mirror of
https://github.com/fhswf/aki_prj23_transparenzregister.git
synced 2025-06-21 23:03:56 +02:00
Moved the AI tests into the AI folder. (#315)
This commit is contained in:
210
tests/ai/sentiment_pipeline_test.py
Normal file
210
tests/ai/sentiment_pipeline_test.py
Normal file
@ -0,0 +1,210 @@
|
||||
"""Unit test for sentiment pipeline."""
|
||||
|
||||
from unittest.mock import Mock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from aki_prj23_transparenzregister.ai.sentiment_pipeline import (
|
||||
SentimentPipeline,
|
||||
)
|
||||
from aki_prj23_transparenzregister.config.config_template import MongoConnection
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def mock_mongo_connection() -> MongoConnection:
|
||||
"""Mock MongoConnector class.
|
||||
|
||||
Args:
|
||||
mocker (any): Library mocker
|
||||
|
||||
Returns:
|
||||
Mock: Mocked MongoConnector
|
||||
"""
|
||||
return MongoConnection("", "", None, "" "", "")
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def mock_mongo_connector(mocker: Mock) -> Mock:
|
||||
"""Mock MongoConnector class.
|
||||
|
||||
Args:
|
||||
mocker (any): Library mocker
|
||||
|
||||
Returns:
|
||||
Mock: Mocked MongoConnector
|
||||
"""
|
||||
mock = Mock()
|
||||
mocker.patch(
|
||||
"aki_prj23_transparenzregister.utils.mongo.connector.MongoConnector",
|
||||
return_value=mock,
|
||||
)
|
||||
mock.database = {"news": Mock()}
|
||||
return mock
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def mock_spacy(mocker: Mock) -> Mock:
|
||||
"""Mock MongoConnector class.
|
||||
|
||||
Args:
|
||||
mocker (any): Library mocker
|
||||
|
||||
Returns:
|
||||
Mock: Mocked MongoConnector
|
||||
"""
|
||||
mock = Mock()
|
||||
mocker.patch(
|
||||
"aki_prj23_transparenzregister.ai.sentiment_service.SentimentAnalysisService.init_spacy",
|
||||
return_value=mock,
|
||||
)
|
||||
return mock
|
||||
|
||||
|
||||
@patch(
|
||||
"aki_prj23_transparenzregister.ai.sentiment_service.SentimentAnalysisService.sentiment_spacy"
|
||||
)
|
||||
def test_sentiment_pipeline_existing_sentiment(
|
||||
mock_sentiment_spacy: Mock,
|
||||
mock_mongo_connector: Mock,
|
||||
mock_mongo_connection: MongoConnection,
|
||||
mock_spacy: Mock,
|
||||
) -> None:
|
||||
# Configure the mock to return a specific sentiment result
|
||||
mock_sentiment_spacy.return_value = ("positive", 0.8)
|
||||
|
||||
# Create an instance of the SentimentPipeline
|
||||
sentiment_pipeline = SentimentPipeline(mock_mongo_connection)
|
||||
|
||||
# Mock the news collection and documents for testing
|
||||
mock_collection = Mock()
|
||||
mock_documents = [
|
||||
{
|
||||
"_id": "document1",
|
||||
"text": "This is a positive text.",
|
||||
"sentiment": {"label": "neutral", "score": 0.5},
|
||||
}
|
||||
]
|
||||
|
||||
# Set the collection to the mock_collection
|
||||
sentiment_pipeline.news_obj.collection = mock_collection
|
||||
|
||||
# Mock the find method of the collection to return the mock documents
|
||||
mock_collection.find.return_value = mock_documents
|
||||
|
||||
# Call the process_documents method
|
||||
sentiment_pipeline.process_documents("text", "use_spacy")
|
||||
|
||||
# Ensure that sentiment_spacy was called with the correct text
|
||||
mock_sentiment_spacy.assert_called_once_with("This is a positive text.")
