKdG7d++o+cWs5Y513OoFRPjVGzmCAAECBAgQIECAAAECBAgQIECg8QiI8CJ87tlcyQj/eNWXsg772xOxY/sOJfc7/vXXYvDXd48+Hbvmfo5lB4rwa41yhScS4detr7MTIECAAAECBAgQIECAAAECBAjULwERXoTPPSMrGeHTTT74+qsx+Z25Jfe73Wbt1mqATycX4XNPibIGivBlMTmIAAECBAgQIECAAAECBAgQIECgkQiI8CJ87qlc6Qif+0YNrFcCIny9eh1uhgABAgQIECBAgAABAgQIECBAYB0LiPAifO4pJsLnpiv0QBG+0K/fwxMgQIAAAQIECBAgQIAAAQIECicgwovwuSe9CJ+brtADRfhCv34PT4AAAQIECBAgQIAAAQIECBAonIAIL8LnnvQifG66Qg8U4Qv9+j08AQIECBAgQIAAAQIECBAgQKBwAiK8CJ970ovwuekKPVCEL/Tr9/AECBAgQIAAAQIECBAgQIAAgcIJiPAifO5JL8Lnpiv0QBG+0K/fwxMgQIAAAQIECBAgQIAAAQIECicgwovwuSe9CJ+brtADRfhCv34PT4AAAQIECBAgQIAAAQIECBAonIAIL8LnnvQifG66Qg8U4Qv9+j08AQIECBAgQIAAAQIECBAgQKBwAiK8CJ970lc6wr/4zpx4f8mikvttUvVPe7TrlPsZDKy8gAhfeXNXJECAAAECBAgQIECAAAECBAgQqDsBEV6Ezz37KhnhU4A/+cnRsfH6G5Tc74LFH8XPeuwRfTp2zf0cBlZWQISvrLerESBAgAABAgQIECBAgAABAgQI1K2ACC/C556BlYzwf5ozK8ZV/TWwx64l93vtxKeiRTSJc3vsmfs5DKysgAhfWW9XI0CAAAECBAgQIECAAAECBAgQqFsBEV6Ezz0DG1uEf+qpp6Jnz57RvHnz3CYGrl5AhF+9kSMIECBAgAABAgQIECBAgAABAgQaj4AIL8Lnns2VjPB3zpwcZz39cNV2NC1K7nfB4kWxb4dt4prd+uR+jjTw7bffjt122y1+85vfxK677hr3339/jBgxIsaPH79G5zV4eQERgbEuwgAADEpJREFU3qwgQIAAAQIECBAgQIAAAQIECBAokoAIL8Lnnu+VjPBj3pga177yXHxzi6+U3O9f35wVXVq3ieE79cr9HCsaKMKvVc6Sk4nw687WmQkQIECAAAECBAgQIECAAAECBOqfgAgvwueelZWM8GtrT/hJkybFoEGDYu7cudGyZcsYNmxYHHDAAZlB586dY/To0XH55ZeXrIBPv3bCCSdEv379sv9Nn7PPPjvmzJkTo0aNyu1X1IEifFHfvOcmQIAAAQIECBAgQIAAAQIECBRTQIQX4XPP/EpH+DEzX45Dtt6+5H7vnPFSbNJyw7K+mDXF3z333DNOOumkGDBgQEyYMCGOPPLIePTRR6NTp05LI3y3bt2W244mbU0zduzYLNKnzy677BJnnHFG9O3bN7dfUQeK8EV9856bAAECBAgQIECAAAECBAgQIFBMARFehM898ysd4UdXRfjDlonwt1dF+E3LjPBjxozJVr4/8cQTS5/5oYceiu233z46duy4ygg/e/bs2HvvveOFF16IN998Mw488MCYPHmyL3HNMXtE+BxohhAgQIAAAQIECBAgQIAAAQIECDRYARFehM89eSsd4cfNmRUDe+xacr/XTnwqWkSTslbCX3nllfHAAw+s9MtWq7ejWdFK+HTR7373u3HYYYfFP/7xj3j++edtRZNz5ojwOeEMI0CAAAECBAgQIECAAAECBAgQaJACIrwIn3viVjrCP/rWjOjffeeS+x01aUK0bNqsrAi/opXwaW/4Vq1aZfvDry7CX3XVVVnAX7hwYRxzzDG2osk5c0T4nHCGESBAgAABAgQIECBAgAABAgQINEgBEV6Ezz1xKx3h73llYvRut1XJ/Y6eOzPab7JpWRG+ek/4tJd7WtGetpY5/PDD47777ou0+n3ZCH/JJZfEX//616VbzqTxPXv2zK5vK5rc0yZE+Px2RhIgQIAAAQIECBAgQIAAAQIECDQ8ARFehM89aysd4dd0O5r0oJMmTYpBgwZFWgG/0UYbxWWXXRa9evXKDGpG+BSKv/Od78S8efPikUceia9+9avZMf369YuNN97YVjS5Z02I8GtgZygBAgQIECBAgAABAgQIECBAgEDDExDhRfjcs7YhRvjcD/u/A1OET6vo+/btu6anKux4K+EL++o9OAECBAgQIECAAAECBAgQIECgkAIivAife+JXMsI/XvWlrMP+9kTs2L5Dyf2Of/21GPz13aNPx665n6PcgRMmTIgBAwZk29g0b9683GGOW0ZAhDclCBAgQIAAAQIECBAgQIAAAQIEiiQgwovwued7JSN8uskHX381Jr8zt+R+t9usXUUCfNrC5vHHH48RI0Ys3b4mN1zBB4rwBZ8AHp8AAQIECBAgQIAAAQIECBAgUDABEV6Ezz3lKx3hc9+ogfVKQISvV6/DzRAgQIAAAQIECBAgQIAAAQIECKxjARFehM89xUT43HSFHijCF/r1e3gCBAgQIECAAAECBAgQIECAQOEERHgRPvekF+Fz0xV6oAhf6Nfv4QkQIECAAAECBAgQIECAAAEChRMQ4UX43JNehM9NV+iBInyhX7+HJ0CAAAECBAgQIECAAAECBAgUTkCEF+FzT3oRPjddoQeK8IV+/R6eAAECBAgQIECAAAECBAgQIFA4ARFehM896UX43HSFHijCF/r1e3gCBAgQIECAAAECBAgQIECAQOEERHgRPvekF+Fz0xV6oAhf6Nfv4QkQIECAAAECBAgQIECAAAEChRMQ4UX43JNehM9NV+iBInyhX7+HJ0CAAAECBAgQIECAAAECBAgUTkCEF+FzT/pKR/gX35kT7y9ZVHK/Tar+aY92nXI/g4GVFxDhK2/uigQIECBAgAABAgQIECBAgAABAnUnIMKL8LlnXyUjfArwJz85OjZef4OS+12w+KP4WY89ok/Hrrmfw8DKCojwlfV2NQIECBAgQIAAAQIECBAgQIAAgboVEOFF+NwzsJIR/k9zZsW4qr8G9ti15H6vnfhUtIgmcW6PPXM/h4GVFRDhK+vtagQIECBAgAABAgQIECBAgAABAnUrIMKL8LlnoAifm67QA0X4Qr9+D0+AAAECBAgQIECAAAECBAgQKJyACC/C5570lYzwd86cHGc9/XDVdjQtSu53weJFsW+HbeKa3frkfo41Hdi/f//YZpttYsiQIWt6qkKMF+EL8Zo9JAECBAgQIECAAAECBAgQIECAwP8KiPAifO7fDJWM8GPemBrXvvJcfHOLr5Tc71/fnBVdWreJ4Tv1yv0cazpQhK+doAhfOy9HEyBAgAABAgQIECBAgAABAgQINGwBEV6Ezz2DKxnh19ae8HfddVdcdNFFsXDhwmjbtm1cf/310b1798zgiSeeiNNPPz3mzZu33M8mTZoUgwYNirlz50bLli1j2LBhccABB0Tnzp2X+nXo0CHGjx8fS5YsiVNPPTXGjh2b/WyHHXaIG2+8MRt3//33xxVXXBHt2rWLF198MaZPn57bv6EOFOEb6ptz3wQIECBAgAABAgQIECBAgAABAnkERHgRPs+8ycZUOsKPmflyHLL19iX3e+eMl2KTlhuW9cWsb731Vuy+++5x9913Z2H84osvjjFjxsTTTz8ds2fPjv322y/7tX79+mWhPAX79LMUjffcc8846aSTYsCAATFhwoQ48sgj49FHH41OnTrFsivhU4CfPHly3HfffdG8efPs5ynAjxo1KovwKfSfeeaZsf/++8cWW2yR27+hDhThG+qbc98ECBAgQIAAAQIECBAgQIAAAQJ5BER4ET7PvKmTCD+6KsIftkyEv70qwm9aZoRP8bdnz55ZTD/66KOzMP72229nIXz48OHxzDPPZOG9+pNWuY8ePTpmzJiRrXxPK+WrPw899FBsv/320bFjx+UifJcuXeKWW26JnXfeOTs8Bf699947XnjhhXjssceywF/zXLlfQAMdKMI30BfntgkQIECAAAECBAgQIECAAAECBHIJiPAifK6JkwZVeiX8uDmzYmCPXUvu99qJT0WLaFLWSvg08NVXX43BgwfH1KlTo3Xr1ll8T6vjhw4dGtddd91yFiNGjIjXXnstHnjggWyrmRV9ll0JXx3vu3XrtvTw6l9L10/nXNm5cr+MBjRQhG9AL8utEiBAgAABAgQIECBAgAABAgQIrLGACC/C555ElY7wj741I/p3/3x1efVn1KQJ0bJps7IifNoH/v3338/2Y0+fm2++Odt+JgX5FOPTvu833XTTch5py5plV8KnveFbtWqVraZfNsKvbCV8Wv2etrIR4d/LPeeqB87/+4exdafN1/g8TkCAAAECBAgQIECAAAECBAgQIEBgXQuI8CJ87jlW6Qh/zysTo3e7rUrud/TcmdF+k03LivDPP/98HHbYYdkWM127do3bb789zj///CzCT5kyJQ466KC49NJLo2/fvvHGG2/EeeedFyNHjsy+aDXtCX/GGWdk49O2Mocffni253ta7Z4i/GabbRa/+MUvsntbdk/4tP1N+gOA2267LdsTXoQX4XP/pjOQAAECBAgQIECAAAECBAgQIECgwQmI8CJ87klb6Qi/NrajufHGG+Pyyy/Ponjbtm3joosuil69emUGaaV6+tLUefPmZSvcU4RPX9KaPmmV/KBBgyKtgN9oo43isssuWzourZRP47bccssYO3ZsFu1TiE9/nz7pS2DTddM5RfjIvuh2TT9Wwq+poPEECBAgQIAAAQIECBAgQIAAAQKVEhDhRfjcc60hRvjcD2vgWhMQ4dcapRMRIECAAAECBAgQIECAAAECBAg0AAERXoTPPU0rGeEfr/pS1mF/eyJ2bN+h5H7Hv/5aDP767tGnY9fcz2FgZQVE+Mp6uxoBAgQIECBAgAABAgQIECBAgEDdCojwInzuGVjJCJ9u8sHXX43J78wtud/tNmsnwOd+g3UzUISvG3dXJUCAAAECBAgQIECAAAECBAgQqBsBEV6Ezz3zKh3hc9+ogfVKQISvV6/DzRAgQIAAAQIECBAgQIAAAQIECKxjARFehM89xUT43HSFHijCF/r1e3gCBAgQIECAAAECBAgQIECAQOEERHgRPvekF+Fz0xV6oAhf6Nfv4QkQIECAAAECBAgQIECAAAEChRMQ4UX43JNehM9NV+iBInyhX7+HJ0CAAAECBAgQIECAAAECBAgUTuD/Ax7vao8QaLQWAAAAAElFTkSuQmCC"
+ }
+ },
+ "cell_type": "markdown",
+ "id": "6fb1ec01",
+ "metadata": {},
+ "source": [
+ "Überprüfe mittels pgAdmin, ob die Datensätze vollständig geschrieben wurden:\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b80e0fc8",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/03-1_Publish_Finance_Testdata_BASF.ipynb b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/03-1_Publish_Finance_Testdata_BASF.ipynb
new file mode 100644
index 0000000..57f3586
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/03-1_Publish_Finance_Testdata_BASF.ipynb
@@ -0,0 +1,604 @@
+{
+ "cells": [
+ {
+ "attachments": {
+ "grafik.png": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABTQAAAHiCAYAAADWP0MvAAAgAElEQVR4XuydCZxO1RvHf4xh7GNPJRJZkpJsUVJZCqVFUqmILCUqpRQVf0UblZLsqaQNpUXaSIlISVGWSJZsw2CMWfifc9/3vnPunbu973vf2fzez6dP5n3vPfec73nO9rvPeU6hAwcOnwA/JEACJEACJEACJEACJEACJEACJEACJEACJEACJJAPCBSioJkPaolZJAESIAESIAESIAESIAESIAESIAESIAESIAES0AjYCpp79uzFO7PfwT///KNdeMYZZ+Cm7jehUqWKREcCJEACJEACJEACJEACJEACJEACJEACJEACJEACuULAUtCUYuaTTzyBatXOQMtWLbWMfb/0e2zb9g8eF99T1MyVuuJDSYAESIAESIAESIAESIAESIAESIAESIAESCBPEFi/fj2mTpmGffv2OeanQoUKuLN3L9StW9e3fFsKmi+/NAEpKSkY+vBDhgeNHfMMSpQogYH33uNbBpgQCZAACZAACZAACZAACZAACZAACZAACZAACZBA/iLw4JCHhEhZJ+QMaZd76SS5fv2fePa5Z3wroKWgefeAe9Drzl5o3PgCw4OWigzMnzff1wz4VhImRAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkCMEevW8Ew8NfdDV81J6cj4z9llMmz7Vt3xZCpp2GfIjA+/Mno127dujfPnyvhXCj4QWfv45zqpVC7XEf/rH6jv52/79+/HFwoUipmh3Px4ddRqLFy9G7zv74MuvvkT16mdEnV5eScCOv1/527hxIxZ98QW63XRTWPZovs+rTed1e4o1b3PbiZS/VT5lHZjbo56+bi81a9ZE+w4dDOYj70tKStK+s/pdv9icvjltNdH+AwZkM9FYstXLcOGFF6JJ06Z+NY+w0oll+ZwyMvHVVyF5R2pLYRXS4eJYjQlWdmauZ8l+8+bNtjbs9rtfDJhO3iPgdWzKSzmPVVuKtIxuDPU+KNL07e6LhENu9cN+l53pkQAJkAAJkAAJ5C8Cqn4od3uvXr3aUIBGjRppu7z90BP1hGWYzH379lofCpSbgqZcwG0S/6nCg9V3flaxnDjOeecdbWGsf6y+U3/zU9CUguSXi77CqP+N9FSscK/XE430Pk+Z8vkiJ/76o8K1i3Cv9/octwWPTMcve4q0DG7VEwveVs+MZJGmpmPOpyr4mIVEswgp/76wSZPQSwv591lnnRUSAeViUH7MfY8UveXHSqhU8ybvly9qzKKiF7Zu9WP3+08rVmi2ZRZqI00vkvtiWT63/IQrJsSy/fg5JujllvUrP3ZCtbn+zTbo9rsb37z6e6zq0e/y5nY+vYxNfpc52vSiHSPU5/vB341huH2QVz7hcsjNfthrmXgdCZAACZAACZBAwSSg6oe60KiWtEKFito5PNEKmqtW/Yzp06aJ8JhHQ8nnOQ/N3BA0rRaNTgvJcCeabmYbrtAY7vX68yO9zy3/sfjdbSEvnxnuYiXc6/Vyud3ntuCR6fhlT255ibQuYsHbKi/Rth01n/oCTnrYml9IWD1bZeflJUY46TstJr2wjWW9RZq21/tiWT63PIQrJsSq/URr13bldGNrLr/ZDt1+d+ObV3+PVT36Xd7czqeXscnvMkebnp9tyQ/+bgzD7YO88gmXg1tf4fW5vI4ESIAESIAESIAEwiWQU1vO5Zk+FStW0GJ16iKpQdDMidOJ9MmhFCD0j+75JCdkK1euDH3ftl07JAnvI/N3clu4PomU/9c/6tZhc1ryGapAoW55t5qwmr9TnyO3/G3atMmwxVX9XeZb3bqu52/GjBkY/b+nQvndsPEvmL+bMnUyWrduDX0buX6xvp3c7vratc6GTE9+/HiOlRHfeGM3rP45y31Yf576faMLGuHdd+eEbpe/3X33AG1LvPzcJMQn6Ykq86t/9HTUZ6r8rerSylYkc/MWTd0m7K5XFyPhPEe9T82r/nzzttBw7CncMkhudvbn1N784G1ezFktIJ3ajvl+t3Zkt7j0sqhUF3w6Y7PXpUzHKgSBW/p23pmSsZpnN166F6nuFapvg1e56HlWt8vL58h+Z+VPP2leqKpXqZ096fUfbd+mls+cf3U7uFU/7cU+vdpPpG3Zqf04DeaRcrNiZPccabPlhNev1XhiJ3joTGWaVl6jbgKNF7uwK4Nqk+XKlcsWBsKufVv1vTIf4fTJfvSD5nrw0l5lCB2v8xm9Hp36a3P7DbeNqPMPt3vD6W+s7CKcZ8WiLTnVj92Yb2drel+thyCRf8v+y42hmgenvtYtHbP9mueZTvk2jzNOrPkbCZAACZAACZAACfhNIKe2nH8hdk5+NP8jbY3RSoia8mMQNHPidCJ9waMvys3bPL16aOoLAj0dVaCw2pYqFxJWgqa8T4oAavw983dWW1PlpFe/x/y7lSiydes/uOLyK0KioxQspXApP1aek1KUvOOOO0K/v/LKqyGh0Op6XdD08zmqoUthss7ZdULb4vX8WX3/6aefhfIqf5cfXeTUhUxVoN20cbNhu73K364uZZpWtiIn/fr2THM92oltqtit2pO++HS6T11IyH/Lha1ZEAvXnsItg5P9ubU3naPeBsLl7WXBb97WrbYdszCsXmtuR1ZtVbdRN8FRXyyqdSPvUYVnPdZguIKmk3emOc9eeMm86n2L3s+pwry6xdzslSPrW71f/tvJnsy2Y77frW+zsu1wny/twW48cMufylP/d7g27FZGqwE/mjHBqo7sJhVq/Et5jRrn1c77TBdOJAdz+Ba1v3KKY+3G3aoM8jspYurhD6TdqS/+7Djr/aa57/WzHr30g1Z14KW9OtmvVR259dfm9uOWd7f03NpXOP1NNM+ys/Fo2pJb/Zj5O9mUlf3KuYQbf/OLFLv5h1s6Thyc8m0ew+0483sSIAESIAESIAESiBWBnNpyLvMvRc13Zs/B1ddcjS5drjEKmjnhKqovtvTFlNnLJBxB0yw86N4GMm0rYcmqAt0OA7Lbmqp7vliJLFbeWrrQaHVwj5et4KoHphdB04/n6Lx0b1GzJ6VZPNWvlyLms88+qx1QpP5b/i6FUPnRxVqZxoMPPmjw6lTrxM6rVp/EWy3Y1Xo2e0+YrzeLIFZilhdBU/eqsbrfqjzmeK1O8fecyuBmf27tTbKKhrfTgtKt7chn6/e7lcOcT3NbdhI09XxYeU6bveykN3i4gqbTVj9z/+K2ADfXlzltc39pJWiqcUKt+jw74U9eq6YfSZ3ofbCVR6GeF7OIrR4Spz4/HPtRbSmcPsNLGc0M3fLllqYXRnaTDVV0iZWg6VY+mTdzGexEfVVcNb841MdJeRif1XjtZz166Qed2or+m5m5W7rm6yOxDadneEnPrn3p9aj+7tTfRPssK75utub2TLf+1E7QtHrpKL3areIku9Wx09jjV1/n1Bbcxka7voTfkwAJkAAJkAAJkIBfBHJCR1TzKmNpTps6DS1btszfgqZ58qkKifoEUBbcbgu4ughWAZkFJPNCzLzo17d3qmlYnTisC4DyOn1rufy3lUCpXqunqwuKToKmvNav5+jPlc9TPUTdvo9W0DQvEOzq0mpBr16r51P1/LETNOW14TzHvFCRXjB2p0yHY0/mfLiVQfdMNndGel7cFmNWbSBSDjIttU6sFqNmQU4VNN3akdeFo8pC36bndqCPyt3qWqdnmxnb9SVWrN0EkkgETVWgcLInt/pxsy2r8lixcGqT4Yo1dvZjzotXG3Yroyp461uoo+VmxcjqOVYTDD2/ule505Zyeb/blvNIyifTNZfBzntaFTSd2rddfflVj279oB1/N8HMLV0rQdOJg5VtuLWRcNIzt59wXqC4tRU3FpHYmtsz3erHbY6gzw3t7NfK1p36oFj2dU5zWqfxyaof4XckQAIkQAIkQAIk4CcBuy3n+unm+rOiPRRIzfPUKVO1Pw1bznNCWXWb9PrhoWn2DpKTPStRU4oFcpKonhBs/k5dQOoA1cmv00TYyUikx6UaL1M95dzKI9Krh6b5mdE8R0/LSdCUsTHNnpvRCJpWdWIWiNRFiCpQWtWVVw9NMzfVZqxs0srzQnoZmUXNSOzJ7CkSroemWha39hYNbzeBzq3tqPe7tSMv+TQLkW73mOvc6Xq7BaN5caumaZWe2wI8HIFBPsvKQ1MVNJ3ahBXzcPo2q/JZCV1O9uwm1riFA1F52tWRU1t2szurPtzNrt3SdBLA3SYW5mdbvfxRRUy33+3K58bdSz2rYpBsJ+Y07cpqN15HU49u/aBTXtR+xe0FhLk/sBI0nThEImiGk160gmY0z4pFW3LrT63Gbqv5hPzOrmxutmN+Kafai1cPTbc+xWl+Eu4459bH8HcSIAESIAESIAESCJeA3ZZz/eAePT0/BU0ZLvOa/L7lXI0npsbrkpND+dGFTX17nHkrupfFgy66qEKVvE9+1Dh3Vt556jah3377TbtHj5upH5ajHwBkFjRVj0j9kB8vHppSfPTjOeYt8lIYffSxYaGt4k4xNNWYmOFuObdaKFvVpX4AkFnQVBclZu88J2HSzmasnqPbhHo4iy4iyQWM2VbMHnNW1+j2ZBZDvJbBzjvUbTEWDW+ZZ3m/GvdS/q3G0XMqq5mj+Vq1I3UTgazErHC8VvQFpdV2c3M+1Xw5LSbt+hcnXrEQNJ3ahJf68Wpbuj2YBVWn57vZp5f86e1QFRa89hlW/buXAdxLvsLhZvdMuetAfeFmfq45BrU53Inb73bPdSufnW2bY2iqLwzt2rdd36vnzTyOO/XJXpk7vYgw9zvhtFc3QdPN3rzMSaw8BCMtd7j9TTh9tFfGbrbm9kyn+rESlO36BvNz9NjDXvoo/fCzWPV1TvMTt7HRS3/Ga0iABEiABEiABEggGgI54Rip5m/Pnr0Y+tBQjH1mbN7z0NQn/PL/qlelnGyq3+neGup2K31ha972owufqsAo0zJvx7ObgJvT008TVg8S0vOngzafqn7o0GHtUCD9o5/2rf+tH5aje22qJ4dLIVGejq56QpqvNx8KFO1zrGJ+qieTq6eZ230v8xCOoGnF364u9fKZ7UJO7vVTSuUiT8ZENHtMmO1IrSs9XVUst7JJO88LPb9yYS+FHastn272FG4Z1Pyp9if/7bQY84O3uSySuSpiuJXVLDratSOnGKN6+c1xSdWTh9UO0O6UcKdt6XbiqFUMXvksr32JmVe4AoObh6ZuA3Ztwq1+7GzLrnx2gozd893EArf8qfWi/zvcPsOp/dgN7G75CqdN2j3DXHfybyvhytxf6IeS6Om6/W71fLfy2Ykoavt1O+VcPtep7/WzHt3szGs9u7VXq3ZhHqPCtQ0vebfqN936f6vf3UJchJN3r4Kmm605PdNt/DGP3fpLbbdxXv6u268bf/NcIBZ9ndOc1m1sdOpf+BsJkAAJkAAJkAAJ+EHg7gH34IILGqFl8ORxuzS/X/o91q//E88+90xUj5UxNN+Z/Y6WjmHLeU5nJJpShON9ZfUcq4N7rL6LJo+8NzwCBY1/Xi9PXs+fbj35JZ+qtefHPMv8u23RzO068Zq/8HoeXu1GgNzdCPF3Esh5Avl1nMl5UnwiCZAACZAACZBALAnIreRTp0zDvn37HB9ToUIF3Nm7F+rWrRtVdqTz3ZNPPAmZnkHQzOmMRFOKaAXNaLeoRpN33mtNINo6zWtc83p58nr+9PrML/lU7S8/5lnmX/d8dzqlXL/Oy0FLfrdJr/nz+7kne3rkfrJbAMufFwnk13EmL7JknkiABEiABEiABPIXAemluW/fXqOgmZ+KwIlcfqot5pUESCAvElC3I8v8WR2elpv5zuv5y002sXw2uceSLtMmARIgARIgARIgARIgARLwg4DBQ9OPBJkGCZAACZAACZAACZAACZAACZAACZAACZAACZAACcSKAAXNWJFluiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAr4ToKDpO1ImSAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkECsCFDRjRZbpkgAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ+E6AgqbvSJkgCZAACZAACZAACZAACZAACZAACZAACZAACZBArAhQ0IwVWaZLAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTgOwEKmr4jZYIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAKxIlDo2LH0E7FKnOmSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgJ8EKGj6SZNpkQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJxJQABc2Y4mXiJEACJEACJEACJEACJEACJEACJEACJEACJEACfhKgoOknTaZFAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQUwKFVq5cyRiaMUXMxEmABEiABEiABEiABEiABEiABEiABEiABEiABPwiUAgV6lDQ9Ism0yEBEiCBPEMg2LVn6+H96PILGUsZ+tP0fZ5hwYyQAAmQAAmQAAmQAAmQAAmQAAkUJAIUNAtSbbIsJEACJJCNgB8CphtWCpluhPg7CZAACZAACZAACZAACZAACZCAfwQoaPrHkimRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnEmAAFzRgDZvIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL+EaCg6R9LpkQCJEACJEACJEACJEACJEACJEACJEACJEACJBBjAhQ0YwyYyZMACZAACZAACZAACZAACZAACZAACZAACZAACfhHgIKmfyyZEgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQIwJUNCMMWAmTwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4B8BCpr+sWRKJEACJEACJEACJEACJEACJEACJEACJEACJEACMSZAQTPGgJk8CZAACZAACZAACZAACZAACZAACZAACZAACZCAfwQoaPrHkimRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnEmAAFzRgDZvIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL+EaCg6R9LpkQCJEACJEACJEACJEACJEACJEACJEACJEACJBBjAhQ0YwyYyZMACZAACZAACZAACZAACZAACZAACZAACZAACfhHgIKmfyyZEgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQIwJUNCMMWAmTwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4B8BCpr+sWRKJEACJEACJEACJEACJEACJEACJEACJEACJEACMSZAQTPGgJk8CZAACZAACZAACZAACZAACZAACZAACZAACZCAfwQoaPrHkimRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnEmAAFzRgDZvIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL+EaCg6R9LpkQCJEACJEACJEACJEACJEACJEACJEACJEACJBBjAoWK3rX9RIyfweRJgARIgARIgARIgARIgARIgARIgARIgARIgARIwBcCFDR9wchESIAESIAESIAESIAESIAESIAESIAESIAESIAEcoIABc2coMxnkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ+EKg0Anx8SUlJkICJEACJEACJEACJEACJEACJEACJEACJEACJEACMSZAQTPGgJk8CZAACZAACZAACZAACZAACZAACZAACZAACZCAfwQoaPrHkimRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnEmAAFzRgDZvIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL+EaCg6R9LpkQCJEACJEACJEACJEACJEACJEACJEACJEACJBBjAhQ0YwyYyZMACZAACZAACZAACZAACZAACZAACZAACZAACfhHgIKmfyyZEgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQIwJUNCMMWAmTwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4B8BCpr+sWRKJEACJEACJEACJEACJEACJEACJEACJEACJEACMSZAQTPGgJk8CZAACZAACZAACZAACZAACZAACZAACZAACZCAfwQoaPrHkimRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnEmAAFzRgDZvIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL+EaCg6R9LpkQCJEACJEACJEACJEACJEACJEACJEACJEACJBBjAhQ0YwyYyZMACZAACZAACZAACZAACZAACZAACZAACZAACfhHgIKmfyyZEgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQIwJUNCMMWAmTwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4B8BCpr+sWRKJEACJEACJEACJEACJEACJEACJEACJEACJEACMSZAQTPGgJk8CZAACZAACZAACZAACZAACZAACZAACZAACZCAfwQoaPrHkimRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnEmAAFzRgDZvIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL+EaCg6R9LpkQCJEACJEACJEACJEACJEACJEACJEACJEACJBBjAhQ0YwyYyZMACZAACZAACZAACZAACZAACZAACZAACZAACfhHgIKmfyyZEgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQIwJUNCMMWAmTwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4B8BCpr+sWRKJEACJEACJEACJEACJEACJEACJEACJEACJEACMSZAQTPGgJk8CZAACZAACZAACZAACZAACZAACZAACZAACZCAfwQoaPrHkimRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnEmAAFzRgDZvIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL+EaCg6R9LpkQCJEACJEACJEACJEACJEACJEACJEACJEACJBBjAhQ0YwyYyZMACZAACZAACZAACZAACZAACZAACZAACZAACfhHgIKmfyyZEgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQIwJUNCMMWAmTwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4B8BCpr+sWRKJEACJEACJEACJEACJEACJEACJEACJEACJEACMSZAQTPGgJk8CZAACZAACZAACZAACZAACZAACZAACZAACZCAfwQoaPrHkimRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnEmAAFzRgDZvIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL+EaCg6R9LpkQCJEACJEACJEACJEACJEACJEACJEACJEACJBBjAhQ0YwyYyZMACZAACZAACZAACZAACZAACZAACZAACZAACfhHgIKmfyyZEgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQIwJUNCMMWAmTwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4B8BCpr+sfSc0pGjx5BQNB5xcYU938MLSYAESCC/EcjMPI7UtHSULF4sv2Wd+SUBEiABEiABEiABEiABEshRAiewYNMgrNj5Ok7geI4+uaA+rBAKo2nVu9DprBdFEQsVuGJS0MyFKpWLfIqZuQCejyQBEshxAuzvchw5H0gCJEACJEACJEACJEAC+Y7Agk33Ij3zKDrXmoAihekQYVWBw5cWjahem1XtJ0TNlyK6Ny/fREEzL9cO80YCJEACJEACJEACJEACJEACJEACJEACBZzAiKUJGHHRQYqZDvUcqaApPTVHtkotcBZEQbPAVSkLRAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL5h4AU60a1Sss/Gc6FnEYqaMqsFkS2FDRzwQj5SBIgARIgARIgARIgARIgARIgARIgARIggQABCprulkBB08iIgqa7zfAKEiABEiABEiABEiABEiABEiABEiABEiCBGBGgoOkOloImBU13K+EVJEACJEACJEACJEACJEACJEACJEACJEACOUKAgqY7ZgqaFDTdrYRXkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ5AgBCprumCloUtB0txJeQQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkkCMEKGi6Y6agSUHT3Up4hYHA2y/uwMiqiVh/Y4noyGSk4JkXkjFq03GkFSmCp4ZXxgOnRJdkztydgmHDDuCPjqdiXssIn/j9HhT7JA4/PVUeDSNM4qS4bet+1H0qEyMmVcLNJ0WBc6+QvrVrZGLVx/tw7ecZ+C+jEBpfUw4/XJWQewXjk0mABEiABEiABEiABEiABPIdAQqa7lVGQZOCpruVxPiKun3/Q7fhVfDk6VkP2vbxf6i14AT6C4Vv/NlKBlbvRfnXjmP0C5XRP/MQHnk3EzfckYjGRWKcSSV5v4SPZW/uwuXbE7DhgURUSktHRol4eJNIA4LJDV9kYEcaUCIxHk8NLo/+VeNcICSjS9/D+Cx0VSGUKR+Ha64sjVcvKY6inhGaBM1kD/VgviYHBE3LekoWDEYcQUrHRCxoG06ZneGkbT6A/j/FYUy30qjkmaOHC/OEoBmJvQVs5OPG5fDb9cWzCrr3AJo9moJdF5fF1ltLKgAO4fZ7D+HfzpXwVbPUfN2u8dd+VB+XgftHV8CgMsdxIDMeicU81DUvIQESIAESIAESIAESIAESIIEgAS+C5o4/62Dinr+DdxRFsYROaF/7DTQpWxSG3wqVQOmE23BlvZdwrhQd9g/DC388hySFdq3qabi9pP59JTQ6ezuuqxy8YPcAPP3XFKTgTLSo/yeuKg+sWlMU85KvQpdW89A4mB4qrcT9dQIuS4Hnw3S9+KHkeAxrNACBVWISvl9dBZ8fEf8sMwOjGobnxmMpaJ58ryMAACAASURBVFadgrsq18He3Rfjw5325jSqlRBTCtiHp5znQoXe/cAOrO8ghIy28cGnp2Pi2D14YAtwRhujJ+Sad3ehyZ8J2Dg8EdXW7EPliZl4ZFRl3FfRKeNSLElF+5f88XLzR9A8iseHJ2HpJWq5j+GZUUk4cNspeKq6Q3k0kSsNVw6piHFnZuKDKUm4eU+QiWP9SUEzBfWHyfQzcSApDd8tOoQ7v8pE654V8V5znb+bEZgEzWz1YMHbfE1uCJpCzOz6xBGsb14Wq4R3rXcB140HsO2z3aizMA7zx1dAW/fLvV/hKmj6a9uWGYvQ3pbM3Im2u0pg19CyKBdMOGnRbpzyYQbiyiXgR9U7V3tGOnqNroKHdnht1x7bi0fa/rRrYN0H/+H8jQmGcssXNG2Plo7eq9tjWXgZCZAACZAACZAACZAACZBA/ibgXdA8jJpVRuGcQp9i8X8fITlhFO5vPBRHNUEx8FutzKlYsvcnpJWagIfPvwvFgwLksdLDcXniaRqocuV6oXaGFDTH4WChTCSUX4RH6rXWftuyvjqm7pXqYJSC5qE4FD7RAu0u/Bot5Sa21NcxZdU92HpC/NsvQfPMHzHqtAuwY3tRTNS1XgtToKCZv9tHnsm9FBJ6x5VCyj1lAnnKEMLbwBRUblIYM4URauKl9oMUMPZhcq1EbOjuzZdR3pW2dh9qvnwcz/i0bdcf4cNi23byAVzyYCpaaYKjQ/WYxUD599uF8M4rFXGtY62qgqZ+YSbmT9yNG1NL4NB9ZT2KfM5bzj3xzmlBU2zvH/bkAUypWAq/DyrjrxdlLFuSi6DpiXW0+YvQ3tLEfYlvFsLMiRXRVctDJt5+8T88XroYzliegfZSvAy+iNA8sr+Pxw9jyqOx1/x6bS8e0/OnXQPaS5edJXBM2Fngk4YXn9qLiaLfijpMhcey8DISIAESIAESIAESIAESIIH8TcC7oKl7Qe7Gkp9Px6KjV+P6lu+jssFDcg0+XXEhlmEI+jd9CqdaeFRqtLTvZ6JUyVLYln594Fpx1/zlrfFvkfOx6+jB6Dw0M1qh2tFlKHbGQdxerSiObmmLMTsOonKRX7ArwScPTQqa+dvw81vuNa+tz+Ow6PkKuERmXm4rnw68OaIInnz0GK7XhQ9N6DyCsndVxcxG4jqz2COFl5XF8O/lGeg6LRXLjhRGn8uEKPp1hpAUsj5X3iZiP557GMNeOywU++NIOQ4UTSiMBheUxLzbS6OKvDTjKGa8nowHf89EcgYQV7QwbupRAdOaxgtRRsTQrFwSA/9LxWN/Zor7xdbtKvF4tn853KFv+96djN6vp2D+zuPa/UUT4tCtRzlMuVD4Bf6VhBZTU/HrgRNC4gl8rrysGFZ8ewz7RF70z5mX2wggQW+2HiOr4NEqGUKQ3IPuh0tg+4NZnnDWNmAlaAYFmF+KhuJZpu0UncvEFCz474TgZlE24WhuiKGp1MPFC3ejvvDAy8b7dFMsSJNIlrY5Cc2fT8UZN1cQcTn98Z3MEqiKiDrbh8EoaSFmpuGrdw+g93eB7fuynlteXApv31gqJHrKdN5tlIi2Px+yr29DeQJ8PjzfVH9WwuDKovihXhpu+zgdG8XzpZ10ur4MZuohAMw2rniZzit7GOdbsW4ZCC0AaedKjFOj0CbzmAz0LouzPz+Igb+KOK71SykinGJBkdrbkYO4/P4U1B1cFa/Uk+lJb1KRr57lcc6Cffjg/ApY3lnuxQ4InfcklMb+vqWzt2v5/EnAWwPj8NzLKfhw3wmH9lLEUJ8oUgjVqxbFmHsq4LpEmQdjfcvfm7VLxJJrintr10jF21OS8cRvmdiaKl4jivvrNSqFRb1lqIEjGPW/Q3hhe6BP0T71i6LX1jRMk1so9E+FBBwT3qn8kAAJkAAJkAAJkAAJkAAJkIAdAe+CptFD83DJgBdmkiJoti86BW+sGYAtCWMw+IL7US7blvOg5yUCW84rVOiNHfu+wnlye7n23Zc4v+qp+GbnuugEzdTeaBQ/Bb/GzcCIhjfglzVl8WnhJ9A4ZTiWRSVo9kD3plPl8iv7J20+PlzRFatNv9BDk23PHwJaXL1j6BCMoym3qnZJKYVd/ePwhBCGlrcJbsuWQufrJzDhZbF1XMbMtBI052WiRnwRPHhnKbQrK8Q4EbwucbkQOt8Apisemp9O2olbU0rg5wFlUaNYBvb8m4rV6cXQ7ky57Tod703Yi9v/K4o5QmC5XARF3PtvOvaeUhJC89SEj95/FUbXmxPxYrMEJGamYsprSbj3cHH8+WjQm/TIEcz8FbiqcUlUEulv+TIJF3yArLybRUFJMri19zo3D81Q/uIxWAia4zfGYcpIwUR3CLOtFWsPTSkmhTxkj4ht2Y8exvpGpfHxTaVRQwg4H89Pxp0/FML40DPsBU0t4oUU7ky8LesqeChQXV3M7FYe715SzNpL9OhmvDr6U8T16o++Nd1ihQYABATNMhix+xB67yiG70YK7z9TrNU1Yntw8+8K4enB5dC/RmGkbDmMPkLMXd84a1u6Xt8dbyiDyReXQIm0FLz08kGMyFDqO1JB880M1DinBOb0KoXzix7HL58n4bJPgOF6GAXVxnUxs0kZLO9eMhBv1Yo1vAqaB/FOZiGcKmz09cviUapoEZxRxioYrd4ewrW3gEf1rPrBOJrr9uH0iSfwygsVceaHwovx7+LBbdmB+JkHu1URAqyoW3O7ln8/nya2R4iXCjeURr8zCqF46QRU2hUIvWBoL9rLkBN46rFy6Fe5CFKSj2LF3ydw3nkltG3vofoeWBa3ny7qe88xbCtaCs1EbBhP7Vq0vSVLjiLh/BJoKlil7D6Irv87gng97/IZ2Tw0bQRuf3pPpkICJEACJEACJEACJEACJFAACXgXNIP7qmWczBID0KXOUzhbLBaN8TWBwkWuQLt689BSxNfUY2hmbTlPxKlVrsPpKUFBs/oilN7eFjsrbcK1GVdg4qHbMKjKT3hxa7SC5hDcUelHzNh5Oro364Cffrwb8TW+ROL2FlEKmh3Qtv6j0OSc+NqollAeR1OXY2+6lHcW45s/HsMGk41Q0CyAjSZ3inQEdz9wMBhHMz3o/RcQN7SDc/aVwAGxfXO9FApCIoguAConQGviznGM0DwXlZJYiD7vTdiBvukl8ZsQNk4zaziawJqKFuYDiYJJasIHSml5Cr0A0A4rEmKr7bZ2s5hosW3bs6CZgd+FQNruPSGyCvH2pZGV0deTw5cxD2kpqfhhUTJu/Pw4br63EsbXi4O29XdZvOn08VSMfmK/EKZ0j0P/BM0fehdCH+GZWaJDWXzd2TmuZcbmT9HnhR3o/GhPXOd6AFJAoLrn70I4Idxgj2XE4fmx4iApg+hrEtKC9Zu2ci9OmZolnHuq74gFTSG06wK99nw9T0HvSl3ce7YY5or4n6vqlMJyIbKHDh6KStA8gNeqlRYvDkq7hBqI1N4ANY7mNtF+m4ut2Fq70Q7OycTTsuzbpTCZgUHyoC95TpCVoPnUMTTuUxlvXaiI2Vbt5ce9KPH2Cbz0RHn0FgdeGT8BtjuvqYQvLs8eL9ZTPVt0kOat6hQ0c2cU4VNJgARIgARIgARIgARIoCAR8C5oZh28o5Y/IGhK782HUOLAw1h74h7c1fhZVJPLJMct58JDUxwQ1ORgOcw+1hnnZL6DPeXXY2Cx+zHcRdA8Xklsaq8TCCK27c9aeH1PnNGjM1Vsea9XFnN/HYNyia3xZ3IJ3NDsYWxbJbbDR+WhqZScW84LUjPIH2WRHpM3CIEx5abjQkxMwx26uBHy6iqNP5/eh2l1lG28Vh6aQa+/wLlawY+V6CNO3e79zGHMOVgIDc5LwNNXl8KlwqNL+1iKRFnJWcbaM+UlbechPDEnBbP+OY59R4GyQqg5fKgQBoa8LyMVNNPw9oR96Ls5DgNvFeeCfXQY4zOL4evHyqO52L2rxS38sDA+17fvG6rf4pTzKkUw+MayeLRBQJqVZespxNqs+H+BBDRh6kDJ4Pc+CZofHsfZmZn4q2IJbH4sEYFQxM6fpKUz0estYMDY29HWxSNVEzSTi2PRIyWx4vm9eOBwAr57XPHStBOQta3SR9EsWFde6luzmZDthbHlPJu9WrFNQ3zl4/jrcDF89GwFtFcF+CgFzT86GrelZ6cfjb2J1DSvamDSxNL4W3hrLmyuH4IlX2Ik40D3yhizc69RRLcUNJUXF3omLesvDfPFIVl3rD6ORLHVfPC1JdHnnISAN6vLCwNP9SxCUXzw4WGMWpGBrUfElvPihVHk2HFUaJ3VL1HQdGvF/J0ESIAESIAESIAESIAESMCNgD+CZkDsbH9iGF5e/xyOlJ6BQeIk8VKOhwIFBM1bC9+Mp/5+XwTtCm5HP9LFXtDM/BTvrOiC34/XQL0qD6MWggcUFemPO5u9KHZ+Bk9Fl4Jm0974Y2VdLE4VXqPiIKARDRtgoYzvSUHTzSRcf+cp566IYnNB2pI9KD2/MN7rkImuP6oHAQXj7t1WEgenHsFp9+rx+HSBwuSh6VXQ1IohTvreeRQz5x4RMfGO48wryuLH64WXYLSCphDE2g1JwcErSmNBJxGLUYYJ1LYB6yeMy78jFDSlZ9vz6bhL90IVh908M/YgnkiOx+xHy2DHxL0Yc1pZbL1VurqZP9YxNNWrclTQfPM47h0kROyph7ClcwV8col77MxwBc2RVYNCk9iu3WXEYWy6KDHrhPN8I2geQ91byqLNsgOYeEYi1ogDsUKkYi1oRmVvwrIyDqLj3Smo0acE1k9ONRwEpIV9EOL5hNRDeCixLP69PWizUQmaAWvWvI+XHMbdn6ThnwrF8a3Ygt5Y8wQ1bVFXjN9d0EzH68/uwcOpxfHBoNJoE9yeTw/N2IwJTJUESIAESIAESIAESIAETmYCfgqaV4kdnTv+aoBJu/9Dzeq/4/aS47VYmUkK4FpCxLy9pL7lXPz71Lcx88c7sDE+eJDQNgdBU6orB2dgzoYh2JCajAyxYi1VvBc61HkO55UKrF5XrSmKeZqg+RSgeY/+g1rV5eFA6wMHFvklaBZviTrFyyD16GfYKpzL7D7ccn4yty6/y65t805D2VoZ+Ke6ephK4MCQp9OKIGlbYbz+UkURlDb4icZD05R/7bToV05gnDyR+d8knDvqGDrbxLJ0FT6sRCbpaTo+HbdF66FplXbGMcx4bT8GrhOdSHw8Zo4WZbDSM7OJqtkrMae3nP8kDkepu3k/GguRtvMDFfGUQ3zMpJXv4O4Zh3FDGFvOQ4KmKGqS2I5cZ7o4MGpwJXFIjfSz977lXE1Ho+Zoe0fx+PAkzDnXeCiQ5rmnHL5k9OrU68LB+1UTZcXpMl2Vg5NsBM2u/Q8j/VbV+zLQjrK8b51Pqg9ZRlT2JlMJxNFcmFAEy5KK4EdR37r3tOZN/PkJtErJRNVbgwd9WbG1O+ndS4iGjMO4a2gykrqeiveai/iwGpdgrE6T+bu2a8vYpIFwGV81o4em30MC0yMBEiABEiABEiABEiCBk5mAF0HzZOYjyy4ZRfqhoBkpOd5nQSAgsIxPKoSeqhemFKK+2o3T3s1AZs2SwUNEgrd7FTSDwseVQypiXO1CSBPxFMX5J1mfjHT88lESLlomTkh+tjxaCKfqiWPlFuVimDOgDNrLQ4F2GQ8PcRS4gs+7sFc5TGtWDBniUJoHXz2M6TsLYbCToBk8xT39xvKY20a4dWZkinya4gBq3p9HsLN5acy5OgGnxolT2Pek4YV3j2Dqv1LQFAcp3VsBD1kKg+4emjAfChSXju8WJOH6hcCToRiULlvOrXhr3nF23rSZWPXuXlz8UxF8/rQ46d7qXJqjG/DyyIUo2ifcQ4GM4viq2Xtw0fIieDMo+hoPBYoXdZWM/s8fxrf1y2KD8BiU3aO70CUuMp1gvmjKTnTaXBQfDUlE+/InsGfTYdwiTuheXCIhKz6p+dRzzSKd2e4R95zz5omsurC07WMYN3ofRhUpge8GJ+IcUYcb1yTj2snH8FddPZyAR0EzKnsLNDEp5Db/5jjKN1e8MOUPwbQXHy+C8XqICfm9Vw9N1/YiPLC3JKPD2GNoft8pGH92pgidsAdtVxfGMwMT0eeswjiyVzA5VBQtRfRo93oOMHvrjNL4QZxqfpo4DOzjdw7i5h8zcVobJ0EzeIr78WDMXuEZDnO75phAAiRAAiRAAiRAAiRAAiRAAgoBCpru5kBB08iIW87dbSZmV2hxGlfFY67qhRkUPi6//wgOd6qA5Z21/duBj1dBUwiUWly9VZlIOV4I1/Wuiht/3Yleq06Iv2VC4jT0KvF4tn853KEfNiNi5c14PRkP/i4EwwygaEJh9LzzFLwk3MvchQ8h0H28D9d+noH/5L1ia+rA20sg/c3DiO9/Cp6qLp9pJSgZ7zvnynL4uYuIk2n67Fm7HzfPOobvD5yQ0ghKlIzDxZeUxMROCdj24T60/Qbod38FPFvbrAx6EDRFemn7RblfTcG0bccFOQs2LqKbSCEb79mVnQRNWcBU4cm3H8+VKYXfxaExoUNvorA2y3oSW/SHPXkAUyrqz8nAj58l4c5PheiXBsQVLYyWF5fC2zeKUAHBZ7vXt7jQLE4mH8aw1w5j4t/HNZsrU6UoJl5fCI/NAd7VvRQjEDRlmIRPJ+3GDf+KU9u1eKAWrJuIGtgpXPfFae0L/juBtMLiJPMzEzC7SQZarylmHQfVgXPk9hZMVPNOTsPl/RQvTO2ndPHiYA8Gp5XAxuGJqGbXru08NAULtZ1p7eW0FFR94xj2i7qUn6IJceh0fRnMvKR4cJt+Gr569wB6f5eBHVp9F0LrTuXxWftiHtq14Lr5ADpOPIolySJ+ZpHCuKR1KQzJPIxBceLQshu1SJ0Wp5wb74urWhwpT8gz1/khARIgARIgARIgARIgARIgAWsCFDTdLYOCppERBU13m+EVJEACZgKW4iQxkQAJkAAJkAAJkAAJkAAJkAAJkED4BChoujOjoElB091KeAUJkIAzAQqatBASIAESIAESIAESIAESIAESIAGfCFDQdAdJQZOCpruV8AoSIAFLAmnHREwBEQXhu2l7cdWe4sYYr2RGAiRAAiRAAiRAAiRAAiRAAiRAAhEQGLE0ASMuOigiXSlh9yJIpyDfEqmgWQiFMbJVaoFDwy3nBa5KWSASiB2BdfP+Q+PPRCTTkkXwxD12hzHF7vlMmQRIgARIgARIgARIgARIgARIoOARWLDpXqRnHkXnWhMoatpUb6SCZrOq/dDprJcKnNFQ0CxwVcoCkQAJkAAJkAAJkAAJkAAJkAAJkAAJkEB+InACCzYNwoqdr+MEtNOM+YmSgPTMbFr1LiFmvihSKhRlannvdgqaea9OmCMSIAESIAESIAESIAESIAESIAESIAESIAESIAEbAhQ0aRokQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAL5hgAFzXxTVcwoCZAACZAACZAACZAACZAACZAACZAACZAACZAABc1csIHMzOOIiyucC0/mI0mABEggZwmwv8tZ3nwaCZAACZAACZAACZAACZAACZwMBCho5kItHzl6DAlF4ylq5gJ7PpIESCDnCEgxMzUtHSWLF8u5h/JJJEACJEACJEACJEACJEACJEACBZ4ABc0CX8UsIAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkUHAIUNAtOXbIkJEACJEACJEACJEACJEACJEACJEACJEACJFDgCVDQLPBVzAKSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQMEhQEGz4NQlS0ICJEACJEACJEACJEACJEACJEACJEACJEACBZ4ABc0CX8UsIAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkUHAIUNAtOXbIkJEACJEACJEACJEACJEACJEACJEACJEACJFDgCVDQLPBVzAKSAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQMEhQEGz4NQlS0ICJEACJEACJEACJEACJEACJEACJEACJEACBZ4ABc0CX8WxLuAxrPt4Gp6evhjf/b0PSUczAw+MS0C5ytVw8ZU3YEi/NmhYpkisMxLj9BeiW92xWKg9pSoGzX0LT9aL8SPzffIb8PgVffHiv4GCtB/zNeZ0yfeFYgFyi8C8h5H48IrA00/viqVf9keD3MoLn5srBNY+cwtaTdsZeHbroTgwqb2v+TjwzTNofe/n2Ho8Aef2exHfDaytpM/+zFfYuZpYAR/P181G+57TsPxAYVS56iEsf+FyJOYqbz78pCVAW8ybVZ+X5lPp/2DeuAkY88FabDiYCrmKjCteGqedeQGGPPM4bqsVS4Qb8HK3B/HEr8mIq3ApXvtsBK4r49fzOGfwiyTTIQE3AhQ03QgV6N+TMGdATwz4+gjKtnsYP78kJ70ZWD2uD9pP2grU6o6Fc/ugUbwNhH0/4cHbH8PkjenOlOIqouv4SZjctlw+plnAF0AxqRkO5jHBerImmpcm4CdrHeRyuWMtaM7pexn6Lg4WMptozv4sl6vfx8cX7PHc0E7QFJPWj0E3H+kxKRLwSoC26JVUDl/n43xq7dS7cfUL63A4MUsQTFv+Epr0noetqI5H3p2OoXYOIOnr8XjngXhxS9AZRsUQJ/quX0TfZbcG9QPZuok4/9r3sCWYlr+OF5wz+FFFTIMEvBCgoOmFUg5dc3TbKkyb9g7e+3YTNu09gEO6Tii9HcuWQfV6zXDVLR3R9+KzUdaXDl6d1OuTXrUDdvJETMLrN9+Ih37WB6F4VKnfEE3Pa4AWxbdj2a/r8OUv26E7bCLuLIz4bDLuPyOHYPr+mIK9APIdl5ZgXh/Mw8+fKnjU6DUJvzykenDFhiJTDRLwcQJOpvmTQKwFTXpo5k+7CD/XBXw8P1m84sIdEwziBYXe8NtNBHfkR1tM3Ykls9/Bix8vx5p/krDncGgxhuJlS6PSaWeh3WXX4Lbbmuff3Wfhth3bqk/B1B6d8MBPgQt0QVAdq53mygdmD8ZZT67RvDKBeFRv3BQNpe/L0d34teyNWCm8y4tGYHbeb6GHpndWvJIE8i4BCpp5oG7Sdi3D6EFjMUG4vFu8o8qWw7iL7sc/0zqhZNR5j8JD0zAxrIpbpk7AKy2NHphpuz7CTVeOx9dHAxlteN9sLOlbJXuu/5mOi9rNwh952pMgfyyA/p7QC40mbInJdszwzS18wTD8Z0RzR/j5yylBM2/VYzSMfbzXtwm4j3liUjlKINaCpnNhwu8vchQOHxYGAQ/jeb6Yl4RRZNOlBWKMCXdMOMkFzQJR55GbvPud6buxaNyT6DtzHfZ7Wow1wss/PY8eJdyTznNXhNt2HArw99sP4PLRq3G4SgfMmvcQ2ost22lrJ6N199n4q0hNPPT2FFsPTXVOXbHLWPwxpomlgJk/bZdzhjxn98xQgSVAQTOXq/bo6om47Lb3sM6waztOewtYKk7PXCYOHzwU9HZMwLUvf4TpbXM3JuWBWQNRY/TvgQxecDe2vH29ZYwmdbCq3XcafrqvRjbiy0d2Rfu394nv8/Ibcw8LoFy2JeA3PNhqECbvFRmJQXy58IuX1wfz8POXM4JmXqvH8Gs+Jnf4OAGPSf6YaMwJUNCMOeKT5AHu43n+mJdEWl0FZIwJd0w4qQXNAlLnkZq8232pa/H4DQ/gRVMILRnLsXzx0GIMGUcPhc4KKNH+CWx58ZIYexC6ZTzC38NtOxE+xvk2r3Pw/Gq7XssXE7hMlAROKgIUNHOzutdNRpMbZmND6E1gSTS++V6MG2x1iM4xbF32BabNO4yrxnZHs9zMt3i2p4Vl+moMbvMAZkiBDRXQ5+338OwFpowbrqGgGU21pq14Dg1v+xS7ZCIUND2gDH+ykROCZt6rRw8oc+KSPDEBz4mC8hl2BDyNOzHDF35/EbOsMOEoCbgImvlmXhIZhgIzxoQ7JpzEgmaBqfPITN7lrg34X4cBeE6J41imwdV4fmRvXFO/VDbBUoYHe3f2F0i+4hEMNK9pYpK/GCQabtuJQRa8hqXKv7bLOUNMzIaJkoAFAQqauWYW/+KFa3ti5Dr9VPDTccfrL2K8adu2t+wpnWbLB7B7akcUlVsnJj2H4TN+xXot/ksdjPpuIgZWMqZ49K9FGPPy+5i7bAv+CcaJkW8ka9e/FP0e7YObLQZzmYLrwlK87Rx76yN4eu0R7YFlhMC2SpxIm/V4cTr6nBfQe9zX+P2A3d4O6xieWp6ffQtvrNwefFMqPVpPQ6OrrsPzQ69GvQRv1MxXya3/44ZPwmt6ujJ2afUG6Dd0CO5rvRo9vJxyLrj/+OZUPPzG9/hjZwrS5EPiS+CM2hfglkH3iHQqZ3+b63WSbTcBSd2MGY+PxsgFf9tvkzEdcJG2aw0mj3sFk77dhu3BUwVl/JrS5avi3FbN0POOHpYTOVkcK5uRZaxUrSYuv7QzBt3bNlgHFoP5xb/jlWdewoQvNmOnFmA18MzmN4vT0Pu2wKlOsWEjYetoCuFPNpwFzaxFcsUbn8fGkY0CrAy2KspbtQY69RuKF7rVRHE1fxHUY+B20ZY+noYREz/H0q1BT27Ndmvh+tsHY5T5Odo94fYZUZbNVA8RteFs9t8HxURc3mEvf4LFmwNtLXAyZnPcP+Z+3HF2sey1H0ojEXe88SHGN03CT9Nfw4PTv8NvuwOnaxYtVRn1L78ZE5/U+5JAX9X/taw2rfWRF3bBqFE90PYUB2/5iGxWqZug93sJvb1+pffTgT6vVQ8P7SYbBR/TTz+MNd99gDemfoP5G3djv96XuNpfVqa89ydW405Ti/pLRM1Gnd3rxqJvcB7X/OjPwm13Jk5hjntZ5TkHz6x4GXcVD54m+64+L7CwI33uMCvrxNnsbcJ9jF34wFXo9kmqdqHeHxrv+k/MgbqLOVDw23JXYcGyIWhlSnr9uNvQj1TF3wAAIABJREFUfNK/2rclOo7CjudbGq4IjWWhthFswy3a49FH7dqnnaDpdV7yAsoOy8p7i0fn47MepU05/x59Gg3He8GQO3Y7WT4c0Ba9vg7MgazC8vjTV/ZHA/mA3BpjYtKPifKEK8q4zLVyrr3oY/Yi/LgtK15+YPw6G+0634SB3RujunkuG0l/G06dmw5IcWrlng9Pcawji7Ho768x+qk3MO3HfwLnCBjm4YH5c7a5upxH2s2r3Lsq/D2pDy4ctykY8isOtW98Cp+ObKKsVzwkku2SSOZlMpEIbUPjIub1k6Zg1qcbQ6eFa/wqV8MFl16GB/tej+b6fMWP+ZRW5qCzzdsLMHfVduzaH1z3BOukzfV3YIx5bi/t+PNZGDXhY3y9NTDvyvaRa5YF7bEyzLUNQnOuH/Hnbn1noxwTxLygzoVof9MNuL+Deg6Fu7c+Iml3WoH8mDOo854LMOG353BrfAZ2LJ6FQWM/CM19Gz/4Hr66s0Ikhsp7SKBAEKCgmVvV+PN41L35o4A3HeLERHa6iC95eoS5UTpNOQh81gbzrh2E5wxbJ8zej8ew4pl+6DRta0B0s/zE4dSOw7H4+UuyDexOC7+0vz9At+6v4RtNqIxD+Yv6YeGk61FbFas8TZzMgqaHPMdXx5DZk/FYg/C25OvxXoxb/3UoYoLTayDafDYer++U31kLrWm7PkHPLuPxia1AK1hcNgTLX1WFXZFclIKm8RRJm6pUBM09i0ah9eBvsMMpRlBcQ7ywbDx6iVg4WZ8kfDPyfnR728lmxOFP34jDn6qaB/PKuOvJTlj13DSsOmRjbTW64suP+6ORhagZMVvHFhU7QRP1euGb29fimodXINkmD2aRP9x61JK12SalPrJore5YOLePiWu4fYYy6YugbFn5iaINqxPwlndieuJ89P5kr03c4ZIiOP0bmNPFGNdXXQA3vG8Uui4ag+HBly7Zqqm06DM/HwoM74kBX9vEN447HYPmTMOTFv1N5Dar1E3xNnhzVkU82e09xZPfmNM4h3ZjbXp+pb8BIy7vi5e2Ow9bZRr0wvzZt1q063D7E6OgWe2Wwej562SMtKs/h7qxy7F3QTPS/izcdidzGnmbySpPArqOeRRFxj2B2f9Zd/yaHc1rg09uMM8dFFpamxCnznpYN6WJ9lpV9H/a00SfsXburTDMcJI/wJVNX8GyUPJW4+ohcfjgNeLwQXlRnGjTn4k2rY/tYlH3/uNo9fgy+xd5cWXQcfR0vGXuB2CziA1jXtL141vQapo2IbAUWiF2TNQSOya0DSpa9q1O7BW7WFqIXSxJ8gIf5zs2IlKujTEx6ccEspgJmjFsL+JU5xe6P2jfbwXN5ZSbX8T6EecqjS+y/jasOvdk/4Es+S5oChuZ9EIRPHnPIpu5qZyHv4wlV32Hy0RsRuu5upXzhPP4ZAjVJJup6KtWir7qTLfbnH6PdF4WsW1kYMOsoaJOVjvE/hQ2PfFTTG4TzLgf8ymk4J27rkW/JYaYadnIxFVpg5kfDkcnfdzwYmdizTKj3VLcEexjbXGrzhr7lqDPdaPwns0YF+yIxZjxIRZ0119AuQmakbW7wLPUNUakcwZ13iPHiJno8nkftJ9kXId5bo/R2DXvJYE8TICCZi5VztIR16HTuwcCTy/XDnOXPIw2EZ9crnaa5+Pa9hswd2HAM1J7OyeORE8tfDHeW5rl/WB8IyneXlWojYsbVYaMbb1vwyosD701C0wivn+orsGz0Hbhly68Ei4SXgmaaCW20N/zNBbc08DoiSZ/Sv4T8z//Cwd3LcHIV1cFJ/1nosfILmgSqpNSaNihDc4Pimp7RNzOuiJuZ+g0vHY344FW5cXV+7Fs5vuYvSlY5jAWXdqjkr/CLZePxie60CaYnXV+Y9SXWkjSNny7Rr4pjkNcXCYytYdbLLwMW9QE9sR66NW3A84VJzcd3vItJsxcHZykWfCMUtA88Ps3+Oj3w9ixcDrGfB+0qdod8FKPelnWXeZsXN2hjohzuhz9mzyC2VpZhcB6dgv0uLYJzhL53LVuBb5dvhorhbdbEYvYQGuFp0xr4SmjL4fjip+GZi1riGACwmY2r8Fq4R2YdsG92DSrSzCeqmqXcSgq7DtNzHuKV66JixpKW0vFttVr8Mu+rMlQ/XvewA/3mIT9aNg6tu8YCppx8aK9pCMtU3gO1KyDS2uWFTk5iD++X4dNmmeq/CSICegcsUAPTKzCq0d5R5JY7N8oFvvB9OKr4Jq+N+PyyuKn3WsxceYirAvadHYP6XD7DGXSF0HZ9GqIqg2rE/B4wTdd8BWewXUbNkJtra1uwZe/bA/GGhZ/F78Eb654Ap3UflVJI06kAZEGVDs29H1icZRYBkcOCDEzvhzOb1of1YRLbcqOP/DdH0mhF0FxTVSbD5Y0KptV60aUM16UU/Q/Tu3G6RTR7E3Av/T1cURj2PYidLrwdJTCUWxaNBcTv/svyMj6hV34/YlR0Myqvwo494K6lnWDWj2wekFPz4tT74JmpP1ZuO0OiKbNqOUpKuw9Tdh71lhv7n/FeJCYgP0HjghPZ6VvN7WJ7EKLTSdrECyDHqLKC7KQ4BnqT6w8FMXYfI4Ym7UuTn1ZJsYSNcSKHMvO64gh158VsL/P3seEZcGXHZbCts0iNpx5yXpFsLTwLg2x1/sq0d8bBAVZpI0i7FAnEXZI/lsIOnNWD0f7IM5o6t1O6Mu9MSYW/ZgAFTNBU8yJY9Re/p3aH+c9+2dgHiXG7Itu6ICb6ol57JF/8cPSX7D4Z7l7pRoe+WIahp5hbFuR9Ldh1blu/xZN+uB3b2H4ot2BX4oLT7EvhaeYhxcbznVkNRbFo0r9hmh6qnBPFSddr1ixAf+FDhkvg/IlkrH/kBgPq9fDFbWt5lU24a1suinji4dEccDpu+KA0/AcIoxJRz4vi9Q2DnzyKBo+sCzr5blhvrIBKzbsxqGyV2Ph0sFZ4cr8mE+Jgqd9Mwq1+n+DZO2ZrXBV+1o4RXy/a9U8vKbsGisjvOs3Cu967cTykJ3twfxxb+Ir7YUOUP/6+9DvvCBNsWZpXW0HFnte2wBfDe2M6+cH1oFxiWei43XtcUUNMWnbvRGLlv0aWMsVMc8L3QRNhDx4w5/n+LMGUsfxS9pfgl8WLgnWdeC8jYS0OFwz6T2x48jOyPk9CRR8AhQ0c6WOjVutrLZRhZctozCj3Vu6DgY9PQIPX1HVQkych04tXsJSbUYlBLbbx2HJI6roKD0fHkPzx3TvsuwCnu3CTwysFcTAqiXtcFhQqHxexbxkMei0HouF2vYtK+8rcWJ739vQd3FgMPO86BLXhk7P03CcjgFvTsZTjZTtqvvEszuIZ4c8C515WHlMpa2diJa6l5XZ+9ErA5fJu2sYAFk+9Vk2W/zSkv/CpgNno546mU5WbUbwbf8Yvn7uMuMW8dQD2JlWClXL6JNBs10moMXQ1zC/5xmKOJ6EN++8Bfd8H9iaiBrd8aN4+1hXaQBqucJm69iQYihoBm0pWxgJ8QZ+2JUD8GpgByXiLnsU+1693JBLT/Uo7jgg7KG+8IBK0dq7heeUwW7Nk/ww+wyDR1OgnYRdtmjbsGr/ssynixdBc8SLIGVRlbZ2Apre8CG2BOii4/OL8FZHBa8pjez2ZLJHS7YZWP1ML1wxTRf39W1AWc+JzmbNdVMSrR59BR/2CK/d2Ju+j+mn/4Mff03ABReaQ2kIRk/fjjYzAx5s2Tz0IupPTFvORbIlLuiLxTO7Gbz/97w/BOc99nOgXQifwCEL3sBjtRw7gtCP3gVNeUsk/VmY7S7KNmP2zsr2YsPUH2mtJpvHr3FsRdXr8M0396CRK1J1npNdzAttSa/XGb3xMabIrefmOYPq5WgIm2JcKGZ/6Wpso9lfOrgsYj2NyeqWcqPYCmSVvUTHzuj49cfa1nPz1nv1cMU4EZZnpwjLE1jwRznf8WOu4PsY43c/JjIYQ0FTVkMs2osatsY6VIHYwvvHfyhb/4zsB21G2t+KsnidV1g2a8Ncwmb3g11/4HXLuXZ/9rSNY7rWQ2V3sjDN0avd/ip+e0SdRdp3Vv+K7eYNxHZz7WN6qeDaxVlcEM28LDLbUA7MEfkpUa875s3ug6ZquAKxZXrnoXhULa+sa/yYT2nlF2F7liWhQQtTCCXxi2EstmTrbQ7uzXbVtPSQQqYKklvH/z6IhmefpvzgLmgi4nbn/xookHHhLNRrKKbd2yp7WIpIjJb3kEABIEBBM1cq0djJ2Z3+7T1rpk7TZaudYQCvaHprF3roIUzrcR3u/yng/WWeiHsSNK3EQXOhPC0chHijnqpu53WjpuV50bVFBAPvJYKBBzJ2ioh9uEbEPtQWFconbdETqDFwSXCRbBY01W1jdqfQZwjB9UohuAZ4Xva/L/DhDUHhzyMDt8m7p0FffVbcORj91Tjc7RQDMMjAaDMi1tk3wtvX1aPYZJd29WbYmmcOjRAlW8dG5G0ypSbhNYamvMfuBEyDLZtim8r7PNUj1K2Y4s22lWerKS3jJD+8PgMmQTOSskXdhg0TcLt2ZuSSzXPRkIbNpNe0VdRy0Zn+Ca4793l8rRmHz/2BKe6SrZehY7txMnw/2qWH0UmIy+cKcXmbvNRk55H1J2ZBs4alFxOg9hlhbI10bXt+cAuv3UXbZoyCZnYvSVk1hmcICSUQW9ZUv2pdwvvhferzjXOIrDqS38/AqMCOFdO2bDV+puF+1fatPLFl9tPFQvV88SIy8HY1GHtML5cfgqZxTDf0E4p3aotHZ+Haz3oEts2b2oEaP1O9P9p692Wu4PcYE9H479LPxFTQjE17UecQp3QZi9VjmmR3OvDQvWa7xKG/9T6vsHqw8YVG9t0e0dSRqT+0dIIwjumweRG/+umbxAu0oAdpGIdiGvpIixfq4VVFdPOyiGxDeEieKjwktRd4Yk7/zBIRKzlcz1nxcu7alz/C9LZmz1SX+ZQbHMM8yWrc8DYH9zYnNr7kajH0LeE8YXFmQbY8exA0ncrp2O78mDOY5z3WuybdqoK/k0BBJ0BBM1dq2Esnrnay5kyaBwZjenZig56KOom2DtYfuNIwqTYN9N62nMtU5JukYZh1n82BLx7FPDXP9tsrVWZeF13qPTaLOW1x5CBgqNvGHBZ7KjNDGTwy8GeRYnybCxFjrFm3u/Hs4DZoGPKszN4ovNqM8U6jXdq+Nd/5Ji5pMw1rtJtN9RYtW8f27aUdGhMIR9C0jWmjTkAjFjTVrZjWMV21nKsLPsMkP7w+wyxoRlK2qNuwQYzM7hWp15R6GImjoBnXAtN+H43rzDZiaI92Hn7C07aN8LS1iqkbtc0a68a2v3NqN2HYvf/pBx+ucnQQcpzGIHMxDOOO7Usr4w6IcGJLheOhGVF/ZhKrwxmrIxn3PC3W1XZl1yZcF6Y2BqcKj2ocTcU2tJd7xR8P7uxQx2B1MW308FSFTtiKF2o7MveRfgiaxjmSutMmK35oZQx4/x3ctkg/2EgVyVTh3ejh6WtfmUfGmJj0M7EUNO3ErSjby4HZg3HWk2tCoXuKntoKj4/uj14tLHZThbM+cehvZTLeRKHsD9wjyttYjwVeWoyZX4kx0xBb3SWTYXho2jl3qPMuq10tMgdpwjO/svDM1z6RCpo296nPN5fWOL5ENy+LxDYMfaGXXXF6AfyYT7nap9uazNsc3KvtLh/ZFe3f3hfMVSAMydjHrU+qz8p6lIKmY7vzYQ1kbrt2L/Bc64IXkEDBJkBBM1fq19jJWZ1saRYQjNl0FjQN3n/Zymf0SLTe8hK8SV2MmBY6TgOM8VCgQFpFT22LSW8/iGvN3oCexDxjnr1VmfXb9Wz3Gp7vdI9D8H51m723zBk9Xj0xEAn7tY1sxXi07fmR6ZARGbfoUtw77E70ybZ9NAybMZTf22TFaOsm246WrWN9eM1fViLeBU0HkdGPhYdBNPNodIbJrrHszn2GTN/jpM+2bD60YY+LV9sXB7IYXtLw1B4dxJKobdarXbotFuzsws/0gyeczl0k4nP9i32ZqVknnauPN4gqkfYn3hflajuNlaBpn65TvYTT7qJvM54Wgl7ahKH9e31ZKA1A3ZadNb5meegGhTxkvdTKEr4UccDkuakKft56P/PLSn8ETagvFRTPsdBLFX2bZegllnKwkdqHO7QPb+UzzV38mCv4PMZE1l5cSu/JdpU0PJ9yLu6xE8U8PdOpD9gudj/1E7ufgjHfg9mTcWsv634bRt7bFvXMp5uHihBJfxu42VNfYMa9T7zIv0LsRAiGeur4/NsihIt+mIo3y/QeQ9Pem9553hXMh+3LW+d8GrhYHV4mbvcsaEbdZsK3jcicDTzOhUx2Y/1SIgMH//gRk96bj0+/3YTtx9JwMHTSuco+1h6a4lnJq/HgjQ9h8hbjwXcybvT1ve/G8FsbGsNkadnzMreNtN35M9cy2GjLB7B7asdsuwg9tkZeRgIFlgAFzVypWqMHibWHyrfod9FL+CqUP3WQcBY0nRdwXjtY8WCHyZ/r5Ch1M2Y89Cge+kI/GEKkJ+J6jpj+Mu5XTwQOWzzwWmEOgpKahKfnyxscBAxzLBovWVQny17z4MciJZi3tF3LMHrIc5i4MutwEz3bRWtdjTkzByuxCcOwGUPZvd7nMPmPlq1jXXjNX1YieUbQ9HJKpLnstjHovGzL9TLpM/UZDs/z0kSybeX2tJA0LtwcPTQtPJe0fHlqjzHsD0xefP4LAV7t3lkwtXpxZVuvUdleVqqu407w0vwiaIYzVkfSZjzx8tSuIhXPM0SM5HYiRrLMve5lqXhehuxCsUldVFBfqJo8j5wEBjtORtY+CZpQPbV1L8usl5+huJjK9nfdk1PdAWOcA5q2KXqqeNN8x4+5Qo6NMZHalgDjyXYVgHlC0JT5OYZ1c0bj1jHLlEMCg/kUu2baPPwS5hhiJgsPxL8/QLfur+GbA0axxtI8IvbKVVMzHm5jONTFk00GLwrDQ9OuP4yloGkIf2Kznf2jh67DA0uzCp166IA4KDTwtyHPUbeZ8G3DExur+vLYdhxfEO/7CQ/e/hgmb3Q+5Tzw+BwQNOVj0ndj0bjRuGfWb1mHSenlj6+OPq+9gGdbylMk9Y/zWBBdu/NnruVpHA+nTfJaEiiABCho5lKlqtsivZ3E6t3rw3mRFIZ3TIQemllIxeFCiyejx5D3sCp4oE6cWKysnHtr1qmznsQDY54vGfo2XtGPArWtvziUqVQJ4oB3549nD02HLaaqR1bVjnj/rVtQx82uEsqhmh6g2xMDUwgAXyasYpIsDgCa/9oU/G/WSmxV5yQV1TiZxkHZ0avXUG4fBvNo2TrWQzjeUoGE8oygafAEOB9Pff0QOrvZXFwpVKlSKvhm12vdeJv0hR7t0UMzojbsxwTcSxqe2qNHD81I+oP8IGimC8+7i4bjPb1fT6yHXvf3wp2tzkL1UxMDMeFsbSHS/sS7l1HBEDSjH/c8LYS8tImIPTQBVTDQtukP2RqKbakKeUtHXBeIo4mAt+ElU/Vt2tlPP1e9kqrd+BQ+7VfDrfdD8fKnoGLI880vQVP49zxwFbp9EjjUTvN0P2cyzr/2Pe1gsqyxUhFxg6LJ7gFt0etrKU6ZD0yKvt7dhD5PdpFjY4xPgqaXuOl5RtDUzVV6fs3DmKdn492/kkPb0OXBNy0efRef9QgKL1H1t4FneapzpRXpJ6pr8qlhPuja1IwX5HFBE2oIINjFZTYWyXZ8ibrNqM/xZhtqXsIJ3+LWR+g5sRc0/8UL1/bEyHVBgT2+Cq7pezcGXlcHtUNrL7e27W0eGq7tanmXBwB9Pgujxs3Doh3q4qaCiBM9W8SJ1uOFOowFUbc7b+Vz3KUWQdsNs4XychIoEAQoaOZSNRoPmTF3sFaZ8kvQBLxuUYgohqZF1o2nFJpi0nkSD4x5DucEQ/fqVbkG4l091cCNv8kbwjCJsY/tZ5sXjwwMQc99EjRDedLeaj6OO6f9iWTtS2VrnPgrskmTD4N5tGxdDCC8cqmitrpY1R8SrRdjIB1vkzc1VpOT3doB8Fo3/pXNIEKEcQppqASehJc84KEZtc16rRu3xUK0dW+fflaMQPGM4qLP+/I53Go+iMAhtEJ47S6rHN7ahrG/ystbzt3yFm2b8cTLU7uK1NZE3al2ID0t+/yB+tohFiYhT9mW3fH5z3Dlh7pnZ/bdFoa4cRFtwfNP0FTbghQUvj3t1eCpyca4mFnCrpwDDUNKn2AMXtN2emnt0da7m1jhyS7E/qBbzhmNTzS9IpZjjE+2FRTC73KI72iIs2jhjeeJS4zay9G/PkLvPi/jk/+CApEyx4u2v/U+rwj2tesmo8kNs4NhiaqKefFMMS82HxjjPrvWrsjrgmb6EvRs+gTmatvq7Q8GVUtr/8Is2jZjzdTJNgw2G2kMTbvdKqb5qH3sfzsbcWvb3uY6ntqlrTlaONaIHXI7J7UPvty3Hwuib3feykdB02NfwstIwIEABc3cMo90sS2pzQOYsTeYgdPbYe6ch5VtvuaM+SdoGgJP2755jfCUc0ueqhAUj2teXIiZuoelRzHPIK5G87Y4W/6M3hB2geu9n3JuerPuyb68iKr/Ymyn2/D0Rt1eumLpl/2haq/RDfoy3QwsGHQ1bl0Y8DZRWUR2KrEfg7kauzQSts4VYChX6TaY88NwtLfx6k0TC+5aYiEeEHytQhrkpKBpPH3yFLGQXjOyURhxdbzWjc4v+rJF3YY9LSTzgKBpOGU7Epv1WjduiwU7248+fUNf07AvNrzbDZVMjzPUdyxOOXc4+KFgeGiavPIjGPc8jQme2lWktiaNQunDRUzJUbdtwPBJ/2Y70Vw9lbza7X1x+UeTMCNJ3G61DdSweySMk31DNuqfoAnlRHOIHSijqs7EcOl5aRYJ1IOQhvbF0bGTsEzmx0KEiHVf6ckuTKecx26Mica21BitcWh433Qs6Xu6Tcdn9CgLhQNQrvbEJZbt5Z/puKjdLPyh5Slri260/a1MzVPZtOduwP86DMBzWhxCH05UzuuCppj3Lh3RXXiH64fJVMUtUyfgFcO2ZKNJ2Y8v0c7LHOarNrZh8DCN9JTzSARNtV7LiPXrCrF+NWdf7adzasu5DULDGs5QXvuxIPp2F/1cK7y267ze4a8kUJAJUNDMxdo1nB4opw5i2949/3sMD19hddqhf4ImDG70YsIit2yNbKIsSMUbrfcfQ/PHVtiKN5aTo+R/sC7lVNQzH/yzbw7atpyEnzTWJiHIcFKvg6dqsih/67FYqL1FjcOpHR/Bl2MuswjwDBzdtgprTzRGkzO8Ve7fE3qh0YQtgYvjamHYglfx0JnK2+jUtRjW5T68Ggo0nV3MMvAQsUIfeX08hjYqlj0DchvEr9txxoV1kBj6VRXtgDJiob5KvD3MEggysPqZXrhi2r9ZW5IsJiCeRMedq7EoqTZa19e3HqtZzBCemFei7+KAh4DhsCrDZMrKZuQdIi7UxyuQ2fnioNAag8E8bLYuNpA8D51avISlQaeIMg26YuqEPmhrsGGLN7xiEbr+7etNIk70op/Mrad6FNcdEBPK+uL00RTNbiui67NiEn5VZQtRU25d2ogTLc4RG6r0j9e60a/3oWzRtmFPC8m8IGiaFo9h26zXuolUCIg+fWPcMbGYWSIWM8qLgLRdn6BH5+exMLglPZu4E1F/4n1RXlAETUTZZjyJGJ7aVaS2Fug/srZln4XGDbZg1VrR4WYT8pTY4hecgxY//64Jfurp4Vm9udGGyzTogfff7ImmFoepyLAqP2+riubnqIeZuPRnXuclWoaUfBevg8ZV/sQqMZ3Ivv0zS3yrIcp3WJRPvs+2PBQyynp389DMW2NMdLZlONlYjIMdR4zBlG41A2Ev9I+M6X7/w3jg673BOZT1XDMn2sva75eidONWqG518I/6gl8/UMo8JygXQX/reV5hnGvG1eiKLz/uj0ZuoZucpll5XtAUmd8nbLCDWF/o45WIY9rs9iF4/V7renIaX6KZl0ViGzB5mJZpcje+mnY9ahvqTMxhVy7B5tMuQ6uqwcry1O87zKcMW/XrYvT3r+JudZdGtnVT5DE0vfVX/2Hp4oM496KzLUONGbwtDYc/2Y8FUc9zfAof5Klfclnq8GcSKOgEKGjmag1bCFUyP/ElUKlaTTSvWVaoc7vx67o9OHT0EJKO6sHAozkUKFBgs5gqT4G7uFFllJBj+4ZVWL41NTjxs35Da9nBapOxeThavyE6X3YJGlYWiR35Fx/O+BDf6ttoKl4tTsMdjGYh7qYA+CIOy0Wta0EbF5O2oeRtM/Ba0JszmwAsToVs1vYidLrwdJTavRGL1v+NDT/+ifWH042But3qOFlsE7lcbK1SJjPnND8XNeWMWPBfsWKDCC4dh7i4TGRqVWDhnZe+Ho93HogXQ6KnPDVc53AUm1b+hrUb1+OHP/fhaNXs3pWGSbkQbItXr4craov6V+sjTuRBZEDLgtUbVVNA8qKnNkD7+sE0NhdHv0+H4ergNduKV8C5FzRC61bn4qySMsH9WPbm3Kw4TnFiu9xnk3F/SBQ2v8UWGprk37KGVlcpOzZgxYbdIlC6apvRCycagCjZulW/2a6kYF68bGlUr3UOyif9jg27j2CPsKnQp/S5eP6DF3FnNsHcB9FPPsRLPWqZSRIC9G1CgNZPSw3YzTWXt8JFNYpj17oV+O2vbfh2zT+mepH3eq0bvdT+lC2qNhztBFwWxUsanrzGHWJoRm2zXusmUiHAh/Sz2WgrDOnXBKdA9HXffYV3vhV95vF4Ia6nI012WNn6q0j6k5NQ0BToomkznhZCXtpEFDE0ZXPIWkxmjaNWQl4ov6Gxzhj6RO3L09ZORMtu7wW3xYpf4svh/KatcFX7WjhFzDt+WLUZ69f8jt92p6Jar0n45aHayu1u/Zn3eYlMNIu+yWKWAAAgAElEQVSzXj5zXEx5VdYLwzhRvkxtMmF/eGE09e7az+WpMSbSfixYndnmB9IWxBy64mloWFOMdOt2Yc/BQwhNn+UL8e5j8cvjF2R7+ZcT7SUghsWjdM06uLRZY7StV14ryOEt32GSEsvccAhP1P2tt3lFB0ObKoamtw7ArWdbz6DKnnMprjG8JLC+Ls9vOQ9mO1t/on0v6ql8VTFXribmuanY9rs4xTslFfsP6usjqwMVI5+XRWQbcoyYNRB1R/+e5fCg9YX1UU2uYcQ6aukf28X6sTIGzX0LT9YLFthTv+8gaCoHnckUpUNOr74dcK5YT+xatwhz5q0TB14VRtF4MQfQps+RC5re5sTBPntnAqrWOQetmzfR5sHys2vVPLy24G/s1xZPZk9uh7Eg6nbnw1zLML6IPxx2pti0QH5NAicFAQqauV7NGdjw/kjc8ORS46EsjvmKXtCUk+sNs4YK4W91sJO3eqD0hByOxc9fkm07ob2gGQiGb/mJOx2D5kzDk6ZYPAfEwS8NH1gW9AY13mmMMeYlz4H73WKTmfO35/vncNVdn2YtjgwXxKNe3//h1p+G4tGf5Q82ixCvJ/5ZiZHJ36N/5ycwWxd+zRkUp/MNmX0T1nUbG4hpZblF5JCIvXWzOGhAF7jURII24+UURvF2uuPo6Xiri3oSoEhLxNl8c9BdGPS1GrzenNEYCJryEdGwdW3j3u0qLrERnp49FnepHryh9N0WycELHWILBq7wUI/6M9P/wet978UjPzjVibw42j7Dr7J5Z52tDUc7AZcYvKThh6AZlc36Mwm2N3s/0hc2em8P9PnCxu6kx/D459Bk+h14SPaZVv1V2P3JySloehurrce9nBBoXLtXeYG6LVu7IVEczPChOJjBdLdhi6L8LXBAkF1cxD3fj8fV/T7COpdDdrOHknHvz7zPS0Q2PebbsJVcFs/mVOUAlVj2lXlpjIlS0AynrxUCVb2b/4ePRqg7krJsMCfai+rdZ9d2itbqjoVz+yiekT70tx7mFdDEVk8t2hCSyPGO/OChGSxA2t+foM+dL2G+4RAZZx6Wa40I52WR2YbM3zGseKYfOk3bijTb7JrWLV7mQiIt+0OBxG8v98Rlr9g9syQa3/csHts+DNdqh71FIWh6sN1uppf01hjiUP6yIVj+qroDzmksiLbd+THX8j7v8dZyeRUJFEwCFDTzSr2m7sSS2e/gxY+X4+e/9ynemCKD8m1z6VI4rV5tXNioNa7u1BzNa6hbhr12mtkLm7ZrDSaPewWTvt2G7cG3jnHFS6N2/UvR475b0OdCqy2sNh2sGMTnjZuC8Z/9ij9362/EpbdbBdS59FqMue96NDdvRw9O3HcsnoVBYz/A4s0pgQFZ81Ktj4effwZ36m8U9UmHzPOkKZi1cDM27w9eH/KquxDtb7oB93ew3nbgVN1pu5Zh3PBJeG2lfJspVMM4+abvYtwz7E6Nw+5JfYLB/u29KgLbrqfh6emL8Z1aj7rHwKWXYVCvLrikmsV2dLEt6r2XXhPef2uxIVgXRUtVRv3LdXb7xKmC3cWpgqIUdjFv5OE+k57D8Bm/ap6q8lO0VCJqNroNUyZ3QQPx+49zP8Cr7yzGsn+SFM/DrHoaeY9N/vS6WvkBRj01F58r5ZM2c9qZ5+Hannfg4c76di+vdul1QRMFWw/tPHDi+5t4xWC/AX6nnNHAVDarBN0XydpdroKmuMatHg2Pl9uJPsAL4z7D/D93ZtWpsN9yZSujXqtm6HlHD1xjCDPgtW70B/lYNpGk1u+E24Z9mIDnqKCpoYvEZr3Wjdd2Y7ZVv9IXZZvzAvq/8p3mBadFXJNjx4Ud8PCwPugiRP/Qli3bGF0B2/XWn3if2BeYLedK1UXSZnJCoPHQtYpLlG3Z8gZlO63xfjUmosM4p96kjZszbPrts9Cu800Y2L2xaYuvl/5MhhrxOi8x5duwpVHJrGEru2gvhsMprElGUu+e+rk8M8ZE2o+ZeQVOhX55gs042P5KjOhrNwcNpJUT7eXoX0vx8ux38eHCrdiqeo4G57w39+9tM3/1ob91qfPfT3JBM2AFQTua8jW+WJu1Lgr8Jj02S6LcKWfhvPMaoEu7y3DFhdUstzjLFxLhzssit41A7o7+tQhjnn0Lb69W5oHBHX/XdBV2dWvDrDBdfsynZBkt+sgzardE3xH9cPf5wikitDU9GkFTFM61v5K8P8OkmQswd9V27AqtDQPzktPObI6+D96BXi3MId3cxoJo2p0/cy1P/ZK3gZhXkUCBJUBBs8BWLQtGAiRAAiRAAiRAAiRAAiRAAiRAAiRgJOAmaJIXCZBAfiBAQTM/1BLzSAIkQAIkQAIkQAIkQAIkQAIkQAIk4AMBCpo+QGQSJJDrBCho5noVMAMkQAIkQAIkQAIkQAIkQAIkQAIkQAI5QSBNxD9ueNun2KU9zDlmc07kh88gARKIjAAFzci48S4SIAESIAESIAESIAESIAESIAESIIE8T2ALXrvvFXyfniByehBrFq/NOpC3Vg+sXtATZ+b5MjCDJEACZgIUNGkTJEACJEACJEACJEACJEACJEACJEACBZSA8aCeUCHjyqD7hPcxsU2RAlpuFosECjYBCpoFu35ZOhIgARIgARIgARIgARIgARIgARI4iQn8h9fuuAtP/nQIRzMFhrgEVK1zMYaOuR93nF3sJObCopNA/iZAQTN/1x9zTwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAInFQEKmidVdbOwJEACJEACJEAC/2fvPACkKPI1/sEuObMggiKKnBnPeIpy+gyIoqLieeaEInoq8sSsmDEhHooJA+Z8ovLMenp6Zj1RQT0UUUTJsOSwOwuv/lVdPd093TM9s7M7s7vf3OHOzlRX+FXNdtU3/0ACJEACJEACJEACJEACJEACdZsABc26PX/sPQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAk0KAIUNBvUdHOwJEACJEACJEACJEACJEACJEACJEACJEACJFC3CVDQrNvzx96TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQIMiQEGzQU03B0sCJEACJEACJEACJEACJEACJEACJEACJEACdZsABc26PX/sPQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAk0KAIUNBvUdHOwJEACJEACJEACJEACJEACJEACJEACJEACJFC3CVDQrNvzx96TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQIMiQEGzQU03B0sCJEACJEACJEACJEACJEACJEACJEACJEACdZsABc26PX/sPQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAk0KAIUNBvUdHOwJEACJEACJEACJEACJEACJEACJEACJEACJFC3CVDQrNvzx96TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQIMiQEGzoNOdwNLv3sVt9/wDL3w2C78vXYMq1Z+SFm2w0Wa7Y+hlp2HILhugaWQfE5j9xfO47oYX8PKP87G8Ugo2QZuum+KQMy/GbUf3RIvIa9di5scvYtydr+GlaXOwYIW+GE1bt0fPHfthxIWDcdQWzWLRWT35IRx+1pP4dIn0vivOe+EJXLN1rEt1oZ/vHIwd7/xFP9/mnEfx0TkbuxdXLPsBL937OO567WtMm78cqzWg5uiwQXcceNLZGHnC9ujWJKqt6vCp5tysmYP3n3oaNz33b0yZtSQ5Nx27YvfDj8e1w/ph6+ZR/S7Hu7dchpMnTMMyVaT/Te/gmcPj82RJEiABEiABEiABEiABEiABEiABEiABEqjPBChoFmh2K+Z+jFHn3Yw7v16mRczwRwm6HTwS743ZC51TCiQw+e9D0H/8TFREXN2017F444Uh2DEg+K3+YRLOPPMuvDTbiJjhj1bY+X9H47WhW6UVVH987GIluE3GYncQ2Qqav+HmQ07CjdOlF5vi0jcn4OJN1NPK+Xjr79dg6CPfe+pO7WlJl33wyMSROKQs+F7ufKo3N2vx/TOjcMz1H2BmOrxttsSVD43D+duV+ju+ZipuPuFS3Dh1pfs6Bc0CfUjZLAmQAAmQAAmQAAmQAAmQAAmQAAmQQFESoKBZiGlZ+RaO7XsjXludbFxbRm65Lf6AWfjgu99Rrk0R5VGC7f/3Ibw/NGm1KK8uePES7HzJZ9qCTx5Ny/6AP++4ATD7v/ho2iJjyagebfe9HN/cvR/a26a+G4+dj3oGP7kCZAlatCvDltv9AWXlP+Iz19JTLmiFo+55AffvExDd5K3KX3Hf0GG49KOgIJuloPnlWGx13CTMlZHuOgw/PXa46usqPHfmXzDkX2uSgJq0ROfuPbF7T+DHz6fjR8eaVRPaejC+eOEEbOaZy5z5VHNuvhlzIva5//ekSO1Yk+60bVss+vZ7fDdnVVKAbrMPnvloJPo7gnPF1Mdx6OmPaEvXpr16oNv0mfhFjYmCZiE+pGyTBEiABEiABEiABEiABEiABEiABEigWAlQ0CzQzFjBbU23vrjlzotw3Datk5aQyjrx8XNOwznvOVZ6HQbg5Y8vQF+3r1NwYd/zcP9C88Kmh9+Mt27a1bXiXD35Tux1wkT8qEXLMgx58jmM3slerCwXbxmM/SfMQbs/DsKdtw7GgO4e13JlIXjZ4f+Lu39xFM+dzsYvTx6ZFERVNRVz38HZR9+I5+aZMiWbbo8/Lf0GH5fLb9kJmh9cOQiHPLtEakHfqybi5WPbmI4uegNHH3gz3ljTBYddcQ3uGLQF2rmWpsqV/B9XYPcrrKDbHqc8OhFj/2THWB0+SbE4p7mp/C+uOvRc3D6rFXY7+QLcN6wvenhcy/1zA/S5/CW8dqId8/M4aK97MW23M/HG+Na4orcavxoSBc0CfUjZLAmQAAmQAAmQAAmQAAmQAAmQAAmQQFESoKBZsGlJ4McvpqH9LtuGuJOrTv36EPY44DF8p/u3Oa58936c39Xp7Ge3otdJr0LrmS32wuOfXY1DAm7ln157FPo/uUhf0PLg6zB7zJ6ekZbj8y+W44+7bBLqTl7x1tXY9Nz3lZ2k1K+sCCcrK0L36m8wYs/heFBXXYKOe4j41h5X7zAKr2h9MwtBs/J9nPqnq/GCWKqGjKPi52/wddvtsWuKO7m043VVh7JifUpZsXYxvaw2n2rMjbS/6Ft8smxL7L5ZiGUrEnj5vIE44Q1jfRqcmwWz5qB1965oMf1+7HrIU/hRlaGgWbAPKRsmARIgARIgARIgARIgARIgARIgARIoQgIUNItwUkyXlIXiVsZCLyho/vfvJ2H38b/pd0r2vhhzxvdPFSa9ol6KhWeGQX9/D3Y44jnt7pwqaCoLzan3YM+jX0Xbs27Ey+dspxIPefsaX9CsUG7zXZXbvOigqaJr5ol5Zui+GPqeKecVNGucT5q5ydxrYOotx6OvspCVR+S4PXNAQTMOVZYhARIgARIgARIgARIgARIgARIgARJoKAQoaBbrTKcRFb1C3qaDx+Ori/6QOorKVzCo9xi8o9/ZFrd8Ng5ntI03WK/QCBWfcqqKT+mP4AmsXrMWLZpbV/VcBM3lmHDiIJz/uciZQbf4OP38EVftPxS3a123uYr1+aqK9Wmuq2k+yCD4pu99QvXvICXEGnd9n2Wp90IKmnEWAcuQAAmQAAmQAAmQAAmQAAmQAAmQAAk0QAIUNIty0hP44MpjVWxJ4zLeVrmMT1cu4031b/Nw2xHH4trvTcejrfc+xJAdR+I5nXgovtUkUI77jvsrLvpSBLfwhESpyHIQNOc8jr32mYBvpLKNj8IHb5+F7bKYiwplgbq9cruXZELwJdepaT7p5ibGABZJnMy78LHGq0IJvKZCCUhW9+CDgmYMmCxCAiRAAiRAAiRAAiRAAiRAAiRAAiTQEAlQ0CzCWTcu3c+ZpD4popfXMjGdoOktV4KDx7yFJw7OPFhfdvBAFu7oq7MXNH++czB2vPMXXeU25zyKj84J2oCm6atNvKMTFwVF15rlk35uMvEtV9aZJynrTJPsyS9UB66loJkJJt8nARIgARIgARIgARIgARIgARIgARJooAQoaBbbxNvs3sulY62UBeajeObwDp5e5iLYxUss4xfrNsZ5z0zANduFJbYJQstW0PRmIc/OHV4sSH2ioIoh+h8VQ7Sz26Wa4+NmXo+cm3SLyWaX/03HDC3Z9Ci8/X9nYcdAMie3BgqaxfbJZH9IgARIgARIgARIgARIgARIgARIgASKhAAFzSKZCN0Nn5hZgj8MHocPL9oqkPAnF8Eus4WmT8wMFVLTgcpS0PxyLLY6bpJ2Fy/ZdRh+euxwtI81D34xM1wUrBk+8eYmahB+MRNt/oTxr9+Eo0Oztzt1UNCMtSJYiARIgARIgARIgARIgARIgARIgARIoOERoKBZLHOuxMzjD74VrywxbtR/+OsNePXaXT2Wh7ajcWNETsbwPiPwcLlclz6GZsXU+7H3sU/h+0op2wp9L78LE0/cJDVzeiSrbATNBF4+byBOeGONqq05jhg3CQ/1i2MFqsTMv52Kv72zzLFwHIB/PHEB9kkRBfPPR8TMeHMTBkiJmX8fgv7jZ6JC3m6zPW559lacsVmGMVPQLJZPJvtBAiRAAiRAAiRAAiRAAiRAAiRAAiRQZAQoaBbBhFTMfQUnHjoGb2hX5iYqsbjKTn7RdmgR0beJf+uHwe+YLNnxspyr5DPvquQzXVMrXD35Tux1wkQnXmdbHHzNfXjoLxtkIWZKnVkImpXv49Q/XY0XJFlRi73w+GdX45Aot2vb3cr5ePyc03COE3uyaa+j8PI/zsKfmocDyiefbOfG36O1+OzGITjoEcfNvH0f3P7iNThhwzgCbhEsTHaBBEiABEiABEiABEiABEiABEiABEiABIqQAAXNAk9Kxc/PY9Bf78IHTlzGnf93NF4bGnQz93fyt/FDsN3ff9IvlqgYknNUDEmTAd3zUFnAe6ks4AvlpRb74JnJI9E/UGTBh7diwBmvOmJmJxw1djzu7+eN1xkXTnxBc8lTw7H5Nd9oK8sNj7sd/72yd/pGKn/FfYPPxkWfO4l0thuMl546ITr2pKotX3xymZvkYMrx7pXn4S/POmJml33wyMSROCSdm3lc3CxHAiRAAiRAAiRAAiRAAiRAAiRAAiRAAg2YAAXNAk5+UDDrf/2DeCyOdaTHHTnKyvHTa49C/ycX6dGFiZ5+MXNj/O3x+3HDjs1ypBFX0FyO+447DBd9Kc2UYciTz2H0TmmaDIqZe4/AJ3cejG6ZLDrzwCfnudHDCYiZmw7Cay+eE2lRmiN0XkYCJEACJEACJEACJEACJEACJEACJEACDZIABc0CTXvF1Mdx0KkT8B+xzCzJ1jryN9x8yEm4cbrp/KbH34GPRyZd1P0JflLjVC546zrsPfxdzBYzyTZb4sqHxuH8WNnMo2DFFDR/fQh7HPAYvpNqep2IyS+fis2iqqz8L2479kJcO1UsM0vQ7eCReG/MXiExRcMqqB6f6s1NOV4eMRQnv7JQW6G2jWFRWqAlyGZJgARIgARIgARIgARIgARIgARIgARIoE4SoKBZiGn7fgL6/PVxJwmP6kCTlujcJsVp3N+z7kfg/545EVs5r1Yol/LtlUu5ZAqXR9OyP+DPO26AluW/4O2vfsdqE2ITJVsPxhcvnOAKh0teuRI7XfQBFtv3W7RBxxYl6Sn0HYYfb/mfNGXiCZpTbzkefSfM0fVs/79P4f2hXSLq/FEJtucowVZnKRJAaNOxlUohlO6xIc589G6M6GXK5MoH1Zqb5Zg47EQMedMkLhIhtkW7NmidAe9+V03EvcF4AOlnhO+SAAmQAAmQAAmQAAmQAAmQAAmQAAmQQIMlQEGzEFP/4iVof8ln2bW88VH44O2zsJ17VQI/PnYB9hv1DZZF1FQSErfRKyrG7oCK07lExemMfsQRNKfgwr7n4X4J6lmyPW77eCwGt42q0Vtf3F4GM7nnxgfVmpsfcdX+Q3H7b3H7bMr1v+kdPHN4dtewNAmQAAmQAAmQAAmQAAmQAAmQAAmQAAk0VAIUNAsx89USzfwdXv3DW7hp9BN49IvfUa7NMpU1Y9dNsc+Rp+CmoX1S4k0WTNB89zp0O+tdrBI9MyqRkTu0fAiaprJs+VDQLMQHgm2SAAmQAAmQAAmQAAmQAAmQAAmQAAmQQHwCFDTjs2JJEiABEiABEiABEiABEiABEiABEiABEiABEiCBAhOgoFngCWDzJEACJEACJEACJEACJEACJEACJEACJEACJEAC8QlQ0IzPiiVJgARIgARIgARIgARIgARIgARIgARIgARIgAQKTICCZoEngM2TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnEJ0BBMz4rliQBEiABEiABEiABEiABEiABEiABEiABEiABEigwAQqaBZ4ANk8CJEACJEACJEACJEACJEACJEACJEACJEACJBCfAAXN+KxYkgRIgARIgARIgARIgARIgARIgARIgARIgARIoMAEKGgWeALYPAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQHwCFDTjs2JJEiABEiABEiABEiABEiABEiABEiABEiABEiCBAhOgoFngCWDzJEACJEACJEACJEACJEACJEACJEACJEACJEAC8QlQ0IzPiiVJgARIgARIgARIgARIgARIgARIgARIgARIgAQKTICCZoEngM2TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnEJ0BBMz4rliQBEiABEiABEiABEiABEiABEiABEiABEiABEigwAQqaBZ4ANk8CJEACJEACJEACJEACJEACJEACJEACJEACJBCfAAXN+KxYkgRIgARIgARIgARIgARIgARIgARIgARIgARIoMAEKGgWeALYPAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQHwCFDTjs2JJEiABEiABEiABEiABEiABEiABEiABEiABEiCBAhOgoFngCWDzJEACJEACJEACJEACJEACJEACJEACJEACJEAC8QlQ0IzPiiVJgARIgARIgARIgARIgARIgARIgARIgARIgAQKTICCZoEngM2TAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAnEJ0BBMz6r2i2ZmIUHr5yAZ8q3xNXjjsEepbXbfHatVWHac3fh/FeWY49hl+DynUqcy1dj4vU34N7pZTh61HCctpGt9Sfcdu7DeH3VlrjkwROwr/Ny+QePY8hDP6LTYefi3oGdsutCnkvPm3QXTpw4Fz0Hna/60iHPtbO6zATC1wi+n4ijbp6MFTscideG75C5GpYgARIgARIgARIgARIgARIgARIgARKodwQoaBbJlJZ/8AgGPzAD7Q88Hfcf0x2lM1/FSVd9jLklvXDh+JPRryYEzRkv44RrP8V8YbDNQLx60a5I18zvSuQ7XYl8VVK+14GYeMWeaK35zcb4C+/B8wsaY9fTr8SovlbQ/A6jhj6F97Atrh6vRFnLetE7OHPEu5ixyT547Np90cV5/a0xIzF6CrDhgWfh0WO6FXRm3hl7FW76qjkOvPhSnL91QbsCJD7HxadPwuSy3TBuzCHYMqI7K968D4OenIUN+p2Bx4/v7pZKLP4eT0x4E5N+WIzlFev0601atEOPrbfBoIH74H82bZF23t2KPnkcB907zcy/+yhFyzbtsfWef8aQQTuhZ9M8sYpYI7UlNCe+eBKD7pyF/S+7GMO2yNOYWA0JkAAJkAAJkAAJkAAJkAAJkAAJkEBeCFDQzAvG6lWSmPEqhoz6GEu2ORwTRuwMYw+4At99/B3mdt4G+/YysmG+H1YA0/V27oO7Rw9Ar6hGElNw3dnP4t9rTYGgaFY+/St8tKAD9ujTw+m/KvT7Gzj18g/wu0/8VK87wljrvU7Bc4M3d1tMzPkv3vgvsP2ft0L3mhBwYwN0rAOX98TwB07FgIL2RXU6plXiR/dch6s/TWD3M6/BtbubwZZ/8TTOvudbLFQqZEnTFmjdrLF+vXL1SqxKAM13+SsmntM7lqA57Ylbce5bS9Gxx1bYqkxqqcD8mXMwa8lqrBWVs0UPnHnlqRjU1QrasYGnFoxYI7UmNDvr/fPe8flUY7S8lARIgARIgARIgARIgARIgARIgARIIAsCFDSzgFUjRVd+hSsveB6fNNsRt9w6CDvUonhmBLAu2KbXLHz3s9/9OzjW6U/fhr+9vho9N2mGGb8u94lmUVwS7z2EAQ/NSBE/rTC246lX4+a98yB+5XtirHVgl764/+b+6JHv+rOsb+ZzYzHklUUZ3N/n4sGL78Iz8zbEKWPOxnEiOK78GCOGvYopVc3R++jBuOGgrmjmtl2BOd9Oxk+td0PfWAO04QPa4fArL8DfenoGUTEHz42ZgPunrQHa52cdh6+RWbh7xH14cVFtCM1VePWWqzF2Wg1aSGe5DlicBEiABEiABEiABEiABEiABEiABEjAEKCgWdCVsBrvjL1NuTYDe/tiT9ZGpxwBbMm2OHK3n/H8+2U4864zMKhVSNuOMPbdRn1waNOP8eJ0j2iWpqtfTbgRF72/JiB+RsXVrI0xx2zDsQ5sstuxmHTWNjEvqqlijrD2Xcv07u/WLb2NEhTHKWFcdce6Z2djhRk9Cid8QCJC+FYxX+++VImNKuxA7xMvwZj9WlQDSMQaWfkhhp/9Or6rJaHZiPhriyPsQDVo8lISIAESIAESIAESIAESIAESIAESqG8EKGgWcEYTypX4BJXgZOmWA/DcpX2ceJTSIWtt1z0gMiprztOUNadyTX9zxA5Y8NUbuPHhL/D9kkpUlbZGrz8PwKiTeyddvtONzQpgKo7l9b2/wRWvrMOR15yPoSnWelX4asKtSpiEEnb2x5JbX8QnLZOimTRhLQi3Oe4yjD3AClnlePLK2/Dwr4gA6ywAACAASURBVEHxMyKuZoSLsR5CYj7+9cRLGP/hb1ikYkA2absJBg45FkN7t8BbY67F6Pl7eCwpHXbrxIW+P5q99wyufvpHzFqdQMk2h2LiRX+C6WGV4vcubnvmE3wzZy0qS5qgbPNdMOKcAWj/qghZ5fCPx8Asn/4+7njwfXwm16AxmrXfGIecJn3xhgXw9mEAus/6BDfd/ba5RrXTbet9cenwvtgyljVuTPd3xy19qScWqhHkyvMTk9SGDwjEPfUuMTeEQVg8VmXF+X8Pv4Anv5in5xClzdB9q91xxuB9sFvHoJVuxBr58mkMvONbIExorok1ouLaHvDAdCaGKuDfSDZNAiRAAiRAAiRAAiRAAiRAAiRAAmEEKGgWbF0sVILfOCX4tcQhwcQjUUlgnCQ+6HcaRjadhPNfX4LOPTfHpm1W4qdvZmFeorESX2JmCHcEsLUiDvX+XAs3u55+nUroEwCyTFnF/e/rmNZLia5HL8KZkkTIFxPTWhAGXZEd8TUgfkbF1Yx0Q182BaOu+gfeKxchsyt692oHzP8VX//WGP3O7Yvf734dP+7isaS07LY5GH/fajKuUEmMEq1aoLkKHblhv1MwbuCGWsw0WdkXGIHRYfjL1N8xr8MeOHyDD/D8lOB41DWT7sMlE2djpb1GCc+f/7hE1aFE2xuUm7fNbuT2YSCe2GMaznroJ5RsvAm2Vm7gs3/4Bb+sWIdWivtzyvozo6YZ0/3dWmNudPDZeOgoGSNgBc12e56Ip4ZskbmtNJ8FGz6gXSDuqe8Sm8gqEI81MeMdDB/9Ln5YrQTgLhth541aYY2ew1VKiO+M40YOwyleIT0i9mq4cK56UCNrRNXriOydiyBJVcH+TLFhEiABEiABEiABEiABEiABEiABEihCAhQ0CzUpP7yEY274Aos364dnrtrLb1Vpre16iyXmzm4PrQVcuy5lSCxrjRM9CVgSU/6BY8d8jaVpLOi8Q7UCmLZC7PVPne289aDzce9Ak5LIPKrw0T03qTibLbT15vHTwrJoWwtCFWvwYZWN3V5qM6gHrPXC42paF+MOASvR2Sou5HgVFxLotNtfcNdZ1vpUiYtP3I7h7y5X1psJbOm1DLXsOpdho3Kg93mn43yf9aSystQZ5adjZTCJTUKN5YJH8dbydWrkftfqFUrcOlFl+F7ZoheGjzoBAxyrwqmP3Izz310Br5Bok/gsDevDsvdx7rC3MK1ZIPN71DqM6f5ukuWUqtAFI3H5Tk5ldo2VtMXeQ87Axbu3y1nUNOEDViFt3FMraJZ42CWUteW5KtP96ubY9dRzcM3etg9qDp8eh+GvLwICFsrhayRKOK+ZNaIJ2vEEPoeF+pPBdkmABEiABEiABEiABEiABEiABEiABAwBCpoFWgk2vmRYvEErXPpEMtVPKyqhpAxHXn4uhvb0uOpa8SVmfEGTEKiFSfDSxcQmXNjvDDx+fPckkXlvY8jF72GhY034WUgWbUTENUw/hmBcTUcUXRUQEf/5AI56bCagRNoHrt0XG3nnylouwm9Jmczc3jw8LqkrsLVWLvQX4Pyt/e7OLmOvMKyFzofx+pLUa8LG6e3Drqefp6xeve7o/8Hlp7yIz72iX5o1aC1Xw9zfk5fZZDnBEAVJ0bBKSZlddu6Pa4bujp5Ns130NnxAGY4eNRyn+SbCU5ddg544nlbw3VCtrQlqbfktUh3X8rX+JD/hsVdrcY3YIVHQzHahsDwJkAAJkAAJkAAJkAAJkAAJkAAJ1AoBCpq1gjnYiLVqDApQppwRGyVRkMfaDlZUUq7TYS6wTnzBNbGsyZwYjwutgOiNzWktQler+JS3YvR3HR136pAs2tLZiLiG6ccQiKtpxUmfdelCPHL57Xji99apLvmakiMMwi+GmXYr0FxxeFJZt3qlRLlqhRVJU+KWGvaum7bHtTryGjcRjr+Paftgxxpwyw5fhmkyi3svsKJy2W4YN+YQZVvqfVRhloojetlj36uQBOr10vbY7/TTMSIra01nfQSsVlP6bK1y7dgSU3Dd2c/i34keOOeO0zEwJeHUbIy/8B48v8BrmRsRe7UW14g7Lsc6tiwo9BfkbwYbJQESIAESIAESIAESIAESIAESIAESsAQoaBZiLYSKM7YjGRICIVwcCouhGDk0T0Kgx5TlYxc4wlLjvsnkOo67MpSw9/jgzZVlXXhMzPC4hhnGEIyrGZYQyFrHtd8Ft409DNsFB2PjLPosUm27USJolUkiNEW5okdk4rZiZNK1OnnNrqdfqawtq7Bk4WLM+PzfuPeVqSoepnKH3+dEPHpyL8f6MEMfHAG4cocj8dpwyUWe7pEhs7i9NE6dkpTn7sdx91fLlDu9cv9OsRxN0w87FxnCGVjL1BI7NiuyhyUJ0s2FCZoRsVdrbY0kOVjX99AvEArxd4NtkgAJkAAJkAAJkAAJkAAJkAAJkAAJaAIUNAuxENJm9P4cF58+CZOD1nbW+s2XkCfZ+dAYilFj8yYEUolpJFbmq7dcjbGzbPbyFZh4/Wjc+3P3pGVdaEzMiLiGGZIazQ8IXGEJgayY1Dwso7XqcULFwTxUxcFs4n3ftutxefYjsJaxwczrtpQV2Lyu1dYtOhVmSdOO2P2YY3DJvl3RzL6doQ9WAO6ZEq80ZLJiZBaXq+LX6XFBb7Y1Rt51HP5cmrT89fbAyz1WQiCsxqQbb8Kd09a52eFtv6IFwRCX84jYq7W3RpIUbJuhybIK8XeDbZIACZAACZAACZAACZAACZAACZAACWgCFDQLsBDSClCO2LgiYMFnrd82CHV/jYqhGD44X0KgA1roQsYycROd2GcfZVl31B3foo3HtT28/fC4hm5SnIBwGV6Hdav2x2e0rt/BOKJmRNZqMime6ZdtQqBIi8AM8SudmKEzfQl7nGualWGHbTujZbMO2HaLbtj8D72w7catk0KmRZ22D1YAbqnid16q4ndmWHyO8F2VNoyA5RezTlhR17p5f4tbh/8fPq3y92XrI8/Dtf9j1kashECWXUnSgtjOYWQioRD3+/RrxB8vtWbWiOUQvi4L8OeCTZIACZAACZAACZAACZAACZAACZAACQQIUNAswJKwQkyY5ZcVG4MWfEZwTGD3M6/BtbsHOp02hmLqAI01ZxuTEKined+IrOtUlvGT0ObBcXh4wda4etwx2MPJ4hLafoTrfJT7e/gYHCs9+LN+p2MEK54FEgJldrt3xMnQ+JVVSri7VWXyVj7kPivYdNeksk3fBysm+uN+Ri5BZYV6gLJCRTpBc+XHGDHsVUwpjZk1PdTNO92HIE5CIMeid/o6dHRDFCTjkUZZOP4+cRxOnTQfHfc5DU+fvKnuRNo1kvAnjaqZNeKwSKh5H6qSNwXDIxTg7wWbJAESIAESIAESIAESIAESIAESIAES8BOgoFmAFZFOiAl3HY9IyGP7HieGojtOx5pziV8cghbPfsWuu22CKZ/OQLdB5+LegZ2cqyLadywIfW7f6oqsxhDhVm0ZpWb3XqHc4/+Osd9VqJb8wmBmt3tHnAxxSU8oV+fB136KuapWvxWsTYjTCxeOPxn9/Gm6U1ZP2j5YAThmJnrX4nSzfnjmqr3QIaU15UL+xO04961ynyiYdkm7YnB4QqrUa53xRwmmiaV49/77cMunKjZnCyWqekRwK+6GWhXbzPHLlfv/DWfjuC7ScsQ6q9U1YgiEhjQowN8KNkkCJEACJEACJEACJEACJEACJEACJJBKgIJmAVZFtKAZ4Tqez7iM1pozmODFxi4UHu1VLM1bB2EHK95FtG9jDPpFx+zGEBWf0QpKYi355BV7GjHPEc9u/aUlNiqfi186eJIYIY7bvY2R2Vq5fF+gXL5L9Oyv/fFtjLjtU6xs2xi/z1sTsIK1sSGBjQ48Hfcf091J/iNXVmDOt3Owftse6KZrytCHCAE4cgnaLOFrm6P30YNxw0GeWJ2q7RmvPYoRz8zEyhZKbL1Zia1tTU3zvv8av3faGjt1buqrOrH4e9xx89N4fd46tFIhDR5TSYmCWeBT+hIZu1XG/gnum/AuPlyk0qerPgwfdQIGdDRMTUfexpCL38PMQP9kHl+9/U6MnVLhZxqxzmp3jUjH7Zy3xCGXXYxhWxTgjwSbJAESIAESIAESIAESIAESIAESIAESiCRAQbMAiyNS0MwymY7pepZxGR1rzmbKNfg5lb3cfVjrQTROzQAeGhcyIiFQlPt7RGzJsGQvuk8J5Yp+7lN4b3VjNOuyEXbeqAnmT/8VP6/bHOffsDX+NexFTAlLCBRMphSY398n3YXTJ85FVWl7bLv9hmi3fC4+/3ENNht0Eo7+/WFc92kbHD1qOE7byHPhzLcw5Lr3MTNh+9JKqaBLMe3HeVhU0VPHHe2n+xyR0MmpKlwATr8Ay5Xl7GDldr5SFWvSohVaOiJz5eqVWKV0RJR2xtGXnY3TeiaFRLu+dPn2HbFtVyW1/jgfc5evRaXU060vbru2P7bMYG0qPbMxLZt22gS7bNJSd3bpnFn4eYHTvlovbXv+Gddcsj+29eunem1Oe3ochr++SPFujV5bbowNmq3EL1N/x2xlYNt2h4G4f/jOScvTiDUSGcOzhtYInKzuC5To/8C1+8K7FArw54JNkgAJkAAJkAAJkAAJkAAJkAAJkAAJBAhQ0CzAkrAiUYo7dYaEQOEJcrKLy2gTEqUmaomOFRnuOhyRECjC/T08tmT6xCuJOZ9j1NjX8Mm8SiOI/WlvXHDK7ug551WcdNXH6HjcZRjrJDWy7tnBZEqp07sCXzz9FEa//SvKtUC5Gf5ywl9wcu/WeGvMSIz+ITwWpVg3PnjvK3htxlJHSGyGDTbaDH/uvy9O2cOxnIyYP9MHO1Z/Yps4y698+vu477HP8PHvTttKRGzWqqPisRvOPVbxCAiJK37+EHc9/DE+m7McyyvWmSZKm6Fd5w3Qt9+hONOblT1DB0xMS3Hv9zxKmqBNy3bYZJcdceKA3VMsQf2FqzDrvYm48YXv8fMSNY/KvrVlWWf0OfgIDA/0I3yNpI/hmf81slqtg1sxekpj7D3sEly+k8fiNM5ksQwJkAAJkAAJkAAJkAAJkAAJkAAJkECNE6CgWeOIQxpw3HgRmrG8EB1imyRAAkIgoUTpE26ejLVxXfKJjQRIgARIgARIgARIgARIgARIgARIoNYJUNCsdeTSoJPZu/uBmKjiQ2aMYxjSx/UF6TcbJYF6TCAxC/dceh9eXGFiku7vxCStxyPm0EiABEiABEiABGqJQKNaaofNkAAJkAAJkEBDIUBBs0AzrV15v9gkbebsSNEyo5qZsUCBRs1mSaBYCazDR/fehGu+aIUjLzsXZ/RsXKwdZb9IgARIgARIgASKlkAG2TLi7WITO3mSKNoFxo6RAAmQgCZQbPeNQk0LBc1CkdeJRz5F5xMvwa37tQjvRcpugtuLQk0X263fBMo/fBSnPfAbtjl9GK7fMxeb6frNh6MjARIgARIgARLIJ4HAUbSAQmfo6YJHjnxONusiARIggfwTCLlvNESRk4Jm/pdWrBrjaZXcTcSCyUIkQAIkQAIkQAIkQAIkUGcJZD6Z5vOgynNInV0o7DgJkAAJKAK1e88oZuQUNGtxdnybh3g7iVrsHZsiARIgARIgARIgARIgARIoDgLRVpzZipuZjx00oiiOOWcvSIAESCBXAukt/7O9b+Tai9q+joJmDROPFjG5cahh9KyeBEiABEiABEiABEiABOoJAc9xNPypb5w8g9STaecwSIAESCBnAtndN3JupoAXUtCsIfi1vYmgPFpDE8lqSYAESIAESIAESIAESCBLAjVnDZP+gBp+BuFJIcvpY3ESIAESqGcEnHtHjC/E6tLAKWjWwGy5W4b0PuaxW469BYldMHbTLEgCJEACJEACJEACJEACJJANgZhqZsxiES2nOZWGH0ayGUFoWR41qo2QFZAACZBAVgSqd58Ia8ovbOa//qyGV+3CFDSrjdBfQer+Ibdbf5600DyPjtWRAAmQAAmQAAmQAAmQAAnkhUBeLGUaQZ8bpC71xFSZh/NHcIC5VZkXTKyEBEiABBo0gTSqY+6CZP0QNilo5vGT4Rczs7vrV0/AzK6tPA6ZVZEACZAACZAACZAACZAACYQSyPKomaXA6T97qIsbmVfitlq98wennARIgARIoCgIZHnv8Pe5bgubFDTztAJzETOz20SkipaUMfM0eayGBEiABEiABEiABEiABGqIQLjAmEF2zHBAjfQqTw2T5htVducPe2nmU0fmEjUEl9WSAAmQQB0nEO9LqHilvN9oxbzCoSdfipmn2V1XWPgUNPPAP1sxM15Ym+S2IOMGIWOBPAySVZAACZAACZAACZAACZAACcQnEF+zTH+EDBwy9dY/UpkMP5TGEzL9hwoeMeJPNUuSAAmQQG0QSL2tRNxocrLaTN5s6oqoSUGzmqsuGzEzs5BpSkRuHvKwq8hDFdUkxstJgARIgARIgARIgARIoG4SyMshL+P5M7qA7OX1u2kPFkbUdMtGHjAynD3sFPEAUTcXK3tNAiRQfwjE/oIspGBW4mbdstSkoJnjEk/dQ0Tf6dMLmevDBcw0G4cYLeU4Kl5GAiRAAiRAAiRAAiRAAiRQPQI5OJlHnkGTb7iWma4RTfipwLzqrzBQS+r5I4ZoGaNIAFv2V1SPO68mARIggWInkN3XYrFKBwolf40WN9PXW3csNSlo5rDe41plRguZId+GhtzvU1+KVSh0RNxO5DDRvIQESIAESIAESIAESKDeE8hlnxzrkOnoiplcBEPrCljUGDHTW1K9kjxzunOUev6w1jbrbSL05HzGPlpkIJQLwHq/qjhAEiABEsiCQMabSqY7idNWqDVmuLBZH0RNCppZrDG9j7Dl3a9IwytIJ2b67vmBDYD/V+e32JuNLAfD4iRAAiRAAiRAAiRAAiTQQAhE6m41LcglPfh8pBu5p8k09jTqLXvsMKXkv54Oh51IUw4bjVwtVBePc/4IKec7BjWQNcNhkgAJkEAhCESKjb430t87bL8jS4V8KeYfa/FbalLQzGJ1ZiVmpmyMAq7lnvfTiZix9lfpFNLA+GLVlwUTFiUBEiABEiABEiABEiCBYiaQxVbZM4zwXXNGIxo0TtaRrrDnIKmfRoibrg2F+76xtPS6lOsyIpqGDDT5kv9Im3w9/FCS85kh5AxUzGuDfSMBEiCB2iMQuClkvqGEdi1C03TvC1HvhwqbdVzUpKCZxepNGmVG3+LDDTc9YmbonsFviRlae6DinDcZWYyXRUmABEiABEiABEiABEigLhPwGyREjaSmd9aNUiNa2pNlUNj0aJVaulRdSx5Ck79YUdM3PhE19RCjDCmMpaYt4xT1/kgFxDNIXV7+7DsJkEAdJuDXO90/3ikjSv0+LPi1l6t16mtT3q3DoiYFzZgL3H8vD9/0pIqZplxwI5Xyjah6IVzEDFyfYQ+W3VYsu9IxMbEYCZAACZAACZAACZAACRSUQIihYqA/ueyD45vShBhbBtoPHCfF99xTve963VV5xVpm+g+m5rDhvTjc4tKcSUw9yRpDpml9zPNH8NIA0lwIF3TRsHESIAESqCUCKXeT+LcX9++3eZJ6of/+Ey1shrxjLP0jGSTfzLK7NUqVgmYMvH5BMr6YGbaZ8m0RwoRMRxUNFziDwmf1twrVryEGQBYhARIgARIgARIgARIggRomkF7IzG3Xm5+DW7IW/cxXqfdYqZ47HuvSW3EhN+Vt35OWnq6Gacs4YqXVP73u5+75w33TnCncbmQSMUONL3LjWcNLgNWTAAmQQD0g4L/zpN43kkNMCpgh17j3m+CXaOb6XEXN/NwX8zNNFDRjcHQ0RlUy+sadLCMVpnMxT+4I5Jr1zgZCPQmt3b4d1ba/3RiDYRESIAESIAESIAESIAESqEcE/MYHwYFVX3jLVEPk4S6TtYscKP3mNO4hc73zhvxwo3IGT7UeVVI5kxsLTOe1pC2m03vnxzp9uDAdUwfBnM4f5rTjPDLBqUfrjEMhARIggRol4NwP0guGjgwZUsjcIjxfoKnn/ttGIPyJe4/yVJapD7bOGgURv3IKmhlYZRIzU2/mqWJm8j5vxMygkGk2FslHmIgZLVy637l6Koi/AFiSBEiABEiABEiABEiABOoqgbC9eHXGEqnPRb3hPVR6nidTA4WfOsNsacw5VKRJ9VD/aexRM+W5PZimxNZU5phaptQXmpqNBacq6RMyDZn169YZ8dMeZpP2FqZh55HZcCJwhqkOeF5LAiRAAg2QQOodIo2cmfIlmSNuJv/0a4LyaqNG6i7kVKXvJW6Z6oqanntHEcwXBc00k+DfIIXvYvw3+igxM/nNqBUv169TZdfLZiJppWmETM8mIqVJp/4M34Tyi9Ii+GSxCyRAAiRAAiRAAiRAAjVKIFxwy24nHFo6uyrcMbrH0EjLmXAXP28YNBEa9e+qDya0pvzeGI1KzCG0kY236YiXxjIz+TCXOhX4zhmqnBYy7dnDET714TediBmVYKhGp5aVkwAJkAAJpBhO+l8IfjFmv/TS2qXzJVijxur+4dxktLDpKeS9Z3mkUcM9RTz13mhSShdsrihopkGf3CTFETOlIr/gaK5KfuWZFDPXQZ6Xlpaof6VpAq8WbF2wYRIgARIgARIgARIgARIoWgJBo4I4HfXt6DOKlhkLRDSZxrrGOSTaC8NKes8f8jyRqNL/tIVmibH7VMdT58Bp3MwdY0x/bE51sT57aG3TiJly7pDzhz3cxmHGMiRAAiRAAnWPgL1/VCUS5kuxxua+ESpqeg04vepUpKhZPFaaFDQj1mamTVLqN8J+60yvmGm3QxIvUzYTVepfs2ZNUaLUcj5IgARIgARIgARIgARIgATiE3ClxnATzZSK/OXD2glYKMbvSmTJoOVMaEHfIdLx0woZU5Xy7Fq7tgKNlaApB1PXfVCbcYpgaURNr5u5CJ367KH+Va2rQgs5e5SU5GFkrIIESIAESKCuEBDtSe4fJY3Vl1lK1LSWm9ZSM+hZ4LO9DNyj/GMuDlGTgmZGQTOOdWYaV3PHQNOKmev0t6MlaNKkSV35DLCfJEACJEACJEACJEACJFAUBLIRMzNbZLomCOFjy9ZIM8I4M/lySIHgSxEibUVlAolKZakpoqYyinCMbZx+20o849GGFErMVCGumjYpVf949iiKBcxOkAAJkEAtE6isrDSW/uJ+7rigJz3PPTE1wyw1i9xKk4JmyGLK1jrTlTOdTU+odaZjmSmCZssWzenqUcsfYjZHAiRAAiRAAiRAAiRQtwlk2qPb0aW3yIwQMWOIl8EiGZzLTXcChaLETa+NaJjGKcYRq1at1QfSElEzRdhMGmiaphxDCp3sXImZ65SYua5qHVq3asGzR91e+uw9CZAACeRMQN8/Vq9x7h9G1HRvT46y6bXU9FlpOgXD73eFt9KkoJlW0MzCOjODmClvi5gpynib1i1zXoy8kARIgARIgARIgARIgAQaGoHqi5mZk9uk2fnHwJ163As9AHpe9B4ag07v3mvt2JevWGViYIqFjQiYzk/TOSllrtLJRyXzuT57rEO7tq1i9J9FSIAESIAE6isBe//QVprO/UPGGmWpGXQ9p6BZh1ZGcsOUuq0Jbqa83wCHWWZKEG4JyK3j16hvSKuqEmjbpnUdosGukgAJkAAJkAAJkAAJkEDhCMR1Mw/31k4vZPp3+57fYlhshhLxnfrSOJsHhM31OgCm06jH7c87pmXLV+g4mNrtXKUGaqwsNdfrTLYqYqZYZzonU5PNXJ1BnLNH+3ZtCzd5bJkESIAESKDgBMz9o1T9M1nPG6t4zG5+Oa1s5u567iRRL8gYaaEZwJ5OzJSioYJmlHWmdvswYuY6cftQAbkTVVVoR0GzIIudjZIACZAACZAACZAACdQtAnkTMwMCZdAi0mqJ7n6/GpjCNc0UJz7TgriHy4+ggJpiogks1QdSETKVqClZa+UU6RE/TWYgSWpukwGJy3kCFDSrMZm8lARIgATqAQH7hZgvOZCjRNZlK00KmlkImsFvfb2xM6OsM+V1N4aN+ra0UgX0bt+uTT34SHAIJEACJEACJEACJEACJFBzBOKImf4yti/hVplRImZaY8xws8/AoJPCYhgNb2wyV8U0WqZHRzW98LmhB4w2lyxdhlKV4EfETG1dI66DSryUDEFydWMRMkUgFVFTx9Cs0mePsg7tam6SWDMJkAAJkEDRE1iydLlKTK3uH/KFmC/bueeu4yibSYFT7kl+d4Jicz2noJmzoOlslALWmbKB0A/ZUDhPxTpzvQrKLS7niUQlvyUt+o87O0gCJEACJEACJEACJFBoArE8p/S+29tTj5iZ4kGe3LiHiphOg2kFzhhQ3ONhyMnPe1B0zSvtQL3WltqR3Bmbfn09lipBs6S0icoHJNaZkthBXnYukkRB6vwhBjfKhkIUTVTpGJoUNGNMGYuQAAmQQL0mIIJmaal1OTchS+Rh7knOc6+g6bzp8y2I/O7OvBEudtYsVgqaHr6ZvgX2fkGbyTpTXD301kO7fSh3D+1yLhaalejQnnFsanZZs3YSIAESIAESIAESIIG6TCCTmGkkPvsfO9JUMdNnlSn78iCUTCKmz3ghlWiq9aW/TJS4qY0vnf+YMk5D3hOhFSt1WSVoLhELzSbG3VwsbNwTpLGhkeKicUp2czmDSAzNyqpKdOrQvi4vBfadBEiABEigmgTK1RdiTdQXYhKDubHEy9RhS0ylOnyJ/HT+41plul+yZbLSTH4bV9uiJgVNz8JIt3Hyb5jiW2faGDYiaFZJDE3l9kFBs5qfRl5OAiRAAiRAAiRAAiRQrwlkEjTji5mpVpna8MDjTeUD6RM9s7XV9B8KgxNkLWHs4TH5vrTjT8igX9HNa6lSi5VLRNAUCxvlMmjyOYhJjLxvrDPFI4cJqQAAIABJREFU9dzoomJMIUaaxpiiUxkFzXr9YeHgSIAESCADgXJ1//C7nHsETX2rCbHSTOqUzr3I/AgXLQtjpUlB0zPx1RI0PZsir3Wm7Cr8LucUNPnXhgRIgARIgARIgARIgASiCOQsZnr0R8dXyiTJcRoyQmYyaadt3w0ZFbDfTBVN08xZ6CHPe0A014qY6VpWynPbiGMaYw+Kts/e38XCptSXpVbnN9fO6VoAVSqnfqaTAonruTGmoKDJzxoJkAAJNGwCImgal3P1hZhkOdcu52Kpmbw36XuUuVElRUv33pbJCpOCZsFXWFxBM627ubNJksFYYVO7m4vbubh9qBiaHdszMHfBJ5sdIAESIAESIAESIAESKDoCQa+oYAezssx0xEzX2EBZLK5zw0IZ0S8lLU+KUaYrjYaySlqqBGxWUgROc3C01pni8idJfUR/dJOVe0RNbzeMYNkIi5cuRZMSx2VQDqJODDS3Y+vFbNNkOBcrzaqq9TqGZmdaaBbdOmeHSIAESKA2CSwWC00laBqXc08MTdfd3CNIer9go6BZm9NUvbaiBM3gxsr7u93iBJMB2Q2SN4amDsyt3D46MtNg9SaKV5MACZAACZAACZAACdRLAhkNDHwaZFTMTGuJ6RgYiLWijiu5XlmolGgrlXCXuZpHKuMTkTGRqNJKps5WLnKltYjRXuPWclO9pX83dpiLFy9FaVMlaCohtEQb1yiXQUeS1WdSY6bpiLZiTKEETXX26NypQ80PjC2QAAmQAAkULYHF5er+oWIwS1I5k+Xcupw7X7ZJz9O6nXvumlEeCZHu6DWHhS7nHrY5C5pp3M21u4dsoJwYmpXK7aOMgmbNrWjWTAIkQAIkQAIkQAIkUCcJpBMzXR3TY7ro9ZpK6pxJMVO/5lhlSnLOZs2a6sNcMTzE0GHNmgp9sNQJGpx+aV3S+Y85Ppr4meKavqjciYHmTergyJ1mTFrR1MKt/BNr1CoKmsUw3ewDCZAACRSUgBE0bQxm82Wa0S/rtts5BU1nWWX8NtjdPCUTArkOKI47ize4uNlImMplAyUbinVVVcrlnIJmQT/JbJwESIAESIAESIAESKAoCcTfjztCn9XwHCnPBsy023YrZspPscxsoqxTiulRUVGJRFVCW8p4Rc1kH5PxMeW1xUrQFOtScRkUi04RZ+XMYQ+lZvzKQtOJoylGFWJM0YUWmsU07ewLCZAACdQ6gUVK0BSX82QMTZ1ZTlv5J7Oc1z23cwqaeRA007qby7emOoam+oZUCZoSmLusI2No1vonmA2SAAmQAAmQAAmQAAkUNQEjaKYEsdR9Dg0B5byRYmTg1KMNCpSYWaXi2Ldq2dw9tBULBBEjV6xcrRL9KIFS3ABNkE1jZ2mMLV2Xci1oLl6GEm1hI+VNDE0pJ5dpbI4lpzp6aLvN9SopUKVyba8RQXPmqzjpqo8x14XZGM1adcR2+x2A8wdujc6lfsqJxd/jiQlv4oX/LsSqhHqvtBk26LkTzj2zP3brWGIKf/k0Bt7xLXoedxnGHtDCqWA2xl94D55f0B1n3nUGBrVyXl70Ds4c8S5W9DsDjx/fHW+NGYnRU4BWux2L587aBsnmnes3PBxvjtjZXPzBIzjggenY9fTrMKpvxGpILMWnk17AfW/NxKzVusNoWdYNB534V5y2QztP/c71iSm47uxn8e+1rXHIZRdj2BaBep02k69KfZ3R5+AjMHzfrmhWLIuS/SABEqiXBBapkCU6y7lKCiT3Gn9SIL/buWO4qW8q9rnxGHDcziNdyz2CaC1RpKDpgI7nbm42B/oRYZWp33IqM/EzHZcP2Uw5MTTLOravpellMyRAAiRAAiRAAiRAAiRQ/AQyWmc6+2/zI7kfT76c9I6St8U6UR4iZlYpK8g2ra0SVlwsli1foSxmxGrGuMJLfEyvoOnolPrssbh8iRI0VQw0cRUUUVNc1QOip6YjVpo67pUjaHaugRiajqC5etu9cMouYqyxFr/95zNMmroE67r0wdhRA7CloyomZryKIaM+xu9oiU132xWH/aEtFv/6Fd789yzMW1+Go68cjtN6qCoSn+Pi0yfheyVKTlKipH44wuUMNFYC5JVKgDTiZ+K9hzDgod+w97CRuHwnuIIm0BoHXnwBzt/aEUmRg6CZmIXxlz+A5+cBbTfeDoft1wMdl87G2//+Gt8uWoeNDh6Kh47q5ltICSVYHvrAb2jeYg1Kdz0Fzw3e3L/QHEFz076H4jD91jJM/efn+Ndvq9C89+GYoMTWGpil4lrs7A0JkEDBCCxavMQTQ9P5Usx1Nw9xOw8kBpKOu7nPKWgWbB4jG44naPoDj9tvke219l0tYjq7Kxu/RlxdRNCsVHFsOlHQLL4FwB6RAAmQAAmQAAmQAAkUjEBGQdM13Ezus53ttvphLA1cV3PHoMDGsBcvqbZtWhdsbOkaXrpsuXYBLGlcYiwuHStNnf3ciZ+pj5Hq94VK0BQLm5JGSqzTFp1ywrR2M0b61HTWiaApSZBUQlIV7qpL5475H7sjaOLAs/DoMUlxr/zN+3Dck7PQ2X19NSbdeBPunNYOh195Hv7W0wqNSpSc8TIGX/spFmw5AM9d2kdJkeV48srb8PDK3TBuzCHYUvV6hapv0DNr0KPTAszbNCl0fnTPdbj6i01w4fiT0U8Jp9pCc/WW2P33afiktbr+RnW9FlSzFzRX/PMBHPXYTHRW1p8TlPWna+2phM67L70PLy7ugXPuOB0DXY3cGePi3XDm1l/j3k97YORdx+HPXivVUKvQKnw14VZc9H6FEmsvUGKttUrN/3SxRhIggYZNYKESNCXsirHwd8KcON+I+dzO3XuKub8krTWtfWY6K0xaaBZslWUlaLpfCns2T14RU38zarZYJimQcXdZp74hrkxQ0CzYJLNhEiABEiABEiABEiCBoiPg0SqNOOl5JPfo5sUUb6mAmGlj2mujAgn7pKwUJaN4u7bFKWguWbpcx/dsrARN7QIoB0itTdq05TJqc6gUQVNiaJoDqRJATXEdN7ORXKR+aj46IZD8EEGzUgmaZfmf8whBE/gOo4Y+hffa98X9N/dHD8fqcnKvAzHxij2VaOl9rMbE62/AvdN7YvgDp2KAEgCnP30b/vZ6M5wy5mwcV1alhMprMXrp3rhw008xevKWuGXcIOwAJSyOUMJih2SdWtCc2wc3HDIP1z70C8pcK8psBc0qvHrL1Rj7XcDF3em2FliVYLvjqVfj5r0dcXblhxh+9utYLCLuHz/BUTd/i+3PuQwjd0mKt5Fu7o4F6swdjsRrw3fI/zyxRhIgARKQ+4cImqVK0PSEOPEmBdJ3Gf1/fxzNVKvMdG7nFDQLttiyFTTNVitV0PS5mzvv26RAOoam+paUFpoFm2Y2TAIkQAIkQAIkQAIkUGQE8madqbfmZpcuYqYIeuJyLvvv9u3aFNmoTXfKl5hEP/qQqV3JJSCmTdKQFHdV6h+V5VwETWPNaTLUqrLiqe4RNI1BhWNUoeOH1ragaWNe9sKFDyvrSeuavleIG7bq+lcTblQWis1w5DXnY2gP9cL3E5UgOBk9tWA4TYuj0/Y5CxN6/QuD7pyLg6VcaxM/c5XHOtQKmneP3gvfXD8a9/68AU65QYmiXbIVNJ3ya3Z0xNPAsnH618LT9u8Tx+HUSZXOGH7Cbec+jLe6WatT5/rIuJ3/weWnvIjPO/fB3aMHoFdRrlJ2igRIoK4TMIKmN4amTQpk3c3zEUeTgmbB1kkcQTPsG+G0CYGcN72CpmQa7FzGGJoFm2g2TAIkQAIkQAIkQAIkUDQE0llnSif9FppBd3O/q7m1zrQxNEXYE0FTPKQ6tGtbNGP2dmTxEsk861jN6JiYJpamdfPTxpra+FIJmhIDTQRNndTBETSTxjJutSbklYi64iFWiQ2UhaZTLH8MIi00qyloJpTAN/RFTNlFuZf/z3+VuDkNfS6+FOf/wbw+q58SNzd+S8WrnI1+8vrWZkhJQVOJgvOU4HnZu5i52YF48orN8KwkFYqdFChbQXMhHrn8djxRkRQkjUhb5k9iREEzf2uPNZEACWRNYOEiiaFpspybpEDpBU19HwrE0cycGIiCZtYTk68LqitoysZBb7o8ruY2lqbEz5RviaskMDcFzXxNGeshARIgARIgARIgARKo4wTiW2c61pdu6Ce9804mRfdYZ5rEnGb/LS7nsv/u0L5IBc1yJ/Os63KuhEo7p1asNN7kWLhIyhr39BJtnakOpGLNac6l7kOETMEk4a4kIVKXDWpR0LTZvnN0OQccN/TlfXHJjt/ipne74erxx2AP+zoOxIVl72D0V39wXjfD9gma6vfpz43Fua8sx/anHo2eLz+WhaCZpcv5Dy/hmBu+wOKQz2GPgefh/kGdzDtRgua8tzHk4vfwG13O6/hfMnafBIqbwAIlaOoYzM69RieWU122yeW0s7m959g4mgFBU0aYPjEQBc2CrQKzmUq6ddiOeL8VjpfhPClsUtAs2HSyYRIgARIgARIgARIggTpAIL6gGZIMyMawd/bxUpc1LpAY9jopkBPyqZgFTW01400KpF3I9aCMiYw203QETYm3KUmE5H11jVfQFEJy2LSCplinrpOkQF1qS9CswrSnx2H46+XoMehc3DtQxLxskgKZBTtv0l04cWIJttzsd0xvfTj+T2UAl/w6+vVXGmOL9rPxQxt/TM6goAmbwGdFD/Qum4kpHQ7Hm6oe/Yi0ljRvZ5MUyFhjqgzsh++DPSTZu34swFtPf4LvOu2Nh0btj40i21yhhNjbMXoKVLb2S1S2dk/MzTrw2WUXSYAE6g6BzIKmDXXi/SnjCyYGShdDU4q7kmetwGmkRLdUFa9Wmi6uRvIpaNq69LfDaph6U+FaaFYql/MOxTV49oYESIAESIAESIAESIAECkAgF0HTMR9IZjYPWGfKG94YmpVK1OtYpBaai8RCMyWGphE0tUBpBU01N/4YaGKZaQVNK2WmCppVauwb1qCguXrbvXDKLkrJW7MQn3/4NT79bRUad+uL267t72QZVx2f+QZOvfYD/N6oPXbe/0/o26UZVs37DpPe/gnz0BnHjRyGU3p4Fp8Tp3Kpemmb4y7D2AOc7N/azV1lRS9Zhx6Hna8E0+SZKkXQVNcmvnwaR93xLVZK1b1TBc1N+x6KwzZPttt6097YezNpazYevHg8npnXGF222xUDd+6Elmp8H7z9Of6zCOgxcIiyvFSZ3a01qle4dKqb+sjNOP9d4JDLLsawLdSLjojqtrl0Nt7+99f4dtE6tN1hIO4fvjN4QizAHyA2SQINhMCCReVOlnOVUE7FahaXc2Ohaf5jrTUFh77vyE/zSyDTeQZB02PpWRtoKWg6lO23uUHo3k2W31pTlQxkNjc5gPwZzuV3vaHSQblNDB8KmrWxtNkGCZAACZAACZAACZBAMRNIJ2ZKv5NmF66fVFLE9LmbJ6037V7cZDkXt3O1/66sRMcOrvlcUSGRuJhNmjRRxpaNdVzM5MHSMczU1pnmALlAlW1aIkkdTPIgnRV9vcTSTAqacgQVd3thJ+GuqiqrtKDpJK7N39idGJpz3RpL0bKsM/rsfxAG99sMncWk0vNILP4eD977Cl6bsRSrEuqN0mbovtXuOGPwPtitY9Ay0cmUvnZDJ9u5rcgk3Hl9eYdkEiHnrTBBU6xD3xl7G276ak2ooBmEsaEn0Q8SS/HpP57FuPdmY/5q3WG07NoDRxx9BI7foZ22GE188aRKVPQ9enpFV1up44qOfU7D0ydv6gqabpslTdBmg01wwKH9ccoeXdEsfzPDmkiABEgghYAWNL1ZztX9Q//PupVrb3HHZTxM0JQazdvuk/DYzEnX9dqYBgqaDuUaEzR1UG5nQ0VBszbWNNsgARIgARIgARIgARKoAwRysc6UYbneUO4+PhnyycbVtDE0q5SgmcijoHnmyLv0AfCea8/OC2Gd6EcJmiXKWkYLlJLsx9YsT7TXuV/QbCTipwia+vUIQXOdEjTX16CgmZfRsxISIAESIIHaIGAFTf3lmdxvdBI6G/PSZjhP/u6Kl14XcgqatTFVubWRvaBp/MntRizMMlO/T0EztwnhVSRAAiRAAiRAAiRAAvWaQC6CZnp386Slpg75pLOcq6RAyu26LEcLzRWr1uCFNz/G5ptsiI++/B5vfjBZz8kBfXfEHjttjZ9+nYsjDuiD1i2b5zRX1o1cMs+K1aVkOQ8TNGVkCxcv1RaaImhqC0190BSrThNkU9lm6iiaIubCFTTF5VzFsnQPojl1kxeRAAmQAAnUYQJxBE2bGMi11JTxWstN93nyCS00i2hBVE/QNJsnX4ZzR+30Cpricp6gy3kRzTq7QgIkQAIkQAIkQAIkUCgCcQXNlMScdp8tHQ+EgHKTAkmGczEsqKag+egL7+Dxl1QwxDSPEw7bBycdsW9OGP1xMdUxUjKX6zNkMiGQliqVaCmCZhOvy7ljObNe/3TMOTUSda3E71fCZpXK8E5BM6ep4UUkQAIkUG8IiKBZ6ricR1loJgVNuQklY2emZja3lpxheOhyXpBFk3dB0wn6Q0GzINPJRkmABEiABEiABEiABIqcQHUETRtf0+Y3DRoWSELOdSLoiUGBEvXKOuYWQ/NDZZV5zR1PapItWzRD/7476edvfPAlVq1eq59fNew47KmsNXN5LFwkMTQlLqbKXm5dAHVcMxsX06lVnR9F/CxVsRdLxEJTlRW3cyNjOoKmttQ0gqbE75c4/iYpEC00c5kbXkMCJEAC9YXA/IVOUqA0LudZCZoKjBMNJYCIgmatr5mozZQ3CZBJ96N3DGajEPLNsG8j5X5bnIyhqZMCqRg+G3RiDrtan2Q2SAK1TKCsrAyLFqlUmA348eWXX2KnnczBr6E+yABo6Awa+vjls08GZGDvAcG1kNUe3NmHx4ufKUk6TQx7G0OzrGP7nG5Fo+9/Hm99+JUWM8dceppyPe+q6/np1zkYceODWtQU9/MLTh+UU/0iaJYqQVNiaIp1pgiVJlFDqqC5QMRPm9TBETTNwcQ5QDr+fxQ0c5oKXkQCJEAC9ZaAT9BUoU1MzOZkdnN/ciCFIZOFppAKDWWSznoz/3iZFEj2AM4GyVUrHc55EzQ93xBT0Mz/ImaNJFCMBChoFuOssE8kQAIkQALFRKDae3DZx3u8otzY9k4Me7FSFEFT9t+dchA0JQHQjFkmj/cR/frgrOMH+PBZsVNelBibuSQK0nHNnKRAWtDUYmYMQVOiZ5ZYBZOCZjGta/aFBEiABIqNAAXNYpuRPPYn281UajDykBiaXgtNCpp5nC1WRQJ1gwAFTVokyUqlZRoZcA1wDfBvQfK+XS0LzVAvKa/XlFhlSlvmp8TP1IKmeEipGPY1LWj27L4h7r0u+8znXkFTmcxIznIn86wZsEn1Y1z7TFKHpsblXARNbWEjQ3YsYpwwmjpZKV3O68aGkb0kARIggVogkIugqe9B+nszbzxN87tzg0omsXPHQAvNWphOfxO5Cpo2do8NRh7pck5Bs9bnlA2SQKEJUNAs9AywfRIgARIggWInkOse3In8FJkQKF+CpvCzVpitVBbzWy8Z7HM5v+CmCVipsqD323MHXDjkyJxw28yzIlImBU2nKie7rMlhrgTNxSJoNjHxNmMKmgkVQ7MrY2jmNDe8iARIgATqCwEKmvVlJkPGketmKntBs0q5vCQYQ7MeryUOjQQsAQqatMqStUDrPDLgGuAa4N+C5N6guhaasbykHLVTEgJJUpx11bDQlJ57kwKJqCnxMkXElNflpzyqkxQoo6CprC8dA0xjoakTCKl/FDS56SQBEiABEohJgIJmTFB1sRgFzbo4a+wzCRQ3AQqaxT0/7B0JkAAJkEDhCcTZgztpOXWo+9wETWVQoKwUc3E5F0KPvvAOHn/p3bSwTjhsH5x0xL45AbWCZmNxI3ddzp2qxEIzg6CpxU7HJ127BmpOSZdzWmjmNC28iARIgATqFQEKmvVqOv2DibOZ8mY5t5spa6EZFYxcypksg5LpXGL40EKzHi8jDo0EfAQoaNIqSxYErfPIgGuAa4B/C5K3x1wsNAstaK5QVpgT3/gIm/foio/+853OeC4PcTPfY+dt8NPMORjUfw+0VtabuTyqI2g2cmJoWkFTZ5x14vhLhnexUK3Kg8v5qtVrsGLlalRUVGqxlA8SIAESIIGaJyCRK5s2bYLWrVqgZYvc7jG2l0bQLFUxmFXIEpXlXO4fOgGdKmAS0UlJ89M8NXEyGUOz5ue52i1Q0Kw2QlZAAiQQICCC5oq/TCEXEiABEiCBBkZg7fhuDWzEuQ83zh68NgTNbCS6s1Tmc3nck0UCICd9QiioYhc0lyxbjuUrVuU+ybySBEiABEig2gTatG6J9m3b5FwPBc2c0RX/hXE2U7TQLP55ZA9JoJgIUNAsptlgX0iABEig9giECZq01DX8C22hGSlcZqNo5rKUIhRNnehHZy6XRD/xXM5LtYWNiaFZ0xaaYpm5qHxpLiPmNSRAAiRAAnkmUNahXc6WmhQ08zwZxVQdBc1img32hQTqBwEKmvVjHjkKEiABEsiWAC004xPLdQ8ezHJuwkApW04nfqS8H0wKVNaxvelYqHhZAEXTETkXOoJmZJbzQAxNr6Cp/Abl/2pMjo9gnl3O5QC8tqIi/oSyJAmQAAmQQI0RaNa0ac4JpuMJmsb9XB7Jn/o3xw3dcUc3v+lfUr+vMy+m80zIJyAVZsXN1Z3PeutUXblupuLH0FQxbFRhxtCsU8uCnSWBahGgoFktfLyYBEiABOosAVpoRk9dLhaaYV5SQUHTTYTjETZl771exZFMqCzniUQlyjo4gqbuXk0LmJmWb/Kot3BxOUqVhWapstBEWFIgdSzUOX/UvwW6rLXQVC9I+RoUNH+bPZ8xMzNNJd8nARIggVoiILLixt02yKm1TIKmFSEpaOaEt7AXUdAsLH+2TgL1kQAFzfo4qxwTCZAACWQmQAvNzIxsiWz34EaKNOnO7bXJ342FpryjcuFoYwIRNKsS61BZVYlOylWvGB8LFi/RLudeC83GOiuDEV3lAOskMdfu6Ub8LDHWLzUsaM6aPa8YkbFPJEACJNBgCXTv1iWnsVPQzAlb3bgo281U9lnOaaFZN1YCe0kC+SNAQTN/LFkTCZAACdQlArTQjJ6t6lpopgiaIl86LlPyc50poF+TDN9a0FT/KiuVoNmxSAXNRUrQbKIETSVONpJ/Otus/DN2mdoAU56pJxQ069JfAvaVBEiABPJPgIKmnyldzp1Ngvs1r4dPUuh0t0/Jb4SdOD36Hc9Gyv22WL4Vdt6TzRRdzvP/YWaNJFDMBChoFvPssG8kQAIkUHMEaKEZn21WRgVWrDSbb9dpXPbhZs/tvO4ImkbUFEGzCgklaLoxNGN2L1en9Gzjhi1UgqaOi9lYWV0q//FGjXS6Hy1orhdh0+lvroJmIpFAty6dcoppRgvNmIuFxUiABEiglgjkR9CUpHLOF2iq39rN3IZiZgzNWprJPDaT1WbKurhkK2iqb4llQ1VZmcg5kGseh8yqGhiBoUOH4q9//Sv2228/d+T//Oc/8cknn+Dyyy+PpDFlyhTceeedGD9+vC4j9Zxzzjno3bt3nSf4zDPPYJttttFjERbPPvusHlPbtm0xevRozJ07F++99x6OPvronMZKQTMnbLyIBEiABOo8gShB8z//+Q+uu+46d3wdOnTAQw895P5+6qmnory83P39jDPOwIABAxC8TgpsvvnmGDNmTCirm2++GR9//LH7Xp8+fXDxxRfr30eMGIGffvoppY3agh7XQlP64zUscOXLkH24GA3o8o55pk0MZAwKlKApMTTV/rssg4VmioCZJ0Uzk8ApgmYTJWg2FjdydZBsrARNbZkpgqb+aWbHCJpK/FQxNEtF/JTXAy7n+jVH4BUxV6xUKWjW1upmOyRAAiRQ8wSKX9A0N6xM9758kaKFprthSt215NVCk4JmvtYs68mBgIh306dP94mXo0aNwu677+4TOYNV11dBU8Y1adIkzUOEy6uuusoVbe+55x5sscUWmkscRlHTQUEzh4XKS0iABEigHhCIEjRFsOzYsaMWIq3oaMVG+/vAgQMxePBgHH744ZrE3XffjTlz5mghNJ2IabG9+uqruO+++9yyViSVer766iv93siRI9G1a1f87W9/c9vo1q1bQchHGRVIZzIJmjqTuRQU13LnAnlmPKeMy7mIneuqlEGBslIsC8TQ9O38cxUv41LznOyCh7xFKoamiJQ+QdNmiBWFUvdN/Wy8Hlr8lKRA2ppTzoxiYSPDlfedrLIUNOPOCsuRAAmQQJ0jUG1BU90/Gos3QI1ZaMoti4JmrS4sswmioFmr0NlYrRKwot0111yDDTfcMEXEs8Kl7ZQtl07QFLFPDmZnnXWWW59cby0cL7zwQpx00kk+C0hr6WlFw4ULF+Kdd95xWdh25QW5ftmyZfq9TTbZxCe+et+z11jRVvokhzbbjzDQ0nc5NFpLU7E8tfV43xNucvAUi81sHxQ0syXG8iRAAiRQPwiECZpTp07Fdttt5w5wwoQJ+os1K2ha4VHExp133tkVPOVe9cc//jG2oGmtOa31pxVGX3zxxRS4XtG0tgTNXC00wzKda0tMo106mbiNmGnFTbFQlN+rlKCZUP86tm/rz22eUcTMWCBiwWawSwmIm4vKl+okPyXqn6QsV3nLXatME0BT1E0TSXOhTiAUFDQd0bNIBc1Z85bh59kL68eHO4+j2KxbJ3Tv0janGsk0FRt55rSU0l5EpvllWh2e3p5Q0PTPCy00zT6IgmZ+P6+srQgJiFDXq1cv7UIt4t/ixYt9YqR1JRf369dff12LeFGC5gcffKDFTOuO7a3PDl1ek4eUEQFzxowZrsApAqIVN215KWPrlOczeDpeAAAgAElEQVTSP+sO73WZ91pQet3mpT0RR61rvVdQ9U5HmEjpFXSDLvVR9WSaYgqamQjxfRIgARKonwTixNAMCpjWFTwocHoFTUsrk6WmFUtt+TAxM2jJWaiZiGuh6RU0pa/Gu9xmNZen+hU3y7kRO43LtSQFqlIWmu3atXFS7ISNNile5ipjBmv1y5rhIqeSXLF0yTKUaJFSkgKJVUtQ0FQ167ia6yEZ0V2Xc9dCs3gFTRHeZEx/6t1Tj48PQ0DW5GdTZqgwCeuzFjXJNHUVkWf+P1lkml+m1eEZ7AkFTT8RCpqy+UnugHx06HKe3w8yayssAa9Q6bVCDIulaS0WFyxYkBJDU6wl5eGNvWkFQXnPvu516xZRcJdddtHXSdxKEUTFslMe0pZ97LvvvloADYqIXtdvr3WmXGctMYNu9VLuwAMPTHGpl349+uijPqtLO94XXnhBW3d6Rc1c3c4paBZ2vbN1EiABEigUgUxZzoNipu2ntZj09tu6oNvXrGt6lKhpLTTlffli0Mbk9IqahRQzs7HQ9G/PvUmAknt342BlTDX9bucmaae20FTikcSRbN6sqfrXLLAsnPibUYslW3Uzwjgz+bK/wOq1a7B2TYURNEts7Ezjqme9zSXZuU0ONN+x0NQxNOuAoPn+5Bk45qDdKGaGrC9Zl0+/9in22rFnVn+qyDQcF3lmtYxiFSbTWJhiF8qVZ7ABCpp+IhQ0zTaIFpqxP4osWJcJWEtHa4EpY8lF0Pz1119DkwOJ9aQIgtZ927b3ww8/oG/fvtq9TqwwbYxKK3RaK05roZlJ0AwTKnMVNIPWpUEeFDTr8opn30mABEig9gmks9CM6+ZtLTatC7odRdClPDi64HXB2JxBV/fap5PaYjZWmiZmprN3DxEyk1t6iZ9prDSrEpLp3FhptmnTSrlsK9duu//3dieGeBksEivpQaCQ/bWysgrLlq9wxExxObcZzqVTNimQfqbPKtpCc5FyT5eM6OKirlVPJzmQPLUV+2JoQrnbV+os57H6Gpie6mY5F/Ht+IP7FMMyK8o+PPHKxzkJmmQaPp3kmf9lTqb5ZZoLz2APKGj6iVDQtBsaxtDM76eVtRUlASs4WktI6aSNr5mNy/n8+fN1VvCg27jU5xUjw1zNvbEtvWW9LvFe93PbP+tKLgLkF198kRLXMq6gGXQ5D9YnbcvDWpDS5bwolzI7RQIkQAJFSyBM0JQ4jhdddJHOMG6zl0cNwFpQBrOgS3krSEZZaFpB01p2WmtQabNLly46FmdYvbUFM2ihKe3GFTRNwh97geOEbi0zdUXGStPNci7PqyQ5kON6XpXQwmaLFsZSMyxlQbimGUPp1ABTJcMwEVF6uXrtWqxZtVYlZmis4meWKl3SZDeXnzII6ZtkOTcPpxb1+4KFStAUa04lyipPblWGgmZtrd2aaCcXcYMicfRMkGf+VymZ5pdpLjyDPaCg6SdCQdPdSKVuVuhynt8PMGsrPAHrGu5NviO9yiUpkI1ZKUKouJCLZaY8vG7nYu3oFT5FtJSHdUu3dchrIrJ6Y2BaV3QRQNu3b+9LCmSFWbkuW5dzuSaYFEh+F6tTb33ynEmBCr9m2QMSIAESqGsEwgTN2bNnu1nFveOxwmQw7qWUsW7iVuD0Xmffs9d5Rcqg63owk3qQZ9AKtLZ5xxE07S5dZzB3LrDO4q5NgnpBYlLKw4TUNAKoiaXpWGkqYVlETYlduE69Lj/N9cbs023HiqcBGHEsNMVS0oqlWorU/zFxMSWepBYu9c9GOhmQiJryTzKW2yRA8lR608jNci71iKCpYmg2aaKznEtISgqatb1a89teLuIGBc3oOSDP/K5PqY1M88s0F57BHlDQ9BOhoKm3C/IfCpr5/biyNhLID4FghvZ81OqN75muvlzdzaVOxtDMx0yxDhIgARKoewTCBM2Kigo0bdq0RgYjAmYhrS6zGVSkhabR7+x/fFU62qRHyEwqj9om0ytE2kRB+jVjzlkloqX8T4uY6l+iSv/UYqbjtq7d03WrVuB0zgVe8TTKUFMLmPJwn+jnxgXcSJtiTSkv6P9J4h/1vLGKmSmipkkE1EjHmZQmXDFUCZg6dqbHUHPBovJkUiAtgKo6lAe9LpPicm7GW5WoRFe6nGezTGutbC7iBgXN6Okhz/wvXTLNL9NceAZ7QEHTT4SCprt/oqCZ348rayOB3AlYy05bg9dFPvda/VeKdagkKOrdu3dolSKkvvfee24m92zbpaCZLTGWJwESIIH6QSBOlvN8jdRaaAaTB+Wr/tqqJ8pK00iS6mGSmOsnXt3TK0ImDS2dV7ULumOlGRA1xdJTxD43oZB96rTiurfnACDMQlOLm+Y/RsTU4qax2EyKnNKY+V0/E+9z0UhFbHW0Ur+gKS+a5EDaoDONoCkxNHN5MIZmLtTiX5OLuEFBM5ovecZfe3FLkmlcUvHK5cIzWDMFTT8RCppmK0MLzXifQZYiARKISYCCZkxQLEYCJEAC9YxApizn9Wy4WQ0nzEJTb8NtLQErTa0zuqqmK1+a0o5VpbaydBMFyevKxdypz1xrrS6h3c1d280qI47aJt086tZa06+k6iRDYQ9tfek+jNt40tXcsbh0XjN5fLT8qB8lxrfc0TqdQqodI1DaZEAiaCohVPV0vrLQbCIxNCXLuSie2lXdWHE6VZnxqsvXaXf69SrDu0kKlMuDgmYu1OJfk4u4QUEzmi95xl97cUuSaVxS8crlwjNYMwVNPxEKmooHBc14H0CWIgESiE+AgmZ8VixJAiRAAvWJQG1aaNYnbkErTb8lplUZZcSO9GgFzaQiaSwypYSNtanLJJMFGZdyx/1cV2VFUlEAjbzpGoOappJiawbYXhFTijpSpfY3dzVPLUzKm44rubbWNAKozmbuFDQWnNIf84KKpqmTBImFphE0VSIh7csubutSwFSiX9OCZiMdN5SCZnF/QnIRNyhoRs8peeZ/vZNpfpnmwjPYAwqafiIUNM1ehRaa+f2ssjYSaPAEKGg2+CVAACRAAg2UAC00oyc+ykLTiHa+/wRcyx3zSPdHUtRMio7KMtNaUWqLTfOLec1J+uMIlJIQyJpnajtNr7Dp9CMYnzPTcraCppYvrTBpL9JCZtJMUxIAqUOY9UJXpYwwaSRMR5yU37RA6Vh0KkFzoY6haZICmSRDJtkQBc1Ms1Oc7+ciblDQjJ5L8sz/OifT/DLNhWewBxQ0/UQoaLp7p1Q/Eu83w8Fvg803vAam/hbY+el+Sey4e5hvgSW7ogQlr0JlZQIbdOqQ308GayMBEig6AhQ0i25K2CESIAESqBUCtNDMHbM1MgjuwfU+2/1P0urSipJOtExjUenZn1tR0+iXjnWmMeE0Wc4923/9sqOIeuw2AyaawfOCx988aYbpWmSaGJnJh/YSV2KmTvYjdpRuoiApY0oGkwI11iKsqJdiobkk6XKus5xbQVMutNcbC02T3b3uu5yPvOrqtAvqumvSv5/7aqz5K3MRN/IlaNZHroXkWfOrpTAtFIppfVyfMoO58AzOPAVNPxEKmu4GiYJmYf5MslUSqJ8ERNBctGhR/RxczFGls8SJWUWdL0YGQENn0NDHLx9iMiAD+8c801pwtMaA55RHXvS6gDvGAzZmpOtxpZ4Yt3F54sSTdFzQdVxJSJbzpHipkwN51FLdB32t/xaUelIw73sFS/2CDqPpFTKNxaUkA9LldZZznR7IvOa8Z4wxxUzTcUv3Zjl3GhFBs1S5nJeKhWaEoGk91euDoCmixqWXXBK5F7jxppv0e3VV1MxF3MiHoClc0zGzYlJd41pbPDOJbek2r2SaeWtfnz/3uazRIDEKmn4iFDTNdocu55n/trAECZBAFgQoaGYBi0VJgARIgARIwNmT20Q+BohfRtQao1EcnXedCJnOa64Y6UkEpGNJyiXiMaVeb9qkCZo1LVXhJ5PJeWoTvvRnTUUCFRUVJuO5uI2rDkh/pJ/Gdd1v2SkhMqW38xcqQVP1XQRNHTvTZ6GpL7R+6/XCQlOEjXPPPTdyesaNG6ffl591TSiSQeUibuRL0KyPXGuLZyZBOGrB5npdbf59CrZVW0y97Qqnk08+JXLYjzzyMIYPG4axd9xR5z73ufAMgqCg6SdCQdPuibw+Jw6joLuL/d1+T0yX80L+eWXbJFDcBCho0iJJVmgma6TiXsX56V1DZ9DQx8/PgfkccR3E4+C30Ey1iXSNJj1PvCKnV9C0RpYS/mmdymguoZ9atWiOJk1K8/PHrZq1VFRWYuWqNSgpUeKkzVZu66SgqUnEETRF2KhSc1wXRc1cxI3aEjTrItfa4JmrdWZDEuCqu0aF8emnD9F/AyrV38km6kso7/MHHrhfC5ryqGuiZi5rlIJm+pstBU0KmtXcjvFyEiCBMAIUNLkuSIAESIAESCA7Aqku50lR0z4zFpxSr00M5GQx1y8Z93ErbEpMzCqx0FQ/myrLxubNmmbXoRouvXrNWoiwKbEwS8RiVGc/d6wzlcu59k13zTahY2hql3Mlgmpv9ZAYmvXN5dxaEoYJG9ZC005TelHzN0y84jq8scCWboym7btjj6POwlG7dEApgu8Dpc3LsNGOB+GU4/6MbnbpfHonhk6YElgZvTF4/DnYLcv1kou4UV2xSLroFYqrxTXxDR684C58sfExuOWCfdBGjz+BHx6/DGM+2wgnjToPe7b5FHcOnYApvQdj/DlBQgnMfOcePPTSfzFnTUKAo2yjPXDM8KOxfcssYaritcFT2F018gr9OYzzSCQSuOa66zNbFAbXlWLRdatDcNLQfugpa8++3+7PGHHDCdjCbd7wndt/JK4ftLHpUqIc0//1LB5/dSrmrazQ0TP0Wv7z8Rjxl23RLE7HnTK1wTTYHa+gGdZVK2iuUVbuq1evgVhsRltoZ/u59/5dWIlJvr8Z3t50Rv+R18Mij4s0F57Bummh6SdCQVNvh5wNUGC10EIz7keT5UiABIIEKGjSIknWBK2yyIBrgGuAfwuSd8hMnwe7J0/uwQOCptfV3FU49UbehLz0uJqLtrluvYqXWWUSc7Zt3UpZQqZEvCzoBkbcz5ctX6nFzEYl6p/ExhQdU3rlxNBsyEmBvMLbikbN0Xr9Gt98iYAZfGQUNtbthWEjDkTL3ybjk1dfxr9+aYr/uegWHLu5I3w472+47DdMnvw+3v3nVCzu1B+XjByEHiIiOcLSVkfdgJN2tK03RZuyNshWLs9F3Mi3oFldrolvHsQFd32NzU4ahfP2bIPED4/jsjGfYSPndwUsWtD8VrkO3/Ep2u12JA7p3Q5rl87Ct983xf7nHoLNc/hk1gZPWZNiHdjl6Kdi9XDeM8dqK8KMFpredbXNAsyY/C6ef/krLO11PMaM2AstPYJn5/0vw9VH9VAivDyCguZytURHYsKUSnTabj/ss/vm6IzlWDBrMn5qfQyGHtA5Vr9todpgGuyQMD7zzDORSFQp4bgk5ee9995bY597/9+FG3BY2VKsrpLmJuPRy57Dgr2GYcSBG6rfS9CiXXu0jKdru/3NhWdwsBQ0/UQoaOotkNkABR8UNLP6e8fCJEACHgIUNLkcSIAESIAESCA+gaCI6f3d3aV7BU2p2nE9Ny+brOX2Ohs7c11VFRLqX4d2xn6s2B6LlyzTh/bGSsyUh2RB10nNZSQmU5DpshI4FzoWmiUifEoZ7aouZUxyIfPcZDnX41fPE4lKdOvSKadhz5o9L6fr7EXVFd+8gub6qoQSff3qQetWrXz9kyRBGQVN9MfI6wdB27LNfA6X3fA2ug0ej3N2cwRN7/uqiBHo/o3Wh16PKw9RYpAjLPXW11QLT61YFIb1MBPXDTqV+S5LH/sxgW8evAB3TemFwVcdil/H3IB/dz4Jo87b07HYjBY0F792PS59sQmOuvVi7J+Hj2cuYlG2a9QraG44dChGb1WBC/8bLmXPHT8e2QqayXWVwIe3n41HFzjrVa+7Kuy//wK8/U4J+l8yEoOMwu6z0Fz1/hiMeGI6Nuh/CUYOsqJn7uu0NpgGe2cFzahed2jfvmY/976/C7apEEvYHLDmwjPYDAVNPxEKmnLfFyYUNHP4SPISEiCBKAIUNGmVJWsjkzVSQ/gENXQGDX38/ByYTznXQWYO8QVN62ruuJbbC7WY6bifi6gnGc1F0JP4mUoM69i+bVH+yV1UvlS5kJeqWJo6bbmT+Vzczj2+5lqtXK9czsvRpLSJsug0gqZSQU1yoAYgaHonz+sm7X09lsu5FSwrFuLrp8bi7o8q/BaaAUET+AGPXzAG/97wGPxduVVbS7n6ImhaflFM5f2M8Ukd1/MpjVthbaIHTtCu5n4hKNTlfMFruP7KFzGn40445swT0ad7S8fqMLePai5iUXUEzcf+fiq6tTJfODw2dQ0WrNKmfO7jlQeezlHQTGDVrH/i7tET8VMPr4XmAgwYeTyW3zEGH7YYgMuvOUwJ836h7Yt7zsL932yLweNUCIQsrQfDqNcG02C7mWLnBsvn9XOf8nfBv459rv05LNNceAaboaDpJ0JBU/YAwoSCZg4fSV5CAiQQRYCCJtcGCZAACZAACcQj4LfA9LuZmy26Nb10I2f6YmWKpWayDpXNXG/tJRmQ+qfczcV1sWOHYhY0jYVmoxIRMpWoKUPWiqV5rBehU41wvhY0lfjZuNQVNBtJAiEx5rRJ27WFprJXtYJuHbfQtMlpvCupRI1ZEgF5f8r76ROEpMbIhBLgNh94Hs4/SCzZwi00EXw9LIZmZ4/VZ7wlr0vlIm5kK8CFdcdaGQpDeQhHeQR/t9dmTrySwIynr8TN7y5Cy93PxehTt/MIk+liaAIVM97C+AdfxNSFCZS23QL7DT4Dg7bOzVyzNnh6LTT/ed9pPrwianofD9/xRNaCpvf60k59cPolp2BHwaHX3Vwdt3HgYnHz/wKdDr8WVxw0w2eh+emdQzFhbnI9/jbxClznBo7NPtZrbTANrlHv+gz7rNvPfrz1GfNz78bWVbX6/i7YVmihaUKhOCFRTGAUz++BWQwktsviz2LWRSloKmQUNLNeN7yABEggAwERNOfOndugOU2ZMgW9e/cmAzJo0OuAnwOADMjA3ghkLey0004p94WwmJlSSF5333OyAXlDQpn3jdhpbRNEyJQXqrSgJ9nN1yFRkUBZx3ZFeT9apNzIS1TCIh1HU6mSjbW4pERKyQdkDDPtCVJbaOqkQNpCU95UPyWXkHOw1AP0CJrr1POqOixo3t+6NY7YaevY8/bCl99jyIoVEeUDMTJVqaZtytDG9RaOEjQdC83uJ+Eu5UZdGhZDs6QF2rXP3rqwEGKRwNn/olLsfWT32Fzfe34W3r5FJe2Jevz2Eq4a9Tqa9toc836Yjz+NuAEnuFlr0guatsqK2Z/h+UeeVDFNW+eUbEXqqQ2e/8/emwBaUlXn/qvv0CP03E2DMgiI2gREwAiJ0QhqCAmIGMW/JihgQAZN/gLxhSEEOyAIZBIhoIzP+AQVkZeHOID/TlTwCYoSNCKgAmHouZumh3vPvf3f39p7Ve2qW2e898zfgdvnnKpdVXt/VedU1e98a60YaP7tRb4Sd7nH31782bqBZpKbNX9MRUDz+JdvkQevPc85MRfLcZ/4M9n8D5fKTw71RYEUaD7223LmP58iB7qOlbZskI0uCeTz91wl//zvu9VdvKoVmub1u+GYmfK+I15V8/H5hft+Iaf87yxMTheu8XNvuXMnfC/Ymgg0CTRrPiRb35BAs/Wac4tUoNcVINDs9T3M8VEBKkAFqEC9CgwPD09YpJw70xr6Yj/hD3ky7b1OCjAzmR3C0d17n0PSwUwXco48kosWZPOu1dv3ZrVfsw6QctiFnSPkHEDTWy2nZYoCYYKrcr7GtR02oBnau9SbMfQsApq7uhyajZRDancOTQDNg7duVT1GZr1cpm99JrMbdn9hlTy9y9Jk2o9mzaoONCeElNvixUDzRQeSLrzxUdnlXZfIX799YU/k0DSgOTL63zJ9+GViz6ft86CKcd0Th+rzhW94Ulb8YG+pDDSfka9ddIncM3ysfOKCN8p/XvlX8sVVvxtV4q4NaOoGn7lDLljxDVnWYH7SVsC3fA5NdPuQsY3y+pftLNu/famc89Zvy5XffqsO55PfW1I30CybyiADNN3Ktzwo1573Wfnpy39PDtvwH/LLgz3Q9Dk0fyOvTooy+ePbOzWX9QTQ3HHGvf478poj9bkmoFnn5z7zRaNvCDQJNCceFR0zhUCzY3YFO0IFekYBAk06knAw05lGDXgM8Bjgd0F6ai9yaJZzZ2KpXLS5hpGbFdOD0BRo4h0ciebWBMxE2DVCzkdGXcXfhZ0JNOG6nO5Ar4acu4SYCC73TNOV9lGbZtAPOTTXbFCgiZBz5M7UqugW+WfEMnFoYvzOoTXmiwJ1O9CMLxANbgJoDhx/lPzmez/S2VMCNJMq6D+Xn7lK0/f+4BnZunRilfNuzqEJoPmaN/ofF8aHvfNy1KVn2H3J7g5i/spBzFfo86o1a2XF918uP//uaFmH5jNfu0guuWdYjv3EBfKHKKAd8mKuOfRMufKUA13oeQCar363XJqWhZfBWfNk68rr5F837CWHLV8ue89YIz/+zlfk3x4elzdp1fn6bwlaCTQ/e8Fr5PT3vbJiJ6/9wi/lz//u53VVOa8ZaLotv/i9f5Lzb/2ZbHevl/yBB5pS+o3cseIy+caqWbLPm46Wt7xuuSze/qT858o75d8e3aurgOb2tU/LjEW7S/4ZQPOl/3d3mfMPTyvUJNCs7bOyyv0gNqznD6Q4cecajQrAOQc/oIXCcvY684z1+3YMOa9N65a3ItBsueTcIBXoeQUINHt+F3OAVIAKUAEqUKcCZR2ase0yWmfejRmiyV0LKwyUOjITZ2JYCEWBADTHkENztHNDzrVyebjJtByamklTbZfhDlKfADRdASHk0Bx0N6R9BDQNYJZzaRrUnBKgmeTSG5Dpc3aR/Y74E/nTo35LFliBlR6ocm5AEzBzYDStHIP3yxa+PIGaq17wqZPKAs0Qai5HnS8Xv0PrxutDIefdG+XQM6+UUw58SHM8PpL7rgCA+9jSr8mVX/qZrN0GqOr0nr+7/M67T5d3H7qgoeJA/QY0HdJ0ldDPl1t/tj0FmtB55Fn5jy/cLP/20NOyYUQ97jI0c2dZsvvb5M/O+QOphxW3QtP8aQQh5+967ezCswsAZ+zQBOz8yk+2VA85p0PT/UARgKaePwg067x86ezmBJqdvX/YOyrQjQoQaNKVheOW7jxqwGOAxwC/C9KzeKMOTb8GByjx5O/P/TtvyPTvQxJNb9L0MHOHsyiOuZDz0VLJOTQ7M4fmagc0tdDPEGLHfZVzA5o+fabVO0eVcwc0A/xEhLrm0OxDh+aev3uwjN9xj4abw6WJB6Bm5RyanXc12Q5YBBXyDk1ATYOZCDtHyHmtDs1OUrUVelrIORyatTxqdmjWsrI2tGmFpvlhVQKaaDv9wsdkZMV+yWKVgWYbRKuwyUb0zK9u0lXOmw40U7dnK9RnUSC9INKroAl6Z38stl+C7cIJicbzF1BRmxDugYsrXEzZL8Sj7hfipYsXtGLfchtUgAq0UQECzTaKz01TASpABahARyqQd2hWCjfPXp6nTswQVe6v3cP1dvrsYaaf5dyZCDsH0GxSyPkTTz0n++yx66S0Rsg5dBlwhBL5M9MQQH/PAaMmqpyDW65eF+CnhqeDf/r22hDvg2h4ixyiev/hYC5yaKahgrV3t5NyaKLXcah5nDvTRlTZoVn7uFvVshG4MRVVzss5ND99rM9XipBzPAA1P3LXrIoh563SqpbttEJPA5rz5s1Vt3SlR8l99jZu3KQh5/ZYcfHf1jKUjmnTCk3zgwXQPHb3aTK8cJaMrtuaPKMdpgFoIuTcHnc9vaOCQ7NjpNSONKJnfgRTAzSR2gSRAM0IOSfQbPlRR6DZcsm5QSrQ8woQaNKVhYOc7jxqwGOAxwC/C9JTft6hWUv+TL90ahrAO18oyMwFeA4ZNS3cXIGmGQqmHmhu3rJNzr3sBnniqedlzuyZcuX/OLlhsGlAU6uc4y9UONdhg1Aq1cR059DsQ6BZ7wVj+Srn9a6p+e0bgRtTBTTrHV3FKuf1rqxJ7VuhJ4BmI49uA5k2xlZomtcTQLPeR/kq5/WuqbntG9Ez3yMCzawidGiG6wQ6NJv74eXaqUC/KQCguflP8hmD+k0FjpcK1K7A5qtRTYAPKkAFelmBehyatURKpdFSPg5dI6P0BQoEuSrncCiOjYWQ86krCnTrV++Tz3/tO8muOvBVe8mVf31KQ7tOgWbIi4nEmM6nmYSRe6AJt4snm2v6DGg2JGgXLdQI3JgKoNlFEtXVVepZl1w1NaamNclUc6NG9MyvnEAzqwiBpr/mYch5zR9DNqQCVKAWBQg0a1GJbahAqkCvAk06NOnQxFHO48B/1ht1aCYB50nOTP/C59SMCwSlKaE05NoBzvEuAZoDLq8Zwv8Qdp6Eh1s4uVagdUDT8m1mQs4D9OzBkPNeP0c2AjcINMsfFdRz6j8x1HRqNW1Ez1YBzTQfs0/MrOlM9Fn/raPKOUPOp/aoqWFtBJo1iMQmVIAK1KUAgWZdcrExFZBeBZrctVSACqQKNOrQLAKa5s4EtMTDGTLxb3BpIoe9g5kGNF0O+8WLGnNoIrz8SRdavvcey2QnF14Od+Yd3/y+bnPL1u36fNFH3ye/e3BtRULyx4M5NDNAM1Q53xGFn+OmEgWEkLdvCEBTq5wHN6e6OM3I6dXqhRyavf7ZaQRuEGiWPyqo59R/Yqjp1GraiJ75HjTLoZmAS386MZJJoDm1h0Bz1kag2RxduVYq0M8KEGj2897n2BtRoFeBJp15dCfi88DjwH8r1OrQLAw397wyiayycp4WZq5cM+TV1MJAWkuAGg0AACAASURBVBTHVTl3f6UGgSaK/pxz2Y3ykoOayJUJoLn37svk3D9/l44H83dZPF+WTaLg5+o165PK5R5QRlXOQ8EGu7f08HNYBssATYWaIeyeQLORM1Frl2kEbhBoEmi28ijlMTq1ajeiJ4Fm5X3AkHN/bcSQ86n9rHJtVKDvFSDQ7PtDgALUqUCvAs06ZWBzKtDTCtTq0CyXP9MzTU81Y6DpL+WdI9OgJ6AeHJoKNF0OTVflfMmiBXVre9E//avc/+P/SpabTK7Mchtf5YAmdEmKAgFi6p9WA0rrAqlDk0Cz7p3YwQs0AjcINAk0W3lI8xidWrUb0ZNAk0Cz6lFIoFlVIjagAlSgTgUINOsUjM37XoFqQNNy+Vg1Ywhm02Lx4vn5Nvl58XLxuoraFW2/lp1GZx7diThOeBz4T8ukHJqBYGaApoJNA5xp1XPHMjXcHC7NsTFf5XxJAyHnLQWagy4JpnNoop75QMiZqd9hWt/cR//VCzQBdUulkuy6y+I0L2ctX1yhzdPPvlBH64lNCd8qy9cI3KCm5TWlnpP6uBYuTE2nVtNG9Mz3YHIh5+7HM3euQa7mAVeEDicWhJf7H9HCGYch51O701uxNgLNVqjMbVCB/lKAQLO/9jdHO3kFioAmLrCQLy5+4OYcwLFoHtphHtpg/mAosmHLq1vLFQiJHwMOIKBd/MA60A7P2H4MOzEd6+GDClCB+hWYrEMzZMucGHoewKZPp+nBpgHNEoBmyQHNhfXn0ERI+dmfvEFzZc6eNUNDzvfdczc550PH6+CRW3Pp4nmTCjlfFVyXQxHQtOIMvjhQAJpue6vX+YroAwPuryCHZj7knECz/mO0lUs0AjcINMvvIeo59UcvNZ1aTRvRM98DAs2sIgw518sevQOacLSWC3exiylbxJwclsNHfygO+Wv0WXP4uJsjDXkpuQuf+kNepvaj1L9ru+222+S+++6T97znPXLkkUcmQlx77bXy8MMPy3XXXddScS655BI57LDDMn2ZbAdsjLaegw46SE4//fTJrrbq8nBdXH311Zl2RxxxhJxwwglVl21WA2ixfPlyOeCAAwRaP/XUU7qpfL/uvfdeuf3223Xe3Llz5YorrpDnn39eVq5c2XD/CTSbtVe53l5VoAhoAjZ+4xvfkOuvvz4Z9pe//OUEaP7kJz+RFStWZCTZZ5995LLLLtMQzssvv1zuv//+ZP7hhx8u55xzTgZIAmZiO8cdd1xmPRdccIG89rWv1fWcdNJJsn79ep1/zDHHyIknnljzbqAzj+5EHCw8DvxHZrIOzXJAMwaZ5tgcd1WCcP097oDmSINAE31GUSCAzX322DVTFAg/dCC3Jh6TKQoEoDkdeTHLAU1X8CfU/PEOzWECzZq/gDu8YSNwg0Cz/E6lnlN/wFPTqdW0ET3zPSDQzCpCoOn0INCc2g9qJ6/NYN8ee+wh559/ftLV0047TV/3CtB8/PHHdXyAchdddJFcfPHFsmzZsqbtGoOZZ511lsLDTnigT3fddZfqgNd4oG/WV9vXppG9B9zeb7/9FDJPBjgTaHbCUcA+dJMC5RyaAI7PPfecnHHGGTqcIqAJiHnVVVfpfF8IY1y++c1vKgi1eQYl8cPLLrvskkgDmHnLLbfo98VXv/pVuemmm/S1gVEDngZH6wWa3bQP2Fcq0GwFGnFoFlU4zxcHqgw0naHAubYXN+DQLKcHKp1//mvfSWZPJremhZEPOKCJokAIOc84NKsATe/KdF3RMPVsUaBOcGi+9w/foPlB+cgqgGJVX/z6D+RNr9u7LmkANKnpRMmoZ12HUU2NqWlNMtXcqFE98xsg0MwqQqDp9CDQrPlz2PUNATQB++DUM8gHd95jjz2WcWjGjr3Y4QjAte+++6rL06bHjsjY3QeQiIdNM/HOPfdc2bRpk74FWDWHpoG1/DLlppfbGTZGA3m33nqrOg7xMCcqXscuVQBdvDeXos2LdbDt5d2tmG66lHNjWp/QdsOGDdqfvKPT9gem5/u8cOFCdUrG6zG3ZTkIjT4de+yxEwArxvTAAw9MANq2/Xg5aA9IYvrV8wEg0KxHLbalAs4FdfWSsjKsXr26KtC88sorE5gJ55S5NxcsWKCQ0hyYBkTjjVloOpYrApcIO//Upz6lbs96gSadeXQn4ljjceA/cY04NAk0LaEZcmhucA5NuMpDyDlcne4BoInvL+/kDCH3Dpi1G2g+/cImB2mnyW8fsDehZnTSAdj4v488qftn913m1nUJQE0nykU96zqEampMTWuSqeZGk9Ezv5FWAs2QVjOUp8PJRv/3L8JTeBV1M/y4VrM6k2tIoOn0I9Cc3EHUTUsDiK1bt07/ACYByQxgwbUDOJaHWACQCC+Mw5YNohnwy0M1LHP22WerKxIQ0YAcXuNhIeAGEuEGLLeM9bnWsPEYsMZOVAO3WE/elYh+GHgtAn7oc6Ww/FijouPB+mQOTtu+vcc277nnngR0VgKagMm2XF5P23YRiLT+5925WCaGq3mXabWxlTv+CTS76ZuBfe0EBSYDNK3/cFUCPMKhCQhpbkubDwcm8mvmH/mwcvwY8sEPfjDJtzkZoNkJ2rIPVKBTFOhUh+bExFOVFUMY+rkut+aTTz+vuTWv+utTZG8Xkl7uMfGGL21Zi0PT7h3rAZqW8qqdRYEwSgC4Xz27plMOwY7pxyt2W1w3zLTOU9OJu5F6Tv2hTU2nVtPJ6Bn3hEAzu18INJ0eBJpT+2Ht5LUZHERIMQAaoOMNN9wgp5xyioZmA0xWciXmnYgxrIxhmrkzbZq5OfNwzEKa999/f91+/LBlDLbFIK4oX2XsGLWQ8xi4xu5M2465EgE0i+CitbP1lAtdrwb9Ytco1lnJJQknVjWHpqULKAdf8y7PWNd8yDnmYfwYG2AHcqnGULPRsHMCzU7+JmDfOlGBRoBmXPTHnJUGNfFZRn5NvMePWJYD8ytf+cqEoj5x4Z8bb7wxE3IOrSYDNOnMozsRxxCPA/+t026HZllwWS/RDF+iP/3Fr+TAV72i+ldqGaKJyTHQRAoMFAHKh5xXBZpuPa42unNouoJpuLeJcvi3G2hWF4ctqAAVoAJUoFYFpgRoIr2JVjY3N2VxlfNqDs3kXJXpfHQOq3VQk2hHoImTPgRkUaBJHEbds2jsdgSEmz9/voZ8G1A0oGluwfzI6gGaRfCvGtCslOvSgGS1fJh5eGhADmH1eBQ5PSsBzVryYxaFnMewt5OAJjSI90PeAZuHpASa3fP5Zk+7W4F6gWY8WkAAA5gIMccPVficP/HEE4LiPoccckgmZBzuS3vAzWlVzPH8wgsvTAhvnwzQ7O69wt5TgalVoBGHplYt12v1cM0eXtj1O56rFQVClfNFlkOzEF42SDRrlqeAaIZJa0KVcxQFQg5NfA8lrTUnZuWQcwv/02roGaDpCiK5wkglV5B0110WR6GCNXdann72hdobsyUVoAJUgAo0XYFGgSZ+PBsKBehw3TxpoJmemnJjJtBs+kGQ3wCBZsslb9sGY3hlYdAWZm4OTXQuDgWPO5sHd0VuP7RHO4SZ5+FhDPks7NpyUpZbJt5+NSck2ubhIZY56qijZOnSpVqFvAiIlgOa+T6W23FF0LMS0KwWcm7h/7Zeq0qOsT344INJTstyuTvzIeeAlBh/XBTIdMivMx/GXovmRbrQodm2jzk33KUK1As0cTEGhyacSHjExXyQ99aAJsLHURDo5JNPVpfmqaeeKkcffXSiEpa3/JhxUSCAUauuPhmgSWce3Yk42Hgc+I9cIw7NWoCmZ5w+d6S+cs/jwaVYclXOSwCaC+ZH347NBpjVvohTwLlmnb/JHCoHNFO8KavXuRyaQ9kcmuro1M0RaFZTnfOpABWgAt2uwGSA5rA716AAXXWgGeXB1Jf5nJmV8mQSaLb8GCPQbLnkbdtguXyU+ZyScSEedDaGjpZ70wZRVBQI8+LiP3FhIauojpyV5hBFDs1yy8Sh4kX5H/Nixv3BvHweTSv8g3nVQs6LwtQNLua3WxQGH4NIC4O35coVBYp1QN8BhuOiQACacVGluFp93Kd8USC8t0JC+TyZ8by4iBOLArXto8oN96EC9QJNwEy46Q06mmR33HFHkkPTCgHZvMMPP1y/m2+++WYNK7eCQZifb4v1jI2N6aKTAZp9uCs5ZCpQVoHJOjSxYvVrmlszgMw80HS1VhKgOVYal9GxUVm8YF5H7hkPKYfdDzSpQxOB5750eXwjOS2Epw+5AjsOauL+EssUAE0Q3XEngndojjmH5iI6NDty77NTVIAKUIH6FGgm0FRwaQDTHJj5qIFwZkoLBOX7T6BZ3x6dgtYEmlMgIldBBVqgQN59WmmTAKYAFuWAZy3dbTTcHOumQ7MWhdmGCqQKVAKaluMSbkor6oOwTEyPHwgfNwipvz6H8E1rg3lYB5YDwATQ/NznPqdOz3LrwXRzg+I11oHt1PqgM4/uRBwrPA78J2ayDk2sIwM08T64tPGsn0xAzgD0UBgH1WVHRx3QXNihQFMrlzugGb6zQCp9Hk3cocTh57UBTdQ91/GrBgSatX5Xsx0VoAJUoBsUmCzQtB/PBpJzDUbtIWQCNENyTJ9DM5cGRUWiQ7OjjhUCzY7aHewMFSirQD1AEytB++XLl2uoeb0PuDNXrlwpJ5xwQr2LansCzYZk40J9rEAloFlJFst/aVAj3zY/H+9ReAw/eBxzzDFy4okn+kuzcPFWbj19vGs4dCowZQpMyqGJXiTOzJBXE5MQWq7P/h8867QA9MbGx5xLMcqhWeNoGg1Kr1TRvGjTaxzQHBoOrkvYLvFDjMubia8kTZ9pZk33whcQquDQHNgh7v8pA5rPPLvKMpjWqBqbUQEqQAWoQLMUAFp8+W5LG1q9nj/0x7NBl6/ZlZHTInT+HGPQMs4pr9fG/gI5PPvNTgw/z3eHDs2GdtBkFiLQnIx6XJYKUIEiBQg0eVxQgfoUaBRo1rcVDy5xEYeHuTnrXUc97enMozsRxwuPA/+pqdWhibZWCMi/DngxKgxk9TzhRNQ2wZ6pQBP/OXciQq7HkEPTFcZZVMWhOQFgThHRrAY4ATSHHdAccE5xLdKA7ycDmrh5VMul/+6qBjRBM2HsjB2aYy7kfFmDIeer1qyX7SMj9XzlsS0VoAJUgAo0SYEZ06fL0sULGlr76nCu0ZQlcGcmQDMFkBOAZihzbtXOseGqQDN2dDbU0/oWYpXz5IJp4lVLfCFVlJDcLqTiUBdbJv21OFxQuTw2+IV41F1QNXoQ1rdr2ZoKUIF2KkCg2U71ue1uVKBVQLMbtWGfqUCvKFCrQ9NDTPunGGiigTJMd42dXH9rQSC1aoYcku7ZpYkYLTmgmcuhmbnybxRe1rpjIqqZB5xrXQ5NpMHIAE27abQ6DA5w7nBgE/BzuhYFcn+DuAlNM2ialTMGmoC6pZIDmksby6G5Zes2Wbt+Y62jZDsqQAWoABVoogI4j82eNbOhLVQHmkVgE5uqx6FZKRS9oW5XXYhAM7lgItCserSwARWgAjUrQKBZs1RsSAVUgV4FmnTm0Z2I45vHgf+ia9ShWc5YENhlcHB6mGlwE/kj8R5O7JL7Wzh/rvk8fWeqQsyqDcp8e1fxZObgJoDhkHNnIpcvwgCnOUumNdGw81D2B70B/PRVziOgCQsnhADcxIJBAx2/g73IO9wo0MQAN2x6UV7cvIVnKipABagAFWijAjvvNFvmz9254R4k6U1CNIBGK4W8mT7rkuXRxEt/Fkqm+9nh3GS/tNn7uEsEmg3voMksyJDzyajHZakAFShSgECTxwUVqE+BXgWa9anA1lSgtxVo1KEZA00o5KPLfb5M/9IX6vLvLY+mCznXCCkXdu6g3rx5O8cldnJCp/CyUYyZ33NZrFkMOR1ylI0bNsmg5sVEITPcDBrQ9IWB0B+XKENXvwZuzuFBGZrm4Kc5NBVoupn+3jQBmhpyPwVAE6uEU3PzS1tlZGSUOTV7+yPK0VEBKtBBCsAbOX36sOw0Z1bDzkwbDs4fyMFs0QDVgGYaZp46NAPm9KtMAGcsGIFmWw4fAs22yM6NUoGeVgBAE4WF+vlBRxJdWTj++/046Pfx8xjwZwEeB6kOBx98cHJqTMPKizGiAcso6NwX/TFwl+Z6yoWdp4WBADThUpw5Y7r7m5E7LfvtloWY9dLNMubMdHK2wdbt22X7tu0eaA4CZOJm0N88+lxm1gEfWr4KN6RlgKbm2rTRIBxfc4g6h6ZLdzUZh2Y/X8dw7FSAClCBXlHAA01XFAjnGvyAZq7+fIXzuIJ5cHCqBnRodu6hQKDZufuGPaMC3aoAgWa37jn2mwpQASpABZqlQN6hmcDEOGFmtPHsZJcPE/PcPwmGjELMrXCQuTSdOVGdm2Ml9xdcmjvvPEdDtpPtxgOtAV7mm1QJLvdrzzWyt6Mut+WmTS85mOnDzQed43IAVNJC/6yXFvrnNr56rQtPn+7dnIMhPD0bGhhGBqDpxu6Gre7UXZYuzHejWbuY66UCVIAKUIEOVECBplY5j4Fm6qisrcJ5OKkVujOrzWuOKMyh6XQl0GzOwcW1UoF+VoBAk44kHP90ZVEDHgM8BvhdkF4N5HNo1gM0tXI5LtotzBwvDGjqijzSTKqc4/UYigOF0POxkoLNWbO8UzOp1BpdrJTxidZ4OTMRbxYBT/Rym3Nmbt06ogAT+TMRPo7XGkYeKKi6NDGGNF2ZrF7jgKariA6HDdw1yKUZTJ2+rS3jRIA703JoTgXQrIH31qgTm1EBKkAFqEA9CtT041mVFWoBugA0EW6uOZuDO9PyZyqSLJM/U+fZT2MEmvXsvua3JdBsvsbcAhXoNwUINPttj3O8VIAKUAEqUE2BRh2aBtO0gnmwbZpLMwlLhyvRvJs+yaaHm+pUDC5NVxwIUBOgDw5GPPvlve0z2Y7B09yAanFo4l4wxZKBMLoElzrd3UAquMSzu6EcQnGf8FqLAVnSMoSPu40BWsYB8avXuBtSl09N820CaDoY6m9AE2OnH4fmF/WV3ksO5O6ypDaHZlloWZVmVm1Q7dDgfCpABahAnytQBVtWTWlSWb616zY6h2acQ9P/bFZUEMhORXGFc/uxzZ90igoCpTOmAsDWejDQoWmXCWmSnkS7fJiLvc9fQOnFFdYTh70kvxLj11FLSj4moy6PzdLFC2rdP2xHBahAlypAoElXFg5duvOoAY8BHgP8LkhP5GUdmnohnfyTOfMHNhmBzJQ8qiczBpFWKEineTvnGKAl/lOI6f5cqLe5F/3ymJ6GsVvIur+49/+U6ZrvZ5xXLLmLi24SXRPU+vG5Md1/CjXdM6qV63t/ywhI6Vc3TV2ZfpEYaE5zIefr9YZUQwZRGEhdNqGtdiQFvgg31/GOjcqSxVmgWTu4JKjs0stQdpsKUIGeVSCHC2sEnWvXO6Cp+ZrduUMd/lblPHJl5vJnEmh2yUHkL1ImnrAJNLtkB7KbVKADFSDQ7MCdwi5RASpABahAWxUocmh6ZJj5J+mjR5Lu4YuY64v4+jw2GVi7NJdmAJlgfDmoqe5Fi1/PQFC/lSS8vQG1ihyayiX9P6EQA4Bn+MNUzYfpbx0xHWPxBYLwv3sXYs9joKn5Np3DU5cLdhpURTebKdyZHmh6M8WEO51CVkmA2cAu5yJUgApQgTYqUEA0C5jn+g2bfM5mnDcsWiA5d/juJ+Hm/k2aezn+4U7n0aHZxh0+cdMEmh21O9gZKtATChBo0pWFA5nuPGrAY4DHAL8L0tN6kUPTA8TwyFkhFWgmVDPBl75xYHcKMJNCQZjuIqNsdWEF5ltAuHni3RzzcNQ2aSA0cXxmSaq6OIse6r5MHqnjJU01ZmAyOCm1mjkewSEDXgkQmVSctRtFc2y6PoJduiVWwaEJhw1C1UExsS6EqrsB4gbVr9WH0SuwdX+o8L5o4TxfcCjzILws3qOcSgWoABXodgWyRBPnt40bX5QBd/4YQsqSUFSuKNxczyMGOv1JJZxbonUWAs30XNdK9RhynlzITDypZ6+p0nCT+Ndg7CyGnLfykOW2qEB3KECg2R37ib2kAlSAClCB1ilQzqGp19PZf3JOzNR5GIeAJ8AzCT23wkAJ7fRuS71e9xvQFFFwL/qLeB28Z5cebyZm0DCjVuwX7v8SMRMcqYUXwgNhfu6ld2QCPfp5ySv/JnXJWOw5FnfT4dCc7m5IBwbw56Zp6Llbh/JQC1XHGP0WkfZqbHxMZrkiSHNmz2jdjuaWqAAVoAJUoGMU2LZtVLaNjGgRuoEhTXbioSZOLVYEqAvDzfXU6E7qtZ6nO2aHTHVH/PUNgeZU68r1UYF+VgBAc+3atf0sgfzoRz+Sgw8+mBpQg74+Dvg5EH4XuG9BHgf+VFBJh6pAU6/X/XoMUprF0k92zky7nFfHZphqTktvWNSpKAhky6pPMwabYTv5/JzVTmYGNC1UXG+0bCEFmcHS4p60MFC2gc+ziWWSCj+pU1Ndl27+GnVooigQQgYBRg1oepgJWqpw0/2HkHOZ5oBmCbn8x2Te3Dky3VW4napH399ATpWQXA8VoAJUIKdAQRB5wxqNOpf+iy9ukSH9MWwgyaHpTfuW7qQ7w811BASa9oswgWbDnxIuSAWowAQFCDR5UFABKkAFqAAVqE8BMxnko6SwlnjaRKAZpqRsMhTrDA7MADh99W+sLFQ5jy7/dXIgopFvM4qHT3oRDSobgudnpI5MdWLGrQPMTMLL1V2JwkDYYtYtYwtagLoHmht8USAUBHIFzn1ldNtCuiWEoyPkHFPGx0tJlfc5s2bJrJnTfTGICo+aYWXNDes7DtiaClABKtC3CtRIM6s1w/lu2/btsnXrdpdu2efOHBwEwHQuTV+pzlI7Z52aheHm/twWTnGZ81q6nxhy3rZjlg7NtknPDVOBnlWAQJOOJBzcdGVRAx4DPAb4XZCe6qt9HgJrzEVORXgxOCx1jYCT0XNyPe9e+LBxvPBtfD5JwD28R5XzFF7aPCOX2oeQlzO+SCnH7ibcVIaq5el0f5OnOS9xS6jFGDDJF2bAQ6ueY5vhJhO40UeNW0i6fw+gOeSA5pACTR8yaDeZAKM+Qj3cVIYCQTuQU9SFnmuRoDE39qCLL4rkx+rLEKWy67xQEKLoPimjRZEw8X7q2Ss9DowKUAEq0JgCWYd+tI6i38hsdlykJ5w3kll6uvCpTPw5xf3Ypeca96cw0+XNdDmXbbqdWez3sORc5E876c9yCcPMdmwiTK0GOxvTqZal6NDUE3l0Bo9U89NtAnNo1nJAsQ0VoAJeAQJNHglUgApQASpABepTYCLQzNIyn/cyvT4PdcyTaQmMNCemawqYp9MB9dx0hF3PmO5D79rxQH+2j5RkZHTUQ06EjYNlWlEfZZRa7zztHpq5d6vWbJSh6YOuqANuUB2GVAeom+n5Y5qTU8PWvUPTc0sAzaCFA5w+45hbHqH3oU2CN01yrKOoElL2BikjYTno2w6duU0qQAWoQDcoMBEOWq/9j1P5h8FHTE8M+q6h/6HMO/ftRzSkJQHMtKrmWCbjzrQzTUh14p+6o7p5ohJDzgk0u+GDzj5SgW5TgECTriwcs9XcSN12XDfS337XoN/Hz8+B/9TwOKhNhyzQnIjHkoI90YsYcsZA00yWgHfjrqI5iuPMmTVTQ7Y74TE6WpKXtm5zN5cI/0PouIeW4Y60PNCc4YFmDENTt4+/+02dn96diqn67P7G0EAhr90pp3bKtKSA923G99LZsgvZfTPRsUm02QnHGPtABahAJyuQBZZlXY/4Tk/Jpf+OTxqH72klmZFDX88DzpEZlrUf8LIwM/BSXVlYTzgJJeeidI4XspixJjPKw9nm7Qc6NJ22dGg27wDjmqlAvypAoNmve57jpgJUgApQgUYVqOTQNETmc2BiC+VDzg1sIifmGOCde57uXJkzZ0xvtGtNWW7b9hEZcW5NWGsGNUQwcscEp2a4h9QbxtWaQ9PnQkscN2rGhEXTu3Lg9sT6zGlj4WbebOnhZRxSr2HqNi2MUuFldONaZNTUtZBbNuW44EqpABXoXwU8rJyIBq1wnFcm+ChDswnF6BBqHrsu3fkhKTwXfbmnFc6xygA2bZ3JOSDZSJFh1Pe1LOhs/n4k0EyuiSaekbMRFQw5b/7hyC1Qgd5RgECTjiQczXRlUQMeAzwG+F2QnturfR7MZJBeg6fX5/F1uYaaJ4TTgzrv1EynY/74DpczcgxQc0zm7jQnCevulKsN5LXctPmlFFDCqWm3sgFo6q2kT46pQHO6A5pwdWrBIS0KpMHjCDj0zSKXTlIcyE3bMe4dOC743ENPXQqPxO7q84xavi0tWBRl3wowNMg8SQlJQicpIBenAlSg4xWYnF8xW+/NryvPOvWMkfLGFEoGbRJHZsiwohi0AgRNfPmhvX+qDjRzBtKW7hkCTb0E8hdA+QeBZkuPRW6MCvSUAgCam//kkZ4aEwdDBYoU2H7dbhSGClABKjBpBfIQM36fXKWHF0mV88DiDMyF2j8ezIXcmSiEU3J/C+btPOk+NmMF6ze+KEOuaMM0/Ll+6w1ouEf1N4n+lhJjXLN2vQwPDSc50azog7p1Agn1HBRVzmHa9FAyeeC1rhNl3z3Q9A5N3yjRPGmXW9bahMnB7lFWljiEvRnacZ1UgApQge5RIEDJKpwzTvaRNM0tk3Fk2rxQNMigJ37kwiMTnh6DyjAjhaS25fQcZAsHs2eB1FHbNu0IAs3k5E2g2aZjkJulAj2pAIFmT+5WDqpAgWpAs5ojq9dF7ffxY/9SA2pgn/NKx0LtQDMbNeWhmbcSGuhEyDTCzPFcQv7MsZIsnD+3I79u1m3YJIODQ+4PXhtULvd3oJ5P+ptF56nU96vXrZfpaDsw5GClc2Vq7k3ctpo109/PaBhhcHV6wAnvBtbh/JkKML0UBhzRpKUyIAAAIABJREFUJjZ4eNAZbm6DvmXhZdbg2ZEas1NUgApQgU5VIMMqy9SqszNCHPOdNLXv6jBAZB8xV2UaZu5TkiRzwoy0ab4QUPiFzBZwb4u7RqDZEccVHZodsRvYCSrQUwoQaPbU7uRgKihQDWhSPCpABahANQWyDszUZKBgLQKWCuEsJNozzCQfZLoOBFVjORQDcn8u3LxUGpOFCzoUaK7fJENDIYx80OdFc8HjsFemd59KJBFyDodmKAqEG1KFoL7wgy9xi8I/6R0oHJrQYcBN1CJA6rz0bQA4/d1tcGdGO8Feaougc7IPDYbqhMjZWW0ncz4VoAJUgAqUVSAFm1m4aAukTkp8b/vv+chTGcyUKbW0XJz2o5YtEbsu/W9mE7fn1xKgZvi9zKakA2g/zPSnsGzJur48xAg0+3K3c9BUoKkKEGg2VV6uvIMUqAY0+92d1+/jx6FKDaiBfWWVOxby7kxr74Fl+CdUA0rbRkBTAZ1fyt/aIG8mHJqobj4uJVd4Z9HCeR30zZl2Ze26jTLkChYNwprpIOaghQG652CyDI2nacj5kMuhOTTNV0aHnVPDynFTl4QP+vrkyi7DOgBIdWqAk2FuAMJpNk3VLqGZ/pY2QZYpZ046XzBposb5RjUt1JG7ip2iAlSACtSnQMZ+iS/l6osXNkkApl8+aZMYL1P4mDop01QkfhnLnxkApq3TGGjs4MzYOeP28RAINKvvzRa1INBskdDcDBXoIwUINPtoZ/f5UKsBzT6Xh8OnAlSgigKRMTDBZ/EivtiPzQolaxKXoAdw6ew0MFpzaDqgiZDzUmlUFi2Y35H7Yu36Dc6hOezyaCJ8HIDS3Y66AU2DqzIU5jFnDhyaQ8NDAWiiMJBDlbihhVkzop8+xDwFmnqra5r5e9DU+RpUyZYTSLediBZIchRhbkumELQjFWanqAAVoAJdoEDGgun7mxTliSln+A7PoEWbFjs3w7TEbZkz/UdrT+LJM0WA0IH8tuL3yev2akuHpl0fsShQe49Ebp0K9JgCBJo9tkM5nLIKVAOav/zlL+WVr3xl3ypIdyLdiTj4eRz4r4AiHcq5M9He5hn09A7CxDPoW0SmwvHgMPTNXOi5c2ki5HxkdFQWL+xMoLlmHSqXD2vlcl8QyFcuB5r1Nc8tunCHrF6zQYadm3PA5dCEkxOFhHy+TYSVp219NDlCy4NrJyRKU4fmNGTkxGzfHoDS6p0nmsPdmuRly2XPrOKwLLil6tvvfw6cClABKlBJgarVwSOQGZ0NQsR5WrHcbyOUAbJlFDjinzSkXGfZ+UCXSG2ZcYi6nXjSzWc7kkYEtH//EmgmF0sTz87pBZY/vWcvqhDG4negRe1rAvJwJWCvfVJyf0E15i6oRkdLsnTxgvbvefaAClCBpipAoNlUebnyDlKgGtDsoK6yK1SACnSgArUATbsSD9Hk0XV5BNvCdTiqe+t1u8JMf/1dctffHR1y7lyXgwFoat7LcJup1cf1LtNNcU+r12yUYdd2wIFMDU13z1pKyN+zehumOTNt0dRik4YpqlbRjawCYNMy3ODYnXZyv1N08CTeWH9P1IHHF7tEBagAFehkBWLzZZK3MtfhBHxOcEVGBeSiqj3+p6zUopnk2tSNpSDUv40ycdppIT09RD2JZrqXZeoXtVxqAk07+dKh2fKDjxvsDQXOPfdc2XvvveX0009PBvTII4/I1VdfLdddd51OO+200+Sss86SAw44IPO62Qrcdtttsnz5ct2uPfL9vffee+X222/PdGXu3Lly9tlny8qVK+WEE05oqJsEmg3JxoW6UIFyQPPuu++W66+/PhnRnXfeOWF0zz77rJxxxhk6/dRTT5Wjjz46aVNpnjV66KGHZMWKFZn17rPPPnLVVVfpNHyOn3jiiWR+fhutkJvOPLoTcZzxOPCftkYdmn5pByjxFGKe9V3kzkwNBt6GAJgJU8GYCzkfLZWcQ7Mzc2iucTk0h4dClXMXQq4uTYON7v7EbmQxdfVaDzQHHcic5goIoRyQhqkr0ISrMtwOJwV/tLyQM306V6Yrb451jCUo072D6WLCDbJOTpyf5TBl6prVXcMHFaACVIAKTEYB+2EqPQMUrC09PyA7Sf7hC8SlM+Dcj12ZiYsT7cKq0jDzACxDXs4saLUt+U7qOWcyY53CZQk07RxMoDmFhxVX1S8KGLjEeA1e4nUloNkqbdCHu+66S84///xkkwCc9913nxx00EEZABv36dprr5WFCxcqyLzkkkvksMMOkyOPPLLubhNo1i0ZF+hSBSo5NGMoWQQ0Y+CYh42V5plUBjRjiGnzDKheeOGFsuuuuybg9JprrpHddtutS9Vmt6lAbylQyZ2JkaaX56kTM6lbE8LP/TriSCofRQXAOYawcwDNDg85H0bIucuhOYjK5nYD6o2ZPhxcp02TVS48fQYcmnBzoiI6YKZ6NF0bFAcqdGj6O1dkH01ucwEyMw7NoJkeXgUOzQgcp0dgTDHT12SbvfUZ5WioABVongIT3Zm2rYI5AUDm5+jk5B+/PN5q4bjwZgDnFmtX1qEZGlcEq55kmvuzE6Amgaadtgk0m/dJ5Zp7VgEDfvfcc48cddRRCfir1aGJ5Z966inVB67IK664Ql9j+r777isPPvigbNq0KQMg4bDENHvEy8VCYx3HHnts4s5En2699VY59NBDZd26dYVA09pYP55//nl1etn7enYkgWY9arFtNyvQKNC88cYb9UcHe8RAs9K8WKtKQDOv6XHHHaeTWg006cyjOxHHHY8D/4nM61BruHmc+gnr8YWCLP0Tnj1G808GNC3lU3cATVQ514rlCik9VgzR5kkF89Ux0HRt9YZVG7vlrNo5xm9h6gCZTiyfk9NHpDvPqvtH3+lE79CMgKTlIY3yriX6e3mLH7npBJvdfGZn36kAFWimAhNAYDkyGKb7p7SRvcL3fvrwr22SPyfg3OC8/MHqr88hh2amAJA5LiNYmd1ieJf0J7VothtqEmjaeZlAs5mfWa67BxUA7LvooovUmQnn4+OPP564IWsFmrEsAJUnnniiAkgDnRdffLE2se3E7W37RxxxxISw8CIQifVbGHk5oJmHoNhe3K96diOBZj1qsW03K9AI0DTnJn50ePTRRzUs3IBmpXl5nfIh50VOTSxjbs1y87tZf/adCnSzAo0AzYAugwvTjx4FgPxz6tQcd9OQR3NszOWw15Dzzi0K5EPOXYEfQEoNIw/A0WBlAJSrXXj69GHkzwwOTQWg3raj/9nNZnBqelUALj30nTl9WKa7Px/WzgcVoAJUgAr0qgL4zkf9lhH3B4cm0pTgkYShB+e/nSZwqshDznAG8eeR8CaDVVOu2TYZCTRx8eOvgCbshPQiSxuwKFDbDlNuuBMVAMQ0MGhwEQBy2bJlFUPO43yaccg6xmh5Ns2hibDv/LpNi6LcnTYv77REGPl+++2nDtK437GuyKX52GOPTXBuNhp2TqDZiUct+9QMBRoBmieddJKmdoAD2kLLDWhWmlep/5dffrncf//9koeW7YaZdObRnYjjlseB//Q26tBMAs6T0Gf/wufUtGt0PKdFO8cRVu2u78cnCTQ3b9kmV37uDvn+j34uSxfNk89fdY6Opdz0er9nUeUcQBMVyzWAXF2XviwQYKU5K3c4CLlmLdoOypCFnAegqdXM0VZvSP2yCfh1Io3tGJM5s2dpuDofVIAKUAEq0D8KlNw5cOu27a7wHHI04wcz/wOYPvTUEfyfRW5QnRZaT4CXRZCz9boSaDrNCTRbf+Bxi92vQD70GyMyt2QtDs0lS5ao89IgZt6hiZDzckATkBGPOD9mrGgeaAKi5h977LFHZnm0MSAbtyXQ7P5jlSNorgL1As2iQj7Wwze84Q3ygx/8oLDDcHOefPLJZQdj612wYIHcdNNN2s5C1w8//HD5+Mc/3lwhuHYqQAXqVqBWh2YR0DQvAqAlHt6k6Z2I+h+qnBvQdA6VxYsac2ie88kb5MBXv0JOfOcRmfGVm16vCAopHWhMgWZwXNqNpOOb3q85TVavWy/Dg8MOaOLG1E10eTe1yjkApoYSujyZKod7H0LH4VSdMX1IZs2aGQUs1ttLtqcCVIAKUIFuVWBkZERGSmOapxkh6B5qukcm/FxPHfoIiNO/8r+XlTl/hPltFIZAUy998A8dmm08DrnpLlOgqOBODBHrAZpFldArOTThtnzyyScr5rWslPuyyKEJd+YDDzxQCEgZct5lBye723IF6gWa+Q7mHZrx/Erz8usxeGkOzSLA2XJx3AbpzKMGOO54HPhPX60OzcIoKb1eT6/b7crdwsz1Uj7k1fRAEzk0XcZI91eaBNB8+wcvlG/evGLC10e56fV+zwBoDqJyubvRVPeM5T1TrpmGkeN2MgaaWj8oApp6t2k3nXBrwrnqYObY2A6ZP3eOFh1ioHm9e4ftqQAVoALdrwDOk5tf2poUnwPUTELMYxcmhppAzbSoUEWgGZZp1/mFQNNfGxFodv/nlCNooQLlXIuAfygOtHTpUrn66quTyudxmHn8Oi4KBHcnKpDDJXnDDTdoUaC8QxNDhKsz/4grrNu8onyYmFcENMuNh0WBWnhQcVNdq0ArgaZBS3NhWjh5LJ5VU7cQ9LywqHp+yCGHdK3e7DgV6CUFyjk0y6V90kv2QDVjoOkv5Z0j0zfwLk04NBVouhyarsr5kkULGpKu2UBz9dr1MuSqnGteTMBMCyMPcDIJOwfQRFsXno6Qc22HnJtJDk03bnf/qbegGo7v3apjo+OyaOHcFHY2pAIXogJUgApQgW5WYOOml9z5A/mX/Y9bVgU98Ew3JQlE9z+mYbDJczmHpjZq6/mFQNOf8wk0u/nTyb5TgQIFilyk9QrVaLg5tsMcmvWqzfbdqkAloNmMMaFaeRxW3oxtTOU66cyjOxHHE48D/6malEMzEMwM0FTHprdtpvkzEWqO1JrepTk25qucL2kw5BxA0x5zZs+Ur15zvr4tN73e74/VzqGpQDO4MwEorSKtT21m+c080ER4+gByaOLm092YmstGw84D0FSgG6Au8qdpQaSyIYP19pjtqQAVoAJUoNsU2LDpRVd8zv0gBqBp5xkDluFU4zEm0pf40RVWQp8wcALNth8LBJpt3wXsABVoigJwYy5fvlwrp9f7gDtz5cqVEyqo17oeAs1alWK7bleglUDTHJrV8ml2u6bsPxXoFwXqdWhaoZsJoec5oInwcwOaJQDNkgOaDVY5j8El9ouFn5ebXu++W4WiQMiL6SrQIgxQK9BaCGAMNN2KV6Otq3I+bcCFqOOmU29MNXWmT3IGoBkqvatjNVR5J9Csd6+wPRWgAlSgtxQA0BxC8Tn8IJZEAqTZMi2ppp120jDzNLFm+bDy9kFNOjTdcUqg2VsfVo6GCnSCAgSanbAX2IdWKFANaPa7M63fx49jkBpQA/sumqxDsxzQ9KnwfYVzc2yiGA6A3rgDmiMdDjSnO6A5GAFN76YMlkpXutxuLNXNOX3QhafDpRmAphu5B5q+OjoUwE0nxo4cmiVXCELD7enQbMUpkdugAlSACnSkAus3bAoOf/xwZvmaw49heArOzKQGesIxI4xZ9jxCoNnWnU6g2Vb5uXEq0JMKEGj25G7loAoUqAY0KRoVoAJUoJwCtTg0iyqc5x2alYGmy6FZclXOG3RoHnf638mWrdt1CLNnzZA7r71AX5ebXu/eVtelCwNEXjPkNNNw81qBprlsnJDT3A3qDgc09dZTQ84d0NUcmg5oLibQrHe/sD0VoAJUoJcUANBEDuZBdfbjfGPuTJxwQmRAOPckCDMBmNVcmgSabT1WCDTbKj83TgV6UgECzZ7crRxUA0Cz3915/T5+HDLUgBrYV0cjDs12A81mf/HXCjTRjzUoCjQdFdG9Q9MKCGGe5tC0m8+QQxNFkUoO5i5dvJAOzWbvSK6fClABKtDBCqzbsFGGh4b9D2f6Y5hLXAJOqTwzyZ4Z0jZbUSA/oKRcUBWHpm/b2gdDzp3eBJqtPei4NSrQDwoQaPbDXuYYoQAdmjwOqAAVaFSBTnFoWsX0RsdRbblKN3gIIx92rpm8QzO9hcSNp8aUJ0WBBl0OTXdPqi4bZ+lMCjcAaOoNZcifCZfmqHNo7rKEDs1q+4jzqQAVoAK9rMC69RtdATr3g5ieP9IfxALT9HmYcf4ISTS7xaVJoEmg2cufW46NCrRNAQDNtWvXtm37nbBhurLoysJx2O/HQb+Pn8eA/zbmcVCsQ6uBZllw2SaiiRvGKQGaVhTIrdCjT18QSB2aBJqdcEnEPlABKkAF2qrAuvUh5HwoDTnXfJn2Q5gBzUA1CTTburvq2zgdmvXpxdZUgApUV4BAs7pGbEEFqAAVoAL9rUAtQDOU+VFS12hRIFQ5X2Q5NAvhZRuIZrhbXBMcmprXLMqhGTs0UewHN56rXcj5sHPYDKDKOZbXXGhujubQtJBzL5QVRUJRoF2YQ7O/P2gcPRWgAn2vwFoLOXfnjcE4h2YCMqM8mLFLM0mf2Zl5NOnQdIc2gWbff74pABWYcgUINOlIwkFFVxY14DHAY4DfBekptpEcmrUATQ87fZVzq3aOgjg74FB0Vc5LAJoL5kfn+mYDzGqXFWkQ+hpXFAiFGobyQNOqm5vr0r1fvd4BTYSnVwCarjSQ6gCgucO5NEdHSy7knDk0q+0RzqcCVIAK9LICPuR82P0OZjk08YMYRuxdmv7lZMLO21MYiECTQLOXP7ccGxVomwIEmm2TnhumAlSAClCBLlGgXodmwJWpWzOAzDzQdBxPK3wDaI6VXB7JsVFZvGBeR6qyeh0KNYTKs8GhCbelv83095c+jNwcmuGGFDMAQcM8bT3gnJyB1SLcHBqUCDQ7cr+zU1SAClCBViqw1gFNOPwHB1wxIORedi7NGGh6npmee7TyuXXQgKdNSd7HIyDQbOX+zGyLDs22Sc8NU4GeVYBAk64sHNx051EDHgM8BvhdkJ7qJ+vQnAA03YQd3papz+O+gX/tqKYCTfc3OuqA5sIOBZoIOU9cMwg7x01hWnE2DzThsBly4FNDzcsATXWrWg5NhJzTodmz15scGBWgAlSgFgUUaGoBukEHMx3QRGU5hZhlQGYu7DxCnb4yeuFGWw816dD01z248pmwS9JfjZPLp0z+HlskvpCyZTANr/UZv5C6i4qx8TEN+1iKPDZ8UAEq0NMKEGj29O7l4KgAFaACVGAKFKjLoWmwMly325V7es3tr+dxfa7TFGoCaI45l2KUQ7PGfjcalF58k1d+o8ih6SvPuptMrTyLm8zgjAG0DJZLc2gq0ISzBm0zQNONG0XPc+PXHJoEmjXudTajAlSACvSmAmtdNICeawLQ1HNIUhSoSth5TQ5N6Eag2Zajh0CzLbJzo1SgpxUg0KQrCwc43XnUgMcAjwF+F6Sn+1odmoFdWhUgzY+pj6gwkBkLEFats4I9U4GmOhQRcu2AJnJoOkPBoioOzQkAc4qIZjXAqUWBUOgnucl0VDLkz7QwcowPweUoCpQBmrghVQunvxl1T66d5dAMOURR5Xwpc2j29EUnB0cFqAAVqKLAWuRrjqMB9Aczq3Jepdp5OJFFQehlXJoEmm05EAk02yI7N0oFeloBAs2e3r0cHBWgAlSACkyBAuUcmrUATa3kjYYILU9gp3dmAmkiOgqwc3zMRUiVHNDM5dDM8MpG4WWtGkRUMw849SYzCgP0Dk3v0YzDzWF8MfiJCrXTXJlzfzMagCY4qC7nqa/l0BxDDs2liyqECNY6CLajAlSAClCBblUABegsvQnOMwg71/NHcF+m+TMjKGl5NBOg6c9O4SRVEHZOoNmW44NAsy2yc6NUoKcVANB8/vnne3qM1Qb3yCOPyAEHHFCtWU/PpwYi/a5Bv48fH3BqQA3six7HwsEHH5x879cKNIsqnfvQcmWXwcHpYaatE0AP78cc0Cy5v4Xz55rP02+/KsSs2qDM+auKJzMHN5HXbMi5MxEGqCGAgJVhzR5o+rBAPPwNqWs7zbVNgKYnmW6x8MgCTbhTlxFo9vS1BgdHBagAFaimgJ4/hoZdNACqnBvQxFIWbl4MMhNXZk1h5wSa1fZDU+YTaDZFVq6UCvS1AgSafb37OXgqQAWoABUoUADukPjRCNDE8j663IdW+5c6Jby3PJqWwx6Vzksyb97OCRic2LUUXjaKMfPrzGLNYsjpkKts3LBJBlHlHDeYWhDIgKbPn+ldl55W4oZ0yAHNoQlA07XSfGhBFzyFHP4lN3YCTX4cqQAVoAL9rYCeP3CuiYsCKX/Mhp3reSTjzLSczubNpEOz444kAs2O2yXsEBXoegUINOlIwkFMZxo14DHAY4DfBekpvR6HZgoo9VViqPQ5MgO4S2LN82HnaWEgVDkH1Js5Y7r7m5G7vvD4sizErJduljFnppOzDbZu3y7bt233QFML/ODuMlQ4d88YlV8C/06TVe6GdPqQc2iigFDGoQmLZiggFByrVuUdRYEINLv+spIDoAJUgApMSoHVIV9zBmgquywGmoFr6rnHQ06/+YmOzbhbdGhOaic1ujCBZqPKcTkqQAXKKUCgyWODClABKkAFqEBWgbxDE3PrcWn6nJkGIH3MecI0A5b0rk3kz/TOzbESKp17l+bOO89xIXeD2qkJrLIGeJlvUiW43O7+MiLYMqMONG7a9JKDmT7cfNABygHEjaOBFfkB0LREmm7y6rUbNeQcBYSGEjcnbiC9jxPPeKkV3rXKuwu5h0Nzl0UFuc564+gcWbdZrrj1JfnHXzo9S25MQ9Nkzz1nyKc/NE/+YKHf1/K91TLj1lH5wxN3kzt/Nx73JjnutM3y9eU7yfa/mCvym3Xy6ku3ya9y0rziyPnyX++ZXWE9boGwrFjbzDq2yHnnbZCr1uZWvGim/PDShXJgb+yKhkfxrasulCseiRYfmiFLX/YqOeFD75Bjdp+ezJjQTufsK+d+SOSKzz1eZvsL5F0Xf0xO29PP/u87Pi0n3bVKBl91tHzprw+XnaKl/Prd+m7+gLwN0797i7zdrff1H1ohl7wxv/rN8uAX/5dcdd8zsnbEfSlpn18h7z75/fKOsK2GBem3BX9zt5x40f2ST9S17KjT5db37ubVKD0iK868Xf5j+07yx+d9XD66X16kEXnyvq/JlXf9XH61YVTGnKt9xpyFcui73iP/44hdJf9TVr9JjPEmQBM/iMHR76IC9KeySoWBAskk0OzwI4ZAs8N3ELtHBbpQAQJNurJw2NKdRw14DPAY4HdBehLPOzQxp1agqZXL0djCzDV5ZurctNdJlXM0HQPUC6HnYyUFm7Nmeadmplpr6GIx06yBdOryE/FmEfBEj7c5Z+bWrSNalGFocEjzYQJm4lnXlFQ5987LEHcuq9c4oOkA6AAgqEanA9h5ZybGs6PPgObIk+vkkCu2yWNu7AccMlPO2HdAnn96u9zyQEl+PT4oZ5+7WC7d22lUJ9Dc/OpZ8onXJUlJZf6es+X4V7h0CWXX43ZDLUBz+7BccMx0eZl9JGYPyzt/e7Ys6MLr3KnssgeJS+XtH3iDvAYr3vgb+dq3/1N+vXm6g4l/4WCix44T2unUBfK65SI//tl636UnfiD/9N1Vstcbj5F37IMJM+WVv32g7DcHr5+V6869Vv7P5pkyunWJ/PlnTpXjdbp/1AM0//uuz8iH7lglC5a/Qd75+sUiL/xSvvP9zfLGi06T97kaXHzUoUAAmlv3f5N88NB5yYI77XWAvPkVs/R9ycHlYz73jMyctU2GXv9B+dLJunPDY7Pbd//kjqFtMrxoHzn2rcvl5bJGfvi9n8gPntkiMw84Tm48+5C+/5xVB5oebuKRFgjSN3U4NKP2dRwCk2k6zf2CV+tZejLb6ehlCTQ7evewc1SgKxUg0OzK3cZOUwEqQAWoQBMVaNShaTcretsSCKgFiyd3Mm4CclLi4VNqxrk0g0vTFQcC1NyhFdD9s1/e2z6T7Rg8zWlRi0PTF41NA8X9SwcrFUAGcIln544Z0ryZ/k+LASm7tPA/zzL15hJ9c69Xr0FRoCHXHmHntQFNhNvv2pMOzVG5/orV8pHHB+SjH18iVwBchgdA54GXb5On9p0j/33uPFlQJ9Asdlm6lU8WaDq4RkfmxC+YCSARTUpPyN+fc7Pcs9U5Jv/eOSYdeCxsl19dJVflY1+T9176I9nnfUfKS1/4lrx07F/IZ493MDI86gGaNfWlid+lPbXqADQldmRmBrhV7vrkZXL1ujfIh1/zE/mXH+wpF37mffJ7Q6GR7tcHZcvyY+WWv3p9BC43y92f+gf5x59NL+Pq7CkVqw5m9dr1ocq5L0Cn5x2cX8I/5tbUc46BTf+GQLOqum1uQKDZ5h3AzVOBHlSAQJOuLBzWdOdRAx4DPAb4XZCe5Ms6NNEktWpmrgoCm4xAZkoe1Z8Zg0grFKTTvJ1zDNAS/ynEdH8u1BvPCjODy1PD03WrBjgTG6iflvSv4ILFpwzDXV9k0oxykrk5iA73N4UI8wPUdM9amMFDTvyHokD+YQ4Zt120g0kTvXCv9YbUcmgiPB03pLp8kUPTYVoHbVHlvCeBZmmj/NGZL8m3954jz3/cQcvMrhmVay9fLX/55LBc95kl8sEf1BdyTqDZ2gvzcnDwBeeC/DPngjzswxfLJw6bPNB8+MZPyl99bzc597r3yIuXXSr/svXNctMlb00cs/UAzf+85XL52HdK8vqTzpKL3zxPjK21Vrke2Vo1oPnS9+Qvz7xH1gF4vvYBefflj8qBZ50nFx7qf8T4xb9eKR/51qgc9fG/lo+pxTd6/PwO1/7HMuNtp8rn3797jwjW2DD8+WPY52sORegmFgSyHJj2bOeu9PQUn++KohB81EBjfWxkKTo09TIF/0w0qmYvXuIcPbpAVFkxXALFeXzCa/ySbFUpmctKAAAgAElEQVQGx8bHZNRdVCxd3O+BBY0cqlyGCnSXAgCam/8kTgjUXf1nb/tHgc1XL+mfwXKkVIAKtFWBIoemv6rO/JP00SNJ9/BFzPVFfH0eQ8jUaBlflweXZg5qWo5JT0PTUPZqDs1axCtyaJoDBjd6CjMTuOndnAolzdkZQsz1CdMANINzMwaaug6EnLvnAQs5T+LxEWoPtTzQ3M05NHvuEUK8N//OPHnmA1HccBjov9/ynLzt+9Pk7POWyaXP1Ac0f5URa8CvY083cbIOzVwOzSQ3Z8/tnPoGVNbtGNyWlkuxMIemCyf+pgsnTh7lHJohB+P39ztO/rdrv+2b18vxX1ifce7VAzRl0yNyyUVflpXrx2V47q7ypuOOlTPf9HLZiWSzvp2P1oU5NNPcpz7v6WjIheqcux+5Wb61W5oD1e+33eXDuRQC2pEAQ3+WP07q72XXL2FAc8ABTY0MsHORwsf4HBSiDOw3OnNo+maZH/AINDvksCDQ7JAdwW5QgR5SgECzh3Zmjw+l2UCz3x2K/T5+fHyoATWwr9EihybmJbaCnBVSgWZCNRN86VcXXJVqOUgKBWE6MF5oElZgvgWEmyfezTEPR22TSTZOc2tmSaoWGSp6qPsyefiiPuH+UKf6yuV+mv5pNXMfWj6Y5CvDDH9Dic0M4B/3Rp90Jd6FuQpVaoNDU4Em4s5dOPsA1qbtQye1IBDWNe7MFKMOaKZhtcWj6MKpTQSa2RyaA3LQ63eWg8FMJws0czk0k9ycXSj/VHa5PqAZ5dpEJ5buI3+0fwTsywDN0oNfkOOv/oUc8KG/cTk53Q8BAXT995vSfIx1AU0VwBWi+f635bNf+aE8tLYkgwsOlAv/7t3yOxP5+lTK1XvrKsyhablP18gt5/+T/OvI4XLNFUe7ElAi6rT990UJwCTQrO2QKAc0/fkpiipIflxLz2UTK5tHDs4Jm6dDs7Y9MoWtCDSnUEyuigpQAVWAQJMHQrco0Gyg2S06sJ9UgAo0X4FyDk1sOe/SzDoxjTL6limEtCArPz8EkWuVb6OV6bSwbAg396HsBkndayWWQIDRI95sFXliiImmPoDcTdWQ8PCAmxJTQUHVfundlx52+hd+sgeY5oXxDXdoldrpKAo04AoJYVKAo7aEr3buh+VD6uHQHHUh5z0INOsJOX9wjcy+aUTe8v5d5P+8Kc21KVJc5Zwh583/Loi3UA5oemfemikIOQ85GH+R+XT7Lsx4TZKPsX6gaaMYk6e/foOcedvTsuiPzpSb3r2stQJ2+9YqhZyH/JjrCsa4Z8iBypDz2g4AAM2hEHIeOzSLgSZOP2nuTALN2jRuWysCzbZJzw1TgZ5VgECzZ3dtzw2s2UCz3915/T5+fGCoATWwL85yDk2FcNl/cqHl5jz0azJImUJLTHXOTHNRqjvRv/HTQtGfACiRW9KWVZ9mDDZDP/L5Oat9+RvQNDCJ9lmQmdo0UdEcm0V1ct8I4X9hC+ba1AYYbHB0urZr1KHpiwKhGUIHvSDBERPWkQBN5NAs9SjQlDqKArliSm84f4v88qCd5fnTd5bpQeqR/1wre396u+x05Hz5r/fMrlKp3C00WYcmiwIVfowKgeamh+T8j98pP5T95W8//V75HRfKXVMhniKHZnBj/mKPg+WstyQ15mXLz74rn/3hS/J7IR9j40DTDSvO8/je3ap9XXB+rEAFoOndmAPy+uPeIi67RHislm998QH52eKQA5VFgWo6nsoCTZyrQoSA/jgWTlUEmjXJ2hmNCDQ7Yz+wF1SglxQg0OylvdnbY2k20Oxt9Tg6KkAF6lGgkkNTuZz+ky/CE7koE64ZtUmcmcGlmURdJ9hTq57ruyRfZqhybgA0bBuuxqQfSfh2PMJoAZ2cIMuYXiZTfcGe9KEQ0sFMLfajN5HBW6lc0re0JQA70U7Dz+HXVIfmxuDQRJVa1AQyoOlvSNXTieVg80TovRtP7wJNN9jfrJcDLtsqjzkd/uDNM+W4pdNk86oR+czKUfm1DMqFf7WLXLAn9BuVL129Rv7UpTbf6zUz5MyDBmWnjaNy+TdH5NfDw3LTJ5bI++Zifevk1Zduk2zIuUgSGh6A5m8dNkfOfEW6X3X+wIuFy8qSGXLy/uNy3nkb5KpcyLnMHpZ3/vbsXEGjej5RvdHWg8Q0lHzdUw/LN//jaXlhx2w57KSPyCfeuJMONN/Oj36BvO4tr5QEIRYATe/03JCAy0S1l+6Xsz96t/xsX5+P8X7th6uqfrOrqo5GYV17vfEYecc+qdY77bVEHr/xS/LQkt+StxywWGY7p+9/fusHcu+zIm/+6P+Q8w+OXcC9sY+aOopyQDPkPf0PA5dRJ3xRJgk5ULfKff/493LZwyMy9+W/Je84ck9ZiH1y7w/l/3tmm8w55J1y80cOEn8U9e9j1ZpQ5TzKoWnQsiGg6U9NmXOcV7dSOPrU68+iQE5TAs2pP7C4RirQ7woQaPb7EdA9468GNHGRg4eGcEYPm140Ty9nwnI//elP5YADDigUJF6HNYi3U20b3aAy3Yl0J+I45XHgP62VHJr6XaLfNfZP8q3gv4PCP8k3UQI+rZ55WM418IGleOHnoaq5vtX3qHLuQ7LxsHlhC8G4mawk+ZrJo0ybEQNLnaZpNGOQ6W/uUIABj7QAkK9ybvO8GdPHnHu+GVU5x2Q3CUAzyaFZBmimHe4DoOkGO7Jus/zt5zbLZ38zLptKfvQzd50pt390nvzBwggslbbLl//XRjn3/5bk2RHXaGia7LnnDPn0h6J2AWj+KhHRv0iK9wSgmZvt579hmwLN/LKyfCfZ/hdDHmjmigLJopnyw0sXyoH5FfbZ+3yxn8Hps2S3/Q6S/+eEt8pbdzc/rQHNvDgRgMSsCUAz5GDc9Dr51KePl4Myi4dQ9Md3l7P++UMy61+KgWZ+i8uOOlk+PPp1ueb7q2XVVhx0AzJj/i7y1ve+X848jBXP6z58ywBNn/f057L3+86Tf3z7rOxqgytT3nKKfPEDe+GbQJ6878tyyVcel2dfGnXf8njMlte9/4PyibftKjPq7lTvLZABmu4XsQGcb5If1/I5NHEOqhJyDokINDvjQCHQ7Iz9wF5QgV5SgECzl/Zmb4+lCGgCJA65sMb4USqVFGrCETQ4mHUfYDrm44HlYhA5NubggRbiyD6KtoEWWBeWwTbyQBPT82C1t/cOR0cFekuBWhyaWaCZxYg+72X406fgwgzT/BNoZahc7t7j+0enu2fAy+nOkTdjOsK2g7uxxRKjP9tGSjIyMqpAc5rrB2Am+qMOS/QnriqLvgOIuudVaxzQnD4ogy7k3N+L+iJE0YLJaHY4hyagbU87NPP7rrRFPnX5RrnwKZE/PHGR3Pm7KQxr8W7m5qgAFWijAusf/KKcee2jsn7x4fKPlxwtr2L1eXf+iByadQLNJHYgAZjhpzwCzTYe5dGmCTQ7Yz+wF1OjANwPV199dbKyuXPnyhVXXKHvL7nkEnnqqafk4osvlmXL0oTV5557rsyfP18OO+wweeCBB+T888/X9vfee6/cfvvtct111+l7rPuuu+5K5sc9zm8X84444gg54YQTpmZgDazltttuk+XLl6s77LTTTsuswcaEiddee608/PDDOv+ggw6S008/XZ5//nlZuXJlw/0n0Gxgh3GRtihQBDRxY/2Nb3xDrr/++qRPX/7ylxUmAjRi/nHHHZfp7wUXXCCvfe1rZfXq1XLGGWck884880z5/d///QljA6z8yU9+IitWrMjM22efffQ7C9s4++yz5Yknnkjmn3rqqfK2t2kgWNc86MyjO9HOn+Wcyl1zME9BR+tzaE70RCY/jUQvYsgZA011ZLo+43tr3FU0HxsfkzmzZsrwcGfc2Y6MluSlLVuT71QN+TONywJNl0PTwdiKQDNQ0b4EmtDPQc3zLnZuyFXT5A/fv1Buf9OMJGfmFBzCXAUVoAJdosB659Y9+XOPy7Zd3iBXrvhj2b/Pf99oBGhiV/vggtit6d/rg0CzMz4NBJqdsR/Yi6lRwMCiATvAyqOOOkqOPPLIBGjGoNHa77HHHnLKKafIRRddlABMA31nnXWWQkG8X7hw4QTIZ+uwdlMzksmtJQ9fATRjiGlrB7SNIS6gL8Cu6WWv6+0NgWa9irF9uxQo59AEuHzuuecSOGlAE6Dxlltu0R83vvrVr8pNN92krwEiL7vssuTm/KSTTpL169frDyD4oSD/iIEmlr3qqqu0ibqpHIAwoApQuttuuyX9+PSnP535QaZdunG7VIAK1K/AZByahje9gxPbtjyaE0PODWzCoTiG7xT3PN2BwJkzOuuOduu27TLiqpDDaTkIxyhybqLAj94oulHgTjKxbSLk3BcF8g52n48zdWiGG8wIaCLEfqxniwLVf/xxCSpABahAvyrggaY/f+DcUUvIuZ6KCDQ7/5Ah0Oz8fcQe1q5AHmgC5JkjE7AOjw0bNiSuTUBKPNatW6fgAQD0xBNPVIAZOzcB+PAejqnY3Yllsd599923rJsRTsnHH388s+28o9P6iOm33nprpn8GUeP1wGmKRxGktD4de+yxSe6+ckAzD2ljwAmXJiCLOVxr3wsiBJr1qMW27VSgUg7N2G1pQBN9tXBwQMnLL79c7r//fjnmmGP0uwMPhJ2ffPLJCjRrcWgCaF555ZUKMy08XQtcOHJhoenmCO02oEmHJh2a+EzwOPDfcrU4NLNFgVKXZmCYuh5f4Cd8c4YZ3qmZTsf88R0u5cUYoOaYzN1pjr+B66AHvu82vfiSwsxprlDDNFQvB8dEH6OiQO6bUN8nQBPtlH9OBJooDYT2cGgSaHbQzmZXqAAVoAJtVIBAs43iN3vTBJrNVpjrb6UCeVAYAz9zHyKM3NyU5uA0l6IBzne+851yww03KKgE7MT7cnAvhqBFYwWIvO+++5JtAhTCCWp9AES85557FBxWA5rxeqyvCBGPH0UgMg45jzVB3x588MEMQDW4i3VWG1u5fUug2cqjntuajAKNAE24rMyBiW3jx4MPfOADCYyMgWYtDk3rP8Dmpz71qQzUxLruvvtuDX83F+hkxstlqQAVaJ8ClRyaKbD0pDJ+n2DN8CKpXx5Cz/1kuLvT5Sx35rjLvVtyfwvm7dy+gVfY8roNm9yPQEjl4XMTG6TUmuW+UpBf2gHNNc6hie9EhJxrhXSAUG3j4/78aw80ze1Oh2ZH7nZ2igpQASrQUgXyQNMXqPMRAZqzPoSPW/769FlPQOGHNgs2Z8h5S3detY0RaFZTiPO7SYHYoZkHhwY0H3vsMR3SfvvtJ2vWrJHFixcnYdcGFxGmjnnIQQnHJN5juTw8xHqqQT9zVsa5OeMwb6zDnKRwhFVzaFZaD9aVh6Lx/svnBcU8yy2K1wi9x8O2EYeg13McEGjWoxbbtlOBRoBmXPjnxhtvzIScYyy1OjTjwj/m9DRoac7MGGaiTbcVBaIzj+5EOy8xh2Zlh2btQNNCzaOq6FoIyIoE+byZCDPXgmXInzlWkoXz57bzq7bstteu3yhDgwgDhNvSVTjXG0vcPEax5olD04UMDg0nQNNRUF8pnUCzI/ctO0UFqAAV6BQFCDQ7ZU80oR8Emk0QlatsmwL5kHPARDgOASINzu2///7qkLS8mY8++mgCNA2CYp6FbAM2oriQ5eLMD64o5DwO5e4koIm+x2H4+bGgr3hYMSMCzbYdytxwixRoBGjar7bIp4nvDCsC9KUvfUl7Xc6hGVcVjiufYzoKc6FA0IIFC9SNiXVYfs7DDz9czjnnnMJq6S2SiZuhAlRgChQo59DMOjCzYeY+tNysl0nmzGSS4k3n1EzX4UKtsYQWA3J/Lty8VBqThQs6GWh6h+a0QYBMBzUxZJ+4TB87ADrdCFetBdCEQ3PIz1aHJvJuwq1pjT3wRbi5Al2XQ3O3XRZPwd7rvFVk0xB0Xv+KepQWfkrKanRHx9lLKkAFuloBAs2u3n2VO0+g2cM7tw+HlgeacVh2vuAN5IETMV8YB47LTZs2Jfkp8+/zshYVBaoENKuFnKNKO8LCbb1WxCgfHl4ud2el3Jd5feKxWL/iKvDV3KflDjE6NPvww9elQ64XaMJVifQQyJsZFwUyEAkZihya5rg0mQA0DXDipjsuLoT1//jHP04AJ+bZo1QqdZVLkw5NOjRx7PI48J/gcjk08+5M+7xjejIvVAPKQyzFd/jfwtFDuzEFeqhuPi6lkZIsWjivI7+l17ow8kGtXA44CcelBgD6ekA+dWZCvlY7oInv1yENOcfMkEsTIzNSpiHnHmiOu9cIOe9FoGnpBZL9Dg1SFt6R+1o7lYR1+l0WcevO7TN7RgWoQNcrQKDZ9buw/AAINHt45/bh0PI5NCGB5Yws5zbMA03AyDiPZP59kaxF241BJIoCWRi33dQAXNojDxEBVOESRUGguCgQ8l1iHh6YH68z7hfGag5TA5U2P67Gnu93PI9FgfrwA9SHQ64XaFq4uRXpMcnuuOMOF9Y5pm+LHJq4+UY6CVREB/xEqPrXv/51dWPGD6wHbZFLE9A0/zjvvPPkda97XR/uKQ6ZCnS/AkUOzXLuTButL/YT/pAn097rJAs1DywLEDMs6HNIOpjpQs7hUly0YH5HCrhmHSDlsAs7R8g5gKa3Wk7LFAXCBFfl3FWpHXJVaj3QDO1d6s0YelpRpRho7uocmp1VDmlyu0IPBxhzFWQD3Pr38bExuS00YekIZCJNAM5z+qz7ugnb4yqpABWgApECWaDpfjQzh79+BzGHZlcfLASaXb372Pk+UiAful5p6ACVACflgGctsjUabo5106FZi8Js0wkKVAKaBi992GJJuwtXJVya8QPgwGAmpmO+uS+ffPJJ2X333TPVygE0P/vZzyr4LFpP0TasHR2anXDU1NcHuhPp0LQjpsihWc6diWVsnkFKzaEbLHl+Wgo08Q6ORHNrWpVvhJyPjI7K4oWdCTThupzuCq1pyDmKNLjgcs80XWkftWkG9VDlfI0rCuSAJkLOFYaF4kBokUCxxKGJKufivptHpZeAph0TgJjqQMUY3V8KNTvTpqnJBELhJpdZwO1D/KXTyDTrO6+wNRWgAvUpQKBZn15d1ZpAs6t2FzvbxwrUAzQhE9qjqFEjhRjgzly5cmWSS7Ne2Qk061WM7dulQCWgWalPlkez1iI9sUPzmGOOkRNPPFFXX+962qUTt0sFqMDkFSjr0Cxjrcu7MUM0ucI+u35PHZ4h1DoshKJAcCmOIYfmaOeGnGvlcoWUaQ5ND78SkumFV6DpCgghhyZ+NOpjoGnuTKQVcOlRA9AMTk1o1WlMM+fOHHI7bygATfcboQedk/94cQ1UgApQgbIKEGj28MFBoNnDO5dDowJtUoBAs03Cc7N1K9Ao0Kx1Q+bO0/A63Lm5R+zmrHU93dqO7kS6E3Hs8jjwn+BGHZp+aQes8KT/hHcWZoz35tzUaR5m7lD3+LiMOof54g7NobnaAU0t9DOE2HFf5dyAJu5R0nrnDmiudUAzwE84/DSHZiBh5RyaJefQRA7NXgFmcbg5gOZbrlgjD/16tKtOEYfsNSzfOWexOjQJNLtq17GzVKBrFSDQ7NpdV73jBJrVNWILKkAF6lOAQLM+vdi6fQo0G2i2b2TcMhWgAp2mQN6hWSncXKFlar9MTHdprkQffp5xagaY6SPTnTvT5dAcB9Ds8JBz6DLgCCXyZ2rVcrDKEG0OoyaqnGPa6nUBfmp4Otr49ioC3gfR8BapQAB1kaZDiwJNoQvwwUd/2dZDy44BhJl/+Euz5OcvWIn3tnar5o2/ZpdxufZPtirMVC7dK7S5ZgXYkApQgWoKHLr/K6s1qWt+AjTd+WMA6S6YQ7Mu/Tq6MYFmR+8edo4KdKUCBJpdudv6stPNBpr97kzr9/HjQ0UNqIF9ueYdmpWAZjYK3cClX5MvFIQq5voi48707zHbAz1UOZ8s0Dzu9L+TLVu3F54j5syeKV+95vyGzx/IoQmgqVXO8RdyLeoKAbrUponpzqHZIUCz4cFO0YKxS5NFgaZIVK6GClCBnlagdUAT5yz/I1wrHtPcSaDTsoy0YtyZbRBotlxybpAK9LwCBJo9v4t7ZoDNBpo9IxQHQgWowKQVqMehWQ5o+hsXg5a+S4CX/jkFn+NuGvJoIsWFDzlvvCjQ2z94oXzz5hWF4680rxbBFGiGvJhIjOl8mqljT4FmqCTjxryGQDOR1FyadiebPV5qUb5NbaJ8mqxw3qZ9wM1SgT5UgECzh3c6gWYP71wOjQq0SQEATRQW6ucHXVl0ZeH47/fjoN/Hz2PAnwV4HKQ6HHzwwSmUUgqZ/JM5ZcaTA6a0ouZ+Ife/z6kZh52bazOEXDvaNd4lQHPAFfrRXMMaSx7Cx5O4c0xwQNPybWZCzgP0bGHIeadc22SPkU7pVeV+JK6lKUwB0B0jZy+pABVopwIEmu1Uv8nbJtBsssBcPRXoQwUINPtwp3PIVIAKUAEqUFGBRh2aRUDTnHnjVgzIx6EHlyYKAqHqdQCarsr54kX1OzRv/ep98vmvfaemvfqn73iLnPjOI2pqGzcyh2YGaIYq5zui8HOwTRQQQpXzIQBNkDEXoo5q597FGXIxBpdqM3No1j1ILkAFqAAVoAJtVYBAs63yN3fjBJrN1ZdrpwL9qACBJh1JOO7pyqIGPAZ4DPC7IL0KqDWHZmG4ueeV2SJAmBQAnnLNkFcTABQVzgH1kEOz1CDQRDh5PY9yYemV1rF6zfqkcnlapMHlH3OOTCsGhOU90HRth4bLAk2FmgSa9ewytqUCVIAK9IUCBJo9vJsJNHt453JoVKBNChBotkl4bpYKUAEqQAU6VoFaHZqVCgKpW9PAZgCayjrhxjToCagHh6YCTZdD01U5X7JoQd26tAJo+pvMqCgQiinon1YDSusCEWjWvf+4ABWgAlSACngFCDR7+Egg0OzhncuhUYE2KUCgSVcWDj2686gBjwEeA/wuSE/Ek3JohjKmGaCpYNMAZ1r13LFMDTeHS3NszFc5X9JAyHlLgeagS4KJEHKHMAdgx1Sg6ZGmok0CzTZd0XGzVIAKUIHuV4BAs/v3YdkREGj28M7l0KhAmxQg0GyT8NwsFaACVIAKdKwCk3VoWoXzCaHnAWz6dJoebBrQLAFolhzQbKDKeQw0K1U5N8EbCTlfpVXOXRh5BDQ1P6anmSnQdG9Xr0PI+ZAMDgz53Jm5HJoMOe/YQ58dowJUgAq0VQECzbbK39yNE2g2V1+unQr0owIEmnRl4binO48a8BjgMcDvgvQqYLIOzXJAMwaZ5tgc34EcmigKNC4jHQ40pzugOVgOaLqCP6Hmj8+hOUyg2Y/XlRwzFaACVGAyChBoTka9Dl+WQLPDdxC7RwW6UAECzS7caewyFaACVIAKNFWBRhyaRRXO8w7NykDT5dAsuSrnDTg04yrn1Ryak6tyPiwDDmiiKBBCzjMOzSpAM4lO1xcsCtTUA5grpwJUgAp0qQIEml2642rpNoFmLSqxDRWgAvUoAKC5du3aehbpubY/+tGP5OCDD+65cdUzIGog0u8a9Pv48XmhBtTAvjfzx0Ja/CckyAwN46JA7QSa1m+EnlcCmo2Emtu64bpEyDmBZj1nV7alAlSAClCBehQg0KxHrS5rS6DZZTuM3aUCXaAAgWYX7CR2kQpQASpABdqqQLcAzeNO/zvZsnV7oVazZ82QO6+9oGEdCTQblo4LUgEqQAWoQI0KEGjWKFQ3NiPQ7Ma9xj5Tgc5WgECTjiQcoXSmUQMeAzwG+F2Qnq+71aHZzCsOAs1mqst1UwEqQAWoABQg0Ozh44BAs4d3LodGBdqkAIFmm4TnZqkAFaACVKBrFKjFoalVyzEirWSevrDrdzxXKwqEKueN5NBshZAGNFkUqBVqcxtUgApQgf5UgECzh/c7gWYP71wOjQq0SQECTbqycOjRnUcNeAzwGOB3QXoibsShWQvQ9LDT/RfIJ57H3T87xsdlzFU572qg6Sr9YFiu3o+sXueqnA+xynmbLu24WSpABahA1ypAoNm1u656xwk0q2vEFlSACtSnAIFmfXqxNRWgAlSACvSfAvU6NKGQ+jXNrRlAZtcDzeFhGXQVziWpcq7lyvWAcDXPPdB0k+DmHHIFhIYGBn0ldLTHs6uErsSTVc7770PEEVMBKkAFalCAQLMGkbq1CYFmt+459psKdK4CBJp0ZeHopDuPGvAY4DHA74L0XD1Zh+YEoAmW522Z+pyEprvXiUPTuTRHRzs85DwAzWkOUAJgTnO0cpoDmjv0nQ+1J9BMj6PHv/j3csY960UOOE6+efYhbsZDcv4H75QfygJ518Ufk9P27NzrQ/aMClABKtAOBQg026F6i7ZJoNkiobkZKtBHCgBobv6TR/poxBxqtyiw/brduqWr7CcVoAI9rkBdDk1PMwO0DPAyAzQD7kQbwE1ATYScu7+SA5qLFs7vSDXXrN0gQ8MII3cwE3+AmQo1uwNorn/83+X6//mAfPeZF2X7mJN4aIYsfdmr5IQPvUOO2X16UzQn0GyKrFwpFaACPawAgWYP71wCzR7euRwaFWiTAgSabRKem62qQKuBZr87FPt9/DggqQE1sC+mWh2agV1aFSArC5QpDBSMmZFDMwKaWGIcLk2fQ7M0WnJAc17V78d2NADQHHZAc2AQYeTTXAi5jx2Pgab2S0POHfx0OTTLhZzrosGpCpg77jQolUqy2y6LfTj6FA9w/XdvkZM/97i8pOsdkBmzBqW0dVTANUVmyus/9BdyyRt3muKtihBoTrmkXCEVoAI9rgCBZg/vYALNHt65HBoVaJMCBJptEp6brapAq4Fm1Q6xARWgAn2rQDmHJgRJ5yVlgSpWOs/n0QTMQ9j5+NiYKwrkgOaCzgSaa9d5SJkCTZdLU+GjUwCEUoXwOTUBNIe1KJCDn7qdqigAACAASURBVGjm/vEQ0/3jF2sd0Hzpfjn7o3fLI45eznnV2+Sqs98ke8OQOfKcfOmqG+Wzv9gmMuM1cuFn3ie/NzS1hziB5tTqybVRASrQ+woQaPbwPibQ7OGdy6FRgTYpQKDZJuG52aoKtBpo9rs7r9/HjwOSGlAD+2Jq1KFZudJ5CjzjPJpwKOL9mAOaJfe3cP7cqt+P7Wiwdv1GGXLuzEH3hwo/rsyPh5SBYyYJNN2LYqAZoGeLgebmb14vx3/hadfL3eXDnzlVjp8TqffCt+XPP75SfuPG8voP/Y1zabqxOTfn252bU5YcLtdccbTsq82Lcl+OyeqHvyGfvPlB+fkGuD2HZPaur5RTP3qCHL2rW4971AY0a13PRnn9SR+W3/3p7XL9T9bIlpJzmu7yKjn9L9PtteO44DapABWgAlOpAIHmVKrZYesi0OywHcLuUIEeUIBAswd2Yo8OodVAs0dl5LCoABWYAgVqdWjGQBObtWt3Xw4oLgzk5yIcfYcLN4dLEzk0x5xDc/68nTWku5MecJBu2LBJBtV1iRyayJ5ZDDTh2FxV6NBsD9B8+MZPyl/9+5YcoDR1n5Zrzr5e7lwrsuyo0+XW97rczTUCzc0PfF7+7F9+IS8Nzpa9Xr2H7DbyvPzwlxtkdNCB039w4NRx6VqAZj3rGRwccOB0UHaePSQjW7b6XKAve7PcdMlb5WWddMCwL1SAClCBBhUg0GxQuG5YjECzG/YS+0gFuksBAs3u2l/91NtWA81+d+f1+/jx2aIG1MC+Y+txaHpQaUumRYCSwkABXAaimVY4T4BmWhgIeSRnzpguM2fO6Kiv+63btsm2bSMh5NxZLK3COV4FTukizV1EOUBnZwHNb111oVyB2ocZx6XJ+6xcd+618pXV9QLN9fKFv/l7ufkpkT2P/Qv57PEu96dDjf9x9aWy4sERedkfnSk3vXtZDUCzzvU4WPrnV5wi717ocoA++AU5/uqfyzbZW/7ycyfJ0VMcLt9RByA7QwWoQN8oQKDZw7uaQLOHdy6HRgXapACBZpuE52arKtBqoFm1Q2xABahAXyvQiEvTc05f8tyWN+TpIWjq0kRRIHNp7rzzHM1B2QmPUVeoaNOLm4M7EyHnyJPp3JnaOSsKpK981HkIOUe+TYSnOzOnm4hCQn40ifk0UxRIXLj9qBYFmmpvanMcmhaCXryHzO1Z3aFZ53piKPubu+XEi+6X52WBvOvij8lpe3bC0cI+UAEqQAUmpwCB5uT06+ilCTQ7evd0dOduu+02ue+++zJ9POigg+T0009vW78vueQS2XfffeWEE06ouw/33nuv3H777YXLvec975EjjzyycN4jjzwiV199tVx33XUVt3naaafJWWedJQcccEDdfWtkAeyf5cuX6/asj7aeeDzQ7KmnnB3APWz6888/LytXrmxIR6yHQLORPcZlWqFAOaB59913y/XXX5904c4778x057jjjsu8v+aaa2S33VwYoXtcfvnlcv/99yfzDz/8cPn4xz+u7/OOrBtvvFHuuuuuwnWdffbZ8sQTTyTzjj32WDn55JNbIUvTtkF3It2JRZ+Dph1wHb7ios9DI0ATw8yHnVt17wRoog0KA4Vq32NjJQWbs2fNcG7NGW0LP0dez63bt8vWLdtkwIWZDw0OOS6J6uY+5NyKAKHKuX8YsXQ5NNf4AkKdADSnJIfmS9+TvzzzHvlZAg9TELnXG4+Rd+yTPaB32usAefMrZtXg0Gx0PW57BJod/i3C7lEBKtCIAgSajajWJcsQaHbJjurAbgKYPf7443L++ecnvTv33HNl7733bhhqAqRddNFFVeFgOTkmAzTjdV577bX6thY424lAE30CNMG+MU0vvvhiWbZsWUY6QNylS5cq9My3g5aHHXZYWZBb6ZAk0OzADyy7pApUcmg+++yzcsYZZ2i7GGgasMQ0A58LFiyQm266KXm/zz77yFVXXSUnnXSSrF+/XmLgadLbskWg8qGHHpIVK1bIhRdeqM3xOt8P7kIqQAV6T4HagWbIpBk4n7k0k7B0dWuGqTmXpuXSRMVzQE0FnS7HphYR0rbjUQV1vLfpWb2TCPgwucj16J2S5rO0lz4vJnJ4GrgccK8VTDqoOYDcmVq2HJvGa9+HtMo51hOA5rCvct5uh6aUrXL+a7nx7/6nfPGpkWyVc8uhGeXCXO8KC73PFRYaS4BmGiq+8E0flM+fvI8rCRQeI1tl88As2clNqO7QbHQ9blsEmr33JcMRUQEqIASaPXwQEGj28M5t8tCKgGYeigEMPvzww9qT2BUIt6IBNkC1Bx54QOEbgOimTZu0/RFHHKEOwXLriJ2F5gw1oPnggw/qemLHaOzArOYkLQc04/5Z//NAs9KYzaGJfi5cuDABpkVjgQY2HnPCot/77bdf4iQtgpS2HKAJQCX2Ex61uFbj/YJ9CUBzxRVX1H0kEWjWLRkXaJECjQDNuGsGHg1o5t+bk9OAaOzIggNz3bp1CkIrPQx8GiRtkTRN2QwdmnRo4sDiceA/XmUdmpiZks3MZzE7OSDLBGpGYee6jnS+wU3ATP1PIab7c1ATz3ivbQLUnABIk14Uw824kzHEtOk2TSPDwz8IH9fCPwCbAJnIjamFgPDeQssNhrrtWiJNrNRNXr12vTo0hxzQ1AJH6upU1pkYOU0DjBvjHCuNyq5NCDlHl9Y7SHmyq1z+UtG3pyvqc9hJH5FPvHEnPzepfC4yON2ByRnjsuXFURkfdCkBxtLw7qSYjyuONGP+LrL/3rNk02+ek6c3zJQ//hsfAl4daIo0th7XTwLNppwLuVIqQAXaqwCBZnv1b+rWCTSbKm9Pr7wIaGLAgH4nnniirFq1Sh577DGFdnnnZTmgWeTQjNuaoICGAAOxOxTzDAwC9OFhbs88nLM+lgv/LgKamAaYiNDzGMLGQBPTK40ZQPO73/2uwkwDjPmxoG9HHXWUbsfGg3B2247BWCwXr8e0yY/V4KmB5blz5xZCynhMtq5qOpU7wAk0e/qj39WDmyzQNLdm7LLMh5Hnw9VNsHzYOqbH4elx6HovwMyuPlDYeSrQQgVqd2nmgSY6WUsuzSzUBPQD7NNHBoLaoKtDzHLyFDk0vWnTg0pATLxWxhlgJuCkZ5d+ujVXTonhhYmNAk3k0GzWY/vTD8g/fu7f5bvPvOirg+tjZ/mDc/9Szt5/erTZMXl65W1y4b/+Qp4dGXdQc6Ec9v73yxE/u05W/GBOJl/l+ke+LZ/6wgPy0+e2yyjWMDRDlr7sQDnjr46V35lTG9DEYvWvxy1EoNmsQ4XrpQJUoI0KEGi2Ufxmb5pAs9kK9+76qwFNgDuDaKaCOQrrAZoG9eL8k+VAWxxyHrtFH3300Qn5MSvlxSwCmrE7E+MxMBgDzdidWTTmPfbYQyfnw/QBgA2uQlfAWoDgovFYrs5yLlL059Zbb02gJdYRb7MoLL8IZmKZRsPOCTR793Pf7SObDNAsgpnm0ASAxOcW4eZ4FDk0DWgaDLX3CDM/5JBDEmltnfF6ulV3OvPoTsSxy+PAf4LL6ZCEche4NPOTknrnnmO6RxmXJuZEoedoiXyaYQnn0HQh5/bFEoWrp1XUraVvlFZcz34bJcV4dHI+1NwX9UnSYKKFc2aGNWr4uS5lYeoach6aW5VznWRVztdrUSOEnKtD061L+WgZhyZC6kvOodlMoJlRY+TXcs2FN8mdLzhguWB/Oe/i98rvzc3qxXdUgApQASrQegUINFuvecu2SKDZMql7bkOVQs4B3SrloawHaEI4g5PmTmwEaN5zzz01h0+XA5rmnIx3Zh5oYl5R7k2MGUATBXgqwdmpBpqxsxR9i9df9D4eG4Fmz31s+35AjQJNK9hz6qmnytFHH53oaNMNShZBT2ucz69Zbp1ob23zsLPvdyAFoAI9qsCUuTQBABP3ZT6vpn/vw821oaoZbzuBnGFG5n0F7aPUmdoqQZspz0ycmUiAaTV/kirlqGNuQFMnplueCDRdISE00bD10NSsneo4nabwtuVAEwPf9Jj8/SX/KvcAau70KvnYpX8qbyPU7NFPLYdFBahAtyhAoNkte6qBfhJoNiAaF1EFyhUFOvTQQzWc2kBfUZ7HuOK3gb5aCthYrs1y7tByDk0Uw8F2Krky491aBDSxTeTmzOeUjIFmLWNGKD6qqcdOyzh8Ph9yblXb8+H45YBxPuS8yLFp68zPyx/aDDnnh73XFGgEaFpIeRwebroYlDTXpYHIPPhE+/x6YofmCy+8oFXW80WBiooLddM+oTOP7kQcrzwO/Ke2kg5VgSZWYFHi6Qtd74T8l5Hj0lya2i5ePnmdzih0bNb5hZN3ZOriIcTcvw7/uM6k7k4LOQ+OTm2GHJroW0IqQw7N4eDQ9G7PhH12CtCsUy82pwJUgApQgeYrQKDZfI3btgUCzbZJ3/UbBuCzYjU2GCvkY+/jQjyYZnAzXzjHQCXaWIg51vXmN79Z82DaI3Y2VioKBKCaL1Bk721d9YacY7m430Uh52hTbswxxDXt4iJBcG7iERcsaiTk3DS0okB4H++reP1FIfLWJxYF6vqPKAdQoEAjQNMgZX51Flaez41p4NMAphUQwvIGQG1dMfjMz6M7k4cwFegvBcpdk0OFbOh5EngeVSevHnqu64moZRxGPsGxadLnLZuZXWIU0U0sehmDTDQJMNNHiNuKraq5rdi8nb4okObQxCyrcm4h5ygGhKJAZRyaO1wVdxQGamnIeX8drhwtFaACVKBrFCDQ7JpdVX9HCTTr14xLUIFOVwDOy7vuumtC0aR6+t1ouDm2wRya9SjNtq1UoBLQbEY/ADtjoNmMbXTyOunMozsRxyePA/8praZDVZdmDi7GkDMJHjcAiA1awR99HTk5w3v/FC+QzcsZf7eUCz2POKZvHqBlZrqGnYcpqeEyMWvaYlbV3K/Ch46nRYF2yOo1G7TKuebQLAs0/RgINDv5zMC+UQEqQAVaqwCBZmv1bunWCDRbKjc3RgVapgBcmcuXL0+KDdWzYbgzV65cmVRir2dZtCXQrFcxtm+VAq0EmubQjCuit2qc3A4VoALdp0AloInRZF2aaX7MbAR6eaemriNaSdahmQWbyfYSGasjzSK4mdYtTwqdJ0V+bNUeYHrPZqbAT+gEos4xdxWA5rAHmpo7s9ChSaDZfUc+e0wFqAAVaK4CBJrN1betayfQbKv83DgV6EkFCDR7crf2xKBaCTQh2HPPPSe77rprT2jXyCCqOdIaWWe3LUMNqjsTu22fNtrfWo6Fqi7NDGnMhp6ns/JQM4KfrlEMNXWZCs7PuseaFAFK8eaESugaJu43qtXKJzx8VXPrlg9RFwc01yvQHNIq55iYDzl3E7Fe94SiQAw5r3vvcQEqQAWoQE8qQKDZk7vVD4pAs4d3LodGBdqkAIFmm4TnZqsq0GqgWbVDbEAFqAAViBTIujAnuiLzLs0MqgzNC8PP9aI/AqD+rd0JRPcE+d2RrK1wP0XYMjs/AZs2Oc2V6Z2YAI/Zpa0IkJ9qRYHS1a5a64CmCzkvBpphXQSa/DxRASpABahATgECzR4+JAg0e3jncmhUoE0KEGi2SXhutqoCrQaatTiyqna6ixv0+/ix66gBNbCPcK3HQr2h5wnUjPhneaiZdWsqOkyWywLUifC0wpfRBICJtqHAT2GizeDQTHlnkjPTT/JA0xcF8pV/ADSHLYfmBIdmVEzItaZDs4tPHOw6FaACVGCKFSDQnGJBO2l1BJqdtDfYFyrQGwoQaPbGfuzFUbQaaPaihhwTFaACzVegYajpWWBAgtk32cjyrFszGZGPVg+PiQ7RyiM3qOhaFUSSx7kyQVH9e1ujOSxtmg0i1EPXKufeoalFgTJA09NUX/Hcj4tAs/nHKLdABagAFegWBQg0u2VPNdBPAs0GROMiVIAKVFQAQHPt2rV9rVKtTpxeFoka0JnGY4DHAL7jeBz4b/p6dKgGNLG+2sPPQ+sMrAxnn7CSsugyA0cnnrHyPDLfIkGcecAZQsOj+ucRSPVFgBR5Wp8JNHv5coFjowJUgAo0VQECzabK296VE2i2V39unQr0ogIEmr24VzkmKkAFqAAVaKUC1aBmcaT4xEJBCfyMrJv/f3tnHhfFle3xn9Loi9tTjMEVN6LRFwyJ0XGeyfieJI7ycXQSBWOMKG4IQee5MC7EPS64jaMYBFxJNFFnXDCjGTUmmkTIRDMoLhljGJdEwQ1FXFh991Z1dVd1V69AV3dz6h+6q2/de87v3K7u/nLuPaoA0xbctNN5ixCTXS8kUeozKeUwU7BRXFluSNqU/DdWOVfL0BShJ6sPJB6UoWlnlKpbs2tIjkvClYELsPCV6ua7I/6eRPzIowiYNxlRrR25jtqSAu6tAAFN945PhawjoFkh+ehiUoAUUFGAgKZjmTjeOokcyUYiDbxTAZoDdC/gM5vmgfj+dlQHJbBUz6G0CTUFyKdnfYbbjPKE1YXl5mmgKjcr1Q00De3MV5WzAkHy0ury7E1hPJFsSoBTsl6ocq5Yci4uPVcsXXcV0Ly8HxFzMpBrokbTvtFIe6u5Uzf0woMpiLnT3+nrnRrUykWHVszChy1U/BF8v4nhm0fgdXsGffAN/m/uPcQuC0WgPe2rpA0BTftkJaBpn07UytMUIKDpaRFzwF4Cmg6IRU1JAVLALgUIaNolEzUiBUgBUoAUIAWsKmAP1OQdqHNH9WxNQ3thZPM15VYBpx3xUqwuN6GZ+iRMYyUi/evieTHbUjjYEnP+UCwKJNqpBJqcZNZETZ6ZKTTUX+dSoOkA1LOpWzG++HMCNvmP9jqgWZT5EcL+6oeVBDRtzgLtGxDQ1D4GZEFVKEBAsypUdZM+CWi6SSDIDFLAixQgoOl4Jo4Xhd/giqPZSKSB9ylAc4DuBXxW0zwQ39vO6lBpUFPkgopD+VT2zFmqqU4zFTWCJEApGSItUTdAWeGEEbSaA02dmJnJaKZYCMj9gGZ+9n4s2HAC5++WoExXD8+/9gZmvdUBjbhrX29Bn2+fx/ZeOZiUcgbXilsipPM9ZFy4h6KaT6FebUZpnw/FzqinVZdJyzMnL36yEnPL+iHqwUGs+MctPCzVoU6zzpgyIwyvNhAVFmxJ/Q5nCkrhU8sPPYYNQ3yvZ6DDD0iI3orMF4dh97jnzD6A7MvQ5JmP21A27Le4v30vjl0vQomuNlp1H4jl44Lw4NAmTN91BTeKa6B+nVqoiXaIXROOXqU3sD9pK5Ky7qCoTIdGHbohLjYUL3ObzfRph7jNryPHyjiCrijD1aPbMWvrv5im5fBtEIABY4ciKqgee03M0Mz5zWD4fb0XX+bxuBjt5NdzLWfcfxlv3MzA1guFKPHxRfPgfoh/7R6Sko8LsQTXLyICc15pLOpVcAHJibuRLmu/ILobWunE/qzGpiAbCYv1mjFlajdshvDY8RjO0lgfXTiK+Zu+wmmuJ4uUmT7HO+JPz2Xj/U9/xu1isGtbYujEUXi7nY9Rh09ycJ/Z8fg+64P5Ur/OM3hz+ngMa3wJ2xP34uMf+HyBiU4i0Gw45DlcPyDOGaWOrHtbsbNqm9k0oxOkgEsUIKDpEpm1GYSApja606ikgDcrQEDTm6NLvpECpAApQAq4WgFlBqZl2qi+BJ1ba1LVXKUL9V7tJZumVX9UC50LJ6XfHoa9NvViypeYi0WBBLNlGZp3FUvO3RZo5h3B+PjT6BAbiYnB/wk8zEHKvC3I7DIGG4e1go4Du5034F+3E6a+1w8v1OEQCjAHiOrLpE2BZsyhIgQPHokF/Zqhduk97Fu5Gqn1ByE9ujOgt6XLtBjEPFsLRVe/wLT3j6NJ1HTEv5SHzXPS8N0LEVj7pvkyefuBZhL2PGqHUdOGIaxVLZTeyUT8jENoEDWLjcEc4/7ubYIPDBmaZTietATLHvZByh+6oQnu4dtNGzD3ajDWz++NFqr6iFpYG6f0+08QllqEsQvfQagfcDNrN6asyUPfRe/ibX/b13MAGfPZI3SLjMW8Xixugh8HcLpmC0TMHImhrXxw8+hHGJcGxCSz5fa6W9g2ey0OdRyBdcPaoHbxdXy8dD12NB6EnUz7S7w/i7Fpi/TFS/CXFpFIjWDXohh3L97A/TYtBRiKvB9x/FFLdG/zFHQspjuXrMS+wCgxe5frs+kSWvcMx6KITmiiK8bZtERMuhiMD5l+/rfZ/PvjRYQsG40wPx8Wj2OYGpeN7kuZDgKHvc3+ufIIHbq0RD1dGW4e2ICIIy2xRogPB5p78L3/r7BkDp+bpjraETtrtrn6xknjkQJ6BQhoevFUIKDpxcEl10gBjRQgoOl8Jo5GIauSYZ3NRqoSYzTqtLprUN3959OONCANpNtPRedCxaGmnhCKnFB52MEtTZuYI0yVG61JI+OSc5O2BtApgVALQNNXB58aPuJSc7bk3B0zNM9sSUDcrdewb0pXllunP87vQtiqYkxKfgv/zYHU+kcYu3o8wvRZlBUCmiefk8FCJUAEzzp8OBA7R7U3CH5k1RwkNYhQnFP7iHQEaH7TVbnXpuJaU6BZyqBZ1El0XT0Ob9bVj/zL3xEZfxm/W8vO/VNNHxFIWh7HnwHh+fhb0HSs6vOUvtNcbJi2FtkhM9m5fBvXNxcyKmMUWpZh/9K52PT0SJlWsiXZYHuJLn+MyWveRLAkIFte329rHSxm5+qZ9SePzf/i9PuLsCdgtB5oWv+SItj2Sy8cZHNKBJpAnABV9dfJ9zU1A8g29g9V7InK/UsHxsxmxZNE0M7yRbGL2Xqwy2SsC82xHTtrtmn0XYyGJQUIaHrxHCCg6cXBJddIAY0UIKCpkfA0LClACpACpIBXK2Dv8nMuggJAqgJL08XfJtLZATkVV1ggnMbT4iPDbw+19jIHlRmawI3b+fBVFAXSGmiaFgVqhEGsOnS7v6gV05GBsKumGYuiik5naEqgSwqGDGj9mxX2WZat8pYI+r0Ix6wcjgBN0+rhVoGmhYJKYAvyuX5RqvrYylaFACz/etPcIbFQk/i6NTsV0FDfjbkGJnFcf1FFwUC2RH4E2sohpEps2lz/BrMXH8YplqP6m359EBESiGa1xIZFVzOxav3X+MeNx2BpyezEI9zvOMAINBUZr+wCOZTMO4yxM3PQ708MDnNgXsCKMk0+jV8nRGMIz9BkmaT7Nu/G9lN3UMiQuy/LDi180BqThSJP6ntoZm1cjBkF/XDgjWuqxbCsxs7RIlJefQcn57RSgICmVsq7YFwCmi4QmYYgBaqZAhxo5uaa1v6sXiJkZ2cjKCioejlt4i1pAFR3Daq7//wtQRqQBtKtkc+Fl17ia3ArdjgCNflIlpehS3YYyaWjDNOSJ0pWqXxmilEN9XxMjDUCTTGv8yYDmsoq51oDTfWiQOogsLKAppg1+EmAmBGpBuHkS7w50FStVG7HFLQINHM+xTsJhWzZNcs21e9N6TjQtFJQySzDkBtrH9A0tcPopq3r1bW0CTRNwaJMV1uxESu+F+P62UykffwNvrzdECOnM+j4H2zJ+MwstI8ZiYld/dhydHE/TkWGpjWgyfYS/dfODzDls3zUrsNgaHlddI8cjWkv871E+TL5NfisVTgSRvyXCFDNMjSPIoCD5dZGZzjQnF00EOmhl6xXuFeLHQFNO95t1KSqFSCgWdUKa9g/AU0NxaehSQEvVYCAppcGltwiBUgBUoAUcFoBX19fp681vdDe5efy62xnbFps7YDdNhaim+2haeza1CfxOd9NU3jgMUCTw6cJLGvSbMn58oeI3vAOeqsCO3szNH/CygmbkdXTPqD5mC1/n3z1Fex6ryc4znLkOJ60AEvKfo9dsUHGpfOsg/wD6zAko4O4X6NN0Kjf81EO4B5kYMrEL9Fi6gxM7qRikVNAs5GwJ+WH/paW0lcB0Czai7cW5SGcL5OXls7L3LEPaEoXlOGrxEVIfZpVuW95yGTPUbA9Rxdg7sNQ+zI0kYvNMz9C/vBJmNRJWjYujaOSgcn2Hh2wuggTDBmae1AaORcJvVSWnIf84HjsCGg68rajtlWkAAHNKhLWHboloOkOUSAbSAHvUoCAJmUk8RlNmWmkAc0BmgN0LzB+vldWhqbUozNQU3Gt6pMq+D4iY5zGPTTNc0GV/khL0/V/azCgecszMjSFQjw8w27CaEySFQU61jECH7G9LIWiQCqZfQJAvN8XW/7YTayGzjLt+L6QH6C/WDyHFX/J2ZeGKXsuo/7r9gHNQMGWDNQdPALzXudFYFjxmZ+v4JpvIDr7n8PCqI9xcxDfY1Lad1IW/8tsX8v5J+A3eDhmhQSgYS2WTXjyMBau/yf8RkzG/B78GtugEByYJT/C+GWRCBX2DBULyyy41AnvTe2Pnk1YIaGH93Dh6n0EdGQ2OgU0m0MoCrQ2F6/GROBdntlY+gi3LuXiTrO26FDXtp0OLzlvLWY77nwqBEv/0BPPsuJORQW5OHvDFy8FNraZPStmaOoPtgx80/spOPmriUhs9wXClt9CuFDUhxfl2YuZiadwuZOdS87ZnpdHV6/Ewu/ZcnX9wavb/8+4sSxLM48B8TRcCZ2M5f144aPzWL18Bw5dayNbcp6OrObdsEgoWMXGFwohFWG4sITdidgR0KyCmyp16agCBDQdVcyD2hPQ9KBgkamkgIcoQEDTQwJFZpICpAApQAq4TIHKzNCUjDZfTu7conGzq5zrxqy0ucVtMp9YAprGBehSC/6X52nyH6SesOScx6box8OYsfY4zt8tQZmuHgJfDcXCEUEiqLQANJGXgZkLD+JEQSl8u4bhbxO6sP0Ps5GweC+OXS9Cia42WnUfiOG6T7Gxzgi7lpxzaFb04zHMXf8lsvKYLaiJ2g39MSgmBiPrMmA5+yreWD0GA1QyDLmp+dmHsXRbJk7z8YVrW6L/yHCMZqBWrEdjGxTyqtrpK9Yj4Jr2OwAAB6FJREFUObuQ+dAJ8evfRi9WufuLrVux7qvryC9l3XDfXuyPRe8Gw99JoMlB6c3MfZiz7RQuMg1Zp6jTrAMmTh2K3o1t2+k40GRDFF/CjtW78eH5OygqA3xq1Ufb34bhg0FtbQDNXyMrIQlbLjwSrhP87/47LBn1AgPXhfgqJRVLv+V96tCoQzfE9SzA/BPPIl0qCmRxyfk7aLJlJZYV9sGqKN4Xj1EZClnF9zFrHmMcyxB+8cROTEo5g2vF5fBtEIABY4NxK/EcuvMiQ3wPzagf0TO2AQ6nfoczfC4KbYYiKkif4+to7AhouuwzhgayrAABTS+eHQQ0vTi45BopoJECBDQpK4tPPcrOIw1oDtAcoHuB8YO4sjM0LUNN/oqzRFLs1dmr7al8rv7bQ7+0XF4UyJDOKVrkVkBTo+9XlTls4cEUjPk5RMwarcyOqS8NFeDgdhvKoqcipp3MjNLvMG3MObwmLCungxSofgoQ0PTimBPQ9OLgkmukgEYKENDUSHgalhQgBUgBUsBtFaiKDE25s+p7ZDqLJqtORuVvDyMCVVqqf8b+SHtoEtCsuphQz96iQD62z1uNzwJHYN2wNkJBIbCMym/TNmH+pS5IYfuetvAWV8kPUsABBQhoOiCWpzUloOlpESN7SQH3V4CAJmVl8VlK2XmkAc0BmgN0LzB+ZldVhqbptwJ3B5ume2UK9huKBUmr1p+IIJOApvt/6SML3UsBtk3Bn1fsx8FfSlCndjkelujQNKg3W0reA+14VXM6SIFqqAABTS8OOgFNLw4uuUYKaKQAAU2NhKdhSQFSgBQgBdxWgarO0FRz3HyPTT0l1FClJwK91FumT9A0FguSDCOgqWGIaGhSgBQgBbxKAQKaXhVOpTMENL04uOQaKaCRAhxoFg7O1mh0GlYLBQoTm5gNS9l5lJ1Hc4DmAL8x0DwQb4+uytA0vRmrZ2zKW1X1snTlzprSEnLJAmMZIHZGvoemnr3SknMtPtVpTFKAFCAFvEcBApreE0szTwhoenFwyTVSQCMFCGhqJLyGw6oBTQ3NoaFJAVKAFHA7BbTI0LQLW7qWZ+qXkgt5mopDuRSdMjTdbgKTQaQAKUAKeKgCBDQ9NHD2mE1A0x6VqA0pQAo4ogABTUfU8o62lKGpHsfqnplW3f3ns4I0IA2ku4NWGZq2PmVczDMNQNPULgKatiJFr5MCpAApQAo4owABTWdU85BrCGh6SKDITFLAgxQgoOlBwaokUylDs5KEpG5IAVLAaxXQOkPTXYR19rcHVTl3lwiSHaQAKUAKeJYCBDQ9K14OWevslwppL+8n+gf8r6Eaof6xcK68HOXlT1BWXoaSklI883Qjh+yjxqQAKeB5ChDQ9LyYVdRiytBUV7C6Z+dVd//5rCANSAPp7uCuGZoVvf87er2zvz0IaDqqNLUnBUgBUoAU4AoQ0PTieeDslwoCml48Kcg1UqCCChDQrKCAHni5tQzNGjWMO6VJ/wSTu2jrdVtt5ddLbdXG8UBZyWRSgBTwIgUoQ1MMprO/PQhoetGbgVwhBUgBUsCFChDQdKHYrh7K2S8VBDRdEyn+3/zExETFYA0aNMCyZctcY4DKKAsXLkRgYCCGDBnilA1qPiUnJzvVl7WL7NEuKioKsbGxCAoKMnTFz82bNw9NmzaFvb6qjdW7d2+nNaoMMbZv347OnTsLviUlJSErK0voNjg4GNHR0YYh1F7Lzc3F0aNHnbafgGZlRNCz+lADmufOnRPmX82aNQ3OcNBYWloqPOcgUqfTKRyVvy5/gffh4+Nj1rasrMysD+EHs2wcLZWs7tl51d1/PvdIA9JAugdRhqaohLO/PQhoavlpRmOTAqQAKeC5ChDQ9NzY2bTc2S8VBDRtSlspDSRQJgd+HEDl5ORUCGrGxcUhIiJCAfLsNdheyGepP1OfuD/8kEM2e23h1/r5+amCN3u0qwygKY1jCkbt9aEq2nGb0tPTER8fj88//xyZmZnCY37w+PXo0QMhISFWX5O3c9RGApqOKub57dWAJgeQHI7HxMQoHOT/pPH39wfPVtq4caMwV+XHmjVrhH8oSIcEPqdMmYKffvrJcL5Ro0ZITU3FqVOnsGDBAkUf7du3x5IlSzxfWPKAFCAFvEYBytAUQ+nsbw8Cml7zViBHSAFSgBRwqQIENF0qt2sHc/ZLBQFN18RJDcrxkTmQ7Nu3rwFK7dixQzBInn0nB1IcKsyZMwccjMoz8gICAgTQJT8XHh4u9MsPnuV35MgR4bGUGSoBzRMnTqCgoEAxpjSOvL2pUqY+8THu3LkjAE3TTEcpU1LymY/HD37+7NmzkPzm50yzPO3RrjKApi3Ay/27ePGiYPfdu3cFEG3JT34+LS3NAKvlwFbez5UrV4T+LGW2cpsGDBhgyM6UQ1854DQFwvLXeCxXrFjhFDgnoOma+4M7jaIGNPmP98jISOTn52PWrFmCuRw8chDJQeaBAweQkpIizNVRo0YZ3CkpKVG4xsEof99kZGQI/XTt2lV4nWdh8gxNCWhyiMnnLD/K2f7N/DWtj+qenVfd/efzjzQgDaT7EGVoiko4+9uDgKbWn2g0PilACpACnqmAtwLN/we+zxRYbGWNXwAAAABJRU5ErkJggg=="
+ }
+ },
+ "cell_type": "markdown",
+ "id": "30df80ed",
+ "metadata": {},
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "dbd6eae9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import ipywidgets as widgets\n",
+ "pd.options.plotting.backend = \"plotly\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "8b447b09",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df=pd.read_csv('BASF_Data_NewOrder.csv', sep=';', decimal=\",\") "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "5fc7b7d2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Metrik | \n",
+ " Datum | \n",
+ " Summe [Milliarden €] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Umsatz | \n",
+ " 01.01.1999 | \n",
+ " 29.473 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Umsatz | \n",
+ " 01.01.2000 | \n",
+ " 35.946 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Umsatz | \n",
+ " 01.01.2001 | \n",
+ " 32.500 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Umsatz | \n",
+ " 01.01.2002 | \n",
+ " 32.216 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Umsatz | \n",
+ " 01.01.2003 | \n",
+ " 33.361 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 01.01.2004 | \n",
+ " 37.537 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " Umsatz | \n",
+ " 01.01.2005 | \n",
+ " 42.745 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " Umsatz | \n",
+ " 01.01.2006 | \n",
+ " 52.610 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 01.01.2007 | \n",
+ " 57.951 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 01.01.2008 | \n",
+ " 62.304 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " Umsatz | \n",
+ " 01.01.2009 | \n",
+ " 50.693 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " Umsatz | \n",
+ " 01.01.2010 | \n",
+ " 63.873 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " Umsatz | \n",
+ " 01.01.2011 | \n",
+ " 73.497 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " Umsatz | \n",
+ " 01.01.2012 | \n",
+ " 72.129 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " Umsatz | \n",
+ " 01.01.2013 | \n",
+ " 73.973 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " Umsatz | \n",
+ " 01.01.2014 | \n",
+ " 74.326 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " Umsatz | \n",
+ " 01.01.2015 | \n",
+ " 70.449 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " Umsatz | \n",
+ " 01.01.2016 | \n",
+ " 57.550 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " Umsatz | \n",
+ " 01.01.2017 | \n",
+ " 61.223 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " Umsatz | \n",
+ " 01.01.2018 | \n",
+ " 60.220 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " Umsatz | \n",
+ " 01.01.2019 | \n",
+ " 59.316 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " Umsatz | \n",
+ " 01.01.2020 | \n",
+ " 59.149 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " Umsatz | \n",
+ " 01.01.2021 | \n",
+ " 78.598 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " Umsatz | \n",
+ " 01.01.2022 | \n",
+ " 87.327 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " EBIT | \n",
+ " 01.01.2005 | \n",
+ " 5.830 | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " EBIT | \n",
+ " 01.01.2006 | \n",
+ " 6.750 | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " EBIT | \n",
+ " 01.01.2007 | \n",
+ " 7.316 | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " EBIT | \n",
+ " 01.01.2008 | \n",
+ " 6.463 | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " EBIT | \n",
+ " 01.01.2009 | \n",
+ " 3.677 | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " EBIT | \n",
+ " 01.01.2010 | \n",
+ " 7.761 | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " EBIT | \n",
+ " 01.01.2011 | \n",
+ " 8.586 | \n",
+ "
\n",
+ " \n",
+ " 31 | \n",
+ " EBIT | \n",
+ " 01.01.2012 | \n",
+ " 6.742 | \n",
+ "
\n",
+ " \n",
+ " 32 | \n",
+ " EBIT | \n",
+ " 01.01.2013 | \n",
+ " 7.160 | \n",
+ "
\n",
+ " \n",
+ " 33 | \n",
+ " EBIT | \n",
+ " 01.01.2014 | \n",
+ " 7.626 | \n",
+ "
\n",
+ " \n",
+ " 34 | \n",
+ " EBIT | \n",
+ " 01.01.2015 | \n",
+ " 6.248 | \n",
+ "
\n",
+ " \n",
+ " 35 | \n",
+ " EBIT | \n",
+ " 01.01.2016 | \n",
+ " 6.275 | \n",
+ "
\n",
+ " \n",
+ " 36 | \n",
+ " EBIT | \n",
+ " 01.01.2017 | \n",
+ " 7.587 | \n",
+ "
\n",
+ " \n",
+ " 37 | \n",
+ " EBIT | \n",
+ " 01.01.2018 | \n",
+ " 5.974 | \n",
+ "
\n",
+ " \n",
+ " 38 | \n",
+ " EBIT | \n",
+ " 01.01.2019 | \n",
+ " 4.201 | \n",
+ "
\n",
+ " \n",
+ " 39 | \n",
+ " EBIT | \n",
+ " 01.01.2020 | \n",
+ " -0.191 | \n",
+ "
\n",
+ " \n",
+ " 40 | \n",
+ " EBIT | \n",
+ " 01.01.2021 | \n",
+ " 7.677 | \n",
+ "
\n",
+ " \n",
+ " 41 | \n",
+ " EBIT | \n",
+ " 01.01.2022 | \n",
+ " 6.548 | \n",
+ "
\n",
+ " \n",
+ " 42 | \n",
+ " EBITDA | \n",
+ " 01.01.2008 | \n",
+ " 9.562 | \n",
+ "
\n",
+ " \n",
+ " 43 | \n",
+ " EBITDA | \n",
+ " 01.01.2009 | \n",
+ " 7.388 | \n",
+ "
\n",
+ " \n",
+ " 44 | \n",
+ " EBITDA | \n",
+ " 01.01.2010 | \n",
+ " 11.131 | \n",
+ "
\n",
+ " \n",
+ " 45 | \n",
+ " EBITDA | \n",
+ " 01.01.2011 | \n",
+ " 11.993 | \n",
+ "
\n",
+ " \n",
+ " 46 | \n",
+ " EBITDA | \n",
+ " 01.01.2012 | \n",
+ " 10.009 | \n",
+ "
\n",
+ " \n",
+ " 47 | \n",
+ " EBITDA | \n",
+ " 01.01.2013 | \n",
+ " 10.432 | \n",
+ "
\n",
+ " \n",
+ " 48 | \n",
+ " EBITDA | \n",
+ " 01.01.2014 | \n",
+ " 11.043 | \n",
+ "
\n",
+ " \n",
+ " 49 | \n",
+ " EBITDA | \n",
+ " 01.01.2015 | \n",
+ " 10.649 | \n",
+ "
\n",
+ " \n",
+ " 50 | \n",
+ " EBITDA | \n",
+ " 01.01.2016 | \n",
+ " 10.526 | \n",
+ "
\n",
+ " \n",
+ " 51 | \n",
+ " EBITDA | \n",
+ " 01.01.2017 | \n",
+ " 10.765 | \n",
+ "
\n",
+ " \n",
+ " 52 | \n",
+ " EBITDA | \n",
+ " 01.01.2018 | \n",
+ " 8.970 | \n",
+ "
\n",
+ " \n",
+ " 53 | \n",
+ " EBITDA | \n",
+ " 01.01.2019 | \n",
+ " 8.185 | \n",
+ "
\n",
+ " \n",
+ " 54 | \n",
+ " EBITDA | \n",
+ " 01.01.2020 | \n",
+ " 6.494 | \n",
+ "
\n",
+ " \n",
+ " 55 | \n",
+ " EBITDA | \n",
+ " 01.01.2021 | \n",
+ " 11.355 | \n",
+ "
\n",
+ " \n",
+ " 56 | \n",
+ " EBITDA | \n",
+ " 01.01.2022 | \n",
+ " 10.748 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Metrik Datum Summe [Milliarden €]\n",
+ "0 Umsatz 01.01.1999 29.473\n",
+ "1 Umsatz 01.01.2000 35.946\n",
+ "2 Umsatz 01.01.2001 32.500\n",
+ "3 Umsatz 01.01.2002 32.216\n",
+ "4 Umsatz 01.01.2003 33.361\n",
+ "5 Umsatz 01.01.2004 37.537\n",
+ "6 Umsatz 01.01.2005 42.745\n",
+ "7 Umsatz 01.01.2006 52.610\n",
+ "8 Umsatz 01.01.2007 57.951\n",
+ "9 Umsatz 01.01.2008 62.304\n",
+ "10 Umsatz 01.01.2009 50.693\n",
+ "11 Umsatz 01.01.2010 63.873\n",
+ "12 Umsatz 01.01.2011 73.497\n",
+ "13 Umsatz 01.01.2012 72.129\n",
+ "14 Umsatz 01.01.2013 73.973\n",
+ "15 Umsatz 01.01.2014 74.326\n",
+ "16 Umsatz 01.01.2015 70.449\n",
+ "17 Umsatz 01.01.2016 57.550\n",
+ "18 Umsatz 01.01.2017 61.223\n",
+ "19 Umsatz 01.01.2018 60.220\n",
+ "20 Umsatz 01.01.2019 59.316\n",
+ "21 Umsatz 01.01.2020 59.149\n",
+ "22 Umsatz 01.01.2021 78.598\n",
+ "23 Umsatz 01.01.2022 87.327\n",
+ "24 EBIT 01.01.2005 5.830\n",
+ "25 EBIT 01.01.2006 6.750\n",
+ "26 EBIT 01.01.2007 7.316\n",
+ "27 EBIT 01.01.2008 6.463\n",
+ "28 EBIT 01.01.2009 3.677\n",
+ "29 EBIT 01.01.2010 7.761\n",
+ "30 EBIT 01.01.2011 8.586\n",
+ "31 EBIT 01.01.2012 6.742\n",
+ "32 EBIT 01.01.2013 7.160\n",
+ "33 EBIT 01.01.2014 7.626\n",
+ "34 EBIT 01.01.2015 6.248\n",
+ "35 EBIT 01.01.2016 6.275\n",
+ "36 EBIT 01.01.2017 7.587\n",
+ "37 EBIT 01.01.2018 5.974\n",
+ "38 EBIT 01.01.2019 4.201\n",
+ "39 EBIT 01.01.2020 -0.191\n",
+ "40 EBIT 01.01.2021 7.677\n",
+ "41 EBIT 01.01.2022 6.548\n",
+ "42 EBITDA 01.01.2008 9.562\n",
+ "43 EBITDA 01.01.2009 7.388\n",
+ "44 EBITDA 01.01.2010 11.131\n",
+ "45 EBITDA 01.01.2011 11.993\n",
+ "46 EBITDA 01.01.2012 10.009\n",
+ "47 EBITDA 01.01.2013 10.432\n",
+ "48 EBITDA 01.01.2014 11.043\n",
+ "49 EBITDA 01.01.2015 10.649\n",
+ "50 EBITDA 01.01.2016 10.526\n",
+ "51 EBITDA 01.01.2017 10.765\n",
+ "52 EBITDA 01.01.2018 8.970\n",
+ "53 EBITDA 01.01.2019 8.185\n",
+ "54 EBITDA 01.01.2020 6.494\n",
+ "55 EBITDA 01.01.2021 11.355\n",
+ "56 EBITDA 01.01.2022 10.748"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d5c6c68d",
+ "metadata": {},
+ "source": [
+ "---------------------------------\n",
+ "# Schreibe Unternehmensdaten in PostgreSQL"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "6c09bdca",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import psycopg2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "383fb9a9",
+ "metadata": {},
+ "source": [
+ "### Verbinde zur Datenbank"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "3e1ea224",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Database connected successfully\n"
+ ]
+ }
+ ],
+ "source": [
+ "conn = psycopg2.connect(\n",
+ " host=\"localhost\",\n",
+ " database=\"transparenz\",\n",
+ " user=\"postgres\",\n",
+ " password=\"postgres\")\n",
+ "\n",
+ "print(\"Database connected successfully\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cba7013a",
+ "metadata": {},
+ "source": [
+ "## Iteriere durch Dataframe und schreibe Datensätze in Tabelle *Company*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "961ac836",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "cur = conn.cursor()\n",
+ "\n",
+ "PK_ID=8 #BASF hat den PK 8, deshalb wird dieser manuell hinzugefügt\n",
+ "\n",
+ "\n",
+ "for i in range(len(df)):\n",
+ " #get data from dataframe\n",
+ " kind_of=str(df['Metrik'].iloc[i])\n",
+ " date=str(df['Datum'].iloc[i])\n",
+ " amount=float(df['Summe [Milliarden €]'].iloc[i])\n",
+ " \n",
+ " postgres_insert_query = \"\"\" INSERT INTO finance (company_id,kind_of, date, sum) VALUES (%s,%s,%s,%s)\"\"\" \n",
+ " record_to_insert = (PK_ID,kind_of,date,amount)\n",
+ " cur.execute(postgres_insert_query, record_to_insert) \n",
+ " #print(postgres_insert_query, record_to_insert)\n",
+ " \n",
+ "conn.commit()\n",
+ "conn.close()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "46b5be7c",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/03-2_Publish-Finance_Testdata_Telekom.ipynb b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/03-2_Publish-Finance_Testdata_Telekom.ipynb
new file mode 100644
index 0000000..27330e1
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/03-2_Publish-Finance_Testdata_Telekom.ipynb
@@ -0,0 +1,479 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "dbd6eae9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import ipywidgets as widgets\n",
+ "pd.options.plotting.backend = \"plotly\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "8b447b09",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df=pd.read_csv('Telekom_Data_NewOrder.csv', sep=';',decimal=',') "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "5fc7b7d2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Metrik | \n",
+ " Datum | \n",
+ " Summe [Milliarden €] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Umsatz | \n",
+ " 01.01.2005 | \n",
+ " 59.600 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Umsatz | \n",
+ " 01.01.2006 | \n",
+ " 61.300 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Umsatz | \n",
+ " 01.01.2007 | \n",
+ " 62.500 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Umsatz | \n",
+ " 01.01.2008 | \n",
+ " 61.700 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Umsatz | \n",
+ " 01.01.2009 | \n",
+ " 64.600 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 01.01.2010 | \n",
+ " 62.420 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " Umsatz | \n",
+ " 01.01.2011 | \n",
+ " 58.650 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " Umsatz | \n",
+ " 01.01.2012 | \n",
+ " 58.170 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 01.01.2013 | \n",
+ " 60.130 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 01.01.2014 | \n",
+ " 62.660 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " Umsatz | \n",
+ " 01.01.2015 | \n",
+ " 69.230 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " Umsatz | \n",
+ " 01.01.2016 | \n",
+ " 73.100 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " Umsatz | \n",
+ " 01.01.2017 | \n",
+ " 74.950 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " Umsatz | \n",
+ " 01.01.2018 | \n",
+ " 75.660 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " Umsatz | \n",
+ " 01.01.2019 | \n",
+ " 80.530 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " Umsatz | \n",
+ " 01.01.2020 | \n",
+ " 99.950 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " Umsatz | \n",
+ " 01.01.2021 | \n",
+ " 107.610 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " Umsatz | \n",
+ " 01.01.2022 | \n",
+ " 114.200 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " EBIT | \n",
+ " 01.01.2005 | \n",
+ " 7.600 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " EBIT | \n",
+ " 01.01.2006 | \n",
+ " 5.300 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " EBIT | \n",
+ " 01.01.2007 | \n",
+ " 5.300 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " EBIT | \n",
+ " 01.01.2008 | \n",
+ " 7.000 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " EBIT | \n",
+ " 01.01.2009 | \n",
+ " 6.000 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " EBIT | \n",
+ " 01.01.2010 | \n",
+ " 5.510 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " EBIT | \n",
+ " 01.01.2011 | \n",
+ " 5.560 | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " EBIT | \n",
+ " 01.01.2012 | \n",
+ " -3.960 | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " EBIT | \n",
+ " 01.01.2013 | \n",
+ " 4.930 | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " EBIT | \n",
+ " 01.01.2014 | \n",
+ " 7.250 | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " EBIT | \n",
+ " 01.01.2015 | \n",
+ " 7.030 | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " EBIT | \n",
+ " 01.01.2016 | \n",
+ " 9.160 | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " EBIT | \n",
+ " 01.01.2017 | \n",
+ " 9.380 | \n",
+ "
\n",
+ " \n",
+ " 31 | \n",
+ " EBIT | \n",
+ " 01.01.2018 | \n",
+ " 8.000 | \n",
+ "
\n",
+ " \n",
+ " 32 | \n",
+ " EBIT | \n",
+ " 01.01.2019 | \n",
+ " 9.460 | \n",
+ "
\n",
+ " \n",
+ " 33 | \n",
+ " EBIT | \n",
+ " 01.01.2020 | \n",
+ " 12.370 | \n",
+ "
\n",
+ " \n",
+ " 34 | \n",
+ " EBIT | \n",
+ " 01.01.2021 | \n",
+ " 12.580 | \n",
+ "
\n",
+ " \n",
+ " 35 | \n",
+ " EBIT | \n",
+ " 01.01.2022 | \n",
+ " 15.410 | \n",
+ "
\n",
+ " \n",
+ " 36 | \n",
+ " EBITDA | \n",
+ " 01.01.2018 | \n",
+ " 23.333 | \n",
+ "
\n",
+ " \n",
+ " 37 | \n",
+ " EBITDA | \n",
+ " 01.01.2019 | \n",
+ " 24.731 | \n",
+ "
\n",
+ " \n",
+ " 38 | \n",
+ " EBITDA | \n",
+ " 01.01.2020 | \n",
+ " 35.017 | \n",
+ "
\n",
+ " \n",
+ " 39 | \n",
+ " EBITDA | \n",
+ " 01.01.2021 | \n",
+ " 37.330 | \n",
+ "
\n",
+ " \n",
+ " 40 | \n",
+ " EBITDA | \n",
+ " 01.01.2022 | \n",
+ " 40.208 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Metrik Datum Summe [Milliarden €]\n",
+ "0 Umsatz 01.01.2005 59.600\n",
+ "1 Umsatz 01.01.2006 61.300\n",
+ "2 Umsatz 01.01.2007 62.500\n",
+ "3 Umsatz 01.01.2008 61.700\n",
+ "4 Umsatz 01.01.2009 64.600\n",
+ "5 Umsatz 01.01.2010 62.420\n",
+ "6 Umsatz 01.01.2011 58.650\n",
+ "7 Umsatz 01.01.2012 58.170\n",
+ "8 Umsatz 01.01.2013 60.130\n",
+ "9 Umsatz 01.01.2014 62.660\n",
+ "10 Umsatz 01.01.2015 69.230\n",
+ "11 Umsatz 01.01.2016 73.100\n",
+ "12 Umsatz 01.01.2017 74.950\n",
+ "13 Umsatz 01.01.2018 75.660\n",
+ "14 Umsatz 01.01.2019 80.530\n",
+ "15 Umsatz 01.01.2020 99.950\n",
+ "16 Umsatz 01.01.2021 107.610\n",
+ "17 Umsatz 01.01.2022 114.200\n",
+ "18 EBIT 01.01.2005 7.600\n",
+ "19 EBIT 01.01.2006 5.300\n",
+ "20 EBIT 01.01.2007 5.300\n",
+ "21 EBIT 01.01.2008 7.000\n",
+ "22 EBIT 01.01.2009 6.000\n",
+ "23 EBIT 01.01.2010 5.510\n",
+ "24 EBIT 01.01.2011 5.560\n",
+ "25 EBIT 01.01.2012 -3.960\n",
+ "26 EBIT 01.01.2013 4.930\n",
+ "27 EBIT 01.01.2014 7.250\n",
+ "28 EBIT 01.01.2015 7.030\n",
+ "29 EBIT 01.01.2016 9.160\n",
+ "30 EBIT 01.01.2017 9.380\n",
+ "31 EBIT 01.01.2018 8.000\n",
+ "32 EBIT 01.01.2019 9.460\n",
+ "33 EBIT 01.01.2020 12.370\n",
+ "34 EBIT 01.01.2021 12.580\n",
+ "35 EBIT 01.01.2022 15.410\n",
+ "36 EBITDA 01.01.2018 23.333\n",
+ "37 EBITDA 01.01.2019 24.731\n",
+ "38 EBITDA 01.01.2020 35.017\n",
+ "39 EBITDA 01.01.2021 37.330\n",
+ "40 EBITDA 01.01.2022 40.208"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d5c6c68d",
+ "metadata": {},
+ "source": [
+ "---------------------------------\n",
+ "# Schreibe Unternehmensdaten in PostgreSQL"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "6c09bdca",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import psycopg2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "383fb9a9",
+ "metadata": {},
+ "source": [
+ "### Verbinde zur Datenbank"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "3e1ea224",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Database connected successfully\n"
+ ]
+ }
+ ],
+ "source": [
+ "conn = psycopg2.connect(\n",
+ " host=\"localhost\",\n",
+ " database=\"transparenz\",\n",
+ " user=\"postgres\",\n",
+ " password=\"postgres\")\n",
+ "\n",
+ "print(\"Database connected successfully\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "22b9ab1d",
+ "metadata": {},
+ "source": [
+ "## Iteriere durch Dataframe und schreibe Datensätze in Tabelle *Company*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "961ac836",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "cur = conn.cursor()\n",
+ "\n",
+ "PK_ID=5 #BASF hat den PK 8, deshalb wird dieser manuell hinzugefügt\n",
+ "\n",
+ "\n",
+ "for i in range(len(df)):\n",
+ " #get data from dataframe\n",
+ " kind_of=str(df['Metrik'].iloc[i])\n",
+ " date=str(df['Datum'].iloc[i])\n",
+ " amount=float(df['Summe [Milliarden €]'].iloc[i])\n",
+ " \n",
+ " postgres_insert_query = \"\"\" INSERT INTO finance (company_id,kind_of, date, sum) VALUES (%s,%s,%s,%s)\"\"\" \n",
+ " record_to_insert = (PK_ID,kind_of,date,amount)\n",
+ " cur.execute(postgres_insert_query, record_to_insert) \n",
+ " #print(postgres_insert_query, record_to_insert)\n",
+ " \n",
+ "conn.commit()\n",
+ "conn.close()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "46b5be7c",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/03-2_Publish_Finance_Testdata_EON.ipynb b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/03-2_Publish_Finance_Testdata_EON.ipynb
new file mode 100644
index 0000000..96d3223
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/03-2_Publish_Finance_Testdata_EON.ipynb
@@ -0,0 +1,416 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "dbd6eae9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import ipywidgets as widgets\n",
+ "pd.options.plotting.backend = \"plotly\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "8b447b09",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df=pd.read_csv('EON_Data_NewOrder.csv', sep=';',decimal=',') "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "5fc7b7d2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Metrik | \n",
+ " Datum | \n",
+ " Summe [Milliarden €] | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Umsatz | \n",
+ " 01.01.2007 | \n",
+ " 66.912 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Umsatz | \n",
+ " 01.01.2008 | \n",
+ " 84.873 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Umsatz | \n",
+ " 01.01.2009 | \n",
+ " 79.974 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Umsatz | \n",
+ " 01.01.2010 | \n",
+ " 92.863 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Umsatz | \n",
+ " 01.01.2011 | \n",
+ " 112.954 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 01.01.2012 | \n",
+ " 132.093 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " Umsatz | \n",
+ " 01.01.2013 | \n",
+ " 119.615 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " Umsatz | \n",
+ " 01.01.2014 | \n",
+ " 113.095 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 01.01.2015 | \n",
+ " 42.656 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 01.01.2016 | \n",
+ " 38.173 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " Umsatz | \n",
+ " 01.01.2017 | \n",
+ " 37.965 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " Umsatz | \n",
+ " 01.01.2018 | \n",
+ " 30.084 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " Umsatz | \n",
+ " 01.01.2019 | \n",
+ " 41.284 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " Umsatz | \n",
+ " 01.01.2020 | \n",
+ " 60.944 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " Umsatz | \n",
+ " 01.01.2021 | \n",
+ " 77.358 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " Umsatz | \n",
+ " 01.01.2022 | \n",
+ " 115.660 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " EBIT | \n",
+ " 01.01.2012 | \n",
+ " 7.010 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " EBIT | \n",
+ " 01.01.2013 | \n",
+ " 5.640 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " EBIT | \n",
+ " 01.01.2014 | \n",
+ " 4.700 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " EBIT | \n",
+ " 01.01.2015 | \n",
+ " 3.600 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " EBIT | \n",
+ " 01.01.2016 | \n",
+ " 3.100 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " EBIT | \n",
+ " 01.01.2017 | \n",
+ " 3.100 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " EBIT | \n",
+ " 01.01.2018 | \n",
+ " 2.990 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " EBIT | \n",
+ " 01.01.2019 | \n",
+ " 3.220 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " EBIT | \n",
+ " 01.01.2020 | \n",
+ " 3.780 | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " EBIT | \n",
+ " 01.01.2021 | \n",
+ " 4.720 | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " EBIT | \n",
+ " 01.01.2022 | \n",
+ " 5.200 | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " EBITDA | \n",
+ " 01.01.2018 | \n",
+ " 4.840 | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " EBITDA | \n",
+ " 01.01.2019 | \n",
+ " 5.558 | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " EBITDA | \n",
+ " 01.01.2020 | \n",
+ " 6.905 | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " EBITDA | \n",
+ " 01.01.2021 | \n",
+ " 7.889 | \n",
+ "
\n",
+ " \n",
+ " 31 | \n",
+ " EBITDA | \n",
+ " 01.01.2022 | \n",
+ " 8.059 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Metrik Datum Summe [Milliarden €]\n",
+ "0 Umsatz 01.01.2007 66.912\n",
+ "1 Umsatz 01.01.2008 84.873\n",
+ "2 Umsatz 01.01.2009 79.974\n",
+ "3 Umsatz 01.01.2010 92.863\n",
+ "4 Umsatz 01.01.2011 112.954\n",
+ "5 Umsatz 01.01.2012 132.093\n",
+ "6 Umsatz 01.01.2013 119.615\n",
+ "7 Umsatz 01.01.2014 113.095\n",
+ "8 Umsatz 01.01.2015 42.656\n",
+ "9 Umsatz 01.01.2016 38.173\n",
+ "10 Umsatz 01.01.2017 37.965\n",
+ "11 Umsatz 01.01.2018 30.084\n",
+ "12 Umsatz 01.01.2019 41.284\n",
+ "13 Umsatz 01.01.2020 60.944\n",
+ "14 Umsatz 01.01.2021 77.358\n",
+ "15 Umsatz 01.01.2022 115.660\n",
+ "16 EBIT 01.01.2012 7.010\n",
+ "17 EBIT 01.01.2013 5.640\n",
+ "18 EBIT 01.01.2014 4.700\n",
+ "19 EBIT 01.01.2015 3.600\n",
+ "20 EBIT 01.01.2016 3.100\n",
+ "21 EBIT 01.01.2017 3.100\n",
+ "22 EBIT 01.01.2018 2.990\n",
+ "23 EBIT 01.01.2019 3.220\n",
+ "24 EBIT 01.01.2020 3.780\n",
+ "25 EBIT 01.01.2021 4.720\n",
+ "26 EBIT 01.01.2022 5.200\n",
+ "27 EBITDA 01.01.2018 4.840\n",
+ "28 EBITDA 01.01.2019 5.558\n",
+ "29 EBITDA 01.01.2020 6.905\n",
+ "30 EBITDA 01.01.2021 7.889\n",
+ "31 EBITDA 01.01.2022 8.059"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d5c6c68d",
+ "metadata": {},
+ "source": [
+ "---------------------------------\n",
+ "# Schreibe Unternehmensdaten in PostgreSQL"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "6c09bdca",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import psycopg2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "383fb9a9",
+ "metadata": {},
+ "source": [
+ "### Verbinde zur Datenbank"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "3e1ea224",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Database connected successfully\n"
+ ]
+ }
+ ],
+ "source": [
+ "conn = psycopg2.connect(\n",
+ " host=\"localhost\",\n",
+ " database=\"transparenz\",\n",
+ " user=\"postgres\",\n",
+ " password=\"postgres\")\n",
+ "\n",
+ "print(\"Database connected successfully\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "22b9ab1d",
+ "metadata": {},
+ "source": [
+ "## Iteriere durch Dataframe und schreibe Datensätze in Tabelle *Company*"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "961ac836",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "cur = conn.cursor()\n",
+ "\n",
+ "PK_ID=9 #BASF hat den PK 8, deshalb wird dieser manuell hinzugefügt\n",
+ "\n",
+ "\n",
+ "for i in range(len(df)):\n",
+ " #get data from dataframe\n",
+ " kind_of=str(df['Metrik'].iloc[i])\n",
+ " date=str(df['Datum'].iloc[i])\n",
+ " amount=float(df['Summe [Milliarden €]'].iloc[i])\n",
+ " \n",
+ " postgres_insert_query = \"\"\" INSERT INTO finance (company_id,kind_of, date, sum) VALUES (%s,%s,%s,%s)\"\"\" \n",
+ " record_to_insert = (PK_ID,kind_of,date,amount)\n",
+ " cur.execute(postgres_insert_query, record_to_insert) \n",
+ " #print(postgres_insert_query, record_to_insert)\n",
+ " \n",
+ "conn.commit()\n",
+ "conn.close()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "46b5be7c",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/04_First_Query.ipynb b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/04_First_Query.ipynb
new file mode 100644
index 0000000..0901098
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/04_First_Query.ipynb
@@ -0,0 +1,3329 @@
+{
+ "cells": [
+ {
+ "attachments": {},
+ "cell_type": "markdown",
+ "id": "30df80ed",
+ "metadata": {},
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "dbd6eae9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import ipywidgets as widgets\n",
+ "pd.options.plotting.backend = \"plotly\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "6c09bdca",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import psycopg2\n",
+ "import sqlalchemy"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cba7013a",
+ "metadata": {},
+ "source": [
+ "## Verbinden zur Postgre Datenbank\n",
+ "https://magnimindacademy.com/how-to-use-postgresql-in-a-jupyter-notebook/\n",
+ "https://medium.com/analytics-vidhya/postgresql-integration-with-jupyter-notebook-deb97579a38d"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "46b5be7c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#load sql extension\n",
+ "%load_ext sql"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "f24a52b9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%sql postgresql://pi:password@192.168.178.130:5432/transparenz"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "12b5deb5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " * postgresql://pi:***@192.168.178.130:5432/transparenz\n",
+ "12 rows affected.\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ " id | \n",
+ " name | \n",
+ " street | \n",
+ " zip | \n",
+ " city | \n",
+ " sector | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " Volkswagen | \n",
+ " Berliner Ring 2 | \n",
+ " 38440 | \n",
+ " Wolfsburg | \n",
+ " Automobil | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Mercedes-Benz Group | \n",
+ " Mercedesstraße 120 | \n",
+ " 70372 | \n",
+ " Stuttgart | \n",
+ " Automobil | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Allianz | \n",
+ " Reinsburgstraße 19 | \n",
+ " 70178 | \n",
+ " Stuttgart | \n",
+ " Versicherung, Finanzdienstleistung | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " BMW Group | \n",
+ " Petuelring 130 | \n",
+ " 80809 | \n",
+ " München | \n",
+ " Automobil | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " Deutsche Telekom | \n",
+ " Landgrabenweg 151 | \n",
+ " 53227 | \n",
+ " Bonn | \n",
+ " Telekommunikation, Informationstechnologie | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " Deutsche Post DHL Group | \n",
+ " Charles-de-Gaulle-Str. 20 | \n",
+ " 53113 | \n",
+ " Bonn | \n",
+ " Logistik | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " Bosch Group | \n",
+ " Robert-Bosch-Platz 1 | \n",
+ " 70839 | \n",
+ " Gerlingen-Schillerhöhe | \n",
+ " Kraftfahrzeugtechnik, Industrietechnik, Gebrauchsgüter, Energie- und Gebäudetechnik | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " E.ON | \n",
+ " Arnulfstraße 203 | \n",
+ " 80634 | \n",
+ " München | \n",
+ " Energie | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " Munich Re Group | \n",
+ " Königinstr. 107 | \n",
+ " 80802 | \n",
+ " München | \n",
+ " Versicherung | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " Siemens | \n",
+ " Werner-von-Siemens-Straße 1 | \n",
+ " 80333 | \n",
+ " München | \n",
+ " Automatisierung, Digitalisierung | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " Deutsche Bahn | \n",
+ " Potsdamer Platz 2 | \n",
+ " 10785 | \n",
+ " Berlin | \n",
+ " Transport, Logistik | \n",
+ "
\n",
+ " \n",
+ "
"
+ ],
+ "text/plain": [
+ "[(1, 'Volkswagen', 'Berliner Ring 2', 38440, 'Wolfsburg', 'Automobil'),\n",
+ " (2, 'Mercedes-Benz Group', 'Mercedesstraße 120', 70372, 'Stuttgart', 'Automobil'),\n",
+ " (3, 'Allianz', 'Reinsburgstraße 19', 70178, 'Stuttgart', 'Versicherung, Finanzdienstleistung'),\n",
+ " (4, 'BMW Group', 'Petuelring 130', 80809, 'München', 'Automobil'),\n",
+ " (5, 'Deutsche Telekom', 'Landgrabenweg 151', 53227, 'Bonn', 'Telekommunikation, Informationstechnologie'),\n",
+ " (6, 'Deutsche Post DHL Group', 'Charles-de-Gaulle-Str. 20', 53113, 'Bonn', 'Logistik'),\n",
+ " (7, 'Bosch Group', 'Robert-Bosch-Platz 1', 70839, 'Gerlingen-Schillerhöhe', 'Kraftfahrzeugtechnik, Industrietechnik, Gebrauchsgüter, Energie- und Gebäudetechnik'),\n",
+ " (8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (9, 'E.ON', 'Arnulfstraße 203', 80634, 'München', 'Energie'),\n",
+ " (10, 'Munich Re Group', 'Königinstr. 107', 80802, 'München', 'Versicherung'),\n",
+ " (11, 'Siemens', 'Werner-von-Siemens-Straße 1', 80333, 'München', 'Automatisierung, Digitalisierung'),\n",
+ " (12, 'Deutsche Bahn', 'Potsdamer Platz 2', 10785, 'Berlin', 'Transport, Logistik')]"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%sql SELECT * from company"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "819a9af6",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " * postgresql://pi:***@192.168.178.130:5432/transparenz\n",
+ "130 rows affected.\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ " finance_id | \n",
+ " company_id | \n",
+ " kind_of | \n",
+ " date | \n",
+ " sum | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 1999-01-01 | \n",
+ " 29.473 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2000-01-01 | \n",
+ " 35.946 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2001-01-01 | \n",
+ " 32.5 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2002-01-01 | \n",
+ " 32.216 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2003-01-01 | \n",
+ " 33.361 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2004-01-01 | \n",
+ " 37.537 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2005-01-01 | \n",
+ " 42.745 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2006-01-01 | \n",
+ " 52.61 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2007-01-01 | \n",
+ " 57.951 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2008-01-01 | \n",
+ " 62.304 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2009-01-01 | \n",
+ " 50.693 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2010-01-01 | \n",
+ " 63.873 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2011-01-01 | \n",
+ " 73.497 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2012-01-01 | \n",
+ " 72.129 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2013-01-01 | \n",
+ " 73.973 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2014-01-01 | \n",
+ " 74.326 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2015-01-01 | \n",
+ " 70.449 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2016-01-01 | \n",
+ " 57.55 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2017-01-01 | \n",
+ " 61.223 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2018-01-01 | \n",
+ " 60.22 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2019-01-01 | \n",
+ " 59.316 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2020-01-01 | \n",
+ " 59.149 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2021-01-01 | \n",
+ " 78.598 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2022-01-01 | \n",
+ " 87.327 | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2005-01-01 | \n",
+ " 5.83 | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2006-01-01 | \n",
+ " 6.75 | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2007-01-01 | \n",
+ " 7.316 | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2008-01-01 | \n",
+ " 6.463 | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2009-01-01 | \n",
+ " 3.677 | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2010-01-01 | \n",
+ " 7.761 | \n",
+ "
\n",
+ " \n",
+ " 31 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2011-01-01 | \n",
+ " 8.586 | \n",
+ "
\n",
+ " \n",
+ " 32 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2012-01-01 | \n",
+ " 6.742 | \n",
+ "
\n",
+ " \n",
+ " 33 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2013-01-01 | \n",
+ " 7.16 | \n",
+ "
\n",
+ " \n",
+ " 34 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2014-01-01 | \n",
+ " 7.626 | \n",
+ "
\n",
+ " \n",
+ " 35 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2015-01-01 | \n",
+ " 6.248 | \n",
+ "
\n",
+ " \n",
+ " 36 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2016-01-01 | \n",
+ " 6.275 | \n",
+ "
\n",
+ " \n",
+ " 37 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2017-01-01 | \n",
+ " 7.587 | \n",
+ "
\n",
+ " \n",
+ " 38 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2018-01-01 | \n",
+ " 5.974 | \n",
+ "
\n",
+ " \n",
+ " 39 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2019-01-01 | \n",
+ " 4.201 | \n",
+ "
\n",
+ " \n",
+ " 40 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2020-01-01 | \n",
+ " -0.191 | \n",
+ "
\n",
+ " \n",
+ " 41 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2021-01-01 | \n",
+ " 7.677 | \n",
+ "
\n",
+ " \n",
+ " 42 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2022-01-01 | \n",
+ " 6.548 | \n",
+ "
\n",
+ " \n",
+ " 43 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2008-01-01 | \n",
+ " 9.562 | \n",
+ "
\n",
+ " \n",
+ " 44 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2009-01-01 | \n",
+ " 7.388 | \n",
+ "
\n",
+ " \n",
+ " 45 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2010-01-01 | \n",
+ " 11.131 | \n",
+ "
\n",
+ " \n",
+ " 46 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2011-01-01 | \n",
+ " 11.993 | \n",
+ "
\n",
+ " \n",
+ " 47 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2012-01-01 | \n",
+ " 10.009 | \n",
+ "
\n",
+ " \n",
+ " 48 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2013-01-01 | \n",
+ " 10.432 | \n",
+ "
\n",
+ " \n",
+ " 49 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2014-01-01 | \n",
+ " 11.043 | \n",
+ "
\n",
+ " \n",
+ " 50 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2015-01-01 | \n",
+ " 10.649 | \n",
+ "
\n",
+ " \n",
+ " 51 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2016-01-01 | \n",
+ " 10.526 | \n",
+ "
\n",
+ " \n",
+ " 52 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2017-01-01 | \n",
+ " 10.765 | \n",
+ "
\n",
+ " \n",
+ " 53 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2018-01-01 | \n",
+ " 8.97 | \n",
+ "
\n",
+ " \n",
+ " 54 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2019-01-01 | \n",
+ " 8.185 | \n",
+ "
\n",
+ " \n",
+ " 55 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2020-01-01 | \n",
+ " 6.494 | \n",
+ "
\n",
+ " \n",
+ " 56 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2021-01-01 | \n",
+ " 11.355 | \n",
+ "
\n",
+ " \n",
+ " 57 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2022-01-01 | \n",
+ " 10.748 | \n",
+ "
\n",
+ " \n",
+ " 58 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2007-01-01 | \n",
+ " 66.912 | \n",
+ "
\n",
+ " \n",
+ " 59 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2008-01-01 | \n",
+ " 84.873 | \n",
+ "
\n",
+ " \n",
+ " 60 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2009-01-01 | \n",
+ " 79.974 | \n",
+ "
\n",
+ " \n",
+ " 61 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2010-01-01 | \n",
+ " 92.863 | \n",
+ "
\n",
+ " \n",
+ " 62 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2011-01-01 | \n",
+ " 112.954 | \n",
+ "
\n",
+ " \n",
+ " 63 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2012-01-01 | \n",
+ " 132.093 | \n",
+ "
\n",
+ " \n",
+ " 64 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2013-01-01 | \n",
+ " 119.615 | \n",
+ "
\n",
+ " \n",
+ " 65 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2014-01-01 | \n",
+ " 113.095 | \n",
+ "
\n",
+ " \n",
+ " 66 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2015-01-01 | \n",
+ " 42.656 | \n",
+ "
\n",
+ " \n",
+ " 67 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2016-01-01 | \n",
+ " 38.173 | \n",
+ "
\n",
+ " \n",
+ " 68 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2017-01-01 | \n",
+ " 37.965 | \n",
+ "
\n",
+ " \n",
+ " 69 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2018-01-01 | \n",
+ " 30.084 | \n",
+ "
\n",
+ " \n",
+ " 70 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2019-01-01 | \n",
+ " 41.284 | \n",
+ "
\n",
+ " \n",
+ " 71 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2020-01-01 | \n",
+ " 60.944 | \n",
+ "
\n",
+ " \n",
+ " 72 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2021-01-01 | \n",
+ " 77.358 | \n",
+ "
\n",
+ " \n",
+ " 73 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2022-01-01 | \n",
+ " 115.66 | \n",
+ "
\n",
+ " \n",
+ " 74 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2012-01-01 | \n",
+ " 7.01 | \n",
+ "
\n",
+ " \n",
+ " 75 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2013-01-01 | \n",
+ " 5.64 | \n",
+ "
\n",
+ " \n",
+ " 76 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2014-01-01 | \n",
+ " 4.7 | \n",
+ "
\n",
+ " \n",
+ " 77 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2015-01-01 | \n",
+ " 3.6 | \n",
+ "
\n",
+ " \n",
+ " 78 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2016-01-01 | \n",
+ " 3.1 | \n",
+ "
\n",
+ " \n",
+ " 79 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2017-01-01 | \n",
+ " 3.1 | \n",
+ "
\n",
+ " \n",
+ " 80 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2018-01-01 | \n",
+ " 2.99 | \n",
+ "
\n",
+ " \n",
+ " 81 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2019-01-01 | \n",
+ " 3.22 | \n",
+ "
\n",
+ " \n",
+ " 82 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2020-01-01 | \n",
+ " 3.78 | \n",
+ "
\n",
+ " \n",
+ " 83 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2021-01-01 | \n",
+ " 4.72 | \n",
+ "
\n",
+ " \n",
+ " 84 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2022-01-01 | \n",
+ " 5.2 | \n",
+ "
\n",
+ " \n",
+ " 85 | \n",
+ " 9 | \n",
+ " EBITDA | \n",
+ " 2018-01-01 | \n",
+ " 4.84 | \n",
+ "
\n",
+ " \n",
+ " 86 | \n",
+ " 9 | \n",
+ " EBITDA | \n",
+ " 2019-01-01 | \n",
+ " 5.558 | \n",
+ "
\n",
+ " \n",
+ " 87 | \n",
+ " 9 | \n",
+ " EBITDA | \n",
+ " 2020-01-01 | \n",
+ " 6.905 | \n",
+ "
\n",
+ " \n",
+ " 88 | \n",
+ " 9 | \n",
+ " EBITDA | \n",
+ " 2021-01-01 | \n",
+ " 7.889 | \n",
+ "
\n",
+ " \n",
+ " 89 | \n",
+ " 9 | \n",
+ " EBITDA | \n",
+ " 2022-01-01 | \n",
+ " 8.059 | \n",
+ "
\n",
+ " \n",
+ " 90 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2005-01-01 | \n",
+ " 59.6 | \n",
+ "
\n",
+ " \n",
+ " 91 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2006-01-01 | \n",
+ " 61.3 | \n",
+ "
\n",
+ " \n",
+ " 92 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2007-01-01 | \n",
+ " 62.5 | \n",
+ "
\n",
+ " \n",
+ " 93 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2008-01-01 | \n",
+ " 61.7 | \n",
+ "
\n",
+ " \n",
+ " 94 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2009-01-01 | \n",
+ " 64.6 | \n",
+ "
\n",
+ " \n",
+ " 95 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2010-01-01 | \n",
+ " 62.42 | \n",
+ "
\n",
+ " \n",
+ " 96 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2011-01-01 | \n",
+ " 58.65 | \n",
+ "
\n",
+ " \n",
+ " 97 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2012-01-01 | \n",
+ " 58.17 | \n",
+ "
\n",
+ " \n",
+ " 98 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2013-01-01 | \n",
+ " 60.13 | \n",
+ "
\n",
+ " \n",
+ " 99 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2014-01-01 | \n",
+ " 62.66 | \n",
+ "
\n",
+ " \n",
+ " 100 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2015-01-01 | \n",
+ " 69.23 | \n",
+ "
\n",
+ " \n",
+ " 101 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2016-01-01 | \n",
+ " 73.1 | \n",
+ "
\n",
+ " \n",
+ " 102 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2017-01-01 | \n",
+ " 74.95 | \n",
+ "
\n",
+ " \n",
+ " 103 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2018-01-01 | \n",
+ " 75.66 | \n",
+ "
\n",
+ " \n",
+ " 104 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2019-01-01 | \n",
+ " 80.53 | \n",
+ "
\n",
+ " \n",
+ " 105 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2020-01-01 | \n",
+ " 99.95 | \n",
+ "
\n",
+ " \n",
+ " 106 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2021-01-01 | \n",
+ " 107.61 | \n",
+ "
\n",
+ " \n",
+ " 107 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2022-01-01 | \n",
+ " 114.2 | \n",
+ "
\n",
+ " \n",
+ " 108 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2005-01-01 | \n",
+ " 7.6 | \n",
+ "
\n",
+ " \n",
+ " 109 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2006-01-01 | \n",
+ " 5.3 | \n",
+ "
\n",
+ " \n",
+ " 110 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2007-01-01 | \n",
+ " 5.3 | \n",
+ "
\n",
+ " \n",
+ " 111 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2008-01-01 | \n",
+ " 7.0 | \n",
+ "
\n",
+ " \n",
+ " 112 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2009-01-01 | \n",
+ " 6.0 | \n",
+ "
\n",
+ " \n",
+ " 113 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2010-01-01 | \n",
+ " 5.51 | \n",
+ "
\n",
+ " \n",
+ " 114 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2011-01-01 | \n",
+ " 5.56 | \n",
+ "
\n",
+ " \n",
+ " 115 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2012-01-01 | \n",
+ " -3.96 | \n",
+ "
\n",
+ " \n",
+ " 116 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2013-01-01 | \n",
+ " 4.93 | \n",
+ "
\n",
+ " \n",
+ " 117 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2014-01-01 | \n",
+ " 7.25 | \n",
+ "
\n",
+ " \n",
+ " 118 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2015-01-01 | \n",
+ " 7.03 | \n",
+ "
\n",
+ " \n",
+ " 119 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2016-01-01 | \n",
+ " 9.16 | \n",
+ "
\n",
+ " \n",
+ " 120 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2017-01-01 | \n",
+ " 9.38 | \n",
+ "
\n",
+ " \n",
+ " 121 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2018-01-01 | \n",
+ " 8.0 | \n",
+ "
\n",
+ " \n",
+ " 122 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2019-01-01 | \n",
+ " 9.46 | \n",
+ "
\n",
+ " \n",
+ " 123 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2020-01-01 | \n",
+ " 12.37 | \n",
+ "
\n",
+ " \n",
+ " 124 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2021-01-01 | \n",
+ " 12.58 | \n",
+ "
\n",
+ " \n",
+ " 125 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2022-01-01 | \n",
+ " 15.41 | \n",
+ "
\n",
+ " \n",
+ " 126 | \n",
+ " 5 | \n",
+ " EBITDA | \n",
+ " 2018-01-01 | \n",
+ " 23.333 | \n",
+ "
\n",
+ " \n",
+ " 127 | \n",
+ " 5 | \n",
+ " EBITDA | \n",
+ " 2019-01-01 | \n",
+ " 24.731 | \n",
+ "
\n",
+ " \n",
+ " 128 | \n",
+ " 5 | \n",
+ " EBITDA | \n",
+ " 2020-01-01 | \n",
+ " 35.017 | \n",
+ "
\n",
+ " \n",
+ " 129 | \n",
+ " 5 | \n",
+ " EBITDA | \n",
+ " 2021-01-01 | \n",
+ " 37.33 | \n",
+ "
\n",
+ " \n",
+ " 130 | \n",
+ " 5 | \n",
+ " EBITDA | \n",
+ " 2022-01-01 | \n",
+ " 40.208 | \n",
+ "
\n",
+ " \n",
+ "
"
+ ],
+ "text/plain": [
+ "[(1, 8, 'Umsatz', datetime.date(1999, 1, 1), 29.473),\n",
+ " (2, 8, 'Umsatz', datetime.date(2000, 1, 1), 35.946),\n",
+ " (3, 8, 'Umsatz', datetime.date(2001, 1, 1), 32.5),\n",
+ " (4, 8, 'Umsatz', datetime.date(2002, 1, 1), 32.216),\n",
+ " (5, 8, 'Umsatz', datetime.date(2003, 1, 1), 33.361),\n",
+ " (6, 8, 'Umsatz', datetime.date(2004, 1, 1), 37.537),\n",
+ " (7, 8, 'Umsatz', datetime.date(2005, 1, 1), 42.745),\n",
+ " (8, 8, 'Umsatz', datetime.date(2006, 1, 1), 52.61),\n",
+ " (9, 8, 'Umsatz', datetime.date(2007, 1, 1), 57.951),\n",
+ " (10, 8, 'Umsatz', datetime.date(2008, 1, 1), 62.304),\n",
+ " (11, 8, 'Umsatz', datetime.date(2009, 1, 1), 50.693),\n",
+ " (12, 8, 'Umsatz', datetime.date(2010, 1, 1), 63.873),\n",
+ " (13, 8, 'Umsatz', datetime.date(2011, 1, 1), 73.497),\n",
+ " (14, 8, 'Umsatz', datetime.date(2012, 1, 1), 72.129),\n",
+ " (15, 8, 'Umsatz', datetime.date(2013, 1, 1), 73.973),\n",
+ " (16, 8, 'Umsatz', datetime.date(2014, 1, 1), 74.326),\n",
+ " (17, 8, 'Umsatz', datetime.date(2015, 1, 1), 70.449),\n",
+ " (18, 8, 'Umsatz', datetime.date(2016, 1, 1), 57.55),\n",
+ " (19, 8, 'Umsatz', datetime.date(2017, 1, 1), 61.223),\n",
+ " (20, 8, 'Umsatz', datetime.date(2018, 1, 1), 60.22),\n",
+ " (21, 8, 'Umsatz', datetime.date(2019, 1, 1), 59.316),\n",
+ " (22, 8, 'Umsatz', datetime.date(2020, 1, 1), 59.149),\n",
+ " (23, 8, 'Umsatz', datetime.date(2021, 1, 1), 78.598),\n",
+ " (24, 8, 'Umsatz', datetime.date(2022, 1, 1), 87.327),\n",
+ " (25, 8, 'EBIT', datetime.date(2005, 1, 1), 5.83),\n",
+ " (26, 8, 'EBIT', datetime.date(2006, 1, 1), 6.75),\n",
+ " (27, 8, 'EBIT', datetime.date(2007, 1, 1), 7.316),\n",