|
||||
|
||||
# Ensure that the document in the collection was not updated with sentiment
|
||||
# mock_collection.update_one.assert_not_called()
|
||||
|
||||
|
||||
@patch(
|
||||
"aki_prj23_transparenzregister.ai.sentiment_service.SentimentAnalysisService.sentiment_spacy"
|
||||
)
|
||||
def test_sentiment_pipeline_no_documents(
|
||||
mock_sentiment_spacy: Mock,
|
||||
mock_mongo_connector: Mock,
|
||||
mock_mongo_connection: MongoConnection,
|
||||
mock_spacy: Mock,
|
||||
) -> None:
|
||||
# Configure the mock to return a specific sentiment result
|
||||
mock_sentiment_spacy.return_value = ("positive", 0.8)
|
||||
|
||||
# Create an instance of the SentimentPipeline
|
||||
sentiment_pipeline = SentimentPipeline(mock_mongo_connection)
|
||||
|
||||
# Mock the news collection to return an empty result
|
||||
mock_collection = Mock()
|
||||
mock_collection.find.return_value = []
|
||||
|
||||
# Set the collection to the mock_collection
|
||||
sentiment_pipeline.news_obj.collection = mock_collection
|
||||
|
||||
# Call the process_documents method
|
||||
sentiment_pipeline.process_documents("text", "use_spacy")
|
||||
|
||||
# Ensure that sentiment_spacy was not called
|
||||
mock_sentiment_spacy.assert_not_called()
|
||||
|
||||
# Ensure that the document in the collection was not updated with sentiment
|
||||
mock_collection.update_one.assert_not_called()
|
||||
|
||||
|
||||
@patch(
|
||||
"aki_prj23_transparenzregister.ai.sentiment_service.SentimentAnalysisService.sentiment_spacy"
|
||||
)
|
||||
def test_sentiment_pipeline_with_spacy(
|
||||
mock_sentiment_spacy: Mock,
|
||||
mock_mongo_connector: Mock,
|
||||
mock_mongo_connection: MongoConnection,
|
||||
mock_spacy: Mock,
|
||||
) -> None:
|
||||
# Configure the mock to return a specific sentiment result
|
||||
mock_sentiment_spacy.return_value = ("positive", 0.8)
|
||||
|
||||
# Create an instance of the SentimentPipeline
|
||||
sentiment_pipeline = SentimentPipeline(mock_mongo_connection)
|
||||
|
||||
# Mock the news collection and documents for testing
|
||||
mock_collection = Mock()
|
||||
mock_documents = [{"_id": "document1", "text": "This is a positive text."}]
|
||||
|
||||
# Set the collection to the mock_collection
|
||||
sentiment_pipeline.news_obj.collection = mock_collection
|
||||
|
||||
# Mock the find method of the collection to return the mock documents
|
||||
mock_collection.find.return_value = mock_documents
|
||||
|
||||
# Call the process_documents method
|
||||
sentiment_pipeline.process_documents("text", "use_spacy")
|
||||
|
||||
# Ensure that sentiment_spacy was called with the correct text
|
||||
mock_sentiment_spacy.assert_called_once_with("This is a positive text.")
|
||||
|
||||
# Ensure that the document in the collection was updated with the sentiment result
|
||||
mock_collection.update_one.assert_called_once_with(
|
||||
{"_id": "document1"},
|
||||
{"$set": {"sentiment": {"label": "positive", "score": 0.8}}},
|
||||
)
|
||||
|
||||
|
||||
# Mocking the SentimentAnalysisService methods
|
||||
@patch(
|
||||
"aki_prj23_transparenzregister.ai.sentiment_service.SentimentAnalysisService.sentiment_transformer"
|
||||
)
|
||||
def test_sentiment_pipeline_with_transformer(
|
||||
mock_sentiment_transformer: Mock,
|
||||
mock_mongo_connector: Mock,
|
||||
mock_mongo_connection: MongoConnection,
|
||||
mock_spacy: Mock,
|
||||
) -> None:
|
||||
# Configure the mock to return a specific sentiment result
|
||||
mock_sentiment_transformer.return_value = ("negative", 0.6)
|
||||
|
||||
# Create an instance of the SentimentPipeline
|
||||
sentiment_pipeline = SentimentPipeline(mock_mongo_connection)
|
||||
|
||||
# Mock the news collection and documents for testing
|
||||
mock_collection = Mock()
|
||||
mock_documents = [{"_id": "document2", "text": "This is a negative text."}]
|
||||
|
||||
# Set the collection to the mock_collection
|
||||
sentiment_pipeline.news_obj.collection = mock_collection
|
||||
|
||||
# Mock the find method of the collection to return the mock documents
|
||||
mock_collection.find.return_value = mock_documents
|
||||
|
||||
# Call the process_documents method
|
||||
sentiment_pipeline.process_documents("text", "use_transformer")
|
||||
|
||||
# Ensure that sentiment_transformer was called with the correct text
|
||||
mock_sentiment_transformer.assert_called_once_with("This is a negative text.")
|
||||
|
||||
# Ensure that the document in the collection was updated with the sentiment result
|
||||
mock_collection.update_one.assert_called_once_with(
|
||||
{"_id": "document2"},
|
||||
{"$set": {"sentiment": {"label": "negative", "score": 0.6}}},
|
||||
)
|
Reference in New Issue
Block a user