+ " (28, 8, 'EBIT', datetime.date(2008, 1, 1), 6.463),\n",
+ " (29, 8, 'EBIT', datetime.date(2009, 1, 1), 3.677),\n",
+ " (30, 8, 'EBIT', datetime.date(2010, 1, 1), 7.761),\n",
+ " (31, 8, 'EBIT', datetime.date(2011, 1, 1), 8.586),\n",
+ " (32, 8, 'EBIT', datetime.date(2012, 1, 1), 6.742),\n",
+ " (33, 8, 'EBIT', datetime.date(2013, 1, 1), 7.16),\n",
+ " (34, 8, 'EBIT', datetime.date(2014, 1, 1), 7.626),\n",
+ " (35, 8, 'EBIT', datetime.date(2015, 1, 1), 6.248),\n",
+ " (36, 8, 'EBIT', datetime.date(2016, 1, 1), 6.275),\n",
+ " (37, 8, 'EBIT', datetime.date(2017, 1, 1), 7.587),\n",
+ " (38, 8, 'EBIT', datetime.date(2018, 1, 1), 5.974),\n",
+ " (39, 8, 'EBIT', datetime.date(2019, 1, 1), 4.201),\n",
+ " (40, 8, 'EBIT', datetime.date(2020, 1, 1), -0.191),\n",
+ " (41, 8, 'EBIT', datetime.date(2021, 1, 1), 7.677),\n",
+ " (42, 8, 'EBIT', datetime.date(2022, 1, 1), 6.548),\n",
+ " (43, 8, 'EBITDA', datetime.date(2008, 1, 1), 9.562),\n",
+ " (44, 8, 'EBITDA', datetime.date(2009, 1, 1), 7.388),\n",
+ " (45, 8, 'EBITDA', datetime.date(2010, 1, 1), 11.131),\n",
+ " (46, 8, 'EBITDA', datetime.date(2011, 1, 1), 11.993),\n",
+ " (47, 8, 'EBITDA', datetime.date(2012, 1, 1), 10.009),\n",
+ " (48, 8, 'EBITDA', datetime.date(2013, 1, 1), 10.432),\n",
+ " (49, 8, 'EBITDA', datetime.date(2014, 1, 1), 11.043),\n",
+ " (50, 8, 'EBITDA', datetime.date(2015, 1, 1), 10.649),\n",
+ " (51, 8, 'EBITDA', datetime.date(2016, 1, 1), 10.526),\n",
+ " (52, 8, 'EBITDA', datetime.date(2017, 1, 1), 10.765),\n",
+ " (53, 8, 'EBITDA', datetime.date(2018, 1, 1), 8.97),\n",
+ " (54, 8, 'EBITDA', datetime.date(2019, 1, 1), 8.185),\n",
+ " (55, 8, 'EBITDA', datetime.date(2020, 1, 1), 6.494),\n",
+ " (56, 8, 'EBITDA', datetime.date(2021, 1, 1), 11.355),\n",
+ " (57, 8, 'EBITDA', datetime.date(2022, 1, 1), 10.748),\n",
+ " (58, 9, 'Umsatz', datetime.date(2007, 1, 1), 66.912),\n",
+ " (59, 9, 'Umsatz', datetime.date(2008, 1, 1), 84.873),\n",
+ " (60, 9, 'Umsatz', datetime.date(2009, 1, 1), 79.974),\n",
+ " (61, 9, 'Umsatz', datetime.date(2010, 1, 1), 92.863),\n",
+ " (62, 9, 'Umsatz', datetime.date(2011, 1, 1), 112.954),\n",
+ " (63, 9, 'Umsatz', datetime.date(2012, 1, 1), 132.093),\n",
+ " (64, 9, 'Umsatz', datetime.date(2013, 1, 1), 119.615),\n",
+ " (65, 9, 'Umsatz', datetime.date(2014, 1, 1), 113.095),\n",
+ " (66, 9, 'Umsatz', datetime.date(2015, 1, 1), 42.656),\n",
+ " (67, 9, 'Umsatz', datetime.date(2016, 1, 1), 38.173),\n",
+ " (68, 9, 'Umsatz', datetime.date(2017, 1, 1), 37.965),\n",
+ " (69, 9, 'Umsatz', datetime.date(2018, 1, 1), 30.084),\n",
+ " (70, 9, 'Umsatz', datetime.date(2019, 1, 1), 41.284),\n",
+ " (71, 9, 'Umsatz', datetime.date(2020, 1, 1), 60.944),\n",
+ " (72, 9, 'Umsatz', datetime.date(2021, 1, 1), 77.358),\n",
+ " (73, 9, 'Umsatz', datetime.date(2022, 1, 1), 115.66),\n",
+ " (74, 9, 'EBIT', datetime.date(2012, 1, 1), 7.01),\n",
+ " (75, 9, 'EBIT', datetime.date(2013, 1, 1), 5.64),\n",
+ " (76, 9, 'EBIT', datetime.date(2014, 1, 1), 4.7),\n",
+ " (77, 9, 'EBIT', datetime.date(2015, 1, 1), 3.6),\n",
+ " (78, 9, 'EBIT', datetime.date(2016, 1, 1), 3.1),\n",
+ " (79, 9, 'EBIT', datetime.date(2017, 1, 1), 3.1),\n",
+ " (80, 9, 'EBIT', datetime.date(2018, 1, 1), 2.99),\n",
+ " (81, 9, 'EBIT', datetime.date(2019, 1, 1), 3.22),\n",
+ " (82, 9, 'EBIT', datetime.date(2020, 1, 1), 3.78),\n",
+ " (83, 9, 'EBIT', datetime.date(2021, 1, 1), 4.72),\n",
+ " (84, 9, 'EBIT', datetime.date(2022, 1, 1), 5.2),\n",
+ " (85, 9, 'EBITDA', datetime.date(2018, 1, 1), 4.84),\n",
+ " (86, 9, 'EBITDA', datetime.date(2019, 1, 1), 5.558),\n",
+ " (87, 9, 'EBITDA', datetime.date(2020, 1, 1), 6.905),\n",
+ " (88, 9, 'EBITDA', datetime.date(2021, 1, 1), 7.889),\n",
+ " (89, 9, 'EBITDA', datetime.date(2022, 1, 1), 8.059),\n",
+ " (90, 5, 'Umsatz', datetime.date(2005, 1, 1), 59.6),\n",
+ " (91, 5, 'Umsatz', datetime.date(2006, 1, 1), 61.3),\n",
+ " (92, 5, 'Umsatz', datetime.date(2007, 1, 1), 62.5),\n",
+ " (93, 5, 'Umsatz', datetime.date(2008, 1, 1), 61.7),\n",
+ " (94, 5, 'Umsatz', datetime.date(2009, 1, 1), 64.6),\n",
+ " (95, 5, 'Umsatz', datetime.date(2010, 1, 1), 62.42),\n",
+ " (96, 5, 'Umsatz', datetime.date(2011, 1, 1), 58.65),\n",
+ " (97, 5, 'Umsatz', datetime.date(2012, 1, 1), 58.17),\n",
+ " (98, 5, 'Umsatz', datetime.date(2013, 1, 1), 60.13),\n",
+ " (99, 5, 'Umsatz', datetime.date(2014, 1, 1), 62.66),\n",
+ " (100, 5, 'Umsatz', datetime.date(2015, 1, 1), 69.23),\n",
+ " (101, 5, 'Umsatz', datetime.date(2016, 1, 1), 73.1),\n",
+ " (102, 5, 'Umsatz', datetime.date(2017, 1, 1), 74.95),\n",
+ " (103, 5, 'Umsatz', datetime.date(2018, 1, 1), 75.66),\n",
+ " (104, 5, 'Umsatz', datetime.date(2019, 1, 1), 80.53),\n",
+ " (105, 5, 'Umsatz', datetime.date(2020, 1, 1), 99.95),\n",
+ " (106, 5, 'Umsatz', datetime.date(2021, 1, 1), 107.61),\n",
+ " (107, 5, 'Umsatz', datetime.date(2022, 1, 1), 114.2),\n",
+ " (108, 5, 'EBIT', datetime.date(2005, 1, 1), 7.6),\n",
+ " (109, 5, 'EBIT', datetime.date(2006, 1, 1), 5.3),\n",
+ " (110, 5, 'EBIT', datetime.date(2007, 1, 1), 5.3),\n",
+ " (111, 5, 'EBIT', datetime.date(2008, 1, 1), 7.0),\n",
+ " (112, 5, 'EBIT', datetime.date(2009, 1, 1), 6.0),\n",
+ " (113, 5, 'EBIT', datetime.date(2010, 1, 1), 5.51),\n",
+ " (114, 5, 'EBIT', datetime.date(2011, 1, 1), 5.56),\n",
+ " (115, 5, 'EBIT', datetime.date(2012, 1, 1), -3.96),\n",
+ " (116, 5, 'EBIT', datetime.date(2013, 1, 1), 4.93),\n",
+ " (117, 5, 'EBIT', datetime.date(2014, 1, 1), 7.25),\n",
+ " (118, 5, 'EBIT', datetime.date(2015, 1, 1), 7.03),\n",
+ " (119, 5, 'EBIT', datetime.date(2016, 1, 1), 9.16),\n",
+ " (120, 5, 'EBIT', datetime.date(2017, 1, 1), 9.38),\n",
+ " (121, 5, 'EBIT', datetime.date(2018, 1, 1), 8.0),\n",
+ " (122, 5, 'EBIT', datetime.date(2019, 1, 1), 9.46),\n",
+ " (123, 5, 'EBIT', datetime.date(2020, 1, 1), 12.37),\n",
+ " (124, 5, 'EBIT', datetime.date(2021, 1, 1), 12.58),\n",
+ " (125, 5, 'EBIT', datetime.date(2022, 1, 1), 15.41),\n",
+ " (126, 5, 'EBITDA', datetime.date(2018, 1, 1), 23.333),\n",
+ " (127, 5, 'EBITDA', datetime.date(2019, 1, 1), 24.731),\n",
+ " (128, 5, 'EBITDA', datetime.date(2020, 1, 1), 35.017),\n",
+ " (129, 5, 'EBITDA', datetime.date(2021, 1, 1), 37.33),\n",
+ " (130, 5, 'EBITDA', datetime.date(2022, 1, 1), 40.208)]"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%sql SELECT * from finance"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "87e3c230",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " * postgresql://pi:***@192.168.178.130:5432/transparenz\n",
+ "130 rows affected.\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ " finance_id | \n",
+ " company_id | \n",
+ " kind_of | \n",
+ " date | \n",
+ " sum | \n",
+ " id | \n",
+ " name | \n",
+ " street | \n",
+ " zip | \n",
+ " city | \n",
+ " sector | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 1999-01-01 | \n",
+ " 29.473 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2000-01-01 | \n",
+ " 35.946 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2001-01-01 | \n",
+ " 32.5 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2002-01-01 | \n",
+ " 32.216 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2003-01-01 | \n",
+ " 33.361 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2004-01-01 | \n",
+ " 37.537 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2005-01-01 | \n",
+ " 42.745 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2006-01-01 | \n",
+ " 52.61 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2007-01-01 | \n",
+ " 57.951 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2008-01-01 | \n",
+ " 62.304 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2009-01-01 | \n",
+ " 50.693 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2010-01-01 | \n",
+ " 63.873 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2011-01-01 | \n",
+ " 73.497 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2012-01-01 | \n",
+ " 72.129 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2013-01-01 | \n",
+ " 73.973 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2014-01-01 | \n",
+ " 74.326 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2015-01-01 | \n",
+ " 70.449 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2016-01-01 | \n",
+ " 57.55 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2017-01-01 | \n",
+ " 61.223 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2018-01-01 | \n",
+ " 60.22 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2019-01-01 | \n",
+ " 59.316 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2020-01-01 | \n",
+ " 59.149 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2021-01-01 | \n",
+ " 78.598 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 8 | \n",
+ " Umsatz | \n",
+ " 2022-01-01 | \n",
+ " 87.327 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2005-01-01 | \n",
+ " 5.83 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2006-01-01 | \n",
+ " 6.75 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2007-01-01 | \n",
+ " 7.316 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2008-01-01 | \n",
+ " 6.463 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2009-01-01 | \n",
+ " 3.677 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2010-01-01 | \n",
+ " 7.761 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 31 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2011-01-01 | \n",
+ " 8.586 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 32 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2012-01-01 | \n",
+ " 6.742 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 33 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2013-01-01 | \n",
+ " 7.16 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 34 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2014-01-01 | \n",
+ " 7.626 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 35 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2015-01-01 | \n",
+ " 6.248 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 36 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2016-01-01 | \n",
+ " 6.275 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 37 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2017-01-01 | \n",
+ " 7.587 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 38 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2018-01-01 | \n",
+ " 5.974 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 39 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2019-01-01 | \n",
+ " 4.201 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 40 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2020-01-01 | \n",
+ " -0.191 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 41 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2021-01-01 | \n",
+ " 7.677 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 42 | \n",
+ " 8 | \n",
+ " EBIT | \n",
+ " 2022-01-01 | \n",
+ " 6.548 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 43 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2008-01-01 | \n",
+ " 9.562 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 44 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2009-01-01 | \n",
+ " 7.388 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 45 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2010-01-01 | \n",
+ " 11.131 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 46 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2011-01-01 | \n",
+ " 11.993 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 47 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2012-01-01 | \n",
+ " 10.009 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 48 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2013-01-01 | \n",
+ " 10.432 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 49 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2014-01-01 | \n",
+ " 11.043 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 50 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2015-01-01 | \n",
+ " 10.649 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 51 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2016-01-01 | \n",
+ " 10.526 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 52 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2017-01-01 | \n",
+ " 10.765 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 53 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2018-01-01 | \n",
+ " 8.97 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 54 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2019-01-01 | \n",
+ " 8.185 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 55 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2020-01-01 | \n",
+ " 6.494 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 56 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2021-01-01 | \n",
+ " 11.355 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 57 | \n",
+ " 8 | \n",
+ " EBITDA | \n",
+ " 2022-01-01 | \n",
+ " 10.748 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 58 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2007-01-01 | \n",
+ " 66.912 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 59 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2008-01-01 | \n",
+ " 84.873 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 60 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2009-01-01 | \n",
+ " 79.974 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 61 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2010-01-01 | \n",
+ " 92.863 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 62 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2011-01-01 | \n",
+ " 112.954 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 63 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2012-01-01 | \n",
+ " 132.093 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 64 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2013-01-01 | \n",
+ " 119.615 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 65 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2014-01-01 | \n",
+ " 113.095 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 66 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2015-01-01 | \n",
+ " 42.656 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 67 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2016-01-01 | \n",
+ " 38.173 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 68 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2017-01-01 | \n",
+ " 37.965 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 69 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2018-01-01 | \n",
+ " 30.084 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 70 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2019-01-01 | \n",
+ " 41.284 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 71 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2020-01-01 | \n",
+ " 60.944 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 72 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2021-01-01 | \n",
+ " 77.358 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 73 | \n",
+ " 9 | \n",
+ " Umsatz | \n",
+ " 2022-01-01 | \n",
+ " 115.66 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 74 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2012-01-01 | \n",
+ " 7.01 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 75 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2013-01-01 | \n",
+ " 5.64 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 76 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2014-01-01 | \n",
+ " 4.7 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 77 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2015-01-01 | \n",
+ " 3.6 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 78 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2016-01-01 | \n",
+ " 3.1 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 79 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2017-01-01 | \n",
+ " 3.1 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 80 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2018-01-01 | \n",
+ " 2.99 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 81 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2019-01-01 | \n",
+ " 3.22 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 82 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2020-01-01 | \n",
+ " 3.78 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 83 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2021-01-01 | \n",
+ " 4.72 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 84 | \n",
+ " 9 | \n",
+ " EBIT | \n",
+ " 2022-01-01 | \n",
+ " 5.2 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 85 | \n",
+ " 9 | \n",
+ " EBITDA | \n",
+ " 2018-01-01 | \n",
+ " 4.84 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 86 | \n",
+ " 9 | \n",
+ " EBITDA | \n",
+ " 2019-01-01 | \n",
+ " 5.558 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 87 | \n",
+ " 9 | \n",
+ " EBITDA | \n",
+ " 2020-01-01 | \n",
+ " 6.905 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 88 | \n",
+ " 9 | \n",
+ " EBITDA | \n",
+ " 2021-01-01 | \n",
+ " 7.889 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 89 | \n",
+ " 9 | \n",
+ " EBITDA | \n",
+ " 2022-01-01 | \n",
+ " 8.059 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 90 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2005-01-01 | \n",
+ " 59.6 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 91 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2006-01-01 | \n",
+ " 61.3 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 92 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2007-01-01 | \n",
+ " 62.5 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 93 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2008-01-01 | \n",
+ " 61.7 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 94 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2009-01-01 | \n",
+ " 64.6 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 95 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2010-01-01 | \n",
+ " 62.42 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 96 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2011-01-01 | \n",
+ " 58.65 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 97 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2012-01-01 | \n",
+ " 58.17 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 98 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2013-01-01 | \n",
+ " 60.13 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 99 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2014-01-01 | \n",
+ " 62.66 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 100 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2015-01-01 | \n",
+ " 69.23 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 101 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2016-01-01 | \n",
+ " 73.1 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 102 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2017-01-01 | \n",
+ " 74.95 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 103 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2018-01-01 | \n",
+ " 75.66 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 104 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2019-01-01 | \n",
+ " 80.53 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 105 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2020-01-01 | \n",
+ " 99.95 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 106 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2021-01-01 | \n",
+ " 107.61 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 107 | \n",
+ " 5 | \n",
+ " Umsatz | \n",
+ " 2022-01-01 | \n",
+ " 114.2 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 108 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2005-01-01 | \n",
+ " 7.6 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 109 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2006-01-01 | \n",
+ " 5.3 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 110 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2007-01-01 | \n",
+ " 5.3 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 111 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2008-01-01 | \n",
+ " 7.0 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 112 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2009-01-01 | \n",
+ " 6.0 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 113 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2010-01-01 | \n",
+ " 5.51 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 114 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2011-01-01 | \n",
+ " 5.56 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 115 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2012-01-01 | \n",
+ " -3.96 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 116 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2013-01-01 | \n",
+ " 4.93 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 117 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2014-01-01 | \n",
+ " 7.25 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 118 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2015-01-01 | \n",
+ " 7.03 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 119 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2016-01-01 | \n",
+ " 9.16 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 120 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2017-01-01 | \n",
+ " 9.38 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 121 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2018-01-01 | \n",
+ " 8.0 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 122 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2019-01-01 | \n",
+ " 9.46 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 123 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2020-01-01 | \n",
+ " 12.37 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 124 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2021-01-01 | \n",
+ " 12.58 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 125 | \n",
+ " 5 | \n",
+ " EBIT | \n",
+ " 2022-01-01 | \n",
+ " 15.41 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 126 | \n",
+ " 5 | \n",
+ " EBITDA | \n",
+ " 2018-01-01 | \n",
+ " 23.333 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 127 | \n",
+ " 5 | \n",
+ " EBITDA | \n",
+ " 2019-01-01 | \n",
+ " 24.731 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 128 | \n",
+ " 5 | \n",
+ " EBITDA | \n",
+ " 2020-01-01 | \n",
+ " 35.017 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 129 | \n",
+ " 5 | \n",
+ " EBITDA | \n",
+ " 2021-01-01 | \n",
+ " 37.33 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ " 130 | \n",
+ " 5 | \n",
+ " EBITDA | \n",
+ " 2022-01-01 | \n",
+ " 40.208 | \n",
+ " 8 | \n",
+ " BASF | \n",
+ " Carl-Bosch-Straße 38 | \n",
+ " 67056 | \n",
+ " Ludwigshafen | \n",
+ " Chemie | \n",
+ "
\n",
+ " \n",
+ "
"
+ ],
+ "text/plain": [
+ "[(1, 8, 'Umsatz', datetime.date(1999, 1, 1), 29.473, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (2, 8, 'Umsatz', datetime.date(2000, 1, 1), 35.946, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (3, 8, 'Umsatz', datetime.date(2001, 1, 1), 32.5, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (4, 8, 'Umsatz', datetime.date(2002, 1, 1), 32.216, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (5, 8, 'Umsatz', datetime.date(2003, 1, 1), 33.361, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (6, 8, 'Umsatz', datetime.date(2004, 1, 1), 37.537, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (7, 8, 'Umsatz', datetime.date(2005, 1, 1), 42.745, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (8, 8, 'Umsatz', datetime.date(2006, 1, 1), 52.61, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (9, 8, 'Umsatz', datetime.date(2007, 1, 1), 57.951, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (10, 8, 'Umsatz', datetime.date(2008, 1, 1), 62.304, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (11, 8, 'Umsatz', datetime.date(2009, 1, 1), 50.693, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (12, 8, 'Umsatz', datetime.date(2010, 1, 1), 63.873, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (13, 8, 'Umsatz', datetime.date(2011, 1, 1), 73.497, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (14, 8, 'Umsatz', datetime.date(2012, 1, 1), 72.129, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (15, 8, 'Umsatz', datetime.date(2013, 1, 1), 73.973, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (16, 8, 'Umsatz', datetime.date(2014, 1, 1), 74.326, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (17, 8, 'Umsatz', datetime.date(2015, 1, 1), 70.449, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (18, 8, 'Umsatz', datetime.date(2016, 1, 1), 57.55, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (19, 8, 'Umsatz', datetime.date(2017, 1, 1), 61.223, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (20, 8, 'Umsatz', datetime.date(2018, 1, 1), 60.22, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (21, 8, 'Umsatz', datetime.date(2019, 1, 1), 59.316, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (22, 8, 'Umsatz', datetime.date(2020, 1, 1), 59.149, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (23, 8, 'Umsatz', datetime.date(2021, 1, 1), 78.598, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (24, 8, 'Umsatz', datetime.date(2022, 1, 1), 87.327, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (25, 8, 'EBIT', datetime.date(2005, 1, 1), 5.83, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (26, 8, 'EBIT', datetime.date(2006, 1, 1), 6.75, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (27, 8, 'EBIT', datetime.date(2007, 1, 1), 7.316, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (28, 8, 'EBIT', datetime.date(2008, 1, 1), 6.463, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (29, 8, 'EBIT', datetime.date(2009, 1, 1), 3.677, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (30, 8, 'EBIT', datetime.date(2010, 1, 1), 7.761, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (31, 8, 'EBIT', datetime.date(2011, 1, 1), 8.586, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (32, 8, 'EBIT', datetime.date(2012, 1, 1), 6.742, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (33, 8, 'EBIT', datetime.date(2013, 1, 1), 7.16, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (34, 8, 'EBIT', datetime.date(2014, 1, 1), 7.626, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (35, 8, 'EBIT', datetime.date(2015, 1, 1), 6.248, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (36, 8, 'EBIT', datetime.date(2016, 1, 1), 6.275, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (37, 8, 'EBIT', datetime.date(2017, 1, 1), 7.587, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (38, 8, 'EBIT', datetime.date(2018, 1, 1), 5.974, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (39, 8, 'EBIT', datetime.date(2019, 1, 1), 4.201, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (40, 8, 'EBIT', datetime.date(2020, 1, 1), -0.191, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (41, 8, 'EBIT', datetime.date(2021, 1, 1), 7.677, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (42, 8, 'EBIT', datetime.date(2022, 1, 1), 6.548, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (43, 8, 'EBITDA', datetime.date(2008, 1, 1), 9.562, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (44, 8, 'EBITDA', datetime.date(2009, 1, 1), 7.388, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (45, 8, 'EBITDA', datetime.date(2010, 1, 1), 11.131, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (46, 8, 'EBITDA', datetime.date(2011, 1, 1), 11.993, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (47, 8, 'EBITDA', datetime.date(2012, 1, 1), 10.009, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (48, 8, 'EBITDA', datetime.date(2013, 1, 1), 10.432, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (49, 8, 'EBITDA', datetime.date(2014, 1, 1), 11.043, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (50, 8, 'EBITDA', datetime.date(2015, 1, 1), 10.649, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (51, 8, 'EBITDA', datetime.date(2016, 1, 1), 10.526, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (52, 8, 'EBITDA', datetime.date(2017, 1, 1), 10.765, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (53, 8, 'EBITDA', datetime.date(2018, 1, 1), 8.97, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (54, 8, 'EBITDA', datetime.date(2019, 1, 1), 8.185, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (55, 8, 'EBITDA', datetime.date(2020, 1, 1), 6.494, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (56, 8, 'EBITDA', datetime.date(2021, 1, 1), 11.355, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (57, 8, 'EBITDA', datetime.date(2022, 1, 1), 10.748, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (58, 9, 'Umsatz', datetime.date(2007, 1, 1), 66.912, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (59, 9, 'Umsatz', datetime.date(2008, 1, 1), 84.873, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (60, 9, 'Umsatz', datetime.date(2009, 1, 1), 79.974, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (61, 9, 'Umsatz', datetime.date(2010, 1, 1), 92.863, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (62, 9, 'Umsatz', datetime.date(2011, 1, 1), 112.954, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (63, 9, 'Umsatz', datetime.date(2012, 1, 1), 132.093, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (64, 9, 'Umsatz', datetime.date(2013, 1, 1), 119.615, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (65, 9, 'Umsatz', datetime.date(2014, 1, 1), 113.095, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (66, 9, 'Umsatz', datetime.date(2015, 1, 1), 42.656, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (67, 9, 'Umsatz', datetime.date(2016, 1, 1), 38.173, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (68, 9, 'Umsatz', datetime.date(2017, 1, 1), 37.965, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (69, 9, 'Umsatz', datetime.date(2018, 1, 1), 30.084, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (70, 9, 'Umsatz', datetime.date(2019, 1, 1), 41.284, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (71, 9, 'Umsatz', datetime.date(2020, 1, 1), 60.944, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (72, 9, 'Umsatz', datetime.date(2021, 1, 1), 77.358, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (73, 9, 'Umsatz', datetime.date(2022, 1, 1), 115.66, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (74, 9, 'EBIT', datetime.date(2012, 1, 1), 7.01, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (75, 9, 'EBIT', datetime.date(2013, 1, 1), 5.64, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (76, 9, 'EBIT', datetime.date(2014, 1, 1), 4.7, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (77, 9, 'EBIT', datetime.date(2015, 1, 1), 3.6, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (78, 9, 'EBIT', datetime.date(2016, 1, 1), 3.1, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (79, 9, 'EBIT', datetime.date(2017, 1, 1), 3.1, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (80, 9, 'EBIT', datetime.date(2018, 1, 1), 2.99, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (81, 9, 'EBIT', datetime.date(2019, 1, 1), 3.22, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (82, 9, 'EBIT', datetime.date(2020, 1, 1), 3.78, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (83, 9, 'EBIT', datetime.date(2021, 1, 1), 4.72, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (84, 9, 'EBIT', datetime.date(2022, 1, 1), 5.2, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (85, 9, 'EBITDA', datetime.date(2018, 1, 1), 4.84, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (86, 9, 'EBITDA', datetime.date(2019, 1, 1), 5.558, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (87, 9, 'EBITDA', datetime.date(2020, 1, 1), 6.905, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (88, 9, 'EBITDA', datetime.date(2021, 1, 1), 7.889, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (89, 9, 'EBITDA', datetime.date(2022, 1, 1), 8.059, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (90, 5, 'Umsatz', datetime.date(2005, 1, 1), 59.6, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (91, 5, 'Umsatz', datetime.date(2006, 1, 1), 61.3, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (92, 5, 'Umsatz', datetime.date(2007, 1, 1), 62.5, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (93, 5, 'Umsatz', datetime.date(2008, 1, 1), 61.7, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (94, 5, 'Umsatz', datetime.date(2009, 1, 1), 64.6, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (95, 5, 'Umsatz', datetime.date(2010, 1, 1), 62.42, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (96, 5, 'Umsatz', datetime.date(2011, 1, 1), 58.65, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (97, 5, 'Umsatz', datetime.date(2012, 1, 1), 58.17, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (98, 5, 'Umsatz', datetime.date(2013, 1, 1), 60.13, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (99, 5, 'Umsatz', datetime.date(2014, 1, 1), 62.66, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (100, 5, 'Umsatz', datetime.date(2015, 1, 1), 69.23, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (101, 5, 'Umsatz', datetime.date(2016, 1, 1), 73.1, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (102, 5, 'Umsatz', datetime.date(2017, 1, 1), 74.95, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (103, 5, 'Umsatz', datetime.date(2018, 1, 1), 75.66, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (104, 5, 'Umsatz', datetime.date(2019, 1, 1), 80.53, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (105, 5, 'Umsatz', datetime.date(2020, 1, 1), 99.95, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (106, 5, 'Umsatz', datetime.date(2021, 1, 1), 107.61, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (107, 5, 'Umsatz', datetime.date(2022, 1, 1), 114.2, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (108, 5, 'EBIT', datetime.date(2005, 1, 1), 7.6, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (109, 5, 'EBIT', datetime.date(2006, 1, 1), 5.3, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (110, 5, 'EBIT', datetime.date(2007, 1, 1), 5.3, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (111, 5, 'EBIT', datetime.date(2008, 1, 1), 7.0, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (112, 5, 'EBIT', datetime.date(2009, 1, 1), 6.0, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (113, 5, 'EBIT', datetime.date(2010, 1, 1), 5.51, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (114, 5, 'EBIT', datetime.date(2011, 1, 1), 5.56, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (115, 5, 'EBIT', datetime.date(2012, 1, 1), -3.96, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (116, 5, 'EBIT', datetime.date(2013, 1, 1), 4.93, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (117, 5, 'EBIT', datetime.date(2014, 1, 1), 7.25, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (118, 5, 'EBIT', datetime.date(2015, 1, 1), 7.03, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (119, 5, 'EBIT', datetime.date(2016, 1, 1), 9.16, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (120, 5, 'EBIT', datetime.date(2017, 1, 1), 9.38, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (121, 5, 'EBIT', datetime.date(2018, 1, 1), 8.0, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (122, 5, 'EBIT', datetime.date(2019, 1, 1), 9.46, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (123, 5, 'EBIT', datetime.date(2020, 1, 1), 12.37, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (124, 5, 'EBIT', datetime.date(2021, 1, 1), 12.58, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (125, 5, 'EBIT', datetime.date(2022, 1, 1), 15.41, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (126, 5, 'EBITDA', datetime.date(2018, 1, 1), 23.333, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (127, 5, 'EBITDA', datetime.date(2019, 1, 1), 24.731, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (128, 5, 'EBITDA', datetime.date(2020, 1, 1), 35.017, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (129, 5, 'EBITDA', datetime.date(2021, 1, 1), 37.33, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie'),\n",
+ " (130, 5, 'EBITDA', datetime.date(2022, 1, 1), 40.208, 8, 'BASF', 'Carl-Bosch-Straße 38', 67056, 'Ludwigshafen', 'Chemie')]"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%sql SELECT * FROM finance INNER JOIN company ON company.name='BASF';"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "b584996b",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " * postgresql://pi:***@192.168.178.130:5432/transparenz\n",
+ "18 rows affected.\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ " sum | \n",
+ " date | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 8.586 | \n",
+ " 2011-01-01 | \n",
+ "
\n",
+ " \n",
+ " 7.761 | \n",
+ " 2010-01-01 | \n",
+ "
\n",
+ " \n",
+ " 7.677 | \n",
+ " 2021-01-01 | \n",
+ "
\n",
+ " \n",
+ " 7.626 | \n",
+ " 2014-01-01 | \n",
+ "
\n",
+ " \n",
+ " 7.587 | \n",
+ " 2017-01-01 | \n",
+ "
\n",
+ " \n",
+ " 7.316 | \n",
+ " 2007-01-01 | \n",
+ "
\n",
+ " \n",
+ " 7.16 | \n",
+ " 2013-01-01 | \n",
+ "
\n",
+ " \n",
+ " 6.75 | \n",
+ " 2006-01-01 | \n",
+ "
\n",
+ " \n",
+ " 6.742 | \n",
+ " 2012-01-01 | \n",
+ "
\n",
+ " \n",
+ " 6.548 | \n",
+ " 2022-01-01 | \n",
+ "
\n",
+ " \n",
+ " 6.463 | \n",
+ " 2008-01-01 | \n",
+ "
\n",
+ " \n",
+ " 6.275 | \n",
+ " 2016-01-01 | \n",
+ "
\n",
+ " \n",
+ " 6.248 | \n",
+ " 2015-01-01 | \n",
+ "
\n",
+ " \n",
+ " 5.974 | \n",
+ " 2018-01-01 | \n",
+ "
\n",
+ " \n",
+ " 5.83 | \n",
+ " 2005-01-01 | \n",
+ "
\n",
+ " \n",
+ " 4.201 | \n",
+ " 2019-01-01 | \n",
+ "
\n",
+ " \n",
+ " 3.677 | \n",
+ " 2009-01-01 | \n",
+ "
\n",
+ " \n",
+ " -0.191 | \n",
+ " 2020-01-01 | \n",
+ "
\n",
+ " \n",
+ "
"
+ ],
+ "text/plain": [
+ "[(8.586, datetime.date(2011, 1, 1)),\n",
+ " (7.761, datetime.date(2010, 1, 1)),\n",
+ " (7.677, datetime.date(2021, 1, 1)),\n",
+ " (7.626, datetime.date(2014, 1, 1)),\n",
+ " (7.587, datetime.date(2017, 1, 1)),\n",
+ " (7.316, datetime.date(2007, 1, 1)),\n",
+ " (7.16, datetime.date(2013, 1, 1)),\n",
+ " (6.75, datetime.date(2006, 1, 1)),\n",
+ " (6.742, datetime.date(2012, 1, 1)),\n",
+ " (6.548, datetime.date(2022, 1, 1)),\n",
+ " (6.463, datetime.date(2008, 1, 1)),\n",
+ " (6.275, datetime.date(2016, 1, 1)),\n",
+ " (6.248, datetime.date(2015, 1, 1)),\n",
+ " (5.974, datetime.date(2018, 1, 1)),\n",
+ " (5.83, datetime.date(2005, 1, 1)),\n",
+ " (4.201, datetime.date(2019, 1, 1)),\n",
+ " (3.677, datetime.date(2009, 1, 1)),\n",
+ " (-0.191, datetime.date(2020, 1, 1))]"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%sql Select sum, date from finance f, company c where f.company_id = c.id and c.name='BASF' and f.kind_of='EBIT' order by sum desc;"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5d673a9c",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/Amtsgerichte.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/Amtsgerichte.csv
new file mode 100644
index 0000000..0a87306
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/Amtsgerichte.csv
@@ -0,0 +1,10 @@
+Stadt;Name
+Aschaffenburg;Amtsgericht Aschaffenburg
+Bamberg;Amtsgericht Bamberg
+Bayreuth;Amtsgericht Bayreuth
+Duesseldorf;Amtsgericht Duesseldorf
+Duisburg;Amtsgericht Duisburg
+Duisburg;Amtsgericht Duisburg-Hamborn
+Duisburg;Amtsgericht Duisburg-Ruhrort
+Oberhausen;Amtsgericht Oberhausen
+Wuppertal;Amtsgericht Wuppertal
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/BASF_Data_NewOrder.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/BASF_Data_NewOrder.csv
new file mode 100644
index 0000000..191917d
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/BASF_Data_NewOrder.csv
@@ -0,0 +1,58 @@
+Metrik;Datum;Summe [Milliarden €]
+Umsatz;01.01.1999;29,473
+Umsatz;01.01.2000;35,946
+Umsatz;01.01.2001;32,5
+Umsatz;01.01.2002;32,216
+Umsatz;01.01.2003;33,361
+Umsatz;01.01.2004;37,537
+Umsatz;01.01.2005;42,745
+Umsatz;01.01.2006;52,61
+Umsatz;01.01.2007;57,951
+Umsatz;01.01.2008;62,304
+Umsatz;01.01.2009;50,693
+Umsatz;01.01.2010;63,873
+Umsatz;01.01.2011;73,497
+Umsatz;01.01.2012;72,129
+Umsatz;01.01.2013;73,973
+Umsatz;01.01.2014;74,326
+Umsatz;01.01.2015;70,449
+Umsatz;01.01.2016;57,55
+Umsatz;01.01.2017;61,223
+Umsatz;01.01.2018;60,22
+Umsatz;01.01.2019;59,316
+Umsatz;01.01.2020;59,149
+Umsatz;01.01.2021;78,598
+Umsatz;01.01.2022;87,327
+EBIT;01.01.2005;5,83
+EBIT;01.01.2006;6,75
+EBIT;01.01.2007;7,316
+EBIT;01.01.2008;6,463
+EBIT;01.01.2009;3,677
+EBIT;01.01.2010;7,761
+EBIT;01.01.2011;8,586
+EBIT;01.01.2012;6,742
+EBIT;01.01.2013;7,16
+EBIT;01.01.2014;7,626
+EBIT;01.01.2015;6,248
+EBIT;01.01.2016;6,275
+EBIT;01.01.2017;7,587
+EBIT;01.01.2018;5,974
+EBIT;01.01.2019;4,201
+EBIT;01.01.2020;-0,191
+EBIT;01.01.2021;7,677
+EBIT;01.01.2022;6,548
+EBITDA;01.01.2008;9,562
+EBITDA;01.01.2009;7,388
+EBITDA;01.01.2010;11,131
+EBITDA;01.01.2011;11,993
+EBITDA;01.01.2012;10,009
+EBITDA;01.01.2013;10,432
+EBITDA;01.01.2014;11,043
+EBITDA;01.01.2015;10,649
+EBITDA;01.01.2016;10,526
+EBITDA;01.01.2017;10,765
+EBITDA;01.01.2018;8,97
+EBITDA;01.01.2019;8,185
+EBITDA;01.01.2020;6,494
+EBITDA;01.01.2021;11,355
+EBITDA;01.01.2022;10,748
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/EON_Data_NewOrder.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/EON_Data_NewOrder.csv
new file mode 100644
index 0000000..5629748
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/EON_Data_NewOrder.csv
@@ -0,0 +1,33 @@
+Metrik;Datum;Summe [Milliarden €]
+Umsatz;01.01.2007;66,912
+Umsatz;01.01.2008;84,873
+Umsatz;01.01.2009;79,974
+Umsatz;01.01.2010;92,863
+Umsatz;01.01.2011;112,954
+Umsatz;01.01.2012;132,093
+Umsatz;01.01.2013;119,615
+Umsatz;01.01.2014;113,095
+Umsatz;01.01.2015;42,656
+Umsatz;01.01.2016;38,173
+Umsatz;01.01.2017;37,965
+Umsatz;01.01.2018;30,084
+Umsatz;01.01.2019;41,284
+Umsatz;01.01.2020;60,944
+Umsatz;01.01.2021;77,358
+Umsatz;01.01.2022;115,66
+EBIT;01.01.2012;7,01
+EBIT;01.01.2013;5,64
+EBIT;01.01.2014;4,7
+EBIT;01.01.2015;3,6
+EBIT;01.01.2016;3,1
+EBIT;01.01.2017;3,1
+EBIT;01.01.2018;2,99
+EBIT;01.01.2019;3,22
+EBIT;01.01.2020;3,78
+EBIT;01.01.2021;4,72
+EBIT;01.01.2022;5,2
+EBITDA;01.01.2018;4,84
+EBITDA;01.01.2019;5,558
+EBITDA;01.01.2020;6,905
+EBITDA;01.01.2021;7,889
+EBITDA;01.01.2022;8,059
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/Telekom_Data_NewOrder.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/Telekom_Data_NewOrder.csv
new file mode 100644
index 0000000..8ff4d2e
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/Telekom_Data_NewOrder.csv
@@ -0,0 +1,42 @@
+Metrik;Datum;Summe [Milliarden €]
+Umsatz;01.01.2005;59,6
+Umsatz;01.01.2006;61,3
+Umsatz;01.01.2007;62,5
+Umsatz;01.01.2008;61,7
+Umsatz;01.01.2009;64,6
+Umsatz;01.01.2010;62,42
+Umsatz;01.01.2011;58,65
+Umsatz;01.01.2012;58,17
+Umsatz;01.01.2013;60,13
+Umsatz;01.01.2014;62,66
+Umsatz;01.01.2015;69,23
+Umsatz;01.01.2016;73,1
+Umsatz;01.01.2017;74,95
+Umsatz;01.01.2018;75,66
+Umsatz;01.01.2019;80,53
+Umsatz;01.01.2020;99,95
+Umsatz;01.01.2021;107,61
+Umsatz;01.01.2022;114,2
+EBIT;01.01.2005;7,6
+EBIT;01.01.2006;5,3
+EBIT;01.01.2007;5,3
+EBIT;01.01.2008;7
+EBIT;01.01.2009;6
+EBIT;01.01.2010;5,51
+EBIT;01.01.2011;5,56
+EBIT;01.01.2012;-3,96
+EBIT;01.01.2013;4,93
+EBIT;01.01.2014;7,25
+EBIT;01.01.2015;7,03
+EBIT;01.01.2016;9,16
+EBIT;01.01.2017;9,38
+EBIT;01.01.2018;8
+EBIT;01.01.2019;9,46
+EBIT;01.01.2020;12,37
+EBIT;01.01.2021;12,58
+EBIT;01.01.2022;15,41
+EBITDA;01.01.2018;23,333
+EBITDA;01.01.2019;24,731
+EBITDA;01.01.2020;35,017
+EBITDA;01.01.2021;37,33
+EBITDA;01.01.2022;40,208
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/person.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/person.csv
new file mode 100644
index 0000000..8cdfd2f
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/person.csv
@@ -0,0 +1,1000 @@
+"Hans-Hermann;Colifu"
+"Carolina;Jevugradeweiner"
+"Heinz-Peter;Fowelatestein"
+"Gerlind;Nasefo"
+"Steven;Gutusedemüller"
+"Cristina;Databison"
+"Gisbert;Revebistein"
+"Lilo;Gelesademüller"
+"Hilmar;Virisegehein"
+"Margaret;Koch"
+"Fritz;Mitimode"
+"Alexandre;Schmid"
+"Brian;Cewamauhein"
+"Sinaida;Viwagau"
+"Nicole;Hotagrode"
+"Rosalia;Suwofu"
+"Rocco;Kotesedemüller"
+"Kira;Jowifoson"
+"Branko;Schulz"
+"George;Schmidt"
+"Walentina;Poradumeiner"
+"Cemal;Pavobedemüller"
+"Eberhardt;Dedugradeweiner"
+"Reinhard;Welodustein"
+"Friedrich;Fischer"
+"Abbas;Bauer"
+"Albina;Furafo"
+"Patrick;Köhler"
+"Karl-Heinz;Duwafiweiner"
+"Birgitt;Vorewede"
+"Gerolf;Potigradestein"
+"Franz;Tölevade"
+"Leonore;Hötubi"
+"Dominik;Cuvidi"
+"Friedrich-Wilhelm;Lotubi"
+"Henri;König"
+"Lea;Richter"
+"Karla;König"
+"Suse;Schulz"
+"Hannes;Wötulatemüller"
+"Ekkehard;Mevabede"
+"Meinhard;Rötebahein"
+"Sylvester;Hävado"
+"Aurelia;Herrmann"
+"Friedo;Sotofumüller"
+"Gilbert;Piwosede"
+"Meinhard;Ritedumüller"
+"Ahmad;Lange"
+"Adeline;Meyer"
+"Edit;Sasivoremeiner"
+"Josef;Fevigrade"
+"Marlies;Nalofledemüller"
+"Gerhart;Muwidihein"
+"Susan;Redischatthein"
+"Carolina;Fasifo"
+"Henriette;Lisubedeweiner"
+"Elvira;Neumann"
+"Violetta;Folilode"
+"Heike;Krüger"
+"Hartmuth;Föwomodestein"
+"Diethelm;Hitasedestein"
+"Carin;Povebastein"
+"Thekla;Schmitt"
+"Albertine;Riwuwattemüller"
+"Tülay;Schneider"
+"Kerstin;Nolasadeson"
+"Andreas;Liladumeiner"
+"Nikolaos;Jevubedemeiner"
+"Simona;Veruschattmüller"
+"Diethard;Hüwawede"
+"Dusan;Navusegeweiner"
+"Hella;Zotefomüller"
+"Ronald;Fasimattmüller"
+"Insa;Hudemau"
+"Niklas;Colibamüller"
+"Evamaria;Huber"
+"Loni;Viwifihein"
+"Verena;Woruwattemüller"
+"Ingelore;Titibedestein"
+"Mehdi;Rutigradeson"
+"Alida;Nasiplau"
+"Annett;Gutefison"
+"Leonie;Neumann"
+"Eduard;Schmid"
+"Joanna;Gürogau"
+"Bernadette;Zeresedemeiner"
+"Klaus;Schulze"
+"Moritz;Bädagedestein"
+"Ingelore;Setofareson"
+"Nikolaj;Jetiplauson"
+"Sylvie;Vitedumeiner"
+"Till;Motidamüller"
+"Heidelinde;Gilisege"
+"Christof;Lutavademeiner"
+"Torsten;Kowobimeiner"
+"Nina;Nowugrodemüller"
+"Jens-Uwe;Jewosede"
+"Jörg;Sivuhedehein"
+"Götz;Felegaumeiner"
+"Danica;Hoffmann"
+"Karl-Heinrich;Fewovademeiner"
+"Aneta;Lürevore"
+"Ignaz;König"
+"Sylvia;Berulodemeiner"
+"Svetlana;Zatimatthein"
+"Felicia;Schulze"
+"Marie-Louise;Hadawede"
+"Antonietta;Neumann"
+"Dragica;Zaribumeiner"
+"Abram;Butoduson"
+"Dina;Müsabedestein"
+"Hilde;Cülusede"
+"Verena;Tawugrodehein"
+"Anatolij;Mulawedemeiner"
+"Ira;Wulawadestein"
+"Hildegard;Wotegatemeiner"
+"Alwine;Koroschatt"
+"Patric;Towedu"
+"Nadeschda;Relolode"
+"Hedi;Tadegrade"
+"Dietlinde;Lelavore"
+"Pascale;Tüdawedeweiner"
+"Sevim;Vetisademüller"
+"Erdal;Melogedeweiner"
+"Rotraut;Fiduvorestein"
+"Jane;Wovimode"
+"Guenter;Turabimüller"
+"Rosalia;Püwigrademüller"
+"Leokadia;Hatavodeson"
+"Magnus;Rürovadehein"
+"Sieglinde;Däriplauson"
+"Vincenzo;Schmidt"
+"Änne;Välolaustein"
+"Jobst;Rüwawatteweiner"
+"Sibille;Betebustein"
+"Friedericke;Märelauhein"
+"Tom;Lutimau"
+"Annelie;Jöwudumüller"
+"Gabriela;Valafareweiner"
+"Leila;Höramattson"
+"Bruno;Lange"
+"Mary;Ruwagradehein"
+"Meral;Golovore"
+"Svea;Götebahein"
+"Cordula;Tawefu"
+"Ralf-Peter;Gerigrodehein"
+"Jörg-Peter;Wilobison"
+"John;Püviwattemüller"
+"Viviane;Fedabede"
+"Friedbert;Jitubamüller"
+"Marco;Schröder"
+"Ahmet;Fuchs"
+"Anita;Zesemau"
+"Ekkehard;Mulobodo"
+"Eberhardt;Schmitz"
+"Donata;Hoffmann"
+"Hilma;Hoffmann"
+"Götz;Gesihedehein"
+"Adriane;Cewosadestein"
+"Bruno;Söwolatemeiner"
+"Liliana;Cerufomeiner"
+"Gilda;Cewebede"
+"Kamil;Maseflodeson"
+"Gotthard;Gasusegehein"
+"Susann;Neumann"
+"Nada;Zoruvaremüller"
+"Manuel;Patofostein"
+"Roland;Fitafo"
+"Ronald;Voweda"
+"Heike;Patedohein"
+"Heiderose;Neumann"
+"Birgid;Pivudistein"
+"Mariola;Niwosedemüller"
+"Darko;Hidamau"
+"Gilbert;Bodavorehein"
+"Adele;Müller"
+"Annette;Wolf"
+"Hulda;Cavusadeweiner"
+"Benjamin;Vörivodemüller"
+"Antonietta;Jörufere"
+"Ernst-August;Wivugrodehein"
+"Malgorzata;Düdisade"
+"Eckhard;Cudumodeson"
+"Rebekka;Bavuduweiner"
+"Traude;König"
+"Ramon;Wöridihein"
+"Uwe;Taruwade"
+"Ulf;Fadischattmüller"
+"Wolf-Dieter;Voveba"
+"Friedhelm;Giwumau"
+"Ercan;Lehmann"
+"Britt;Palesede"
+"Eleonore;Vörugatehein"
+"Drago;Lehmann"
+"Sandor;Müller"
+"Elisa;Nevamattstein"
+"Hans;Masigate"
+"Marika;Jasefareson"
+"Angelique;Geloplau"
+"Rosel;Folugrodestein"
+"Ricarda;Schäfer"
+"Wolfhard;Madigrade"
+"Cemal;Sadohedemüller"
+"Maria;Bölugedemeiner"
+"Gesche;Noviwedehein"
+"Mira;Fuwabuweiner"
+"Miriam;Kutegate"
+"Hilmar;Jäviwede"
+"Klaus-Dieter;Fewomatt"
+"Ursel;Sutomauson"
+"Karl-Friedrich;Dötasegeweiner"
+"Emmi;Tetaplaumeiner"
+"Hans-Jochen;Wolf"
+"Reinhard;Buwefere"
+"Corina;Vovogatestein"
+"Erdmute;Joligate"
+"Edit;Hoffmann"
+"Antonino;Schmitt"
+"Betti;Görudo"
+"Annamaria;Walter"
+"Alexandra;Wagner"
+"Hans-J.;Lehmann"
+"Rosmarie;Covebison"
+"Ottilie;Schäfer"
+"Natalia;Meier"
+"Edeltraut;Becker"
+"Ferdi;Werner"
+"Reimar;Schmitt"
+"Erna;Vivesademeiner"
+"Sylvia;Masumodehein"
+"Thomas;Riwifledeweiner"
+"Hans;Baragaumüller"
+"Hüseyin;Zarebe"
+"Erika;Suruvodeweiner"
+"Nikolai;Jivubahein"
+"Hans-J.;Hoffmann"
+"Dorit;Sodemattson"
+"Klaudia;Lutimodemüller"
+"Mariana;Gatebeson"
+"Jonas;Rawafimüller"
+"Tony;Mätegrodestein"
+"Sevim;Galilauhein"
+"Irma;Hawogradeweiner"
+"Carla;Sisuhede"
+"Vinko;Bauer"
+"Mirella;Siwaschatt"
+"Eckart;Metelau"
+"Ildiko;Mowuvore"
+"Ivo;Päwofo"
+"Friedhold;Covagedemeiner"
+"Nancy;Jülelauhein"
+"Gretel;Tödosadeson"
+"Wigbert;Rewoschatt"
+"Isabelle;Näligrodehein"
+"Hanny;Richter"
+"Rouven;Fuchs"
+"Maya;Mowawedeweiner"
+"Gordana;Wagner"
+"Inna;Patogrode"
+"Jobst;Vosavode"
+"Milena;Botogrodemeiner"
+"Stilla;Rutavademeiner"
+"Stephanie;Schmid"
+"Pirmin;Tuwelauhein"
+"Fatima;Schmitt"
+"Luise;Cevelaumeiner"
+"Friedhilde;Zölowadestein"
+"Ester;Pädibistein"
+"Carmine;Schwarz"
+"Damian;Hartmann"
+"Serge;Kidasede"
+"Andreas;Rätobiweiner"
+"Walther;Liwogrademüller"
+"Franziska;Jodosedestein"
+"Amelie;Däwadu"
+"Heinz-Gerd;Loleduson"
+"Leyla;Divifustein"
+"Catrin;Herrmann"
+"Anna-Marie;Borewatte"
+"Philomena;Rotolodehein"
+"Erdogan;Lätemaustein"
+"Klaus;Schäfer"
+"Heidrun;Braun"
+"Anna-Lena;Cudifimeiner"
+"Gerhart;Jasamattson"
+"Susann;Ditodiweiner"
+"Simon;Pilemaumeiner"
+"Kristin;Hofmann"
+"Nuran;Bauer"
+"Gudula;Culalatemeiner"
+"Babett;Pasasademüller"
+"Ludmila;Tetobumüller"
+"Annelene;Jasevore"
+"Maria-Luise;Meyer"
+"Käthe;Herrmann"
+"Jovan;Mawodu"
+"Brigitte;Häsubede"
+"Annegret;Silufareson"
+"Heinz-Peter;Huber"
+"Tibor;Lurimauweiner"
+"Roland;Wuravode"
+"Rafael;Meier"
+"Hans-J.;Schmidt"
+"Julia;Jesesegehein"
+"Franz;Lange"
+"Anne-Rose;Newivare"
+"Antonina;Klein"
+"Gino;Jilifimüller"
+"Birte;Vösugedeweiner"
+"Zlatko;Cäwilate"
+"Luzia;Hatagateweiner"
+"Hans;Wölesege"
+"Hans-Heinrich;Garobodo"
+"Beatrice;Norewade"
+"Wenzel;Vidilatemeiner"
+"Anton;Lüdomodeweiner"
+"Heini;Mayer"
+"George;Schmitz"
+"Maya;Lange"
+"Dina;Meweplauson"
+"Wilhelmine;Havafledeweiner"
+"Daniele;Lange"
+"Christa-Maria;Tötevore"
+"Anatol;Hoffmann"
+"Eleni;Gilifostein"
+"Roy;Cudilauson"
+"Regina;Gatabuson"
+"Wolfgang;Sulidason"
+"Gisela;Pavusademüller"
+"Heinz-Otto;Köhler"
+"Massimo;Katugateweiner"
+"Stephanie;Schmitt"
+"Gotthard;Dätamattstein"
+"Eric;Näwebison"
+"Renata;Bisavorehein"
+"Yasmin;Fischer"
+"Andres;Futagatehein"
+"Sinaida;Gorasegemüller"
+"Klaus-Günter;Metafistein"
+"Marko;Daladi"
+"Gitte;Pösidohein"
+"Frank;Zimmermann"
+"Wendelin;Wolf"
+"Otmar;Lövafistein"
+"Janet;Rösifledehein"
+"Kenan;Musobu"
+"Gero;Musuvode"
+"Norbert;Wolf"
+"Gisa;Ludawade"
+"Fredo;Lotevodehein"
+"Sara;Golifledeson"
+"Erica;Helavade"
+"Hildegunde;Lavawatteweiner"
+"Darko;Fölabodomeiner"
+"Helge;Givuplaumüller"
+"Julian;Zewegrademeiner"
+"Aurelia;Vuwafostein"
+"Lina;Wolf"
+"Anne-Rose;Jorasademüller"
+"Thilo;Krause"
+"Margaret;Wudiflodemeiner"
+"Gordon;Hesasadeson"
+"Katharina;Zusadoweiner"
+"Caren;Havigedestein"
+"Grit;Pivafuweiner"
+"Gina;Disagrade"
+"Hildburg;Födobason"
+"Gunther;Nuvolaustein"
+"Esther;Richter"
+"Luise;Kesosedemeiner"
+"Antonietta;Hitalate"
+"Edelbert;Maier"
+"Sylke;Kaiser"
+"Petra;Ralowede"
+"Türkan;Zatugede"
+"Corina;Dulemaumeiner"
+"Kai-Uwe;Talawedemeiner"
+"Ingolf;Düselodeson"
+"Judith;Duleda"
+"Volkhard;Meier"
+"Hedi;Rädomodeweiner"
+"Corina;Solibedemüller"
+"Alban;Gowifo"
+"Luciano;Schröder"
+"Sergej;Favuflede"
+"Sandor;Hotogrademeiner"
+"Fredo;Raralateson"
+"Daniele;Levisedeweiner"
+"Magdalena;Nutewadestein"
+"Edwin;Weduschatthein"
+"Canan;Powomattstein"
+"Tilly;Jarawedehein"
+"Ulla;Neumann"
+"Berthold;Pedogau"
+"Thilo;Fotavade"
+"Tanja;Rowomode"
+"Adolfine;Madelaustein"
+"Rebecca;Zodavoreweiner"
+"Rigo;Netaferestein"
+"Sigurd;Mowebi"
+"Erwin;Läsosadeweiner"
+"Tilman;Bitilateweiner"
+"Angelique;Citafo"
+"Trudel;Hasalau"
+"Raissa;Jülodoweiner"
+"Alma;Botomode"
+"Stephanie;Zimmermann"
+"Bernard;Mateschattmüller"
+"Emma;Müller"
+"Freia;Volifomüller"
+"Hans-Herbert;Kurilatestein"
+"Jacqueline;Schröder"
+"Fredy;Sisagradeson"
+"Elly;Casumodeson"
+"Ellen;Pitasege"
+"Petar;Schneider"
+"Rosa;Palaschattweiner"
+"Joana;Wavufo"
+"Heide-Marie;Wiwevareweiner"
+"Dittmar;Fusifare"
+"Reinhart;Krause"
+"Hilma;Lange"
+"August;Goviwattemüller"
+"Bianca;Wodimode"
+"Kreszentia;Nuwiwede"
+"Erdogan;Rulabodomüller"
+"Sylke;Fusefomeiner"
+"Hassan;Fischer"
+"Ayse;Mödalateweiner"
+"Hatice;Werner"
+"Zlatko;Müregate"
+"Tania;Werner"
+"Detlef;Cewuvoremüller"
+"Dariusz;Meyer"
+"Oxana;Cösilodeweiner"
+"Hans-Henning;Dovifledehein"
+"Luka;Braun"
+"Kristine;Kotewatte"
+"Annedore;Mörufuhein"
+"Mareen;Marehede"
+"Pascal;Suresegeweiner"
+"Almut;Meier"
+"Reinald;Wolf"
+"Sabina;Wagner"
+"Katharina;Movobi"
+"Athanasios;Cütefledemüller"
+"Stefano;Beweda"
+"Walfried;Müwawadehein"
+"Damaris;Maier"
+"Paulina;Detofistein"
+"Artur;Folasademeiner"
+"Erica;Worudustein"
+"Konstantinos;Kirevademeiner"
+"Natalja;Citigrademeiner"
+"William;Fuchs"
+"Patric;Fosagrode"
+"Kilian;Kaiser"
+"Heidemarie;Notuplaustein"
+"Mariusz;Zowebede"
+"Ulrike;Todeduson"
+"Jovan;Fuvowademüller"
+"Katerina;Nutevadehein"
+"Elisabeth;Lewubameiner"
+"Ernestine;Wötischattson"
+"Aleksandar;Watehedestein"
+"Halina;Jötumodehein"
+"Annamaria;Mivovade"
+"Irina;Dudawede"
+"Heinfried;Fütefoson"
+"Tassilo;Luvofare"
+"Mariele;Ritigatemeiner"
+"Lea;Madelaumeiner"
+"Sibel;Givuwedehein"
+"Leila;Kitubihein"
+"Mohammed;Meyer"
+"Janett;Givegrodestein"
+"Vassilios;Vurigrade"
+"Hans;Kutugate"
+"Ralph;Budifu"
+"Gotthilf;Curagradeweiner"
+"Melitta;Nawifo"
+"Dirk;Bitoba"
+"Sandro;Vusemattweiner"
+"Falko;Vesuplauweiner"
+"Gesine;Hofmann"
+"Fanny;Füwegedehein"
+"Margaretha;Sodigrademeiner"
+"Marcella;Läsilate"
+"Anne;Hoffmann"
+"Annaliese;Wüsuvade"
+"Rocco;Hoffmann"
+"Pedro;Daduhedemeiner"
+"Frieda;Wolf"
+"Luzia;Vewevaremüller"
+"Marianne;Viribodomüller"
+"Jose;Ratalodeweiner"
+"Dan;Vötiwedemeiner"
+"Leyla;Ruregateson"
+"Orhan;Südagede"
+"Reinhilde;Dudufu"
+"Gerta;Koch"
+"Marika;Bosefarestein"
+"Chantal;Lehmann"
+"James;Fedesademeiner"
+"Ante;Nosegrode"
+"Gottfried;Krüger"
+"Theda;Sawigatehein"
+"Jan;Nisischatt"
+"Ullrich;Lehmann"
+"Nikolaos;Tavuvaremeiner"
+"Deborah;Vesimauson"
+"Türkan;Jösovaremeiner"
+"Ignatz;Gudafuweiner"
+"Aleksandr;Säwafo"
+"Hannah;Krause"
+"Benedikt;Schröder"
+"Erik;Leteferemeiner"
+"Marga;Pirafistein"
+"Arnd;Wütehedeson"
+"Wiebke;Rulida"
+"Isabella;Jodumodemüller"
+"Marika;Küvafo"
+"Björn;Sirafi"
+"Branko;Bileplaumeiner"
+"Dierk;Daregateson"
+"Max;Fätifostein"
+"Mareile;Zisaflede"
+"Mahmoud;Vötivademeiner"
+"Erol;Lehmann"
+"Alexa;Nivusedeweiner"
+"Ingmar;Hartmann"
+"Victor;Fesiwattestein"
+"Myriam;Hartmann"
+"Emilie;Hörulauweiner"
+"Rosi;Lorobimeiner"
+"Vinko;Nowibedehein"
+"Urban;Gewomode"
+"Linus;Suvelatestein"
+"Heinz-Walter;Jelimaumüller"
+"Friedhilde;Wüwubastein"
+"Auguste;Mayer"
+"Fatih;Rädugradestein"
+"Christof;Zurifu"
+"Katharina;Fuwudason"
+"Viktoria;Ludavoreson"
+"Hans;Schmidt"
+"Friedbert;Nütilaumüller"
+"Geraldine;Zimmermann"
+"Meta;Richter"
+"Beata;Telobu"
+"Jakob;Jovedi"
+"Elena;Zimmermann"
+"Anthony;Bötugedemeiner"
+"Achim;Fädemodeson"
+"Benita;Nedosade"
+"Alwine;Köhler"
+"Achim;Lowedihein"
+"Kreszenz;Kadihede"
+"Nikolai;Schneider"
+"Eberhardt;Bauer"
+"Mathilde;Duwefimüller"
+"Linus;Hitisadeson"
+"Nikolas;Schröder"
+"Kordula;Mosimodehein"
+"Jeanette;Walter"
+"Gregor;Paviwademüller"
+"Bettina;Mevewedeweiner"
+"Beate;Havawattemüller"
+"Walter;Votofostein"
+"Hulda;Dälifumüller"
+"Mary;Wütodoweiner"
+"Patrick;Korofoweiner"
+"Jörg;Küribahein"
+"Meta;Naduflede"
+"Magda;Malabodo"
+"Paul-Heinz;Duwawatte"
+"Stjepan;Fuchs"
+"Babette;Havisedeweiner"
+"Alexandre;Bivoflede"
+"Michael;Reloplaumüller"
+"Nicolas;Roleflode"
+"Simon;Koch"
+"Anna-Marie;Zulofuson"
+"Giorgio;Vovoflode"
+"Urs;Jelebaweiner"
+"Gerdi;Kuvosade"
+"Harm;Relusede"
+"Fred;Pavuferehein"
+"Ann;Zäraschattson"
+"Gislinde;Givudohein"
+"Valeria;Giteplaustein"
+"Ortrud;Rutomattmeiner"
+"Carmen;Zäromauhein"
+"Leyla;Müller"
+"Raissa;Lusugradestein"
+"Ömer;Wawimattstein"
+"Geza;König"
+"Vittorio;Bevamaumüller"
+"Patrick;Schmitt"
+"Günther;Würafumüller"
+"Hans-Uwe;Klein"
+"Regine;Levafoweiner"
+"Ekkehard;Gediduson"
+"Susi;Lange"
+"Heinz-Werner;Kewoflede"
+"Timm;Werner"
+"Gusti;Hutugatehein"
+"Marie-Theres;Braun"
+"Lukas;Nowematthein"
+"Filippo;Dudoflode"
+"Hüseyin;Votesegeson"
+"Sandy;Ladagate"
+"Bodo;Posibodo"
+"Hellmuth;Zowemauhein"
+"Sergej;Lange"
+"Meinolf;Jiwobodostein"
+"Heinz-Peter;Kesuduweiner"
+"Hannes;Favifledestein"
+"Doris;Redubimeiner"
+"Reni;Jowasege"
+"Liane;Braun"
+"Holger;Förebihein"
+"Mirko;Geresege"
+"Ellinor;Pövischatthein"
+"Christl;Schröder"
+"Waltraud;Padufu"
+"Leopoldine;Piwigrodeweiner"
+"Gislinde;Tusudison"
+"Leonardo;Mäveflede"
+"Selim;Fotogatemeiner"
+"Patricia;Bädihedemüller"
+"Edelgard;Cusofoson"
+"Juliana;Putebaweiner"
+"Zehra;Käsolau"
+"Sükrü;Dädumattmeiner"
+"Hilmar;Schmid"
+"Käte;Görivodemeiner"
+"Ute;Getamaumüller"
+"Friedhold;Silavade"
+"Kristin;Saroschattson"
+"Ida;Dutabison"
+"Rafael;Fivalatemeiner"
+"Wilma;Widavodemeiner"
+"Claudio;Pätomodemüller"
+"Friedo;Krüger"
+"Marga;Herrmann"
+"Gesa;Meier"
+"Wanda;Zörefaremüller"
+"Frauke;Kaiser"
+"Hansjoachim;Wawodoson"
+"Christel;Viwofison"
+"Angelika;Becker"
+"Suse;Situfledehein"
+"Romuald;Puwewade"
+"Erol;Midisege"
+"Heini;Weber"
+"Horst-Günter;Culiwedestein"
+"Thea;Buludohein"
+"Steve;Getusedehein"
+"Heimo;Fetagrade"
+"Zdenka;Vevuvareson"
+"Stanislaw;Schwarz"
+"Metin;Wudelateson"
+"Walter;Didegatemüller"
+"Ilka;Klein"
+"Henning;Kotolode"
+"Änne;Becker"
+"Ines;Hüdofu"
+"Emma;Noduwademüller"
+"Wencke;Mowolau"
+"Reza;Toredimeiner"
+"Murat;Meliferehein"
+"Hanne;Rosewade"
+"Antonina;Budufiweiner"
+"Hans-Wilhelm;Zisefaremüller"
+"Thilo;Cöwefison"
+"Marianna;Jütadu"
+"Agata;Hoffmann"
+"Stavros;Fitiplauhein"
+"Margarita;Sutaflodehein"
+"Walburga;Zosuhede"
+"Sandor;Wusuferemüller"
+"Ortrud;Welumatt"
+"Luise;Cotuwattestein"
+"Marlene;Lovomatt"
+"Nicolas;Buteschattmeiner"
+"James;Pevewattemüller"
+"Mirco;Nodolauweiner"
+"Egon;Fuchs"
+"Burckhard;Schäfer"
+"Dunja;Sevedi"
+"Nikolas;Vovesademüller"
+"Sergej;Jotosademeiner"
+"Edelgard;Fuchs"
+"Hermine;Newusedeweiner"
+"Rico;Mayer"
+"Berta;Schmidt"
+"Dorothea;Fischer"
+"Catherine;Klein"
+"Sigfried;Lorelau"
+"Karl;Jatufare"
+"Galina;Becker"
+"Wilhelmine;Josimode"
+"Maria;Bavisedemeiner"
+"Paul-Gerhard;Zuvidameiner"
+"Ortrun;Wetuvodehein"
+"Ingolf;Schmitz"
+"Ottilie;Müller"
+"Traugott;Dotofihein"
+"Luciano;Werifihein"
+"Siegward;Schmitz"
+"Zlatko;Sisifumeiner"
+"Henni;Schmid"
+"Gabriella;Schwarz"
+"Marcella;Tirilatehein"
+"Lilian;Madusade"
+"Kreszenz;Fürifumüller"
+"Hans-Werner;Küsolateson"
+"Emmi;Biwoferemeiner"
+"Heidemarie;Wutudamüller"
+"Melanie;Hofmann"
+"Käthi;Cesemodestein"
+"Etta;Koch"
+"Heike;Sesegradestein"
+"Eleonora;Tusabason"
+"Gönül;Sutegede"
+"Ariane;Murebodo"
+"Henrik;Rewubamüller"
+"Klaus-Jürgen;Schulze"
+"Mike;Titifostein"
+"Wenzel;Vivuvade"
+"Türkan;Rasaduweiner"
+"Zenta;Dedufimeiner"
+"Laurenz;Butube"
+"Marietta;Krause"
+"Ingetraud;Dosubodohein"
+"Hanni;Wowodistein"
+"Ralf-Peter;Nosilodemeiner"
+"Miguel;Hodifledemeiner"
+"Mario;Jösugrodeweiner"
+"Osman;Mitado"
+"Bruno;Müller"
+"Hans-Hinrich;Hotadu"
+"Patrick;Schmidt"
+"Birgid;Leselauweiner"
+"Monica;Lüdofu"
+"Georgine;Hiwematt"
+"Mehmet;Fäwebason"
+"Lioba;Meier"
+"Hagen;Süvegatemüller"
+"Kornelius;Fevefuweiner"
+"Aleksej;Tadiplauhein"
+"Rosmarie;Wätufohein"
+"Fritz;Mayer"
+"Hans;Düsuvadestein"
+"Magdalene;Cusavarestein"
+"Marliese;Fovuplaustein"
+"Jakob;Relagauson"
+"Leila;Koch"
+"Stefanie;Revimattmeiner"
+"Ingmar;Jevihedeweiner"
+"Christine;Wusebimeiner"
+"Jacob;Metufohein"
+"Hans-Adolf;Neumann"
+"Gisbert;Schulz"
+"Meinrad;Wüwadomüller"
+"Sieglinde;Tatoplau"
+"Egbert;Pätofohein"
+"Katy;Kölofareson"
+"Sylvie;Lutigaustein"
+"Knut;Puwoferestein"
+"Gerhard;Hiwodomüller"
+"Trudel;Wolf"
+"Chantal;Krause"
+"Esther;Wesewatte"
+"Dragica;Fasuwade"
+"Reginald;Madegauweiner"
+"Fatima;Kusibu"
+"Karla;Balifledestein"
+"Mary;Netasedeson"
+"Igor;Schäfer"
+"Giovanna;Maier"
+"Cornelia;Wütegrode"
+"Mehmet;Bauer"
+"Metin;Krüger"
+"Herbert;Gelosadehein"
+"Hans-Gerd;Zurulatehein"
+"Mariusz;Tovemattmeiner"
+"Hans-Helmut;Rasuwattemeiner"
+"Baptist;Midafi"
+"Pedro;Hilasedehein"
+"Sarah;Tütibodomüller"
+"Maximilian;Sawiwedemeiner"
+"Ekrem;Muvagate"
+"Kurt;Hofmann"
+"Norbert;Dutematt"
+"Patric;Siwubameiner"
+"Gretel;Sutugedehein"
+"Christl;Toreba"
+"Pauline;Bitibeson"
+"Franco;Fasasademeiner"
+"Mariele;Laravodemeiner"
+"Lili;Diribumüller"
+"Kenneth;Sosemaumüller"
+"Leo;Botomattmeiner"
+"Henriette;Ralufere"
+"Friedlinde;Lirimaustein"
+"Gerold;Herrmann"
+"Oliver;Zädebastein"
+"Anatol;Vawavadeweiner"
+"Tabea;Dutavore"
+"Paulina;Dawodoweiner"
+"Lilo;Nöduvarehein"
+"Anthony;Rusabodostein"
+"Rolf-Dieter;Dürogrodeweiner"
+"Elise;Körebuweiner"
+"Mona;Ketedumeiner"
+"Patric;Sorisadeweiner"
+"Karolina;Zutihedeson"
+"Julie;Hartmann"
+"Janos;Vavemauhein"
+"Cathrin;Davobe"
+"Katrin;Hutodahein"
+"Canan;Klein"
+"Heidelore;Fotubemüller"
+"Toralf;Silahedemeiner"
+"Adolf;Telolodemeiner"
+"Katja;Lange"
+"Veronika;Visebodo"
+"Karlheinz;Givafoson"
+"Leonie;Garaplau"
+"Tassilo;Walter"
+"Mirja;Becker"
+"Antonios;Schneider"
+"Tilman;Zusegrode"
+"Bianka;Getafumüller"
+"Stefani;Pawuhedehein"
+"Dina;Dorafarestein"
+"Silvester;Fasihedeweiner"
+"Carolina;Jutilodemüller"
+"Hans-Günter;Fitelauweiner"
+"Eleni;Schäfer"
+"Cemal;Ritigrodemüller"
+"Hagen;Wutusegemüller"
+"Bernt;Gorudason"
+"Loretta;Becker"
+"Sabrina;Katomattstein"
+"Gottlieb;Zuvagaumüller"
+"Rita;Witifumeiner"
+"Cengiz;Detuflodestein"
+"Oscar;Filafledestein"
+"Pero;Müller"
+"Ruthild;Muremau"
+"Magret;Richter"
+"Sigrid;Zimmermann"
+"Nils;Lange"
+"Cecilia;Zuwibodoweiner"
+"Gisa;Maier"
+"Dennis;Duvofo"
+"Georgios;Weber"
+"Kevin;Duregedestein"
+"Albin;Metafaremeiner"
+"Reinhard;Lowafoson"
+"Christine;Duraflede"
+"Guenter;Puwobuhein"
+"Sylvia;Torumode"
+"Marija;Mavelodemeiner"
+"Tatiana;Vatawademüller"
+"Türkan;Volubedemeiner"
+"Pius;Wädeba"
+"Rene;Fischer"
+"Sebastiano;Rotavare"
+"Sieghard;Fusudo"
+"Imke;Züsoplaumüller"
+"Egbert;Biduvade"
+"Leonardo;Kevafoweiner"
+"Bernd-Dieter;Mituwattemeiner"
+"Leokadia;Füsuvode"
+"Amelie;Mireplaumüller"
+"Ingolf;Braun"
+"Karolina;Pasegauson"
+"Christian;Lange"
+"Mara;Dotubodo"
+"Helma;Häsibehein"
+"Karsten;Vuvidostein"
+"Andrey;Mudubodostein"
+"Theres;Cevovoreweiner"
+"Mareike;Braun"
+"Kemal;Füribison"
+"Andy;Pulusege"
+"Anneliese;Nödugrodemeiner"
+"Linda;Maier"
+"Muharrem;Tasovode"
+"Wibke;Meyer"
+"Hans-Christian;Tävobiweiner"
+"Walli;Walibodo"
+"Gerti;Rotido"
+"Giesela;Bevagede"
+"Gerhart;Jarolodemeiner"
+"Erhardt;Schröder"
+"Mirjam;Nisabaweiner"
+"Amalie;Lesolateweiner"
+"Bertram;Novebedemüller"
+"Eveline;Vavogedemüller"
+"Walburga;Rowovoreweiner"
+"Silke;Krause"
+"Randolf;Huvadistein"
+"Immo;Gulilatehein"
+"Isa;Meyer"
+"Olivia;Cativorestein"
+"Arnulf;Meier"
+"Elke;Vavegedeson"
+"Meinrad;Basolate"
+"Franz-Xaver;Kaiser"
+"Irmtrud;Zativadeweiner"
+"Mattias;Hedifoweiner"
+"Petar;Virofuhein"
+"Heino;Wurabimeiner"
+"Lotte;Hötesadeson"
+"Henner;Niwigate"
+"Cemal;Bavugedeweiner"
+"Hanny;Pologau"
+"Heinz-Gerd;Vätisade"
+"Kuno;Mayer"
+"Philipp;Maier"
+"Dietmar;Klein"
+"Etta;Covibu"
+"Hans;Parogedehein"
+"Klaus;Cadimodestein"
+"Dragan;Dovobimüller"
+"Bernhardine;Caludiweiner"
+"Bianka;Horiwadeweiner"
+"Franz;Hatulate"
+"Kuno;Wutofohein"
+"Monja;Barosedestein"
+"Monique;Batuschattmüller"
+"Robin;Dedifereson"
+"Kaspar;Husubamüller"
+"Magnus;Dütomattmüller"
+"Rosel;Luvewatteson"
+"Tino;Hesisedemüller"
+"Carlo;Buvosademüller"
+"Petar;Rerovodeson"
+"Murat;Bewisedeson"
+"Sonja;Vutawedeson"
+"Birgitta;Wavugedehein"
+"Maritta;Vedosademüller"
+"Clarissa;Zuvibustein"
+"Urszula;Köhler"
+"Hans-Werner;Zimmermann"
+"Iris;Viwimattweiner"
+"Stefan;Däsidason"
+"Cäcilia;Schäfer"
+"Gabriel;Kadufareson"
+"Leopold;Zetogau"
+"Adelgunde;Motivadeson"
+"Kathleen;Bötifistein"
+"Sybille;Süravareson"
+"Andy;Becker"
+"Ewald;Masegradehein"
+"Christa;Modischatt"
+"Ansgar;Sörasadeson"
+"Wulf;Gerabu"
+"Adelgunde;Motufaremeiner"
+"Marian;Cesosedeson"
+"Rupert;Motugrodehein"
+"Friedhelm;Wowebe"
+"Anne-Kathrin;Hevusegeweiner"
+"Luise;Meier"
+"Violetta;Bilalatemeiner"
+"Edda;Rowemau"
+"Viktor;Tutewatteweiner"
+"Elwira;Herrmann"
+"Johanna;Ridivare"
+"Meinolf;Rusegedeson"
+"Klaus-Ulrich;Hartmann"
+"Kai-Uwe;Puvagateson"
+"Korinna;Hotiwatte"
+"Tatiana;Rirobihein"
+"Silvana;Tilifoweiner"
+"Georgia;Vodigate"
+"Baptist;Gäligrodeweiner"
+"Darius;Rätisademeiner"
+"Magda;Köhler"
+"Anne-Kathrin;Holubi"
+"Theres;Nevovarehein"
+"Ignatz;Walter"
+"Frederike;Richter"
+"Gerard;Davidustein"
+"Karl-Hermann;Patevade"
+"Judith;Köhler"
+"Randolf;Zedufledeson"
+"Henning;Vutoda"
+"Maik;Ralabe"
+"Ercan;Cilumattstein"
+"Alicia;Sarolodestein"
+"Ingmar;Vitisedehein"
+"Augustin;Schmitz"
+"Michaela;Werner"
+"Raymund;Sewesedemüller"
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/person2.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/person2.csv
new file mode 100644
index 0000000..1f08db7
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Notebooks_with_SQL_and_preliminary_data/person2.csv
@@ -0,0 +1,20 @@
+Mohammed;Klein
+Myriam;Koch
+Dorothe;Zerusedemeiner
+Emine;Puviplau
+Galina;Tosewede
+Hans-Walter;Mädidostein
+Ludmilla;Krause
+Jessica;Lesibedemeiner
+Franz;Lowufohein
+Krzysztof;Gaselatemüller
+Gerolf;Navusedeson
+Sibylla;Sutedihein
+Nina;Golebede
+Alicja;Revibodomeiner
+Meryem;Kadeduhein
+Janina;Zimmermann
+Hendrik;Krüger
+Oskar;Podadi
+Maria-Luise;Nelaflodeson
+Nadine;Niwogatemeiner
\ No newline at end of file
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/Telekom_Data.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Telekom_Data.csv
new file mode 100644
index 0000000..c0fc0d4
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/Telekom_Data.csv
@@ -0,0 +1,19 @@
+Company_HR;Company_Court;Jahr;Umsatz;Ebit;EBITDA
+;12336;5;2005;59600;7600;
+;12336;5;2006;61300;5300;
+;12336;5;2007;62500;5300;
+;12336;5;2008;61700;7000;
+;12336;5;2009;64600;6000;
+;12336;5;2010;62420;5510;
+;12336;5;2011;58650;5560;
+;12336;5;2012;58170;-3960;
+;12336;5;2013;60130;4930;
+;12336;5;2014;62660;7250;
+;12336;5;2015;69230;7030;
+;12336;5;2016;73100;9160;
+;12336;5;2017;74950;9380;
+;12336;5;2018;75660;8000;23333
+;12336;5;2019;80530;9460;24731
+;12336;5;2020;99950;12370;35017
+;12336;5;2021;107610;12580;37330
+;12336;5;2022;114200;15410;40208
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/edges.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/edges.csv
new file mode 100644
index 0000000..719314d
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/edges.csv
@@ -0,0 +1,2001 @@
+,Company_HR,Company_Court,Person_ID,Year_From,Year_To,Relation_Type
+0,9875,1,877,2005,2006,Managing_Director
+1,5433,3,203,2008,2009,Auditor
+2,64345,9,336,2007,2008,Executive
+3,555,7,63,2012,2013,Executive
+4,64345,9,646,2016,2017,Auditor
+5,12334,2,576,2016,2017,Authorized_Representive
+6,12334,4,760,2023,2017,Authorized_Representive
+7,12334,2,486,2023,2017,Authorized_Representive
+8,866,1,186,2018,2019,Executive
+9,64566,2,552,2023,2019,Managing_Director
+10,12384,8,285,2012,2013,Authorized_Representive
+11,555,7,301,2012,2013,Auditor
+12,9875,1,567,2009,2010,Executive
+13,12334,2,726,2019,2020,Supervisory_Board
+14,12336,5,575,2017,2018,Managing_Director
+15,12336,5,842,2005,2006,Final_Auditor
+16,4344,1,198,2007,2008,Executive
+17,866,1,75,2023,2008,Authorized_Representive
+18,12384,8,846,2021,2022,Authorized_Representive
+19,555,7,714,2007,2008,Authorized_Representive
+20,4344,1,421,2006,2007,Managing_Director
+21,5433,3,726,2018,2019,Supervisory_Board
+22,555,7,401,2014,2015,Executive
+23,12384,8,480,2021,2022,Authorized_Representive
+24,4344,1,442,2008,2009,Executive
+25,12334,4,471,2014,2015,Authorized_Representive
+26,12336,5,721,2013,2014,Auditor
+27,12334,2,397,2023,2014,Final_Auditor
+28,4344,1,712,2018,2019,Supervisory_Board
+29,12334,2,931,2013,2014,Authorized_Representive
+30,12334,2,564,2015,2016,Executive
+31,866,1,271,2008,2009,Auditor
+32,5433,3,239,2016,2017,Authorized_Representive
+33,866,1,682,2007,2008,Authorized_Representive
+34,12384,8,713,2020,2021,Final_Auditor
+35,5433,3,961,2013,2014,Executive
+36,866,1,368,2020,2021,Executive
+37,64345,9,630,2014,2015,Final_Auditor
+38,4344,1,429,2019,2020,Managing_Director
+39,555,7,146,2013,2014,Auditor
+40,12334,4,290,2012,2013,Supervisory_Board
+41,9875,1,822,2006,2007,Authorized_Representive
+42,5433,3,893,2012,2013,Executive
+43,555,6,884,2015,2016,Supervisory_Board
+44,9875,1,449,2022,2023,Supervisory_Board
+45,9875,1,141,2008,2009,Auditor
+46,12334,2,945,2014,2015,Supervisory_Board
+47,64345,9,590,2021,2022,Authorized_Representive
+48,866,1,331,2010,2011,Supervisory_Board
+49,12384,8,493,2013,2014,Managing_Director
+50,866,1,138,2011,2012,Authorized_Representive
+51,12336,5,997,2018,2019,Managing_Director
+52,4344,1,522,2017,2018,Executive
+53,64566,2,419,2017,2018,Supervisory_Board
+54,12384,8,29,2005,2006,Executive
+55,12334,2,464,2006,2007,Supervisory_Board
+56,12334,4,75,2011,2012,Final_Auditor
+57,866,1,993,2014,2015,Supervisory_Board
+58,12384,8,31,2019,2020,Authorized_Representive
+59,9875,1,229,2020,2021,Supervisory_Board
+60,64566,2,996,2012,2013,Supervisory_Board
+61,12336,5,245,2016,2017,Executive
+62,5433,3,733,2006,2007,Authorized_Representive
+63,12334,2,232,2014,2015,Authorized_Representive
+64,64566,2,269,2016,2017,Managing_Director
+65,9875,1,103,2021,2022,Managing_Director
+66,64345,9,908,2009,2010,Supervisory_Board
+67,4344,1,76,2015,2016,Supervisory_Board
+68,9875,1,817,2008,2009,Supervisory_Board
+69,12334,4,666,2019,2020,Managing_Director
+70,64345,9,547,2018,2019,Final_Auditor
+71,555,7,879,2011,2012,Supervisory_Board
+72,555,6,186,2013,2014,Auditor
+73,866,1,925,2011,2012,Authorized_Representive
+74,866,1,798,2010,2011,Managing_Director
+75,5433,3,291,2019,2020,Executive
+76,9875,1,362,2010,2011,Auditor
+77,12334,2,687,2016,2017,Authorized_Representive
+78,555,7,840,2014,2015,Auditor
+79,555,6,962,2011,2012,Supervisory_Board
+80,4344,1,934,2022,2023,Executive
+81,866,1,123,2013,2014,Executive
+82,5433,3,921,2014,2015,Authorized_Representive
+83,12334,4,749,2018,2019,Executive
+84,9875,1,522,2016,2017,Managing_Director
+85,12384,8,667,2019,2020,Executive
+86,555,6,545,2020,2021,Managing_Director
+87,12334,2,225,2022,2023,Executive
+88,9875,1,770,2021,2022,Authorized_Representive
+89,555,6,814,2019,2020,Auditor
+90,12384,8,130,2015,2016,Auditor
+91,12334,2,762,2012,2013,Executive
+92,555,6,869,2012,2013,Authorized_Representive
+93,64345,9,580,2022,2023,Executive
+94,9875,1,638,2011,2012,Authorized_Representive
+95,5433,3,268,2015,2016,Supervisory_Board
+96,64345,9,403,2022,2023,Final_Auditor
+97,64345,9,373,2022,2023,Executive
+98,5433,3,955,2010,2011,Executive
+99,5433,3,770,2008,2009,Authorized_Representive
+100,866,1,747,2018,2019,Supervisory_Board
+101,12384,8,310,2015,2016,Auditor
+102,9875,1,114,2013,2014,Executive
+103,64345,9,705,2016,2017,Managing_Director
+104,12334,2,964,2020,2021,Auditor
+105,12336,5,778,2016,2017,Final_Auditor
+106,12336,5,623,2008,2009,Final_Auditor
+107,12336,5,504,2019,2020,Managing_Director
+108,64566,2,959,2020,2021,Executive
+109,64345,9,425,2011,2012,Authorized_Representive
+110,12336,5,763,2017,2018,Supervisory_Board
+111,12334,2,608,2007,2008,Executive
+112,555,6,566,2014,2015,Managing_Director
+113,12384,8,325,2017,2018,Authorized_Representive
+114,555,6,68,2022,2023,Final_Auditor
+115,12334,2,801,2017,2018,Auditor
+116,4344,1,954,2009,2010,Authorized_Representive
+117,4344,1,493,2013,2014,Final_Auditor
+118,866,1,543,2019,2020,Final_Auditor
+119,64345,9,659,2007,2008,Managing_Director
+120,12384,8,788,2019,2020,Executive
+121,9875,1,831,2018,2019,Final_Auditor
+122,12334,2,48,2009,2010,Auditor
+123,12384,8,155,2018,2019,Supervisory_Board
+124,12384,8,771,2019,2020,Auditor
+125,4344,1,984,2018,2019,Final_Auditor
+126,64345,9,265,2010,2011,Executive
+127,555,6,222,2020,2021,Auditor
+128,555,7,876,2020,2021,Executive
+129,866,1,441,2017,2018,Final_Auditor
+130,12384,8,988,2020,2021,Supervisory_Board
+131,555,6,717,2013,2014,Executive
+132,555,7,835,2018,2019,Authorized_Representive
+133,5433,3,324,2021,2022,Auditor
+134,12336,5,489,2021,2022,Auditor
+135,12384,8,930,2023,2022,Auditor
+136,9875,1,469,2012,2013,Managing_Director
+137,4344,1,137,2018,2019,Final_Auditor
+138,866,1,432,2019,2020,Final_Auditor
+139,866,1,512,2011,2012,Executive
+140,12384,8,318,2013,2014,Managing_Director
+141,64345,9,683,2005,2006,Executive
+142,555,7,842,2015,2016,Authorized_Representive
+143,12334,2,910,2012,2013,Auditor
+144,12334,4,741,2008,2009,Auditor
+145,4344,1,677,2016,2017,Supervisory_Board
+146,64566,2,995,2015,2016,Managing_Director
+147,9875,1,218,2007,2008,Executive
+148,4344,1,59,2014,2015,Final_Auditor
+149,555,6,643,2018,2019,Final_Auditor
+150,12384,8,349,2015,2016,Executive
+151,12336,5,567,2007,2008,Managing_Director
+152,12334,4,273,2014,2015,Executive
+153,12334,2,334,2020,2021,Final_Auditor
+154,555,7,48,2020,2021,Authorized_Representive
+155,12334,4,54,2013,2014,Supervisory_Board
+156,4344,1,991,2012,2013,Executive
+157,9875,1,396,2014,2015,Authorized_Representive
+158,12334,2,765,2009,2010,Final_Auditor
+159,12384,8,160,2021,2022,Authorized_Representive
+160,12336,5,330,2006,2007,Auditor
+161,5433,3,755,2005,2006,Final_Auditor
+162,12336,5,367,2023,2006,Final_Auditor
+163,5433,3,401,2015,2016,Auditor
+164,12384,8,186,2019,2020,Supervisory_Board
+165,9875,1,291,2018,2019,Executive
+166,12336,5,386,2017,2018,Authorized_Representive
+167,12384,8,274,2019,2020,Supervisory_Board
+168,12334,4,46,2021,2022,Final_Auditor
+169,12384,8,942,2011,2012,Authorized_Representive
+170,555,6,335,2015,2016,Executive
+171,64566,2,230,2006,2007,Executive
+172,866,1,437,2017,2018,Auditor
+173,555,7,647,2010,2011,Final_Auditor
+174,12334,4,21,2021,2022,Managing_Director
+175,9875,1,23,2009,2010,Authorized_Representive
+176,9875,1,864,2019,2020,Supervisory_Board
+177,64566,2,380,2015,2016,Supervisory_Board
+178,4344,1,787,2018,2019,Managing_Director
+179,555,7,897,2013,2014,Supervisory_Board
+180,12384,8,459,2018,2019,Final_Auditor
+181,12334,2,537,2014,2015,Managing_Director
+182,555,7,489,2013,2014,Managing_Director
+183,555,7,959,2005,2006,Auditor
+184,5433,3,326,2009,2010,Auditor
+185,12334,2,226,2014,2015,Managing_Director
+186,866,1,576,2018,2019,Executive
+187,64566,2,883,2014,2015,Managing_Director
+188,64566,2,657,2020,2021,Auditor
+189,64566,2,363,2019,2020,Auditor
+190,866,1,198,2013,2014,Executive
+191,12334,2,524,2017,2018,Supervisory_Board
+192,12384,8,526,2005,2006,Authorized_Representive
+193,64345,9,646,2017,2018,Final_Auditor
+194,64345,9,24,2020,2021,Executive
+195,12334,4,536,2015,2016,Authorized_Representive
+196,5433,3,197,2008,2009,Managing_Director
+197,64345,9,681,2020,2021,Supervisory_Board
+198,866,1,593,2005,2006,Executive
+199,12384,8,953,2007,2008,Managing_Director
+200,9875,1,295,2012,2013,Executive
+201,9875,1,474,2021,2022,Executive
+202,5433,3,870,2010,2011,Authorized_Representive
+203,9875,1,934,2007,2008,Final_Auditor
+204,9875,1,125,2011,2012,Supervisory_Board
+205,12384,8,43,2013,2014,Auditor
+206,9875,1,751,2005,2006,Authorized_Representive
+207,5433,3,106,2012,2013,Final_Auditor
+208,12334,2,814,2016,2017,Managing_Director
+209,555,7,517,2012,2013,Auditor
+210,5433,3,959,2015,2016,Managing_Director
+211,9875,1,27,2008,2009,Auditor
+212,555,7,596,2019,2020,Authorized_Representive
+213,12334,2,507,2016,2017,Auditor
+214,64345,9,495,2017,2018,Final_Auditor
+215,5433,3,943,2005,2006,Supervisory_Board
+216,12334,4,185,2009,2010,Managing_Director
+217,5433,3,487,2015,2016,Authorized_Representive
+218,12334,2,394,2007,2008,Supervisory_Board
+219,12334,2,837,2011,2012,Authorized_Representive
+220,555,6,508,2022,2023,Auditor
+221,12336,5,948,2018,2019,Authorized_Representive
+222,64566,2,887,2012,2013,Authorized_Representive
+223,4344,1,678,2017,2018,Managing_Director
+224,4344,1,307,2005,2006,Executive
+225,9875,1,151,2019,2020,Auditor
+226,64566,2,647,2011,2012,Authorized_Representive
+227,9875,1,597,2011,2012,Auditor
+228,12384,8,714,2015,2016,Supervisory_Board
+229,12334,2,696,2010,2011,Final_Auditor
+230,12334,4,672,2006,2007,Managing_Director
+231,12384,8,32,2007,2008,Executive
+232,4344,1,524,2009,2010,Auditor
+233,555,7,264,2015,2016,Authorized_Representive
+234,12384,8,431,2021,2022,Executive
+235,555,7,792,2020,2021,Executive
+236,64345,9,696,2016,2017,Final_Auditor
+237,9875,1,863,2017,2018,Supervisory_Board
+238,12334,4,931,2020,2021,Final_Auditor
+239,64345,9,694,2012,2013,Executive
+240,12334,2,467,2006,2007,Auditor
+241,555,7,52,2019,2020,Supervisory_Board
+242,64345,9,803,2016,2017,Authorized_Representive
+243,866,1,940,2011,2012,Auditor
+244,555,6,87,2014,2015,Supervisory_Board
+245,555,7,267,2010,2011,Auditor
+246,12336,5,826,2020,2021,Executive
+247,866,1,637,2013,2014,Auditor
+248,555,6,116,2012,2013,Auditor
+249,64345,9,751,2021,2022,Authorized_Representive
+250,12384,8,866,2023,2022,Executive
+251,555,7,131,2023,2022,Managing_Director
+252,12334,2,752,2016,2017,Executive
+253,64566,2,349,2012,2013,Authorized_Representive
+254,4344,1,89,2008,2009,Auditor
+255,866,1,875,2007,2008,Managing_Director
+256,12334,2,745,2006,2007,Managing_Director
+257,12334,4,498,2009,2010,Auditor
+258,12384,8,635,2007,2008,Executive
+259,64345,9,444,2014,2015,Final_Auditor
+260,12336,5,485,2016,2017,Supervisory_Board
+261,866,1,284,2012,2013,Supervisory_Board
+262,12336,5,987,2008,2009,Auditor
+263,4344,1,129,2017,2018,Auditor
+264,12384,8,924,2007,2008,Managing_Director
+265,12384,8,220,2016,2017,Final_Auditor
+266,555,7,945,2008,2009,Executive
+267,5433,3,725,2019,2020,Authorized_Representive
+268,4344,1,248,2015,2016,Authorized_Representive
+269,866,1,507,2021,2022,Managing_Director
+270,64566,2,556,2012,2013,Supervisory_Board
+271,64566,2,687,2007,2008,Supervisory_Board
+272,866,1,683,2011,2012,Managing_Director
+273,64345,9,464,2018,2019,Supervisory_Board
+274,866,1,411,2023,2019,Final_Auditor
+275,9875,1,872,2008,2009,Auditor
+276,4344,1,412,2010,2011,Executive
+277,866,1,772,2018,2019,Managing_Director
+278,64566,2,634,2009,2010,Final_Auditor
+279,4344,1,848,2006,2007,Executive
+280,12334,2,485,2009,2010,Managing_Director
+281,64566,2,96,2007,2008,Executive
+282,4344,1,837,2011,2012,Executive
+283,555,6,651,2007,2008,Auditor
+284,9875,1,518,2020,2021,Managing_Director
+285,866,1,562,2013,2014,Auditor
+286,555,6,343,2020,2021,Executive
+287,5433,3,554,2006,2007,Executive
+288,866,1,402,2010,2011,Supervisory_Board
+289,555,7,386,2022,2023,Managing_Director
+290,5433,3,57,2010,2011,Auditor
+291,866,1,426,2014,2015,Final_Auditor
+292,555,6,797,2009,2010,Authorized_Representive
+293,866,1,421,2015,2016,Auditor
+294,866,1,17,2011,2012,Auditor
+295,12336,5,543,2005,2006,Auditor
+296,12334,4,427,2010,2011,Supervisory_Board
+297,12334,4,677,2010,2011,Supervisory_Board
+298,555,6,757,2020,2021,Supervisory_Board
+299,12384,8,753,2014,2015,Final_Auditor
+300,64345,9,706,2006,2007,Authorized_Representive
+301,12384,8,136,2009,2010,Executive
+302,12334,2,202,2011,2012,Managing_Director
+303,4344,1,551,2018,2019,Supervisory_Board
+304,12334,2,158,2013,2014,Final_Auditor
+305,12384,8,590,2016,2017,Supervisory_Board
+306,555,7,504,2015,2016,Supervisory_Board
+307,12334,4,918,2012,2013,Supervisory_Board
+308,64566,2,582,2017,2018,Final_Auditor
+309,5433,3,904,2006,2007,Supervisory_Board
+310,555,7,725,2016,2017,Auditor
+311,5433,3,597,2015,2016,Authorized_Representive
+312,12334,2,881,2012,2013,Supervisory_Board
+313,12384,8,83,2011,2012,Auditor
+314,866,1,446,2012,2013,Managing_Director
+315,9875,1,804,2023,2013,Supervisory_Board
+316,12334,4,573,2012,2013,Supervisory_Board
+317,12334,2,882,2006,2007,Executive
+318,64345,9,64,2021,2022,Supervisory_Board
+319,12334,2,448,2010,2011,Auditor
+320,12336,5,294,2019,2020,Managing_Director
+321,64566,2,176,2021,2022,Supervisory_Board
+322,12336,5,275,2022,2023,Managing_Director
+323,12334,4,593,2009,2010,Auditor
+324,555,6,731,2022,2023,Supervisory_Board
+325,866,1,834,2015,2016,Supervisory_Board
+326,866,1,189,2008,2009,Auditor
+327,12384,8,711,2007,2008,Final_Auditor
+328,64345,9,231,2014,2015,Auditor
+329,4344,1,309,2009,2010,Final_Auditor
+330,64566,2,931,2018,2019,Authorized_Representive
+331,5433,3,929,2016,2017,Managing_Director
+332,64345,9,537,2006,2007,Final_Auditor
+333,12384,8,405,2008,2009,Auditor
+334,866,1,272,2015,2016,Executive
+335,64566,2,217,2020,2021,Auditor
+336,4344,1,499,2013,2014,Final_Auditor
+337,555,6,975,2011,2012,Supervisory_Board
+338,12334,4,382,2020,2021,Managing_Director
+339,9875,1,721,2019,2020,Authorized_Representive
+340,4344,1,371,2009,2010,Supervisory_Board
+341,4344,1,504,2013,2014,Authorized_Representive
+342,555,6,332,2010,2011,Supervisory_Board
+343,64345,9,705,2019,2020,Managing_Director
+344,12334,4,509,2015,2016,Supervisory_Board
+345,866,1,136,2017,2018,Executive
+346,866,1,931,2016,2017,Executive
+347,555,6,930,2017,2018,Authorized_Representive
+348,5433,3,760,2006,2007,Final_Auditor
+349,4344,1,950,2019,2020,Auditor
+350,64566,2,532,2021,2022,Authorized_Representive
+351,64566,2,315,2008,2009,Auditor
+352,555,6,475,2008,2009,Supervisory_Board
+353,866,1,496,2019,2020,Supervisory_Board
+354,5433,3,864,2021,2022,Executive
+355,555,7,59,2006,2007,Supervisory_Board
+356,866,1,569,2006,2007,Supervisory_Board
+357,9875,1,245,2008,2009,Supervisory_Board
+358,555,7,273,2012,2013,Final_Auditor
+359,555,7,933,2012,2013,Final_Auditor
+360,64345,9,928,2023,2013,Final_Auditor
+361,866,1,940,2005,2006,Authorized_Representive
+362,4344,1,441,2010,2011,Supervisory_Board
+363,12336,5,279,2022,2023,Auditor
+364,64566,2,245,2014,2015,Supervisory_Board
+365,12336,5,596,2017,2018,Final_Auditor
+366,12384,8,11,2010,2011,Final_Auditor
+367,555,7,449,2007,2008,Supervisory_Board
+368,64345,9,625,2009,2010,Supervisory_Board
+369,555,7,321,2013,2014,Authorized_Representive
+370,866,1,763,2007,2008,Final_Auditor
+371,12384,8,610,2013,2014,Authorized_Representive
+372,64345,9,377,2022,2023,Final_Auditor
+373,555,7,981,2015,2016,Supervisory_Board
+374,12334,4,36,2017,2018,Auditor
+375,12334,2,9,2021,2022,Executive
+376,4344,1,879,2006,2007,Authorized_Representive
+377,12334,4,845,2009,2010,Authorized_Representive
+378,4344,1,115,2019,2020,Auditor
+379,4344,1,177,2021,2022,Final_Auditor
+380,9875,1,996,2008,2009,Auditor
+381,12334,4,985,2014,2015,Executive
+382,64345,9,735,2014,2015,Supervisory_Board
+383,866,1,779,2009,2010,Executive
+384,5433,3,479,2014,2015,Auditor
+385,555,6,383,2016,2017,Supervisory_Board
+386,555,7,548,2018,2019,Final_Auditor
+387,12334,4,873,2020,2021,Auditor
+388,12384,8,610,2009,2010,Managing_Director
+389,4344,1,471,2023,2010,Supervisory_Board
+390,5433,3,801,2016,2017,Authorized_Representive
+391,12334,2,764,2014,2015,Final_Auditor
+392,555,7,612,2005,2006,Authorized_Representive
+393,64345,9,382,2008,2009,Auditor
+394,866,1,364,2008,2009,Managing_Director
+395,4344,1,675,2014,2015,Executive
+396,555,6,230,2009,2010,Executive
+397,866,1,415,2018,2019,Auditor
+398,5433,3,691,2015,2016,Authorized_Representive
+399,9875,1,770,2008,2009,Final_Auditor
+400,4344,1,198,2015,2016,Executive
+401,555,6,671,2020,2021,Supervisory_Board
+402,555,7,755,2018,2019,Authorized_Representive
+403,555,7,315,2010,2011,Authorized_Representive
+404,5433,3,356,2012,2013,Authorized_Representive
+405,5433,3,511,2015,2016,Auditor
+406,4344,1,458,2006,2007,Final_Auditor
+407,555,6,33,2010,2011,Executive
+408,12384,8,89,2017,2018,Managing_Director
+409,12336,5,337,2018,2019,Final_Auditor
+410,5433,3,445,2018,2019,Authorized_Representive
+411,9875,1,116,2022,2023,Supervisory_Board
+412,866,1,904,2020,2021,Auditor
+413,12334,4,8,2009,2010,Executive
+414,64345,9,115,2009,2010,Managing_Director
+415,12334,4,452,2012,2013,Authorized_Representive
+416,555,6,684,2023,2013,Managing_Director
+417,12334,4,382,2020,2021,Final_Auditor
+418,12334,2,757,2005,2006,Authorized_Representive
+419,4344,1,572,2010,2011,Executive
+420,12334,4,332,2005,2006,Final_Auditor
+421,555,7,771,2010,2011,Executive
+422,9875,1,235,2008,2009,Supervisory_Board
+423,64566,2,574,2015,2016,Supervisory_Board
+424,12384,8,372,2006,2007,Auditor
+425,12336,5,449,2012,2013,Final_Auditor
+426,12334,4,746,2019,2020,Authorized_Representive
+427,12334,4,11,2007,2008,Executive
+428,12336,5,26,2012,2013,Managing_Director
+429,9875,1,484,2013,2014,Executive
+430,555,6,421,2011,2012,Authorized_Representive
+431,4344,1,492,2020,2021,Supervisory_Board
+432,4344,1,608,2017,2018,Managing_Director
+433,555,7,410,2018,2019,Managing_Director
+434,555,6,839,2013,2014,Supervisory_Board
+435,12334,2,89,2017,2018,Executive
+436,12384,8,256,2011,2012,Supervisory_Board
+437,555,6,958,2017,2018,Final_Auditor
+438,555,7,836,2023,2018,Managing_Director
+439,9875,1,185,2007,2008,Managing_Director
+440,12334,4,474,2016,2017,Authorized_Representive
+441,9875,1,501,2021,2022,Supervisory_Board
+442,5433,3,274,2021,2022,Managing_Director
+443,12334,2,654,2021,2022,Final_Auditor
+444,64566,2,207,2016,2017,Authorized_Representive
+445,12336,5,330,2010,2011,Supervisory_Board
+446,12384,8,130,2011,2012,Auditor
+447,64566,2,649,2019,2020,Authorized_Representive
+448,64345,9,177,2005,2006,Managing_Director
+449,4344,1,961,2020,2021,Authorized_Representive
+450,9875,1,157,2010,2011,Final_Auditor
+451,12334,2,577,2018,2019,Supervisory_Board
+452,5433,3,300,2014,2015,Managing_Director
+453,12334,4,690,2008,2009,Supervisory_Board
+454,64345,9,958,2020,2021,Authorized_Representive
+455,12334,2,95,2009,2010,Managing_Director
+456,555,6,326,2007,2008,Supervisory_Board
+457,12334,2,450,2012,2013,Auditor
+458,12336,5,376,2009,2010,Executive
+459,555,7,622,2023,2010,Authorized_Representive
+460,555,7,905,2005,2006,Managing_Director
+461,64566,2,740,2006,2007,Auditor
+462,5433,3,270,2013,2014,Executive
+463,12336,5,131,2005,2006,Supervisory_Board
+464,555,7,753,2017,2018,Auditor
+465,866,1,566,2005,2006,Executive
+466,5433,3,607,2019,2020,Executive
+467,64345,9,107,2011,2012,Auditor
+468,555,6,522,2010,2011,Supervisory_Board
+469,12336,5,113,2011,2012,Authorized_Representive
+470,64566,2,298,2010,2011,Final_Auditor
+471,866,1,935,2013,2014,Auditor
+472,12334,4,971,2018,2019,Managing_Director
+473,64345,9,165,2018,2019,Authorized_Representive
+474,12384,8,158,2007,2008,Managing_Director
+475,555,6,223,2019,2020,Authorized_Representive
+476,12336,5,255,2023,2020,Executive
+477,64345,9,561,2011,2012,Final_Auditor
+478,555,7,353,2019,2020,Managing_Director
+479,555,6,6,2018,2019,Managing_Director
+480,12336,5,974,2010,2011,Auditor
+481,9875,1,36,2022,2023,Supervisory_Board
+482,12334,4,477,2018,2019,Auditor
+483,12384,8,975,2012,2013,Auditor
+484,12384,8,787,2008,2009,Executive
+485,64566,2,10,2022,2023,Final_Auditor
+486,5433,3,830,2016,2017,Executive
+487,5433,3,870,2006,2007,Final_Auditor
+488,12384,8,952,2017,2018,Supervisory_Board
+489,12334,2,687,2015,2016,Authorized_Representive
+490,5433,3,919,2013,2014,Managing_Director
+491,64566,2,843,2008,2009,Authorized_Representive
+492,12336,5,285,2007,2008,Executive
+493,12334,2,145,2009,2010,Managing_Director
+494,555,7,747,2008,2009,Authorized_Representive
+495,12384,8,600,2006,2007,Executive
+496,12384,8,243,2022,2023,Auditor
+497,555,6,386,2010,2011,Final_Auditor
+498,12336,5,938,2008,2009,Authorized_Representive
+499,12336,5,901,2016,2017,Managing_Director
+500,12384,8,221,2021,2022,Auditor
+501,9875,1,34,2012,2013,Supervisory_Board
+502,64566,2,929,2007,2008,Executive
+503,12336,5,80,2021,2022,Executive
+504,866,1,377,2018,2019,Final_Auditor
+505,12384,8,74,2012,2013,Supervisory_Board
+506,555,6,859,2021,2022,Auditor
+507,4344,1,880,2005,2006,Auditor
+508,12336,5,430,2005,2006,Supervisory_Board
+509,866,1,815,2012,2013,Auditor
+510,64566,2,828,2007,2008,Supervisory_Board
+511,555,6,666,2005,2006,Auditor
+512,12384,8,754,2016,2017,Supervisory_Board
+513,12336,5,671,2011,2012,Authorized_Representive
+514,5433,3,843,2005,2006,Supervisory_Board
+515,12336,5,434,2007,2008,Executive
+516,555,6,401,2018,2019,Authorized_Representive
+517,4344,1,283,2007,2008,Auditor
+518,12334,4,211,2007,2008,Final_Auditor
+519,12334,4,11,2011,2012,Supervisory_Board
+520,9875,1,69,2014,2015,Auditor
+521,9875,1,747,2010,2011,Executive
+522,4344,1,933,2020,2021,Executive
+523,866,1,792,2022,2023,Managing_Director
+524,9875,1,799,2016,2017,Supervisory_Board
+525,12384,8,351,2006,2007,Managing_Director
+526,5433,3,97,2023,2007,Final_Auditor
+527,9875,1,158,2009,2010,Managing_Director
+528,64345,9,608,2013,2014,Supervisory_Board
+529,5433,3,607,2007,2008,Authorized_Representive
+530,12334,4,122,2017,2018,Final_Auditor
+531,64345,9,334,2014,2015,Authorized_Representive
+532,12334,4,671,2012,2013,Authorized_Representive
+533,64345,9,354,2015,2016,Authorized_Representive
+534,555,6,877,2023,2016,Managing_Director
+535,555,6,722,2005,2006,Authorized_Representive
+536,64345,9,831,2012,2013,Supervisory_Board
+537,12336,5,713,2012,2013,Supervisory_Board
+538,9875,1,994,2009,2010,Authorized_Representive
+539,555,7,977,2019,2020,Supervisory_Board
+540,12334,4,707,2008,2009,Managing_Director
+541,64345,9,602,2010,2011,Managing_Director
+542,12384,8,862,2023,2011,Final_Auditor
+543,12384,8,68,2018,2019,Authorized_Representive
+544,866,1,275,2010,2011,Final_Auditor
+545,12336,5,405,2013,2014,Executive
+546,12384,8,409,2017,2018,Final_Auditor
+547,555,7,917,2021,2022,Supervisory_Board
+548,64566,2,56,2023,2022,Final_Auditor
+549,866,1,349,2006,2007,Final_Auditor
+550,12384,8,106,2007,2008,Managing_Director
+551,5433,3,756,2023,2008,Auditor
+552,12334,2,743,2018,2019,Auditor
+553,12334,4,896,2005,2006,Supervisory_Board
+554,866,1,392,2010,2011,Managing_Director
+555,12384,8,920,2023,2011,Supervisory_Board
+556,12334,4,669,2006,2007,Authorized_Representive
+557,12336,5,762,2007,2008,Authorized_Representive
+558,12334,4,785,2020,2021,Auditor
+559,555,6,381,2009,2010,Auditor
+560,64345,9,530,2021,2022,Auditor
+561,555,7,764,2016,2017,Final_Auditor
+562,866,1,933,2017,2018,Authorized_Representive
+563,64566,2,369,2009,2010,Managing_Director
+564,64566,2,728,2011,2012,Executive
+565,12336,5,10,2014,2015,Managing_Director
+566,12334,4,251,2011,2012,Authorized_Representive
+567,64566,2,292,2019,2020,Authorized_Representive
+568,866,1,992,2013,2014,Authorized_Representive
+569,555,7,298,2007,2008,Executive
+570,555,7,842,2008,2009,Supervisory_Board
+571,4344,1,316,2017,2018,Managing_Director
+572,12334,4,811,2018,2019,Managing_Director
+573,12334,4,755,2005,2006,Managing_Director
+574,64566,2,877,2010,2011,Executive
+575,555,7,107,2010,2011,Managing_Director
+576,5433,3,277,2018,2019,Auditor
+577,12336,5,123,2020,2021,Supervisory_Board
+578,12334,2,640,2015,2016,Supervisory_Board
+579,12334,2,218,2015,2016,Authorized_Representive
+580,12334,4,10,2006,2007,Final_Auditor
+581,12336,5,699,2023,2007,Managing_Director
+582,64345,9,352,2007,2008,Authorized_Representive
+583,64566,2,286,2015,2016,Executive
+584,866,1,475,2011,2012,Auditor
+585,4344,1,487,2021,2022,Authorized_Representive
+586,5433,3,465,2006,2007,Managing_Director
+587,12334,4,955,2014,2015,Auditor
+588,12334,2,224,2013,2014,Supervisory_Board
+589,12334,4,945,2009,2010,Final_Auditor
+590,12384,8,429,2015,2016,Authorized_Representive
+591,5433,3,905,2007,2008,Final_Auditor
+592,12384,8,557,2007,2008,Managing_Director
+593,12334,4,45,2009,2010,Managing_Director
+594,64345,9,578,2013,2014,Auditor
+595,12336,5,13,2007,2008,Final_Auditor
+596,64345,9,226,2006,2007,Auditor
+597,64566,2,674,2013,2014,Supervisory_Board
+598,12336,5,222,2014,2015,Executive
+599,866,1,499,2014,2015,Authorized_Representive
+600,12334,2,784,2018,2019,Final_Auditor
+601,5433,3,851,2007,2008,Auditor
+602,12384,8,37,2023,2008,Executive
+603,555,7,832,2017,2018,Final_Auditor
+604,555,7,39,2023,2018,Supervisory_Board
+605,12334,2,562,2014,2015,Supervisory_Board
+606,4344,1,348,2017,2018,Authorized_Representive
+607,866,1,264,2016,2017,Supervisory_Board
+608,12336,5,171,2011,2012,Final_Auditor
+609,555,6,332,2005,2006,Managing_Director
+610,12334,4,664,2022,2023,Managing_Director
+611,5433,3,10,2008,2009,Auditor
+612,5433,3,226,2022,2023,Managing_Director
+613,9875,1,981,2022,2023,Final_Auditor
+614,555,6,410,2023,2023,Executive
+615,555,6,191,2021,2022,Auditor
+616,5433,3,199,2011,2012,Auditor
+617,555,6,43,2011,2012,Final_Auditor
+618,4344,1,458,2022,2023,Authorized_Representive
+619,555,7,127,2022,2023,Managing_Director
+620,12334,2,242,2012,2013,Supervisory_Board
+621,12334,4,7,2022,2023,Managing_Director
+622,5433,3,579,2013,2014,Auditor
+623,9875,1,213,2008,2009,Auditor
+624,555,6,399,2007,2008,Authorized_Representive
+625,12336,5,933,2013,2014,Authorized_Representive
+626,12336,5,789,2011,2012,Authorized_Representive
+627,5433,3,323,2010,2011,Managing_Director
+628,12384,8,615,2019,2020,Auditor
+629,9875,1,273,2008,2009,Executive
+630,64345,9,105,2023,2009,Supervisory_Board
+631,64566,2,964,2007,2008,Managing_Director
+632,555,6,262,2008,2009,Auditor
+633,12334,2,135,2007,2008,Executive
+634,555,6,283,2017,2018,Auditor
+635,9875,1,985,2017,2018,Executive
+636,4344,1,118,2005,2006,Executive
+637,555,7,365,2016,2017,Supervisory_Board
+638,64566,2,292,2022,2023,Auditor
+639,12336,5,821,2009,2010,Managing_Director
+640,64566,2,837,2021,2022,Authorized_Representive
+641,12384,8,465,2011,2012,Supervisory_Board
+642,12336,5,447,2008,2009,Executive
+643,9875,1,760,2010,2011,Auditor
+644,555,6,27,2010,2011,Supervisory_Board
+645,9875,1,164,2015,2016,Supervisory_Board
+646,12334,2,915,2006,2007,Final_Auditor
+647,555,6,741,2019,2020,Executive
+648,555,6,416,2008,2009,Final_Auditor
+649,12334,2,153,2020,2021,Final_Auditor
+650,866,1,298,2011,2012,Managing_Director
+651,4344,1,486,2010,2011,Auditor
+652,555,6,26,2016,2017,Authorized_Representive
+653,64566,2,887,2020,2021,Supervisory_Board
+654,9875,1,720,2017,2018,Executive
+655,866,1,703,2010,2011,Auditor
+656,12334,2,730,2022,2023,Auditor
+657,9875,1,74,2019,2020,Managing_Director
+658,64345,9,235,2012,2013,Supervisory_Board
+659,4344,1,391,2013,2014,Managing_Director
+660,4344,1,967,2019,2020,Supervisory_Board
+661,555,6,424,2012,2013,Supervisory_Board
+662,64566,2,137,2008,2009,Supervisory_Board
+663,64345,9,525,2013,2014,Final_Auditor
+664,9875,1,310,2006,2007,Final_Auditor
+665,12334,2,219,2022,2023,Final_Auditor
+666,5433,3,903,2019,2020,Supervisory_Board
+667,12336,5,44,2008,2009,Supervisory_Board
+668,9875,1,59,2014,2015,Authorized_Representive
+669,64566,2,477,2008,2009,Managing_Director
+670,64345,9,692,2017,2018,Auditor
+671,12334,4,625,2008,2009,Managing_Director
+672,12334,2,723,2013,2014,Final_Auditor
+673,12336,5,764,2013,2014,Final_Auditor
+674,12384,8,499,2021,2022,Auditor
+675,555,7,389,2020,2021,Final_Auditor
+676,555,6,357,2014,2015,Executive
+677,4344,1,768,2015,2016,Supervisory_Board
+678,64566,2,39,2022,2023,Executive
+679,866,1,990,2005,2006,Managing_Director
+680,866,1,753,2015,2016,Supervisory_Board
+681,12336,5,156,2005,2006,Executive
+682,12384,8,963,2012,2013,Final_Auditor
+683,12334,4,6,2021,2022,Executive
+684,12334,4,90,2019,2020,Managing_Director
+685,64345,9,671,2017,2018,Authorized_Representive
+686,12334,4,346,2006,2007,Final_Auditor
+687,64345,9,714,2007,2008,Executive
+688,64566,2,474,2019,2020,Executive
+689,555,7,902,2021,2022,Managing_Director
+690,12384,8,765,2005,2006,Auditor
+691,4344,1,27,2008,2009,Final_Auditor
+692,12384,8,347,2005,2006,Auditor
+693,866,1,277,2014,2015,Authorized_Representive
+694,64566,2,398,2014,2015,Final_Auditor
+695,12384,8,85,2023,2015,Executive
+696,555,7,323,2021,2022,Authorized_Representive
+697,555,6,159,2023,2022,Executive
+698,5433,3,46,2007,2008,Executive
+699,5433,3,420,2006,2007,Final_Auditor
+700,64345,9,359,2020,2021,Final_Auditor
+701,12334,4,830,2007,2008,Auditor
+702,9875,1,494,2011,2012,Final_Auditor
+703,866,1,309,2022,2023,Final_Auditor
+704,64345,9,573,2013,2014,Authorized_Representive
+705,5433,3,816,2005,2006,Final_Auditor
+706,5433,3,227,2016,2017,Managing_Director
+707,12334,2,741,2021,2022,Authorized_Representive
+708,12334,2,788,2023,2022,Authorized_Representive
+709,5433,3,120,2012,2013,Authorized_Representive
+710,555,6,807,2021,2022,Executive
+711,5433,3,584,2018,2019,Auditor
+712,866,1,638,2013,2014,Managing_Director
+713,64566,2,262,2020,2021,Final_Auditor
+714,64345,9,138,2010,2011,Auditor
+715,12334,4,243,2014,2015,Auditor
+716,64566,2,288,2008,2009,Auditor
+717,4344,1,571,2022,2023,Auditor
+718,555,6,223,2006,2007,Auditor
+719,9875,1,714,2015,2016,Authorized_Representive
+720,555,6,510,2022,2023,Executive
+721,64566,2,850,2011,2012,Executive
+722,64566,2,431,2011,2012,Executive
+723,4344,1,610,2023,2012,Managing_Director
+724,866,1,286,2022,2023,Supervisory_Board
+725,64566,2,3,2023,2023,Supervisory_Board
+726,12336,5,740,2019,2020,Managing_Director
+727,866,1,211,2006,2007,Final_Auditor
+728,4344,1,679,2006,2007,Final_Auditor
+729,12336,5,546,2007,2008,Authorized_Representive
+730,64345,9,873,2006,2007,Managing_Director
+731,12334,2,934,2019,2020,Managing_Director
+732,64566,2,109,2007,2008,Supervisory_Board
+733,4344,1,878,2017,2018,Executive
+734,64345,9,580,2012,2013,Executive
+735,4344,1,469,2020,2021,Managing_Director
+736,12336,5,255,2020,2021,Authorized_Representive
+737,12334,2,545,2018,2019,Authorized_Representive
+738,4344,1,290,2023,2019,Executive
+739,5433,3,167,2020,2021,Managing_Director
+740,555,7,184,2010,2011,Executive
+741,64566,2,417,2015,2016,Managing_Director
+742,555,7,149,2015,2016,Supervisory_Board
+743,9875,1,332,2016,2017,Executive
+744,4344,1,289,2017,2018,Authorized_Representive
+745,4344,1,221,2018,2019,Auditor
+746,4344,1,875,2021,2022,Authorized_Representive
+747,9875,1,66,2012,2013,Auditor
+748,12334,2,251,2022,2023,Supervisory_Board
+749,12384,8,314,2009,2010,Managing_Director
+750,12336,5,923,2012,2013,Auditor
+751,555,6,512,2009,2010,Supervisory_Board
+752,5433,3,895,2019,2020,Auditor
+753,12334,2,231,2020,2021,Final_Auditor
+754,12334,4,311,2006,2007,Supervisory_Board
+755,555,7,300,2011,2012,Authorized_Representive
+756,5433,3,697,2017,2018,Final_Auditor
+757,12336,5,998,2015,2016,Executive
+758,12334,2,440,2013,2014,Executive
+759,12384,8,904,2023,2014,Managing_Director
+760,555,7,316,2019,2020,Managing_Director
+761,64345,9,968,2009,2010,Supervisory_Board
+762,64345,9,708,2008,2009,Supervisory_Board
+763,866,1,943,2009,2010,Executive
+764,64566,2,615,2009,2010,Supervisory_Board
+765,12384,8,89,2012,2013,Managing_Director
+766,5433,3,674,2023,2013,Managing_Director
+767,64345,9,220,2007,2008,Authorized_Representive
+768,866,1,248,2007,2008,Auditor
+769,12334,4,980,2021,2022,Authorized_Representive
+770,64345,9,676,2014,2015,Authorized_Representive
+771,5433,3,306,2018,2019,Final_Auditor
+772,4344,1,979,2022,2023,Authorized_Representive
+773,12334,4,924,2007,2008,Executive
+774,64345,9,591,2008,2009,Auditor
+775,555,6,493,2006,2007,Authorized_Representive
+776,12334,4,323,2022,2023,Authorized_Representive
+777,12334,2,985,2018,2019,Final_Auditor
+778,12336,5,795,2013,2014,Auditor
+779,4344,1,181,2009,2010,Authorized_Representive
+780,555,7,33,2012,2013,Auditor
+781,9875,1,499,2013,2014,Managing_Director
+782,12336,5,753,2023,2014,Executive
+783,9875,1,451,2022,2023,Executive
+784,5433,3,390,2019,2020,Executive
+785,64566,2,142,2005,2006,Authorized_Representive
+786,555,6,20,2017,2018,Executive
+787,12384,8,365,2020,2021,Managing_Director
+788,9875,1,605,2022,2023,Final_Auditor
+789,555,6,220,2012,2013,Executive
+790,64345,9,883,2020,2021,Executive
+791,64345,9,566,2016,2017,Final_Auditor
+792,12336,5,778,2021,2022,Supervisory_Board
+793,12336,5,595,2015,2016,Auditor
+794,12334,2,39,2011,2012,Supervisory_Board
+795,866,1,68,2015,2016,Final_Auditor
+796,4344,1,601,2012,2013,Managing_Director
+797,64345,9,207,2017,2018,Final_Auditor
+798,555,6,886,2017,2018,Auditor
+799,9875,1,472,2023,2018,Executive
+800,866,1,479,2015,2016,Managing_Director
+801,64345,9,866,2009,2010,Executive
+802,555,7,889,2017,2018,Managing_Director
+803,12334,2,320,2015,2016,Managing_Director
+804,866,1,198,2017,2018,Supervisory_Board
+805,64566,2,977,2014,2015,Auditor
+806,12336,5,284,2011,2012,Final_Auditor
+807,12334,4,333,2022,2023,Executive
+808,555,7,140,2021,2022,Final_Auditor
+809,64345,9,402,2016,2017,Auditor
+810,555,7,605,2005,2006,Final_Auditor
+811,12334,4,383,2012,2013,Executive
+812,12334,2,189,2017,2018,Supervisory_Board
+813,866,1,35,2005,2006,Supervisory_Board
+814,4344,1,297,2019,2020,Supervisory_Board
+815,64345,9,775,2006,2007,Final_Auditor
+816,9875,1,877,2014,2015,Auditor
+817,12334,4,489,2023,2015,Executive
+818,555,6,783,2007,2008,Authorized_Representive
+819,12336,5,92,2010,2011,Executive
+820,555,7,760,2016,2017,Managing_Director
+821,64566,2,644,2014,2015,Executive
+822,555,6,162,2005,2006,Authorized_Representive
+823,12334,4,5,2012,2013,Managing_Director
+824,12336,5,542,2008,2009,Supervisory_Board
+825,64345,9,707,2013,2014,Supervisory_Board
+826,555,6,202,2020,2021,Executive
+827,9875,1,258,2013,2014,Managing_Director
+828,12336,5,983,2014,2015,Managing_Director
+829,5433,3,968,2020,2021,Final_Auditor
+830,866,1,21,2005,2006,Authorized_Representive
+831,555,6,749,2015,2016,Authorized_Representive
+832,9875,1,460,2018,2019,Final_Auditor
+833,866,1,901,2010,2011,Managing_Director
+834,12334,2,351,2023,2011,Executive
+835,12334,2,276,2015,2016,Final_Auditor
+836,9875,1,800,2010,2011,Auditor
+837,12334,4,737,2018,2019,Authorized_Representive
+838,12334,2,819,2013,2014,Executive
+839,64345,9,926,2021,2022,Final_Auditor
+840,64345,9,602,2007,2008,Final_Auditor
+841,9875,1,306,2006,2007,Managing_Director
+842,4344,1,207,2013,2014,Managing_Director
+843,555,7,484,2012,2013,Final_Auditor
+844,555,7,482,2015,2016,Final_Auditor
+845,555,6,883,2010,2011,Auditor
+846,866,1,632,2016,2017,Supervisory_Board
+847,12334,2,862,2005,2006,Auditor
+848,12384,8,815,2013,2014,Supervisory_Board
+849,64566,2,641,2012,2013,Executive
+850,64566,2,859,2005,2006,Managing_Director
+851,64566,2,391,2014,2015,Auditor
+852,12336,5,132,2010,2011,Authorized_Representive
+853,12334,2,749,2010,2011,Authorized_Representive
+854,12334,2,426,2020,2021,Final_Auditor
+855,866,1,29,2023,2021,Final_Auditor
+856,4344,1,347,2014,2015,Supervisory_Board
+857,866,1,428,2017,2018,Authorized_Representive
+858,64345,9,128,2012,2013,Final_Auditor
+859,5433,3,25,2013,2014,Supervisory_Board
+860,12334,4,546,2015,2016,Authorized_Representive
+861,12334,4,831,2019,2020,Auditor
+862,555,7,697,2007,2008,Final_Auditor
+863,555,6,718,2017,2018,Managing_Director
+864,64345,9,192,2015,2016,Supervisory_Board
+865,555,6,141,2023,2016,Authorized_Representive
+866,12336,5,222,2018,2019,Managing_Director
+867,64566,2,178,2017,2018,Managing_Director
+868,555,7,84,2020,2021,Final_Auditor
+869,12334,2,405,2018,2019,Executive
+870,555,6,69,2013,2014,Final_Auditor
+871,12384,8,355,2020,2021,Auditor
+872,9875,1,527,2012,2013,Executive
+873,12384,8,594,2007,2008,Authorized_Representive
+874,555,6,834,2006,2007,Executive
+875,64566,2,725,2006,2007,Final_Auditor
+876,12334,2,258,2007,2008,Executive
+877,64345,9,824,2009,2010,Authorized_Representive
+878,12334,2,885,2017,2018,Managing_Director
+879,9875,1,862,2012,2013,Executive
+880,64566,2,335,2006,2007,Authorized_Representive
+881,64566,2,414,2015,2016,Managing_Director
+882,64345,9,893,2013,2014,Executive
+883,9875,1,208,2017,2018,Authorized_Representive
+884,12334,4,837,2016,2017,Supervisory_Board
+885,12334,4,961,2022,2023,Executive
+886,4344,1,248,2008,2009,Managing_Director
+887,12334,2,993,2021,2022,Executive
+888,555,6,981,2008,2009,Authorized_Representive
+889,9875,1,429,2007,2008,Auditor
+890,5433,3,743,2010,2011,Managing_Director
+891,4344,1,499,2016,2017,Authorized_Representive
+892,64345,9,15,2013,2014,Executive
+893,9875,1,107,2009,2010,Final_Auditor
+894,12334,4,400,2008,2009,Final_Auditor
+895,4344,1,840,2019,2020,Supervisory_Board
+896,5433,3,734,2023,2020,Authorized_Representive
+897,12334,4,534,2012,2013,Executive
+898,64345,9,834,2005,2006,Managing_Director
+899,4344,1,236,2016,2017,Auditor
+900,12334,2,33,2017,2018,Final_Auditor
+901,64566,2,368,2011,2012,Executive
+902,4344,1,261,2015,2016,Executive
+903,64566,2,971,2007,2008,Authorized_Representive
+904,64345,9,424,2017,2018,Final_Auditor
+905,9875,1,365,2009,2010,Final_Auditor
+906,866,1,729,2023,2010,Authorized_Representive
+907,12336,5,477,2017,2018,Authorized_Representive
+908,555,7,495,2016,2017,Auditor
+909,64345,9,768,2008,2009,Executive
+910,866,1,609,2023,2009,Executive
+911,9875,1,981,2012,2013,Executive
+912,9875,1,468,2022,2023,Managing_Director
+913,64566,2,361,2007,2008,Managing_Director
+914,5433,3,470,2012,2013,Managing_Director
+915,12334,4,482,2006,2007,Supervisory_Board
+916,4344,1,114,2005,2006,Supervisory_Board
+917,64566,2,789,2009,2010,Auditor
+918,9875,1,291,2017,2018,Authorized_Representive
+919,555,6,589,2021,2022,Auditor
+920,64566,2,852,2011,2012,Executive
+921,12334,2,867,2016,2017,Executive
+922,64345,9,949,2020,2021,Final_Auditor
+923,12384,8,587,2011,2012,Final_Auditor
+924,9875,1,635,2008,2009,Managing_Director
+925,12384,8,283,2009,2010,Executive
+926,866,1,401,2023,2010,Auditor
+927,12334,2,916,2020,2021,Final_Auditor
+928,866,1,35,2011,2012,Managing_Director
+929,9875,1,924,2016,2017,Final_Auditor
+930,555,7,223,2017,2018,Managing_Director
+931,64345,9,197,2005,2006,Executive
+932,555,7,746,2017,2018,Auditor
+933,64345,9,467,2009,2010,Final_Auditor
+934,4344,1,945,2011,2012,Supervisory_Board
+935,555,6,631,2020,2021,Executive
+936,64566,2,390,2012,2013,Managing_Director
+937,12334,4,99,2013,2014,Auditor
+938,64566,2,753,2022,2023,Final_Auditor
+939,12336,5,509,2005,2006,Managing_Director
+940,9875,1,694,2006,2007,Managing_Director
+941,4344,1,716,2009,2010,Final_Auditor
+942,5433,3,52,2005,2006,Supervisory_Board
+943,4344,1,787,2015,2016,Authorized_Representive
+944,64566,2,568,2007,2008,Executive
+945,12384,8,72,2012,2013,Final_Auditor
+946,555,6,239,2017,2018,Authorized_Representive
+947,4344,1,129,2023,2018,Auditor
+948,64345,9,176,2018,2019,Auditor
+949,12334,2,568,2016,2017,Final_Auditor
+950,4344,1,576,2013,2014,Authorized_Representive
+951,12334,2,792,2005,2006,Final_Auditor
+952,555,6,269,2012,2013,Managing_Director
+953,64566,2,323,2021,2022,Executive
+954,5433,3,875,2012,2013,Managing_Director
+955,64566,2,746,2017,2018,Auditor
+956,5433,3,974,2010,2011,Supervisory_Board
+957,9875,1,70,2013,2014,Managing_Director
+958,12334,2,792,2012,2013,Managing_Director
+959,555,7,296,2010,2011,Supervisory_Board
+960,64566,2,791,2012,2013,Supervisory_Board
+961,64566,2,870,2021,2022,Managing_Director
+962,64345,9,134,2010,2011,Final_Auditor
+963,12336,5,601,2006,2007,Auditor
+964,12334,2,686,2005,2006,Managing_Director
+965,12384,8,647,2005,2006,Authorized_Representive
+966,9875,1,142,2023,2006,Supervisory_Board
+967,9875,1,6,2021,2022,Final_Auditor
+968,64566,2,643,2022,2023,Managing_Director
+969,555,6,743,2006,2007,Supervisory_Board
+970,866,1,488,2018,2019,Supervisory_Board
+971,64566,2,78,2009,2010,Auditor
+972,12336,5,208,2005,2006,Final_Auditor
+973,555,6,615,2012,2013,Managing_Director
+974,9875,1,183,2022,2023,Supervisory_Board
+975,555,6,460,2006,2007,Auditor
+976,9875,1,502,2007,2008,Authorized_Representive
+977,555,7,624,2022,2023,Auditor
+978,12336,5,352,2009,2010,Auditor
+979,9875,1,221,2015,2016,Supervisory_Board
+980,64566,2,277,2022,2023,Executive
+981,866,1,942,2019,2020,Supervisory_Board
+982,9875,1,469,2019,2020,Authorized_Representive
+983,12334,2,503,2023,2020,Auditor
+984,64345,9,492,2023,2020,Executive
+985,555,6,920,2021,2022,Auditor
+986,9875,1,111,2016,2017,Authorized_Representive
+987,12384,8,818,2019,2020,Supervisory_Board
+988,555,6,543,2013,2014,Executive
+989,12334,2,827,2011,2012,Auditor
+990,4344,1,192,2023,2012,Managing_Director
+991,12334,4,451,2012,2013,Executive
+992,866,1,147,2021,2022,Supervisory_Board
+993,12384,8,579,2019,2020,Executive
+994,12334,2,514,2006,2007,Supervisory_Board
+995,12334,4,738,2017,2018,Final_Auditor
+996,5433,3,612,2010,2011,Auditor
+997,555,6,41,2017,2018,Supervisory_Board
+998,4344,1,415,2010,2011,Supervisory_Board
+999,12334,4,807,2018,2019,Executive
+1000,12334,2,110,2019,2020,Final_Auditor
+1001,555,6,353,2008,2009,Supervisory_Board
+1002,9875,1,701,2023,2009,Managing_Director
+1003,555,7,402,2006,2007,Managing_Director
+1004,5433,3,174,2013,2014,Supervisory_Board
+1005,866,1,931,2005,2006,Executive
+1006,4344,1,99,2010,2011,Auditor
+1007,866,1,547,2020,2021,Executive
+1008,4344,1,893,2013,2014,Supervisory_Board
+1009,12384,8,588,2013,2014,Final_Auditor
+1010,12336,5,44,2013,2014,Supervisory_Board
+1011,555,6,119,2008,2009,Auditor
+1012,64345,9,15,2015,2016,Auditor
+1013,12384,8,753,2010,2011,Managing_Director
+1014,555,6,355,2008,2009,Supervisory_Board
+1015,64566,2,420,2007,2008,Supervisory_Board
+1016,64345,9,764,2008,2009,Managing_Director
+1017,555,7,288,2006,2007,Authorized_Representive
+1018,12384,8,918,2018,2019,Executive
+1019,12384,8,907,2018,2019,Final_Auditor
+1020,12334,2,196,2014,2015,Auditor
+1021,866,1,981,2010,2011,Supervisory_Board
+1022,12334,2,415,2016,2017,Authorized_Representive
+1023,12336,5,101,2009,2010,Authorized_Representive
+1024,12334,4,631,2023,2010,Authorized_Representive
+1025,12334,4,402,2016,2017,Managing_Director
+1026,555,6,733,2016,2017,Managing_Director
+1027,12334,2,744,2009,2010,Managing_Director
+1028,9875,1,192,2008,2009,Managing_Director
+1029,555,7,260,2022,2023,Final_Auditor
+1030,12384,8,695,2007,2008,Executive
+1031,64566,2,723,2019,2020,Executive
+1032,5433,3,897,2013,2014,Executive
+1033,9875,1,510,2007,2008,Final_Auditor
+1034,64566,2,948,2014,2015,Auditor
+1035,4344,1,167,2015,2016,Executive
+1036,64566,2,292,2007,2008,Managing_Director
+1037,12336,5,69,2016,2017,Managing_Director
+1038,64566,2,798,2016,2017,Authorized_Representive
+1039,866,1,657,2015,2016,Auditor
+1040,4344,1,764,2018,2019,Supervisory_Board
+1041,12334,4,14,2019,2020,Executive
+1042,4344,1,646,2007,2008,Final_Auditor
+1043,555,7,790,2012,2013,Executive
+1044,64566,2,576,2022,2023,Executive
+1045,12336,5,779,2012,2013,Auditor
+1046,555,7,914,2007,2008,Executive
+1047,12334,2,438,2019,2020,Executive
+1048,866,1,233,2006,2007,Managing_Director
+1049,12334,4,243,2019,2020,Managing_Director
+1050,64345,9,421,2010,2011,Authorized_Representive
+1051,555,6,928,2014,2015,Authorized_Representive
+1052,555,6,265,2012,2013,Executive
+1053,866,1,23,2007,2008,Auditor
+1054,64345,9,534,2014,2015,Supervisory_Board
+1055,4344,1,10,2023,2015,Executive
+1056,9875,1,527,2019,2020,Executive
+1057,12334,4,323,2017,2018,Managing_Director
+1058,866,1,764,2014,2015,Auditor
+1059,5433,3,215,2011,2012,Auditor
+1060,12334,2,672,2019,2020,Auditor
+1061,5433,3,699,2015,2016,Auditor
+1062,555,7,320,2014,2015,Final_Auditor
+1063,12334,4,774,2015,2016,Executive
+1064,4344,1,768,2022,2023,Managing_Director
+1065,866,1,588,2020,2021,Managing_Director
+1066,12336,5,118,2009,2010,Auditor
+1067,12336,5,613,2018,2019,Executive
+1068,4344,1,727,2008,2009,Final_Auditor
+1069,64566,2,735,2015,2016,Auditor
+1070,12336,5,234,2022,2023,Auditor
+1071,12384,8,405,2013,2014,Auditor
+1072,12384,8,386,2016,2017,Authorized_Representive
+1073,5433,3,40,2006,2007,Authorized_Representive
+1074,9875,1,529,2023,2007,Supervisory_Board
+1075,12336,5,880,2010,2011,Executive
+1076,12384,8,436,2017,2018,Authorized_Representive
+1077,12384,8,991,2013,2014,Authorized_Representive
+1078,12336,5,393,2010,2011,Auditor
+1079,866,1,794,2016,2017,Executive
+1080,555,6,399,2007,2008,Authorized_Representive
+1081,555,7,53,2005,2006,Authorized_Representive
+1082,5433,3,825,2010,2011,Executive
+1083,9875,1,898,2009,2010,Final_Auditor
+1084,4344,1,690,2013,2014,Supervisory_Board
+1085,555,7,873,2021,2022,Supervisory_Board
+1086,5433,3,213,2005,2006,Managing_Director
+1087,9875,1,728,2018,2019,Auditor
+1088,5433,3,907,2010,2011,Managing_Director
+1089,555,7,353,2016,2017,Auditor
+1090,12334,2,731,2022,2023,Auditor
+1091,64566,2,365,2016,2017,Final_Auditor
+1092,5433,3,586,2016,2017,Authorized_Representive
+1093,64345,9,697,2022,2023,Authorized_Representive
+1094,555,7,101,2006,2007,Auditor
+1095,5433,3,716,2021,2022,Supervisory_Board
+1096,64345,9,175,2005,2006,Final_Auditor
+1097,9875,1,322,2016,2017,Authorized_Representive
+1098,12334,4,254,2022,2023,Final_Auditor
+1099,12334,4,317,2008,2009,Authorized_Representive
+1100,555,6,860,2009,2010,Supervisory_Board
+1101,4344,1,357,2005,2006,Final_Auditor
+1102,4344,1,278,2007,2008,Executive
+1103,64566,2,139,2016,2017,Managing_Director
+1104,866,1,43,2015,2016,Managing_Director
+1105,12334,4,855,2020,2021,Managing_Director
+1106,64345,9,124,2014,2015,Auditor
+1107,555,6,695,2006,2007,Final_Auditor
+1108,9875,1,193,2006,2007,Auditor
+1109,12384,8,803,2019,2020,Final_Auditor
+1110,5433,3,243,2020,2021,Supervisory_Board
+1111,64345,9,262,2018,2019,Managing_Director
+1112,9875,1,449,2011,2012,Supervisory_Board
+1113,555,6,385,2007,2008,Auditor
+1114,12334,4,223,2022,2023,Managing_Director
+1115,12384,8,712,2014,2015,Authorized_Representive
+1116,12336,5,998,2008,2009,Auditor
+1117,64345,9,416,2009,2010,Managing_Director
+1118,555,7,841,2010,2011,Authorized_Representive
+1119,555,7,91,2009,2010,Managing_Director
+1120,555,7,68,2019,2020,Final_Auditor
+1121,866,1,50,2020,2021,Authorized_Representive
+1122,555,7,436,2014,2015,Auditor
+1123,4344,1,483,2017,2018,Supervisory_Board
+1124,555,6,54,2015,2016,Managing_Director
+1125,5433,3,869,2011,2012,Final_Auditor
+1126,555,7,936,2005,2006,Final_Auditor
+1127,64566,2,810,2014,2015,Final_Auditor
+1128,866,1,924,2008,2009,Final_Auditor
+1129,555,6,30,2010,2011,Auditor
+1130,555,7,298,2021,2022,Final_Auditor
+1131,5433,3,182,2009,2010,Authorized_Representive
+1132,12334,2,757,2018,2019,Authorized_Representive
+1133,64566,2,462,2014,2015,Auditor
+1134,555,6,637,2020,2021,Authorized_Representive
+1135,866,1,744,2006,2007,Supervisory_Board
+1136,12334,4,495,2008,2009,Final_Auditor
+1137,555,6,618,2015,2016,Supervisory_Board
+1138,64345,9,312,2010,2011,Final_Auditor
+1139,866,1,80,2011,2012,Authorized_Representive
+1140,866,1,51,2013,2014,Final_Auditor
+1141,64345,9,658,2009,2010,Executive
+1142,12334,2,685,2020,2021,Executive
+1143,555,6,183,2018,2019,Managing_Director
+1144,12384,8,767,2005,2006,Final_Auditor
+1145,555,7,378,2015,2016,Supervisory_Board
+1146,4344,1,928,2023,2016,Authorized_Representive
+1147,4344,1,37,2021,2022,Managing_Director
+1148,9875,1,754,2018,2019,Executive
+1149,64566,2,275,2005,2006,Authorized_Representive
+1150,64345,9,974,2007,2008,Authorized_Representive
+1151,12336,5,894,2006,2007,Supervisory_Board
+1152,5433,3,740,2007,2008,Final_Auditor
+1153,866,1,679,2013,2014,Executive
+1154,12334,2,452,2008,2009,Authorized_Representive
+1155,12334,2,259,2015,2016,Final_Auditor
+1156,12336,5,924,2009,2010,Auditor
+1157,64345,9,615,2010,2011,Auditor
+1158,555,6,189,2015,2016,Final_Auditor
+1159,64345,9,383,2017,2018,Executive
+1160,12334,4,41,2007,2008,Auditor
+1161,12334,2,91,2011,2012,Auditor
+1162,555,7,929,2014,2015,Executive
+1163,12336,5,774,2022,2023,Supervisory_Board
+1164,64566,2,364,2018,2019,Supervisory_Board
+1165,12336,5,819,2010,2011,Authorized_Representive
+1166,9875,1,80,2012,2013,Final_Auditor
+1167,64566,2,50,2015,2016,Executive
+1168,555,7,766,2017,2018,Authorized_Representive
+1169,12384,8,682,2018,2019,Supervisory_Board
+1170,64566,2,65,2023,2019,Auditor
+1171,866,1,704,2016,2017,Supervisory_Board
+1172,12334,2,615,2010,2011,Managing_Director
+1173,555,7,154,2006,2007,Supervisory_Board
+1174,9875,1,677,2006,2007,Authorized_Representive
+1175,12384,8,936,2008,2009,Managing_Director
+1176,555,6,468,2009,2010,Authorized_Representive
+1177,12334,2,340,2009,2010,Executive
+1178,12334,2,82,2019,2020,Authorized_Representive
+1179,12334,4,429,2021,2022,Supervisory_Board
+1180,64345,9,995,2014,2015,Auditor
+1181,12384,8,325,2010,2011,Supervisory_Board
+1182,555,6,933,2011,2012,Managing_Director
+1183,9875,1,257,2013,2014,Supervisory_Board
+1184,4344,1,108,2011,2012,Executive
+1185,12334,4,662,2008,2009,Auditor
+1186,5433,3,212,2009,2010,Auditor
+1187,12334,2,602,2008,2009,Executive
+1188,64345,9,340,2007,2008,Authorized_Representive
+1189,12334,4,315,2013,2014,Auditor
+1190,866,1,49,2012,2013,Executive
+1191,12334,4,280,2022,2023,Final_Auditor
+1192,555,7,456,2022,2023,Supervisory_Board
+1193,555,6,184,2021,2022,Authorized_Representive
+1194,4344,1,345,2006,2007,Managing_Director
+1195,9875,1,958,2005,2006,Supervisory_Board
+1196,12384,8,818,2007,2008,Final_Auditor
+1197,12334,4,718,2009,2010,Managing_Director
+1198,5433,3,119,2012,2013,Auditor
+1199,64566,2,843,2017,2018,Supervisory_Board
+1200,555,6,458,2008,2009,Authorized_Representive
+1201,5433,3,188,2017,2018,Supervisory_Board
+1202,64566,2,267,2021,2022,Executive
+1203,64345,9,202,2015,2016,Executive
+1204,555,6,519,2018,2019,Auditor
+1205,12334,2,12,2015,2016,Authorized_Representive
+1206,12384,8,320,2012,2013,Executive
+1207,12334,2,754,2020,2021,Authorized_Representive
+1208,12334,2,761,2006,2007,Managing_Director
+1209,12334,2,925,2007,2008,Authorized_Representive
+1210,9875,1,259,2005,2006,Managing_Director
+1211,12334,2,595,2018,2019,Supervisory_Board
+1212,64345,9,258,2005,2006,Managing_Director
+1213,866,1,182,2018,2019,Executive
+1214,64566,2,515,2023,2019,Executive
+1215,12336,5,820,2006,2007,Authorized_Representive
+1216,12334,2,497,2014,2015,Supervisory_Board
+1217,866,1,32,2007,2008,Executive
+1218,555,7,188,2018,2019,Authorized_Representive
+1219,555,6,165,2006,2007,Authorized_Representive
+1220,12334,2,731,2018,2019,Auditor
+1221,9875,1,180,2006,2007,Supervisory_Board
+1222,64566,2,871,2020,2021,Executive
+1223,555,6,918,2015,2016,Auditor
+1224,64345,9,780,2010,2011,Supervisory_Board
+1225,12384,8,413,2015,2016,Managing_Director
+1226,555,6,299,2023,2016,Authorized_Representive
+1227,64345,9,649,2006,2007,Auditor
+1228,12336,5,721,2019,2020,Supervisory_Board
+1229,12334,4,169,2011,2012,Authorized_Representive
+1230,64566,2,41,2018,2019,Managing_Director
+1231,12336,5,944,2011,2012,Executive
+1232,12334,4,896,2011,2012,Final_Auditor
+1233,4344,1,95,2018,2019,Final_Auditor
+1234,12384,8,330,2021,2022,Managing_Director
+1235,12336,5,913,2009,2010,Managing_Director
+1236,64566,2,582,2017,2018,Auditor
+1237,64345,9,410,2016,2017,Final_Auditor
+1238,555,6,9,2015,2016,Managing_Director
+1239,5433,3,860,2016,2017,Final_Auditor
+1240,64345,9,105,2019,2020,Supervisory_Board
+1241,64345,9,915,2015,2016,Supervisory_Board
+1242,64566,2,24,2005,2006,Managing_Director
+1243,866,1,754,2013,2014,Executive
+1244,12336,5,549,2009,2010,Managing_Director
+1245,9875,1,897,2021,2022,Auditor
+1246,4344,1,184,2017,2018,Authorized_Representive
+1247,5433,3,249,2019,2020,Supervisory_Board
+1248,12384,8,571,2023,2020,Managing_Director
+1249,555,7,780,2016,2017,Final_Auditor
+1250,5433,3,641,2021,2022,Executive
+1251,5433,3,688,2010,2011,Final_Auditor
+1252,12336,5,815,2022,2023,Executive
+1253,12384,8,539,2011,2012,Executive
+1254,64566,2,348,2008,2009,Authorized_Representive
+1255,4344,1,750,2014,2015,Final_Auditor
+1256,555,6,147,2014,2015,Auditor
+1257,866,1,301,2009,2010,Auditor
+1258,12384,8,506,2010,2011,Auditor
+1259,866,1,759,2014,2015,Managing_Director
+1260,4344,1,790,2009,2010,Managing_Director
+1261,12334,2,839,2013,2014,Supervisory_Board
+1262,866,1,662,2009,2010,Auditor
+1263,866,1,308,2006,2007,Supervisory_Board
+1264,5433,3,645,2022,2023,Managing_Director
+1265,12334,4,66,2011,2012,Auditor
+1266,12336,5,869,2019,2020,Managing_Director
+1267,12334,2,833,2005,2006,Supervisory_Board
+1268,555,6,280,2016,2017,Executive
+1269,866,1,730,2021,2022,Executive
+1270,12384,8,714,2023,2022,Auditor
+1271,12336,5,624,2011,2012,Supervisory_Board
+1272,12384,8,694,2013,2014,Authorized_Representive
+1273,12336,5,153,2020,2021,Executive
+1274,555,7,359,2007,2008,Authorized_Representive
+1275,12334,2,905,2011,2012,Supervisory_Board
+1276,12334,2,295,2011,2012,Auditor
+1277,64566,2,407,2012,2013,Authorized_Representive
+1278,5433,3,594,2020,2021,Final_Auditor
+1279,64345,9,903,2013,2014,Executive
+1280,4344,1,461,2015,2016,Executive
+1281,866,1,189,2017,2018,Final_Auditor
+1282,12334,2,907,2023,2018,Managing_Director
+1283,555,7,857,2005,2006,Managing_Director
+1284,12336,5,620,2020,2021,Supervisory_Board
+1285,866,1,675,2018,2019,Executive
+1286,12334,4,364,2015,2016,Executive
+1287,64345,9,925,2014,2015,Managing_Director
+1288,12334,4,607,2017,2018,Managing_Director
+1289,4344,1,70,2013,2014,Authorized_Representive
+1290,4344,1,944,2006,2007,Managing_Director
+1291,12334,2,612,2022,2023,Authorized_Representive
+1292,9875,1,576,2008,2009,Final_Auditor
+1293,64566,2,678,2021,2022,Managing_Director
+1294,12334,2,448,2012,2013,Executive
+1295,64345,9,139,2011,2012,Managing_Director
+1296,5433,3,129,2012,2013,Supervisory_Board
+1297,9875,1,882,2017,2018,Executive
+1298,12334,2,397,2018,2019,Authorized_Representive
+1299,12384,8,376,2019,2020,Managing_Director
+1300,12336,5,304,2014,2015,Auditor
+1301,866,1,340,2007,2008,Authorized_Representive
+1302,866,1,665,2022,2023,Executive
+1303,12334,4,557,2008,2009,Final_Auditor
+1304,12334,2,79,2022,2023,Supervisory_Board
+1305,866,1,714,2012,2013,Managing_Director
+1306,12384,8,17,2019,2020,Managing_Director
+1307,5433,3,914,2021,2022,Executive
+1308,64566,2,877,2018,2019,Auditor
+1309,4344,1,375,2021,2022,Executive
+1310,12334,4,950,2013,2014,Executive
+1311,9875,1,79,2023,2014,Final_Auditor
+1312,5433,3,144,2022,2023,Supervisory_Board
+1313,12336,5,434,2015,2016,Executive
+1314,866,1,132,2012,2013,Managing_Director
+1315,64345,9,144,2014,2015,Managing_Director
+1316,12336,5,690,2011,2012,Authorized_Representive
+1317,12334,2,965,2012,2013,Supervisory_Board
+1318,866,1,930,2020,2021,Executive
+1319,555,6,964,2012,2013,Auditor
+1320,9875,1,248,2010,2011,Final_Auditor
+1321,5433,3,726,2013,2014,Executive
+1322,12334,2,188,2009,2010,Managing_Director
+1323,64566,2,932,2013,2014,Authorized_Representive
+1324,5433,3,126,2014,2015,Auditor
+1325,866,1,208,2006,2007,Authorized_Representive
+1326,12334,4,76,2017,2018,Supervisory_Board
+1327,64345,9,606,2007,2008,Final_Auditor
+1328,5433,3,703,2023,2008,Auditor
+1329,555,6,996,2013,2014,Executive
+1330,4344,1,642,2019,2020,Executive
+1331,12334,2,749,2019,2020,Managing_Director
+1332,555,7,954,2022,2023,Auditor
+1333,12334,4,920,2016,2017,Auditor
+1334,64566,2,730,2022,2023,Authorized_Representive
+1335,866,1,795,2010,2011,Executive
+1336,64345,9,254,2010,2011,Authorized_Representive
+1337,866,1,526,2022,2023,Final_Auditor
+1338,64566,2,767,2012,2013,Executive
+1339,555,7,596,2014,2015,Authorized_Representive
+1340,555,6,660,2012,2013,Final_Auditor
+1341,12334,2,32,2019,2020,Supervisory_Board
+1342,555,6,802,2014,2015,Authorized_Representive
+1343,64345,9,657,2016,2017,Managing_Director
+1344,64566,2,346,2023,2017,Authorized_Representive
+1345,5433,3,301,2015,2016,Authorized_Representive
+1346,64566,2,381,2014,2015,Managing_Director
+1347,5433,3,268,2007,2008,Managing_Director
+1348,5433,3,947,2013,2014,Managing_Director
+1349,64566,2,755,2009,2010,Authorized_Representive
+1350,12336,5,939,2006,2007,Managing_Director
+1351,12384,8,488,2014,2015,Authorized_Representive
+1352,64345,9,891,2019,2020,Authorized_Representive
+1353,64345,9,639,2011,2012,Authorized_Representive
+1354,12334,2,607,2018,2019,Auditor
+1355,12384,8,161,2008,2009,Final_Auditor
+1356,866,1,696,2013,2014,Executive
+1357,866,1,373,2014,2015,Auditor
+1358,4344,1,888,2009,2010,Authorized_Representive
+1359,555,6,437,2012,2013,Supervisory_Board
+1360,12334,2,548,2010,2011,Final_Auditor
+1361,12334,2,845,2010,2011,Auditor
+1362,12336,5,536,2006,2007,Managing_Director
+1363,4344,1,506,2013,2014,Executive
+1364,64345,9,366,2021,2022,Final_Auditor
+1365,12384,8,251,2021,2022,Final_Auditor
+1366,12334,4,332,2005,2006,Final_Auditor
+1367,12384,8,730,2011,2012,Final_Auditor
+1368,12334,2,849,2016,2017,Final_Auditor
+1369,12334,4,921,2006,2007,Auditor
+1370,866,1,865,2007,2008,Auditor
+1371,12336,5,771,2016,2017,Final_Auditor
+1372,12336,5,384,2022,2023,Auditor
+1373,555,6,99,2007,2008,Authorized_Representive
+1374,5433,3,203,2005,2006,Final_Auditor
+1375,12384,8,303,2019,2020,Executive
+1376,64345,9,504,2013,2014,Managing_Director
+1377,866,1,41,2016,2017,Final_Auditor
+1378,12334,4,588,2006,2007,Auditor
+1379,555,6,91,2007,2008,Supervisory_Board
+1380,866,1,94,2011,2012,Authorized_Representive
+1381,12334,4,109,2017,2018,Authorized_Representive
+1382,64566,2,276,2006,2007,Managing_Director
+1383,12334,4,247,2005,2006,Authorized_Representive
+1384,12334,2,949,2006,2007,Final_Auditor
+1385,555,7,359,2008,2009,Supervisory_Board
+1386,12334,4,835,2018,2019,Managing_Director
+1387,9875,1,761,2005,2006,Executive
+1388,555,7,513,2015,2016,Supervisory_Board
+1389,555,6,65,2021,2022,Supervisory_Board
+1390,12384,8,266,2010,2011,Executive
+1391,9875,1,990,2012,2013,Auditor
+1392,555,7,901,2017,2018,Auditor
+1393,64566,2,976,2020,2021,Managing_Director
+1394,64566,2,769,2018,2019,Final_Auditor
+1395,555,7,611,2007,2008,Auditor
+1396,12334,2,562,2014,2015,Executive
+1397,12334,2,550,2021,2022,Managing_Director
+1398,64566,2,608,2021,2022,Auditor
+1399,64566,2,161,2010,2011,Managing_Director
+1400,4344,1,249,2009,2010,Final_Auditor
+1401,9875,1,150,2006,2007,Final_Auditor
+1402,12334,2,822,2009,2010,Supervisory_Board
+1403,12384,8,49,2011,2012,Authorized_Representive
+1404,12384,8,464,2014,2015,Managing_Director
+1405,64345,9,345,2021,2022,Supervisory_Board
+1406,12336,5,883,2016,2017,Supervisory_Board
+1407,866,1,478,2010,2011,Final_Auditor
+1408,12334,4,917,2023,2011,Auditor
+1409,555,6,817,2005,2006,Supervisory_Board
+1410,5433,3,865,2017,2018,Executive
+1411,12334,2,629,2006,2007,Executive
+1412,12334,4,175,2009,2010,Final_Auditor
+1413,12336,5,237,2010,2011,Final_Auditor
+1414,555,7,172,2013,2014,Supervisory_Board
+1415,12334,4,863,2005,2006,Authorized_Representive
+1416,4344,1,310,2005,2006,Authorized_Representive
+1417,64345,9,714,2012,2013,Executive
+1418,12336,5,204,2005,2006,Final_Auditor
+1419,555,7,518,2011,2012,Supervisory_Board
+1420,9875,1,690,2018,2019,Executive
+1421,12384,8,410,2014,2015,Supervisory_Board
+1422,866,1,565,2008,2009,Authorized_Representive
+1423,5433,3,381,2012,2013,Supervisory_Board
+1424,555,7,231,2017,2018,Supervisory_Board
+1425,5433,3,714,2013,2014,Executive
+1426,64566,2,819,2014,2015,Executive
+1427,12384,8,481,2019,2020,Supervisory_Board
+1428,64566,2,843,2014,2015,Supervisory_Board
+1429,4344,1,557,2013,2014,Executive
+1430,12334,2,995,2007,2008,Authorized_Representive
+1431,866,1,699,2013,2014,Executive
+1432,555,6,63,2005,2006,Auditor
+1433,9875,1,731,2012,2013,Authorized_Representive
+1434,4344,1,989,2020,2021,Authorized_Representive
+1435,12336,5,715,2017,2018,Supervisory_Board
+1436,12334,4,756,2019,2020,Authorized_Representive
+1437,555,6,530,2005,2006,Supervisory_Board
+1438,4344,1,15,2011,2012,Authorized_Representive
+1439,5433,3,660,2018,2019,Supervisory_Board
+1440,555,7,204,2008,2009,Authorized_Representive
+1441,64345,9,871,2007,2008,Auditor
+1442,12334,2,684,2011,2012,Supervisory_Board
+1443,12334,4,246,2006,2007,Auditor
+1444,4344,1,822,2013,2014,Managing_Director
+1445,555,6,440,2016,2017,Managing_Director
+1446,12336,5,993,2015,2016,Authorized_Representive
+1447,12384,8,234,2022,2023,Supervisory_Board
+1448,5433,3,830,2012,2013,Final_Auditor
+1449,64566,2,929,2022,2023,Executive
+1450,12334,4,972,2011,2012,Final_Auditor
+1451,12334,2,434,2019,2020,Final_Auditor
+1452,12384,8,593,2018,2019,Auditor
+1453,12336,5,933,2010,2011,Final_Auditor
+1454,555,6,307,2005,2006,Final_Auditor
+1455,12334,4,145,2009,2010,Executive
+1456,9875,1,152,2014,2015,Authorized_Representive
+1457,12336,5,176,2015,2016,Authorized_Representive
+1458,64566,2,665,2007,2008,Auditor
+1459,9875,1,783,2019,2020,Auditor
+1460,64345,9,321,2007,2008,Final_Auditor
+1461,12334,2,300,2023,2008,Authorized_Representive
+1462,866,1,740,2018,2019,Supervisory_Board
+1463,12334,4,867,2011,2012,Auditor
+1464,12384,8,245,2023,2012,Managing_Director
+1465,12336,5,939,2007,2008,Supervisory_Board
+1466,5433,3,135,2007,2008,Authorized_Representive
+1467,12336,5,762,2019,2020,Auditor
+1468,555,6,325,2021,2022,Authorized_Representive
+1469,555,7,962,2020,2021,Managing_Director
+1470,555,7,613,2008,2009,Supervisory_Board
+1471,5433,3,355,2018,2019,Managing_Director
+1472,555,6,653,2022,2023,Authorized_Representive
+1473,12334,2,199,2014,2015,Authorized_Representive
+1474,64566,2,656,2017,2018,Executive
+1475,555,6,456,2007,2008,Executive
+1476,64566,2,689,2006,2007,Managing_Director
+1477,866,1,671,2007,2008,Authorized_Representive
+1478,9875,1,4,2016,2017,Managing_Director
+1479,12334,4,921,2013,2014,Supervisory_Board
+1480,64566,2,217,2011,2012,Authorized_Representive
+1481,12336,5,619,2009,2010,Managing_Director
+1482,64345,9,424,2019,2020,Auditor
+1483,5433,3,769,2013,2014,Executive
+1484,9875,1,324,2022,2023,Auditor
+1485,64345,9,85,2017,2018,Authorized_Representive
+1486,866,1,779,2020,2021,Managing_Director
+1487,64345,9,386,2005,2006,Final_Auditor
+1488,555,6,850,2019,2020,Executive
+1489,9875,1,795,2020,2021,Supervisory_Board
+1490,555,7,898,2013,2014,Supervisory_Board
+1491,64345,9,579,2022,2023,Managing_Director
+1492,5433,3,834,2011,2012,Managing_Director
+1493,555,7,478,2005,2006,Managing_Director
+1494,12334,2,791,2014,2015,Executive
+1495,12384,8,604,2008,2009,Managing_Director
+1496,9875,1,197,2010,2011,Managing_Director
+1497,866,1,706,2006,2007,Final_Auditor
+1498,555,7,423,2010,2011,Final_Auditor
+1499,12334,4,312,2014,2015,Authorized_Representive
+1500,4344,1,661,2009,2010,Executive
+1501,12336,5,733,2006,2007,Auditor
+1502,555,6,166,2016,2017,Executive
+1503,9875,1,895,2005,2006,Supervisory_Board
+1504,12336,5,824,2013,2014,Authorized_Representive
+1505,5433,3,121,2016,2017,Final_Auditor
+1506,5433,3,733,2012,2013,Final_Auditor
+1507,4344,1,174,2006,2007,Final_Auditor
+1508,4344,1,960,2020,2021,Supervisory_Board
+1509,12334,2,672,2011,2012,Supervisory_Board
+1510,64566,2,996,2015,2016,Auditor
+1511,64345,9,255,2023,2016,Managing_Director
+1512,555,7,426,2016,2017,Auditor
+1513,5433,3,823,2017,2018,Authorized_Representive
+1514,9875,1,578,2014,2015,Managing_Director
+1515,12334,4,364,2011,2012,Executive
+1516,555,6,973,2021,2022,Authorized_Representive
+1517,5433,3,787,2023,2022,Final_Auditor
+1518,555,7,257,2009,2010,Executive
+1519,5433,3,839,2006,2007,Authorized_Representive
+1520,12334,4,878,2013,2014,Supervisory_Board
+1521,9875,1,42,2012,2013,Authorized_Representive
+1522,12334,4,461,2019,2020,Final_Auditor
+1523,12334,4,504,2006,2007,Auditor
+1524,866,1,85,2011,2012,Executive
+1525,555,7,147,2011,2012,Authorized_Representive
+1526,12334,4,352,2011,2012,Authorized_Representive
+1527,12384,8,596,2010,2011,Executive
+1528,12336,5,791,2020,2021,Auditor
+1529,555,7,251,2017,2018,Authorized_Representive
+1530,555,7,587,2011,2012,Supervisory_Board
+1531,12334,2,562,2018,2019,Executive
+1532,12384,8,866,2012,2013,Authorized_Representive
+1533,12334,2,32,2013,2014,Managing_Director
+1534,12334,2,982,2019,2020,Final_Auditor
+1535,555,6,117,2013,2014,Managing_Director
+1536,12334,2,874,2013,2014,Executive
+1537,12334,2,891,2013,2014,Final_Auditor
+1538,64345,9,35,2023,2014,Managing_Director
+1539,9875,1,288,2019,2020,Authorized_Representive
+1540,64566,2,516,2019,2020,Executive
+1541,12334,2,662,2008,2009,Managing_Director
+1542,12334,2,628,2017,2018,Authorized_Representive
+1543,64345,9,470,2011,2012,Final_Auditor
+1544,555,6,327,2015,2016,Supervisory_Board
+1545,4344,1,228,2022,2023,Auditor
+1546,555,7,480,2019,2020,Executive
+1547,4344,1,209,2022,2023,Executive
+1548,555,6,143,2015,2016,Authorized_Representive
+1549,9875,1,813,2015,2016,Auditor
+1550,12334,4,199,2010,2011,Final_Auditor
+1551,12334,2,219,2007,2008,Final_Auditor
+1552,9875,1,841,2014,2015,Final_Auditor
+1553,12334,4,173,2012,2013,Managing_Director
+1554,9875,1,201,2020,2021,Final_Auditor
+1555,64566,2,864,2018,2019,Authorized_Representive
+1556,12384,8,694,2014,2015,Managing_Director
+1557,64345,9,299,2019,2020,Managing_Director
+1558,5433,3,756,2015,2016,Executive
+1559,64345,9,277,2015,2016,Managing_Director
+1560,12336,5,995,2006,2007,Authorized_Representive
+1561,9875,1,496,2021,2022,Final_Auditor
+1562,555,7,69,2007,2008,Executive
+1563,12336,5,394,2011,2012,Executive
+1564,4344,1,369,2023,2012,Supervisory_Board
+1565,64345,9,178,2023,2012,Final_Auditor
+1566,5433,3,573,2008,2009,Supervisory_Board
+1567,866,1,581,2018,2019,Auditor
+1568,12334,4,507,2008,2009,Managing_Director
+1569,12334,4,515,2010,2011,Auditor
+1570,12334,4,627,2011,2012,Supervisory_Board
+1571,5433,3,160,2022,2023,Authorized_Representive
+1572,64345,9,138,2018,2019,Authorized_Representive
+1573,12336,5,424,2012,2013,Authorized_Representive
+1574,64345,9,389,2018,2019,Managing_Director
+1575,866,1,179,2019,2020,Executive
+1576,4344,1,130,2015,2016,Authorized_Representive
+1577,12334,4,220,2019,2020,Managing_Director
+1578,555,6,896,2015,2016,Final_Auditor
+1579,12334,4,507,2017,2018,Supervisory_Board
+1580,555,7,626,2012,2013,Auditor
+1581,555,6,875,2012,2013,Auditor
+1582,9875,1,199,2012,2013,Managing_Director
+1583,12334,2,188,2008,2009,Supervisory_Board
+1584,555,6,189,2021,2022,Managing_Director
+1585,12334,4,818,2014,2015,Auditor
+1586,64345,9,206,2009,2010,Executive
+1587,4344,1,72,2018,2019,Authorized_Representive
+1588,12334,2,127,2021,2022,Supervisory_Board
+1589,555,7,431,2012,2013,Executive
+1590,555,7,781,2019,2020,Managing_Director
+1591,64345,9,8,2005,2006,Authorized_Representive
+1592,555,6,181,2022,2023,Supervisory_Board
+1593,12336,5,368,2014,2015,Auditor
+1594,12336,5,891,2020,2021,Executive
+1595,12336,5,716,2020,2021,Authorized_Representive
+1596,5433,3,582,2012,2013,Auditor
+1597,64566,2,26,2009,2010,Final_Auditor
+1598,866,1,197,2020,2021,Auditor
+1599,12336,5,874,2010,2011,Auditor
+1600,12384,8,666,2005,2006,Auditor
+1601,4344,1,449,2010,2011,Managing_Director
+1602,555,6,509,2007,2008,Supervisory_Board
+1603,12334,2,628,2014,2015,Authorized_Representive
+1604,4344,1,711,2011,2012,Auditor
+1605,12334,4,588,2016,2017,Supervisory_Board
+1606,555,6,341,2012,2013,Auditor
+1607,4344,1,342,2022,2023,Auditor
+1608,4344,1,474,2018,2019,Auditor
+1609,555,6,631,2011,2012,Executive
+1610,64345,9,272,2017,2018,Managing_Director
+1611,12334,4,376,2005,2006,Executive
+1612,4344,1,126,2022,2023,Auditor
+1613,12336,5,173,2023,2023,Auditor
+1614,12384,8,785,2011,2012,Managing_Director
+1615,12334,2,5,2015,2016,Managing_Director
+1616,12336,5,410,2011,2012,Managing_Director
+1617,555,7,154,2014,2015,Supervisory_Board
+1618,4344,1,706,2013,2014,Supervisory_Board
+1619,12334,4,474,2012,2013,Managing_Director
+1620,555,6,102,2016,2017,Supervisory_Board
+1621,64345,9,121,2010,2011,Managing_Director
+1622,12334,2,772,2018,2019,Supervisory_Board
+1623,12336,5,716,2020,2021,Managing_Director
+1624,12334,2,730,2013,2014,Authorized_Representive
+1625,5433,3,994,2018,2019,Final_Auditor
+1626,555,7,910,2015,2016,Auditor
+1627,555,6,178,2022,2023,Managing_Director
+1628,555,6,814,2017,2018,Auditor
+1629,5433,3,833,2009,2010,Auditor
+1630,12334,4,288,2007,2008,Final_Auditor
+1631,866,1,757,2006,2007,Managing_Director
+1632,866,1,765,2005,2006,Final_Auditor
+1633,555,7,867,2007,2008,Authorized_Representive
+1634,555,7,333,2010,2011,Final_Auditor
+1635,64566,2,833,2007,2008,Supervisory_Board
+1636,555,7,282,2021,2022,Supervisory_Board
+1637,12336,5,786,2022,2023,Authorized_Representive
+1638,12384,8,656,2013,2014,Executive
+1639,12334,4,298,2023,2014,Managing_Director
+1640,64345,9,790,2011,2012,Final_Auditor
+1641,64345,9,795,2012,2013,Executive
+1642,866,1,645,2005,2006,Executive
+1643,555,7,776,2016,2017,Supervisory_Board
+1644,12334,4,173,2020,2021,Executive
+1645,12334,4,734,2006,2007,Authorized_Representive
+1646,555,6,853,2017,2018,Auditor
+1647,4344,1,980,2007,2008,Managing_Director
+1648,12384,8,288,2009,2010,Authorized_Representive
+1649,4344,1,14,2016,2017,Final_Auditor
+1650,64345,9,831,2009,2010,Supervisory_Board
+1651,9875,1,80,2015,2016,Final_Auditor
+1652,866,1,387,2021,2022,Supervisory_Board
+1653,5433,3,632,2014,2015,Auditor
+1654,12336,5,988,2010,2011,Managing_Director
+1655,64566,2,843,2019,2020,Final_Auditor
+1656,12336,5,910,2012,2013,Executive
+1657,12334,4,507,2012,2013,Managing_Director
+1658,12334,4,32,2022,2023,Final_Auditor
+1659,5433,3,861,2008,2009,Final_Auditor
+1660,555,6,472,2021,2022,Final_Auditor
+1661,555,7,913,2010,2011,Auditor
+1662,12336,5,842,2005,2006,Auditor
+1663,64345,9,928,2007,2008,Executive
+1664,4344,1,874,2022,2023,Managing_Director
+1665,12384,8,148,2006,2007,Managing_Director
+1666,4344,1,210,2007,2008,Managing_Director
+1667,12334,2,611,2008,2009,Auditor
+1668,12336,5,242,2022,2023,Managing_Director
+1669,555,6,457,2011,2012,Executive
+1670,866,1,369,2016,2017,Supervisory_Board
+1671,866,1,23,2013,2014,Supervisory_Board
+1672,64345,9,375,2012,2013,Managing_Director
+1673,555,6,125,2016,2017,Managing_Director
+1674,12334,4,565,2011,2012,Authorized_Representive
+1675,12336,5,921,2009,2010,Supervisory_Board
+1676,12334,4,401,2011,2012,Authorized_Representive
+1677,12334,2,635,2012,2013,Authorized_Representive
+1678,12336,5,324,2013,2014,Supervisory_Board
+1679,866,1,184,2021,2022,Supervisory_Board
+1680,555,6,726,2019,2020,Auditor
+1681,5433,3,270,2016,2017,Managing_Director
+1682,12334,4,324,2011,2012,Supervisory_Board
+1683,64345,9,158,2017,2018,Authorized_Representive
+1684,866,1,872,2015,2016,Authorized_Representive
+1685,12384,8,422,2014,2015,Managing_Director
+1686,9875,1,704,2012,2013,Supervisory_Board
+1687,9875,1,237,2014,2015,Authorized_Representive
+1688,12384,8,723,2012,2013,Executive
+1689,12336,5,176,2009,2010,Final_Auditor
+1690,12336,5,548,2014,2015,Final_Auditor
+1691,12336,5,438,2022,2023,Auditor
+1692,5433,3,949,2005,2006,Final_Auditor
+1693,555,7,586,2017,2018,Authorized_Representive
+1694,555,6,916,2015,2016,Auditor
+1695,4344,1,958,2018,2019,Executive
+1696,12334,2,60,2023,2019,Supervisory_Board
+1697,12334,2,81,2017,2018,Final_Auditor
+1698,5433,3,556,2009,2010,Auditor
+1699,9875,1,869,2010,2011,Auditor
+1700,64345,9,898,2008,2009,Authorized_Representive
+1701,866,1,995,2005,2006,Auditor
+1702,9875,1,933,2018,2019,Executive
+1703,12336,5,600,2005,2006,Final_Auditor
+1704,555,6,471,2006,2007,Authorized_Representive
+1705,9875,1,922,2012,2013,Executive
+1706,64345,9,699,2011,2012,Managing_Director
+1707,12334,2,288,2017,2018,Authorized_Representive
+1708,12334,4,572,2008,2009,Managing_Director
+1709,12334,2,994,2022,2023,Authorized_Representive
+1710,64566,2,604,2008,2009,Managing_Director
+1711,12334,2,626,2021,2022,Auditor
+1712,555,6,216,2019,2020,Final_Auditor
+1713,555,6,885,2019,2020,Authorized_Representive
+1714,64566,2,657,2017,2018,Managing_Director
+1715,12334,2,168,2016,2017,Executive
+1716,555,7,475,2005,2006,Final_Auditor
+1717,64566,2,823,2010,2011,Executive
+1718,12334,2,124,2020,2021,Supervisory_Board
+1719,555,7,185,2017,2018,Final_Auditor
+1720,12334,2,555,2016,2017,Authorized_Representive
+1721,64566,2,532,2022,2023,Executive
+1722,12336,5,355,2012,2013,Final_Auditor
+1723,64566,2,774,2018,2019,Final_Auditor
+1724,12334,4,642,2018,2019,Executive
+1725,64345,9,35,2010,2011,Managing_Director
+1726,4344,1,763,2022,2023,Authorized_Representive
+1727,12334,2,487,2022,2023,Supervisory_Board
+1728,866,1,578,2014,2015,Managing_Director
+1729,555,7,534,2020,2021,Authorized_Representive
+1730,12336,5,835,2018,2019,Final_Auditor
+1731,64345,9,688,2015,2016,Executive
+1732,9875,1,292,2005,2006,Authorized_Representive
+1733,4344,1,43,2005,2006,Authorized_Representive
+1734,64345,9,956,2008,2009,Authorized_Representive
+1735,12334,2,786,2015,2016,Auditor
+1736,12336,5,576,2015,2016,Managing_Director
+1737,12334,2,494,2015,2016,Supervisory_Board
+1738,5433,3,475,2009,2010,Authorized_Representive
+1739,866,1,896,2011,2012,Authorized_Representive
+1740,12336,5,531,2014,2015,Executive
+1741,12384,8,541,2006,2007,Managing_Director
+1742,64566,2,97,2012,2013,Authorized_Representive
+1743,866,1,594,2005,2006,Final_Auditor
+1744,64345,9,197,2012,2013,Auditor
+1745,555,7,769,2011,2012,Supervisory_Board
+1746,12384,8,832,2023,2012,Managing_Director
+1747,866,1,947,2007,2008,Authorized_Representive
+1748,64345,9,669,2008,2009,Executive
+1749,12334,2,85,2018,2019,Auditor
+1750,12384,8,474,2017,2018,Supervisory_Board
+1751,12336,5,78,2012,2013,Managing_Director
+1752,12336,5,953,2011,2012,Final_Auditor
+1753,9875,1,1,2014,2015,Authorized_Representive
+1754,64566,2,263,2006,2007,Supervisory_Board
+1755,12336,5,537,2014,2015,Authorized_Representive
+1756,9875,1,467,2023,2015,Authorized_Representive
+1757,555,6,290,2018,2019,Final_Auditor
+1758,555,6,787,2014,2015,Managing_Director
+1759,866,1,593,2020,2021,Supervisory_Board
+1760,64566,2,522,2023,2021,Executive
+1761,866,1,722,2006,2007,Auditor
+1762,555,6,824,2013,2014,Authorized_Representive
+1763,12334,4,901,2015,2016,Executive
+1764,4344,1,105,2013,2014,Authorized_Representive
+1765,5433,3,896,2017,2018,Supervisory_Board
+1766,12336,5,25,2009,2010,Executive
+1767,12336,5,499,2009,2010,Executive
+1768,12384,8,942,2021,2022,Final_Auditor
+1769,12334,2,865,2006,2007,Authorized_Representive
+1770,12384,8,932,2010,2011,Auditor
+1771,4344,1,922,2013,2014,Authorized_Representive
+1772,9875,1,455,2015,2016,Supervisory_Board
+1773,12334,4,335,2009,2010,Executive
+1774,64566,2,146,2021,2022,Executive
+1775,9875,1,853,2007,2008,Final_Auditor
+1776,64566,2,340,2022,2023,Managing_Director
+1777,555,7,69,2015,2016,Final_Auditor
+1778,4344,1,58,2005,2006,Managing_Director
+1779,12334,4,801,2012,2013,Supervisory_Board
+1780,64566,2,356,2008,2009,Final_Auditor
+1781,12334,4,777,2012,2013,Supervisory_Board
+1782,4344,1,651,2023,2013,Executive
+1783,12334,4,795,2010,2011,Final_Auditor
+1784,5433,3,433,2023,2011,Executive
+1785,12334,4,964,2018,2019,Managing_Director
+1786,12336,5,190,2011,2012,Authorized_Representive
+1787,64566,2,905,2023,2012,Executive
+1788,9875,1,960,2014,2015,Authorized_Representive
+1789,64566,2,922,2013,2014,Final_Auditor
+1790,9875,1,111,2011,2012,Managing_Director
+1791,555,6,730,2018,2019,Supervisory_Board
+1792,12384,8,450,2005,2006,Final_Auditor
+1793,12334,4,537,2012,2013,Executive
+1794,12334,2,493,2006,2007,Supervisory_Board
+1795,12334,4,20,2020,2021,Executive
+1796,555,6,160,2007,2008,Executive
+1797,555,7,504,2014,2015,Supervisory_Board
+1798,555,6,744,2008,2009,Final_Auditor
+1799,64566,2,858,2007,2008,Authorized_Representive
+1800,866,1,665,2014,2015,Managing_Director
+1801,64345,9,820,2008,2009,Auditor
+1802,9875,1,671,2009,2010,Auditor
+1803,5433,3,571,2023,2010,Authorized_Representive
+1804,12384,8,853,2017,2018,Supervisory_Board
+1805,12334,2,216,2019,2020,Auditor
+1806,4344,1,170,2005,2006,Executive
+1807,555,7,578,2021,2022,Authorized_Representive
+1808,4344,1,709,2005,2006,Authorized_Representive
+1809,12334,2,484,2014,2015,Managing_Director
+1810,12334,4,163,2010,2011,Executive
+1811,64345,9,541,2023,2011,Auditor
+1812,9875,1,539,2007,2008,Auditor
+1813,12384,8,246,2014,2015,Managing_Director
+1814,866,1,388,2018,2019,Final_Auditor
+1815,9875,1,876,2022,2023,Supervisory_Board
+1816,12336,5,818,2022,2023,Executive
+1817,9875,1,858,2018,2019,Executive
+1818,12384,8,777,2011,2012,Supervisory_Board
+1819,9875,1,857,2005,2006,Supervisory_Board
+1820,555,6,476,2015,2016,Auditor
+1821,12336,5,203,2008,2009,Final_Auditor
+1822,866,1,916,2011,2012,Executive
+1823,64345,9,367,2021,2022,Authorized_Representive
+1824,5433,3,760,2016,2017,Supervisory_Board
+1825,12334,4,526,2010,2011,Managing_Director
+1826,12334,4,507,2014,2015,Authorized_Representive
+1827,12384,8,368,2023,2015,Executive
+1828,9875,1,889,2023,2015,Supervisory_Board
+1829,555,6,134,2023,2015,Executive
+1830,4344,1,924,2016,2017,Managing_Director
+1831,12334,4,976,2007,2008,Executive
+1832,12334,4,689,2008,2009,Final_Auditor
+1833,12384,8,606,2022,2023,Managing_Director
+1834,64345,9,305,2017,2018,Supervisory_Board
+1835,12336,5,901,2011,2012,Supervisory_Board
+1836,64345,9,873,2018,2019,Executive
+1837,866,1,465,2005,2006,Auditor
+1838,4344,1,902,2016,2017,Executive
+1839,866,1,325,2016,2017,Auditor
+1840,555,6,900,2015,2016,Auditor
+1841,12384,8,422,2022,2023,Final_Auditor
+1842,64566,2,529,2005,2006,Supervisory_Board
+1843,555,7,756,2008,2009,Final_Auditor
+1844,5433,3,267,2019,2020,Executive
+1845,5433,3,488,2009,2010,Auditor
+1846,9875,1,886,2011,2012,Executive
+1847,5433,3,494,2023,2012,Managing_Director
+1848,4344,1,512,2012,2013,Auditor
+1849,64566,2,871,2012,2013,Auditor
+1850,4344,1,146,2018,2019,Final_Auditor
+1851,64566,2,984,2005,2006,Final_Auditor
+1852,64566,2,671,2023,2006,Final_Auditor
+1853,12384,8,336,2013,2014,Authorized_Representive
+1854,866,1,518,2020,2021,Supervisory_Board
+1855,64566,2,490,2013,2014,Authorized_Representive
+1856,12334,2,572,2021,2022,Auditor
+1857,64566,2,51,2023,2022,Managing_Director
+1858,5433,3,44,2022,2023,Final_Auditor
+1859,555,6,125,2015,2016,Auditor
+1860,64566,2,735,2010,2011,Final_Auditor
+1861,12384,8,639,2009,2010,Executive
+1862,5433,3,181,2007,2008,Supervisory_Board
+1863,9875,1,859,2015,2016,Final_Auditor
+1864,12384,8,615,2006,2007,Authorized_Representive
+1865,12334,2,756,2012,2013,Supervisory_Board
+1866,4344,1,653,2021,2022,Managing_Director
+1867,12336,5,370,2017,2018,Supervisory_Board
+1868,12384,8,116,2006,2007,Executive
+1869,866,1,82,2005,2006,Supervisory_Board
+1870,5433,3,996,2012,2013,Supervisory_Board
+1871,12384,8,985,2016,2017,Auditor
+1872,12384,8,188,2016,2017,Managing_Director
+1873,866,1,904,2021,2022,Final_Auditor
+1874,64345,9,742,2013,2014,Supervisory_Board
+1875,555,6,11,2016,2017,Authorized_Representive
+1876,5433,3,446,2008,2009,Managing_Director
+1877,64566,2,206,2014,2015,Auditor
+1878,64566,2,342,2018,2019,Authorized_Representive
+1879,64566,2,104,2011,2012,Managing_Director
+1880,64345,9,26,2012,2013,Authorized_Representive
+1881,555,7,28,2014,2015,Supervisory_Board
+1882,64345,9,716,2005,2006,Executive
+1883,12334,2,838,2009,2010,Managing_Director
+1884,866,1,974,2011,2012,Executive
+1885,12336,5,663,2013,2014,Managing_Director
+1886,12334,2,478,2010,2011,Authorized_Representive
+1887,12334,4,294,2011,2012,Authorized_Representive
+1888,64566,2,784,2006,2007,Auditor
+1889,12334,2,373,2009,2010,Executive
+1890,64345,9,976,2023,2010,Managing_Director
+1891,12336,5,195,2013,2014,Supervisory_Board
+1892,12336,5,994,2017,2018,Supervisory_Board
+1893,866,1,716,2012,2013,Auditor
+1894,12336,5,463,2008,2009,Final_Auditor
+1895,12384,8,357,2017,2018,Executive
+1896,9875,1,260,2021,2022,Final_Auditor
+1897,64345,9,635,2021,2022,Auditor
+1898,4344,1,955,2008,2009,Executive
+1899,12384,8,307,2021,2022,Authorized_Representive
+1900,555,6,679,2005,2006,Authorized_Representive
+1901,5433,3,446,2006,2007,Executive
+1902,555,7,675,2005,2006,Auditor
+1903,12334,2,132,2014,2015,Authorized_Representive
+1904,5433,3,162,2012,2013,Supervisory_Board
+1905,12334,2,586,2018,2019,Final_Auditor
+1906,9875,1,791,2007,2008,Executive
+1907,555,7,193,2019,2020,Supervisory_Board
+1908,555,6,595,2015,2016,Final_Auditor
+1909,64566,2,996,2015,2016,Authorized_Representive
+1910,5433,3,333,2023,2016,Authorized_Representive
+1911,12384,8,768,2020,2021,Supervisory_Board
+1912,64566,2,320,2022,2023,Executive
+1913,9875,1,860,2022,2023,Executive
+1914,5433,3,461,2007,2008,Final_Auditor
+1915,555,6,739,2007,2008,Supervisory_Board
+1916,555,7,87,2023,2008,Supervisory_Board
+1917,12334,4,395,2020,2021,Auditor
+1918,555,7,292,2017,2018,Executive
+1919,12334,2,665,2015,2016,Supervisory_Board
+1920,4344,1,858,2010,2011,Executive
+1921,555,7,966,2017,2018,Auditor
+1922,555,7,710,2015,2016,Managing_Director
+1923,12334,4,385,2022,2023,Authorized_Representive
+1924,64566,2,592,2007,2008,Auditor
+1925,12384,8,232,2015,2016,Executive
+1926,12336,5,636,2008,2009,Managing_Director
+1927,555,6,189,2005,2006,Managing_Director
+1928,12334,2,673,2019,2020,Supervisory_Board
+1929,64566,2,203,2008,2009,Managing_Director
+1930,866,1,52,2018,2019,Final_Auditor
+1931,9875,1,755,2007,2008,Final_Auditor
+1932,9875,1,805,2022,2023,Managing_Director
+1933,9875,1,297,2023,2023,Final_Auditor
+1934,555,6,709,2005,2006,Auditor
+1935,5433,3,270,2023,2006,Authorized_Representive
+1936,64345,9,634,2005,2006,Supervisory_Board
+1937,12334,4,428,2008,2009,Authorized_Representive
+1938,4344,1,890,2009,2010,Final_Auditor
+1939,5433,3,488,2021,2022,Auditor
+1940,4344,1,784,2011,2012,Auditor
+1941,555,7,151,2014,2015,Authorized_Representive
+1942,12334,4,98,2010,2011,Managing_Director
+1943,5433,3,35,2009,2010,Executive
+1944,64566,2,436,2018,2019,Managing_Director
+1945,4344,1,413,2016,2017,Final_Auditor
+1946,555,7,480,2015,2016,Executive
+1947,4344,1,884,2018,2019,Managing_Director
+1948,64345,9,451,2017,2018,Authorized_Representive
+1949,9875,1,842,2023,2018,Auditor
+1950,12384,8,869,2015,2016,Authorized_Representive
+1951,12334,2,740,2006,2007,Authorized_Representive
+1952,5433,3,66,2014,2015,Authorized_Representive
+1953,12384,8,335,2022,2023,Final_Auditor
+1954,5433,3,708,2008,2009,Authorized_Representive
+1955,555,7,464,2016,2017,Auditor
+1956,555,7,75,2006,2007,Auditor
+1957,64345,9,363,2014,2015,Final_Auditor
+1958,555,7,815,2005,2006,Final_Auditor
+1959,866,1,173,2006,2007,Managing_Director
+1960,4344,1,261,2020,2021,Final_Auditor
+1961,555,7,373,2019,2020,Auditor
+1962,5433,3,761,2023,2020,Executive
+1963,866,1,615,2020,2021,Managing_Director
+1964,555,7,297,2022,2023,Supervisory_Board
+1965,12334,2,444,2012,2013,Final_Auditor
+1966,866,1,886,2018,2019,Authorized_Representive
+1967,12336,5,625,2011,2012,Authorized_Representive
+1968,4344,1,135,2012,2013,Final_Auditor
+1969,12336,5,461,2014,2015,Auditor
+1970,866,1,47,2019,2020,Supervisory_Board
+1971,555,7,785,2010,2011,Supervisory_Board
+1972,12334,4,193,2005,2006,Supervisory_Board
+1973,64566,2,633,2018,2019,Managing_Director
+1974,64566,2,507,2010,2011,Auditor
+1975,9875,1,368,2018,2019,Executive
+1976,12336,5,180,2007,2008,Supervisory_Board
+1977,866,1,830,2021,2022,Authorized_Representive
+1978,64345,9,175,2005,2006,Managing_Director
+1979,12384,8,835,2020,2021,Final_Auditor
+1980,12336,5,607,2019,2020,Supervisory_Board
+1981,12334,4,510,2007,2008,Supervisory_Board
+1982,12384,8,705,2015,2016,Supervisory_Board
+1983,866,1,412,2010,2011,Auditor
+1984,866,1,533,2015,2016,Auditor
+1985,12384,8,111,2016,2017,Executive
+1986,866,1,773,2020,2021,Supervisory_Board
+1987,64566,2,264,2012,2013,Final_Auditor
+1988,555,7,759,2020,2021,Auditor
+1989,866,1,140,2008,2009,Executive
+1990,5433,3,323,2006,2007,Supervisory_Board
+1991,12334,2,818,2009,2010,Supervisory_Board
+1992,12334,2,274,2007,2008,Executive
+1993,555,6,553,2023,2008,Executive
+1994,12334,2,277,2011,2012,Managing_Director
+1995,555,6,296,2023,2012,Supervisory_Board
+1996,64566,2,643,2015,2016,Auditor
+1997,64345,9,257,2011,2012,Auditor
+1998,64345,9,277,2009,2010,Authorized_Representive
+1999,866,1,369,2010,2011,Final_Auditor
diff --git a/documentations/seminararbeiten/Datenspeicherung/Jupyter/person1000.csv b/documentations/seminararbeiten/Datenspeicherung/Jupyter/person1000.csv
new file mode 100644
index 0000000..5ac40c7
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/Jupyter/person1000.csv
@@ -0,0 +1,1001 @@
+Name;Surname
+Mareile;Vadedimeiner
+Ehrhard;Butugau
+Ruthild;Werner
+Robby;Herrmann
+Claus-Peter;Koch
+Natali;Zosamaustein
+Evi;Rüwigau
+Uta;Puwufumeiner
+Elfi;Hawewedehein
+Dimitrios;Zimmermann
+Pamela;Pötawedemüller
+Helfried;Hätefi
+Frieda;Favigrode
+Sylke;Dosuvorehein
+Waltraut;Divufostein
+Jochen;Saroda
+Paul-Heinz;Cedoflede
+Peggy;Rüdabiweiner
+Friedrich-Karl;Jivugate
+Celal;Kadifu
+Heinz-Jürgen;Gidebede
+Meinhard;Cätodameiner
+Guenther;Huber
+Andree;Gedamodeson
+Tillmann;Gatesegeson
+Katerina;Giwifoson
+Muharrem;König
+Mirjana;Sisabeweiner
+Heinz-Walter;Satawademüller
+Wolf-Dieter;Gotuferemüller
+Josefa;Hartmann
+Arnfried;Lidamau
+Sylvester;Bütabodostein
+Ildiko;Mäwebodostein
+Antonius;Pulube
+Hans;Fuchs
+Antonina;Müller
+Raphaela;Pätagaumeiner
+Walli;Ruremattmüller
+Henrike;Meier
+Emmerich;Wodegau
+Frederike;Surogateson
+Trudel;Zoruhedehein
+Nadeschda;Schulz
+Else;Jawalau
+Yasmin;Nitusade
+Rebekka;Vuvabehein
+Martina;Zadosede
+Klaus-Ulrich;Söravadehein
+Emilia;Walter
+Bogdan;Mewobodostein
+Babette;Wüsasadehein
+Marcel;Ladagrode
+Ana;Hevuwademüller
+Eckard;Meyer
+Elzbieta;Jerudustein
+Johann;Küwadu
+Amalia;Küsevodeweiner
+Romuald;Wetiwedestein
+Hans-Heinrich;Titugrode
+Kornelius;Jedoschattmüller
+Beata;Hoffmann
+Ljubica;Geledihein
+Vinzenz;Ciwilodehein
+Ana;Kisubodomeiner
+Lars;Metuflede
+Filippo;Schäfer
+Jutta;Leduhedeweiner
+Hubert;Lutefo
+Tilmann;Gürugedemüller
+Nadeshda;Hofmann
+Ehrhard;Vovefledestein
+Friedbert;Guwasadestein
+Ellinor;Dötafledeweiner
+Annita;Hivedu
+Raisa;Fuchs
+Steffen;Zawudason
+Dorothe;Mötodohein
+Klaas;Peledu
+Lili;Muwewede
+Yusuf;Mayer
+Pirmin;Zorobedeson
+Franz-Peter;Zuwilauson
+Ludger;Zarohede
+Hans-Martin;Jerebi
+Corinna;Helomattstein
+Saban;Röwamattmüller
+Recep;Güdumattson
+Max;Säduda
+Ditmar;Kävabehein
+Katharine;Hiwebodo
+Alfonso;Zaruba
+Rabea;Kotivaremeiner
+Jochen;Datuvodemeiner
+Abraham;Litusedeson
+Dagmar;Girogatehein
+Astrid;Hätavoremüller
+Katarzyna;Tevifere
+Arnold;Horovadestein
+Petra;Döwagauhein
+Karl-Wilhelm;Cedovade
+Friederike;Zimmermann
+Hans-Albert;Ludubehein
+Elfi;Hatuda
+Hartmut;Cuvuvoremeiner
+Augusta;Müsavademeiner
+Enver;Näsalodemüller
+Mirco;Vidobemeiner
+Ahmad;Wusefo
+Artur;Puledohein
+Donata;König
+Änne;Neresedehein
+Ilse;Wedabodoson
+Marija;Schäfer
+Annegrete;Fodogede
+Eckhart;Pitosedemüller
+Juliane;Hoffmann
+Rouven;Javisegemüller
+Sybilla;Tewugede
+Othmar;Nolilate
+Hubert;Zotagrade
+Darius;Govuferestein
+Gero;Büsolodemüller
+Jens-Uwe;Kaiser
+Klaus-Ulrich;Zärevodeweiner
+Natalja;Koch
+Hanife;Jitaferehein
+Ingeborg;Favihedestein
+Anka;Södomatt
+Ludger;Pulibu
+Gottfried;Krüger
+Gebhard;Neumann
+Magrit;Richter
+Antonios;Neumann
+Urte;Köwafi
+Ivanka;Wevosege
+Nermin;Hoduwedemüller
+Sylvio;Suwufledehein
+Friedemann;Rovafledeweiner
+Thilo;Becker
+Detlef;Zirebehein
+Mira;Vivischatt
+Iwan;Musosede
+Willi;Neumann
+Christian;Müller
+Jessika;Woraplau
+Slawomir;Jovesegemeiner
+Annie;Schmitz
+Reinhold;Sevowede
+Ralf-Dieter;Söveda
+Heide-Marie;Hutifere
+Silva;Cerivare
+Sina;Mütuflede
+Hans;Zotegedeweiner
+Theodora;Wolf
+Dusan;Dütihedemüller
+Augusta;Hulamattmeiner
+Martin;Fuwesademüller
+Recep;Mütolatemüller
+Gotthard;Werner
+Henning;Fischer
+Heinz;Jisoferestein
+Blanka;Notadumeiner
+Marijan;Dasawattehein
+Martine;Hartmann
+Friedhold;Hartmann
+Uwe;Pöruplau
+Jaroslaw;Gusavodehein
+Hans-Erich;Müller
+Rosemarie;Fetefu
+Volker;Letelatemeiner
+Zita;Voduwedehein
+Kenneth;Bewagrademüller
+Nikolas;Zisalode
+Kira;Tirewadehein
+Elias;Powosadehein
+Christiane;Häregrodeson
+Romuald;Javuschattson
+Priska;Pisiwademeiner
+Rosita;Bewefumeiner
+Henriette;Ködudu
+Gernot;Fivamatthein
+Felicitas;Cüravoreson
+Friedrich-Karl;Schulze
+Yilmaz;Notobede
+Eileen;Mudobahein
+Ruth;Loligrodestein
+Ludmila;Malimodestein
+Stanislaus;Ferufereson
+Celal;Nudomau
+Gisa;Duluflodemüller
+Elenore;Fuchs
+Heini;Bosavodehein
+Mariusz;Cusolodeweiner
+Monique;Weber
+Hedda;Radifistein
+Irma;Vetudu
+Paul-Gerhard;Wewovorestein
+Luise;Cadabahein
+Frida;Lovudu
+Sabrina;Desubedehein
+Curt;Bödowattemüller
+Jana;Huber
+Jaroslav;Rirusedemüller
+Tobias;Botiflodestein
+Pascale;Hüsewedestein
+Karl-Peter;Püvohedemeiner
+Friedrich-Karl;Moweschattmeiner
+Virginia;Giwemauweiner
+Lambert;Pesesedestein
+Ellen;Litedu
+Ingeburg;Zatawadestein
+Filippo;Wetodison
+Edeltraut;Hadilode
+Moritz;Schmitz
+Roderich;Garovade
+Isabel;Jirusedeson
+Bernt;Wutivoremeiner
+Eugenia;Rorodahein
+Walli;Krüger
+Giesela;Schwarz
+Gundolf;Jitoflodeweiner
+Hedda;Fuchs
+Manja;Siwosegemeiner
+Christopher;Tavugatemüller
+Heiko;Tiwefu
+Fredy;Powoplauweiner
+Erwin;Schäfer
+Paolo;Mutofomüller
+Selim;Miwabu
+Dimitri;Wagner
+Mustafa;Lalobedemeiner
+Käthi;Zudifareson
+Friedhold;Süvusedeweiner
+Wilfriede;Lötafere
+Franziska;Jirewattehein
+Marianna;Cosusedestein
+Giuseppina;Fädusege
+Erik;Zötufo
+Margrit;Melufledemüller
+Christa;Wodosademeiner
+Tilmann;Newifereson
+Götz;Wuvugrademeiner
+Friedhilde;Metasegemüller
+Annelise;Favumattmüller
+Jaqueline;Kiwifostein
+Rosalia;Meier
+Erdmute;Halogate
+Siegmar;Kutadoson
+Aloys;Hartmann
+Jeanette;Wewumode
+Adelbert;Döragateson
+Saskia;Savematt
+Anja;Zetumode
+Maurice;Zosamatt
+Antonietta;Väwusege
+Raphael;Meier
+Walther;Zitomodehein
+Nurettin;Lehmann
+Isolde;Ludogauson
+Julia;Tudibiweiner
+Harry;Ciravade
+Ellen;Cöruba
+Dominic;Rorivoremeiner
+Massimo;Cavihede
+Bianka;Jiwavadehein
+Lucia;Nusumattson
+Meike;Kiregaumeiner
+Susanne;Hovebodohein
+Juliane;Titufu
+Joanna;Sotoferestein
+Loni;Sarebeson
+Alma;Becker
+Vladimir;Mayer
+Klaus-Günter;Krause
+Anatol;Vutoplauson
+Romuald;Milegrodemeiner
+Thorsten;Zimmermann
+Slavica;Midobodo
+Annamaria;Wawosadeweiner
+Karl-Wilhelm;Desagatemüller
+Theodor;Jewudistein
+Hanni;Rewofomeiner
+Sylvana;Neliba
+Diethelm;Motilate
+Janus;Zusuhedehein
+Annelore;Vutifomeiner
+Geza;Lange
+Susan;Gitaflodemüller
+Elly;Näwelateson
+Carmela;Reriwatte
+Uli;Schröder
+Danuta;Meyer
+Kazim;Disifistein
+Gottlob;Ciwagatemeiner
+Uli;Wutamatthein
+Ingmar;Wusevodeweiner
+Peter;Rulafomüller
+Türkan;Haduhedeson
+Dieter;Fedabi
+Hilmar;Hisofistein
+Suzanne;Zotasedestein
+Aleksej;Nöreflodestein
+Herrmann;Zisubumeiner
+Sarina;Zutevarestein
+Gernot;Lehmann
+Björn;Huwevadestein
+Esther;Tilaschattstein
+Claudius;Godavorestein
+Dorota;Dudusadeweiner
+Anatoli;Vödolauson
+Arnfried;Zimmermann
+Cathrin;Gotagedehein
+Annelene;Tarebamüller
+Luzie;Ruluvaremeiner
+Faruk;Keseferestein
+Babett;Wiremodehein
+Aribert;Mesufere
+Annette;Golovademüller
+Carmela;Rävimode
+Adeline;Näramode
+Helma;Radusadestein
+Vera;Palofledehein
+Luzie;Dalogatemüller
+Volkmar;Töseba
+Emil;Bauer
+Heiko;Wudoschatt
+Ljudmila;Niwogede
+Lioba;Lirobedemüller
+Leonardo;Radubimeiner
+Hedy;Hitowademüller
+Gundi;Koch
+Mathias;Lehmann
+Steve;Wowowade
+Paulina;Möwefledestein
+Anne-Kathrin;Witubi
+Tanja;Belosedestein
+Hans-Detlef;Nadedu
+Janine;Mivifu
+Dorota;Berabaweiner
+Rudi;Werner
+Eckhart;König
+Annekatrin;Worewadeweiner
+Milica;Patefledehein
+Arnfried;Borafledeson
+Arif;Gilobodo
+Elfi;Dilubedehein
+Beatrice;Beresedemüller
+Sabine;Motubihein
+Ignatz;Gadagrade
+Aloisia;Votulate
+Sören;Lehmann
+Margret;Hodobodo
+Theodora;Silogatemeiner
+Rosmarie;Cowegrademüller
+Zoran;Pevuvodeweiner
+Aleksandar;Zotoflode
+Mirja;Fischer
+Hans-Friedrich;Perumatt
+Nikolai;Cesavaremeiner
+Evelyn;Schäfer
+Eva-Maria;Braun
+Folker;Lödobedehein
+Daria;Tewesade
+Hildegund;Piresadehein
+Nikola;Duleflode
+Claudio;Braun
+Damaris;Cidesede
+Boris;Hüwedo
+Lisa;Dedigedeson
+Zita;Vöwigedemüller
+Jaroslav;Badawatteweiner
+Zenta;Dadofere
+Willy;Detafledemeiner
+Valentin;Meier
+Gloria;Kaseplaumüller
+Osman;Wisavademeiner
+Rosa-Maria;Lange
+Edeltraud;Sitovoreson
+Rolf-Dieter;Müleplaumeiner
+Kay-Uwe;Bosafoson
+Paul-Gerhard;Fulawedestein
+Lothar;Zawoschatthein
+Carmelo;Klein
+Erdal;Säduflodeweiner
+Bernard;Pätuba
+Nelli;Kilufoson
+Nikolaus;Ratubodostein
+Marcel;Klein
+Wulf;Meyer
+Anny;Fisagede
+Petra;Zisegrodeson
+Ottokar;Herrmann
+Sükrü;Fuveflodeson
+Emmy;Gerivorehein
+Darius;Krüger
+Birgitt;Faridu
+Constanze;Siribastein
+Tabea;Pulasade
+Janna;Kutofistein
+Kathi;Pewiflodestein
+Josef;Maier
+Francesco;Jüviflode
+William;Fulolaumüller
+Karl-Jürgen;Kulolode
+Muzaffer;Fivodomüller
+Catherine;Schneider
+Hanny;Lehmann
+Reinhart;Maier
+Silvio;Fitofarestein
+Mona;Wäsemodestein
+Wojciech;König
+Diana;Zusivare
+Beatrice;Raradamüller
+Slobodan;Fischer
+Hildegard;Korudihein
+Ludwina;Klein
+Mathilde;Maier
+Hans-Jörg;Jewahedehein
+Stephanie;Lüsoda
+Jeannette;Hoffmann
+Klaus-Dieter;Dörugaumeiner
+Hans-Friedrich;Selovademeiner
+Klaus-Günter;Kövohedemüller
+Sylvio;Hitavade
+Goran;Lulasedehein
+Frieda;Zutubedeson
+Camilla;Tüdischatt
+Felizitas;Wäwuflede
+Hermann;Varebodohein
+Nils;Vasahede
+Frank-Peter;Jadufuhein
+Alex;Liriwadehein
+Lia;Bitaflode
+Leszek;Jätegau
+Philomena;Dotidison
+Zofia;Klein
+Burghard;Rörifareweiner
+Lotti;Dütudahein
+Lieschen;Citifi
+Sigrid;Walter
+Guenter;Wolf
+Tomasz;Koviwatte
+Alex;Rävesede
+Ladislaus;Buvaschattmüller
+Ekaterina;Viragedestein
+Tilly;Batevare
+Horst;Hofmann
+Jobst;Metifuweiner
+Tanja;Värobodo
+Annemarie;Mitovore
+Katherina;Neviwatteson
+Karola;Riradiweiner
+Ernst;Krüger
+Kreszentia;Natuflede
+Stanislaus;Gilufledemeiner
+Mehmet;Schulz
+Elena;Dutufo
+Mariele;Javuflode
+Irmingard;Tetefere
+Elsbeth;Jätobimeiner
+Hans-Jörg;Duwiwademüller
+Steven;Sudefare
+Krzysztof;Rariplaustein
+Ester;Rorasade
+Natali;Kuwebestein
+Maximilian;Schmitt
+Ekrem;Susabemüller
+Harald;Schulze
+Vadim;Fatafuweiner
+Bertram;Ravifo
+Adeline;Maier
+Jessika;Klein
+Lilian;Culedoson
+Pamela;Hartmann
+Mariusz;Batagradeson
+Rico;Detiplauhein
+Martin;Modelode
+Oskar;Cosemodehein
+Anne-Rose;Vitemaumeiner
+Janine;Jüsulauweiner
+Bertold;Sudeschatt
+Emma;Färadihein
+Sylvie;Pawuduweiner
+Hansjörg;Lehmann
+Selma;Vavubahein
+Bogdan;Vatelodeweiner
+Maya;Gateferehein
+Rene;Tedobumeiner
+Lucie;Piludimeiner
+Karsten;Köwuwade
+Harriet;Vusolodemeiner
+Bert;Ritobedemüller
+Leonie;Zütofledemüller
+Lisa;Pövivodestein
+Franz-Josef;Sötowadeson
+Antonina;Lovuflodeson
+Mahmoud;Mötihedemeiner
+Tamara;Lätosede
+Janette;Mutagedemüller
+Annegrete;Nalofere
+Hertha;Bävagrademüller
+Athanasios;Fodogateweiner
+Ercan;Wuliflodeweiner
+Karina;Futifare
+Damaris;Sutedaweiner
+Lidwina;Mayer
+Detlev;Koch
+Gitte;Schulz
+Lars;Cösesademeiner
+Klothilde;Zodubedemüller
+Viktor;Fevibiweiner
+Lambert;Gotawadehein
+Ryszard;Nidavore
+Gernot;Badawedemüller
+Achim;Lange
+Bruno;Krause
+Milica;Novowade
+Mareike;Zarodimüller
+Ljudmila;Dövuwade
+Gesa;Cütodo
+Gilda;Weber
+Rotraut;Teribodoweiner
+Carmela;Buviflodeweiner
+Rose;Wetoschattmüller
+Gerda;Gusuvareweiner
+Baptist;Ridivadestein
+Clemens;Hoffmann
+Maritta;Töwesade
+Elli;Sösasade
+Nicolas;Kedabu
+Sükrü;Vilaschatthein
+Heinz-Otto;Meyer
+Franz-Josef;Schwarz
+Wolf;Kirilode
+Maria;Satagauweiner
+Irena;Bisivore
+Stjepan;Sevuduweiner
+Maurice;Krause
+Marisa;Schneider
+Harri;Hartmann
+Christine;Hovesademeiner
+Mareike;Wolf
+Sibylla;Viwomattweiner
+Anatolij;Litisadeweiner
+Imelda;Pusegrode
+Ruthild;Schröder
+Luka;Fevuwadestein
+Telse;Vilidahein
+Zbigniew;Witoschatthein
+Hans-Michael;Schwarz
+Bernd;Haruwatteson
+Antoinette;Guwohede
+Lia;Lurilode
+Reinhard;Virilaustein
+David;Dasebedestein
+Suzanne;Pürowatteson
+Dana;Lawumauhein
+Hanspeter;Notewade
+Anica;Jörovare
+Rosemarie;Gatuvode
+Bernfried;Wivifledestein
+Franka;Hesilauweiner
+Dorothea;Betavoremüller
+Erna;Klein
+Adriana;Datibedehein
+Bernd;Schulz
+Ilse;Schmidt
+Emma;Culisadestein
+Josip;Säwafoson
+Myriam;Gawifohein
+Heinz-Werner;Satosade
+Anna;Krause
+Johannes;Zitiwedeson
+Roselinde;Lesuwatteweiner
+Valentine;Zötida
+Valentin;Färivodehein
+Trudi;Mosuferemeiner
+Karen;Kaiser
+Erik;Fiwugatemeiner
+Thoralf;Süsabodoweiner
+Waltraut;Pödiflede
+Gerfried;Nitasadeson
+Birthe;König
+Heinrich;Walter
+Gustav;Pödodomeiner
+Bert;Klein
+Sepp;Jotibahein
+Hilma;Fesahede
+Cornelius;Wolf
+Karl-Heinz;Luresadehein
+Heinz;Fesagrodemüller
+Carina;Wusoflode
+Giuseppe;Lotefoson
+Wulf;Celulatestein
+Danilo;Hewibedemeiner
+Isabella;Wuraplauson
+Daniela;Cuwawademeiner
+Hans-Joachim;Küvigedeweiner
+Karl-Josef;Wötewattestein
+Fatima;Zutehedeson
+Senta;Litagedemüller
+Sylvia;Lisisedemeiner
+Rouven;Nitoplau
+Erica;Vatodimüller
+Tadeusz;Schulze
+Henri;Schneider
+Ekaterina;Schäfer
+Mareile;Juvubimüller
+Leopoldine;Fäsudi
+Ioannis;Schröder
+Nikolas;Maier
+Heinz-Joachim;Hofmann
+Egon;Kövobistein
+Hedy;Juduplau
+Rene;Duvufo
+Mariola;Lutaduhein
+Cäcilie;Putagauhein
+Dino;Newumattson
+Birger;Gitosademüller
+Karlheinz;Kulafereweiner
+Dirk;Krause
+Carmen;Letudumeiner
+Hans-Theo;Richter
+Aline;Detefareson
+Ilias;Cutofison
+Kamil;Toremaumeiner
+Mara;Lalefareson
+Jose;Hartmann
+Isa;Tolelodeweiner
+Linus;Godavodeson
+Sarah;Mayer
+Kata;Töwovadeson
+German;Fotograde
+Augusta;Zevischattson
+Randolf;Nödibodoson
+Nuran;Huber
+Ingeborg;Räsalatemeiner
+Darko;Klein
+Gunar;Tutefohein
+Meinolf;Zusugatemüller
+Otfried;Jüsehedehein
+Arthur;Fetovaremüller
+Hans-Uwe;Latesedestein
+Andrzej;Köhler
+Calogero;Telufere
+Mirjana;Sotubestein
+Mechthild;Meier
+Friedbert;Wüvabi
+Rosemarie;Titomodeweiner
+Nikolai;Juwolodeweiner
+Kornelius;Pevodaweiner
+Hans-Joachim;Bavivore
+Caterina;Betodiweiner
+Hans-Josef;Schulze
+Torben;Förugauhein
+Matteo;König
+Inna;Lange
+Reinald;Krüger
+Mattias;Siwulatemeiner
+Hajo;Cirabedeweiner
+Swantje;Rutobamüller
+Matthias;Sosimodemeiner
+Antonius;Falofaremüller
+Tatiana;Vodegradeson
+Birgitta;Paramode
+Rahel;Föralode
+Paul-Gerhard;Füsugrademüller
+Silva;Jüwofu
+Tillmann;Letafihein
+Eugenie;Buteschatt
+Eleonore;Zetimaumüller
+August;Hälogradeweiner
+Emil;Piwamode
+Emil;Towevoremüller
+Helen;Meier
+Alena;Wuvaschatthein
+Anika;Helodimüller
+Gusti;Schulze
+Carsten;Gorabustein
+Uta;Futisademüller
+Hans-Bernd;Litufare
+Marvin;Datosadeweiner
+Oswald;Jidevare
+Annelies;Hodabu
+Agnes;Nevufi
+Artur;Rosogrodeson
+Heinz-Walter;Huber
+Elfriede;Hoffmann
+Mehmet;Schäfer
+Maxim;Putogate
+Svea;Mayer
+Lambert;Fischer
+Klemens;Jasefareweiner
+Ekrem;Diwugradeweiner
+Karina;Tutifomüller
+Sarina;Gütegrademüller
+Aenne;Göwevodeweiner
+Korbinian;Schneider
+Ulla;Vitufareson
+Malgorzata;Wolowedehein
+Edelgard;Muribameiner
+Ioannis;Mitafostein
+Waltraut;Cedovodestein
+Johan;Gövadi
+Lidija;Schmitz
+Beatrice;Zärobe
+Reiner;Walter
+Fred;Howafomeiner
+Marjan;Gidofuweiner
+Burckhard;Schmidt
+Nikola;Ritolodeweiner
+Marius;Nötohedeson
+Alina;Purumauweiner
+Mijo;Ferogate
+Ana;Lesoflede
+Lissy;Lehmann
+Hiltrud;Corewadeweiner
+Arnim;Situvade
+Cetin;Wotaschattmeiner
+Patrick;Badabodo
+Patrizia;Wulamatt
+Roger;Naweflode
+Christa;Fedebuweiner
+Eckhardt;Huwischatt
+Janine;Bavevare
+Tamara;Potudostein
+Mehdi;Schulze
+Raphaela;Dawegedemeiner
+Ewald;Natuvaremeiner
+Karolina;Hoffmann
+Nuray;Mürafo
+Alfonso;Wewemode
+Ernst-Otto;Biwusegehein
+Lina;Mütasedemüller
+Leonhard;Hoffmann
+Sönke;Schwarz
+Doreen;Hartmann
+Sergej;Lutuhede
+Eugen;Kiduwede
+Siegrid;Polifo
+Sibilla;Kölefimeiner
+Hans-H.;Rötiflode
+Urszula;Cäreschattmüller
+Michaela;Zetolodehein
+Galina;Fitosegehein
+Jaroslav;Budivoreson
+Reinhardt;Juwegaumüller
+Mona;Caladu
+Kristine;Nuwesedehein
+Luzia;Lörabuson
+Carmelo;Perefere
+Marcus;Huber
+Frederike;Cululauson
+Sigfried;Zodifaremüller
+Niko;Dutomau
+Abdul;Raviflede
+Jan-Peter;Poriduweiner
+Sybille;Nivalatemüller
+Severin;Rululatestein
+Sergei;Rövugaustein
+Mina;Dötofledemeiner
+Aloisia;Susuvode
+Nikolaos;Situda
+Anika;Hüdadohein
+Jadwiga;Lälabe
+Melissa;Wirumattson
+Hulda;Müller
+Ida;Füresadeweiner
+Oda;Coregau
+Hans-Joachim;Rolawattehein
+Pius;Miwugatemeiner
+Justus;Horuflodehein
+Andrew;Kasasade
+Cläre;Krüger
+Hans-Eberhard;Guraduweiner
+Dietrich;Nutigrodehein
+Silja;Wevifledemüller
+Ester;Hoffmann
+Theda;Vosawedeson
+Lydia;Werudison
+Darko;Gosifison
+Henri;Züsovodemeiner
+Calogero;Radavarehein
+Heini;Falisadeson
+Magnus;Mirugaumüller
+Gert;Zuriwattehein
+Uwe;Krause
+Adam;Dalawedehein
+Wladimir;Tiwawatte
+Ljudmila;Catedo
+Verena;Lange
+Giovanni;Schmidt
+Ryszard;Patidomüller
+Lore;Ruvubiweiner
+Herma;Garaflede
+Galina;Pawedu
+Marlen;Vötelateson
+Diane;Weber
+Henriette;Vadahedeson
+Siegmar;Mesosedestein
+Birgitta;Puvobemüller
+Gottlob;Wüsodomeiner
+H.-Dieter;Juraschattstein
+Wojciech;Wutabodo
+Olivia;Kesaplau
+Melita;Risasede
+Hendrik;Casodustein
+Anja;Nududu
+Wieslaw;Paligradehein
+Ottilie;Ledodomüller
+Erdogan;Fövumatthein
+Theodor;Metadistein
+Natalija;Salofostein
+Katarzyna;Ketogrodeweiner
+Karl-Ernst;Losafarehein
+Hedi;Nätugedehein
+Valeria;Resugrade
+Albrecht;Vudelatestein
+Walburga;Metagrodeson
+Margaretha;Nedobi
+Salih;Fisegede
+Helmtrud;Fischer
+Tom;Fedusede
+Lina;Särabiweiner
+Albrecht;Böwigatehein
+Gabor;Vavugradeweiner
+Gerhard;Giwuvode
+Corinne;Guwesede
+Ben;Mirosedehein
+Mara;Lehmann
+Tatiana;Mölegrademeiner
+Nadin;Sodelate
+Margarita;Wuvomaustein
+Franz;Hewasede
+Hajo;Patofereson
+Lisbeth;Jululauson
+Insa;Nowedamüller
+Isabell;Cesadostein
+Freya;Mayer
+Selma;Muluplau
+Horst-Peter;Nalemodemeiner
+Hajo;Köhler
+Dorina;Polowedeweiner
+Ingelore;Murodostein
+Aysel;Gerischatt
+Angelica;Cütiflodeweiner
+Hans-H.;Krause
+Lothar;Katalateson
+Luigi;Tösebimüller
+Anna-Maria;Podogaumüller
+Fabienne;Nuvafo
+Sibel;Cäriflodemeiner
+Bernhardine;Gälavodemeiner
+Hermann;Kelasademüller
+Anneli;Hödebodomüller
+Reinhold;Tedavareweiner
+Natalja;Vädobemüller
+Gülten;Püdigauson
+Kunibert;Gasiflodemüller
+Elfie;Kaiser
+Marijan;Järawede
+Harald;Vadufomeiner
+Helge;Fischer
+Ortwin;Livavodeweiner
+Emmi;Lovosedemeiner
+Werner;Felobodoweiner
+Ercan;Ritebodomeiner
+Bernt;Huber
+Anna-Maria;Kosovodeweiner
+Mathias;Letofu
+Valerie;Haviba
+Cosimo;Posimaustein
+Annaliese;Katada
+Wilhelm;Schäfer
+Hartmuth;Hofmann
+Insa;Schröder
+Irmhild;Nalofledehein
+Remo;Hoffmann
+Hans-Friedrich;Hodivade
+Ottilie;Gülifu
+Karl-Ernst;Matogate
+Wera;Bowivadestein
+Ottokar;Fitogrode
+Adeline;Rewabestein
+Randolf;Covusedeweiner
+Alla;Pasusade
+Fredy;Jütusede
+Janine;Kotifledemüller
+Kirsten;Hiwuvoremeiner
+Kläre;Gawawadestein
+Jonathan;Fududamüller
+Dragica;Jölomattweiner
+Nadia;Meier
+Irmingard;Cewisadeweiner
+Friedrich;Huber
+Claudia;Disibimüller
+Klaus;Rowefu
+Isabella;Liruplauweiner
+Margarethe;Cötivadestein
+Hans-Hinrich;Siwulaumeiner
+Gunter;Madodomeiner
+Silke;Schwarz
+Janett;Schwarz
+Theodoros;Zimmermann
+Heidelinde;Meier
+Semra;Vudimodeson
+Anastasia;Pitomodestein
+Sylke;Zadivadehein
+Edgar;Fesilau
+Raissa;Tetoda
+Karola;Välufo
+Marianna;Schulze
+Nuri;Veribi
+Hanne-Lore;Wovufoson
+Karsten;Jüteda
+Jens-Uwe;Böleba
+Heini;Kodevoremüller
+Abram;Ravisade
+German;Böwabede
+Maike;Schwarz
+Esther;Latowattehein
+Edelgard;Schmitt
+Edmund;Tisivodemüller
+Cemil;König
+Francis;Vavisadeweiner
+Lidwina;Nötowedemeiner
+Juliane;Neumann
+Almut;Titidomüller
+Gustav;Keweda
+Andrej;Gatevademüller
+Angelina;Wagner
+James;Bidimodestein
+Mathias;Jatuwedemeiner
+Waltraut;Husubiweiner
+Edith;Tutulatemüller
+Marcel;Tatawede
+Wigbert;Tiwegede
+Damaris;Hosibeweiner
+Adriane;Ciriwedeson
+Ella;Zatuduson
+Lorenzo;Ciwawadestein
+Giorgio;Wagner
+Annamaria;Ratihedeson
+Augustin;Resagedeson
+Nuran;Fetadumeiner
+Mira;Beloplau
+Zdravko;Katafereweiner
+Brit;Richter
+Marlene;Cirefi
+Volker;Fotumatt
+Henryk;Nölevade
+Remo;Peloduson
+Birgitta;Tivematt
+Helma;Satewademeiner
+Wibke;Wulodo
+Kathi;Nisesade
+Anni;Käduwatteson
+Telse;Wudeplauhein
+Arne;Balebumüller
+Bartholomäus;Neumann
+Freia;Werner
+Henryk;Foruwedemeiner
+Cord;Rudovode
+Georgine;Gütube
+Antonius;Kewohedeson
+Raymond;Wetavade
+Mira;Luwufareweiner
+Mina;Gälamau
+Karl-Jürgen;Pidedumüller
+Mesut;Cetemauweiner
+Susi;Jötofihein
+Eva;Krüger
+Filippo;Gataplauson
+Belinda;Besisadehein
+Friedhold;Botischatt
+Magdalena;Dovomauhein
+Theodor;Hütusegestein
+Albertine;Braun
+Reinald;Dowubedestein
+Ernst-Dieter;Dusegradestein
+Dino;Herrmann
+Vincent;Putudo
+Käthi;Hiresadestein
+Alwine;Pedifledeweiner
+Dittmar;Schmitz
+Babette;Fösagede
+Anneke;Meier
+Hubertine;Kusevorestein
+Ingbert;Latesede
+Norbert;Buravodeson
+Ruben;Zörefuson
+Athanasios;Päsusadestein
+Flora;Schmidt
+Lidija;Wövischattstein
+Balthasar;Julesege
+Eva;Vutivore
+Carolina;Jösubihein
+Felicitas;König
+Mary;Citawattestein
\ No newline at end of file
diff --git a/documentations/seminararbeiten/Datenspeicherung/docker-compose.yml b/documentations/seminararbeiten/Datenspeicherung/docker-compose.yml
new file mode 100644
index 0000000..e1781ee
--- /dev/null
+++ b/documentations/seminararbeiten/Datenspeicherung/docker-compose.yml
@@ -0,0 +1,34 @@
+version: "3.8"
+services:
+ db:
+ image: postgres:14.1-alpine
+ container_name: postgres
+ restart: always
+ ports:
+ - "5432:5432"
+ environment:
+ POSTGRES_USER: postgres
+ POSTGRES_PASSWORD: postgres
+ volumes:
+ #- db:/var/lib/postgresql/data
+ - ./PostgreSQL:/var/lib/postgresql/data
+ pgadmin:
+ image: dpage/pgadmin4:7.2
+ container_name: pgadmin4_container
+ restart: always
+ ports:
+ - "5050:80"
+ environment:
+ PGADMIN_DEFAULT_EMAIL: admin@fh-swf.de
+ PGADMIN_DEFAULT_PASSWORD: admin
+ volumes:
+ # - pgadmin:/var/lib/pgadmin
+ - ./pgadmin:/var/lib/pgadmin
+
+ mongodb:
+ image: mongo:7.0.0-rc4
+ ports:
+ - '27017:27017'
+ volumes:
+ # - dbdata6:/data/db
+ - ./mongo:/data/db
diff --git a/documentations/seminararbeiten/Datenspeicherung/images/DB_Schema.PNG b/documentations/seminararbeiten/Datenspeicherung/images/DB_Schema.PNG
new file mode 100644
index 0000000..e797cc3
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/images/DB_Schema.PNG differ
diff --git a/documentations/seminararbeiten/Datenspeicherung/images/Data_Cluster.PNG b/documentations/seminararbeiten/Datenspeicherung/images/Data_Cluster.PNG
new file mode 100644
index 0000000..e36657a
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/images/Data_Cluster.PNG differ
diff --git a/documentations/seminararbeiten/Datenspeicherung/images/Document_DB.PNG b/documentations/seminararbeiten/Datenspeicherung/images/Document_DB.PNG
new file mode 100644
index 0000000..03ce320
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/images/Document_DB.PNG differ
diff --git a/documentations/seminararbeiten/Datenspeicherung/images/Front.PNG b/documentations/seminararbeiten/Datenspeicherung/images/Front.PNG
new file mode 100644
index 0000000..8d6f58c
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/images/Front.PNG differ
diff --git a/documentations/seminararbeiten/Datenspeicherung/images/Graph.PNG b/documentations/seminararbeiten/Datenspeicherung/images/Graph.PNG
new file mode 100644
index 0000000..c93f884
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/images/Graph.PNG differ
diff --git a/documentations/seminararbeiten/Datenspeicherung/images/HLD.PNG b/documentations/seminararbeiten/Datenspeicherung/images/HLD.PNG
new file mode 100644
index 0000000..bce2e55
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/images/HLD.PNG differ
diff --git a/documentations/seminararbeiten/Datenspeicherung/images/PG_Admin_Board.PNG b/documentations/seminararbeiten/Datenspeicherung/images/PG_Admin_Board.PNG
new file mode 100644
index 0000000..a8267de
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/images/PG_Admin_Board.PNG differ
diff --git a/documentations/seminararbeiten/Datenspeicherung/images/PG_Admin_Conf.PNG b/documentations/seminararbeiten/Datenspeicherung/images/PG_Admin_Conf.PNG
new file mode 100644
index 0000000..c88af47
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/images/PG_Admin_Conf.PNG differ
diff --git a/documentations/seminararbeiten/Datenspeicherung/images/Staging_DB.PNG b/documentations/seminararbeiten/Datenspeicherung/images/Staging_DB.PNG
new file mode 100644
index 0000000..6049b1e
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/images/Staging_DB.PNG differ
diff --git a/documentations/seminararbeiten/Datenspeicherung/images/Statista_Companies.png b/documentations/seminararbeiten/Datenspeicherung/images/Statista_Companies.png
new file mode 100644
index 0000000..24719a1
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/images/Statista_Companies.png differ
diff --git a/documentations/seminararbeiten/Datenspeicherung/images/company.PNG b/documentations/seminararbeiten/Datenspeicherung/images/company.PNG
new file mode 100644
index 0000000..ce293c8
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/images/company.PNG differ
diff --git a/documentations/seminararbeiten/Datenspeicherung/images/finance_data.PNG b/documentations/seminararbeiten/Datenspeicherung/images/finance_data.PNG
new file mode 100644
index 0000000..43e939a
Binary files /dev/null and b/documentations/seminararbeiten/Datenspeicherung/images/finance_data.PNG differ