mirror of
https://github.com/fhswf/aki_prj23_transparenzregister.git
synced 2025-05-13 09:48:45 +02:00
Added Realtion_count MEthod
This commit is contained in:
parent
76af89ff32
commit
f2ac0eda91
@ -34,16 +34,15 @@ def find_company_relations(company_id: int) -> pd.DataFrame:
|
||||
connected_company_name = []
|
||||
|
||||
for _, row in companies_relations_df.iterrows():
|
||||
# print(companies_df.loc[companies_df["company_id"] == row["relation_id"]]["company_name"].values[0])
|
||||
company_name.append(
|
||||
companies_df.loc[companies_df["company_id"] == row["relation_id"]][
|
||||
"company_name"
|
||||
].values[0]
|
||||
].iloc[0]
|
||||
)
|
||||
connected_company_name.append(
|
||||
companies_df.loc[
|
||||
companies_df["company_id"] == row["company_relation_company2_id"]
|
||||
]["company_name"].values[0]
|
||||
]["company_name"].iloc[0]
|
||||
)
|
||||
|
||||
# print(company_name)
|
||||
@ -54,7 +53,7 @@ def find_company_relations(company_id: int) -> pd.DataFrame:
|
||||
|
||||
|
||||
# Plotly figure
|
||||
def networkGraph(company_id: int) -> go.Figure:
|
||||
def network_graph(company_id: int) -> go.Figure:
|
||||
"""_summary_.
|
||||
|
||||
Args:
|
||||
@ -63,14 +62,10 @@ def networkGraph(company_id: int) -> go.Figure:
|
||||
Returns:
|
||||
go.Figure: _description_
|
||||
"""
|
||||
# df = find_company_relations(test_company)
|
||||
edges = []
|
||||
for index, row in find_company_relations(company_id).iterrows():
|
||||
for _, row in find_company_relations(company_id).iterrows():
|
||||
edges.append([row["company_name"], row["connected_company_name"]])
|
||||
# print(row["company_name"], row["connected_company_name"])
|
||||
# print(edges)
|
||||
# edges = df[["relation_id","company_relation_company2_id"]]
|
||||
# edges = [[EGDE_VAR, "B"], ["B", "C"], ["B", "D"]]
|
||||
|
||||
network_graph = nx.Graph()
|
||||
network_graph.add_edges_from(edges)
|
||||
pos = nx.spring_layout(network_graph)
|
||||
@ -151,6 +146,6 @@ def networkx_component(company_id: int) -> html.Div:
|
||||
"""
|
||||
return html.Div(
|
||||
[
|
||||
dcc.Graph(id="my-graph", figure=networkGraph(company_id)),
|
||||
dcc.Graph(id="my-graph", figure=network_graph(company_id)),
|
||||
]
|
||||
)
|
||||
|
@ -34,18 +34,16 @@ def find_all_company_relations() -> pd.DataFrame:
|
||||
# print(companies_relations_df)
|
||||
|
||||
for _, row in companies_relations_df.iterrows():
|
||||
# print(companies_df.loc[companies_df["company_id"] == row["relation_id"]]["company_name"].values[0])
|
||||
# print("TEst")
|
||||
company_name.append(
|
||||
companies_df.loc[companies_df["company_id"] == row["relation_id"]][
|
||||
"company_name"
|
||||
].values[0]
|
||||
].iloc[0]
|
||||
)
|
||||
|
||||
connected_company_name.append(
|
||||
companies_df.loc[
|
||||
companies_df["company_id"] == row["company_relation_company2_id"]
|
||||
]["company_name"].values[0]
|
||||
]["company_name"].iloc[0]
|
||||
)
|
||||
# print(connected_company_name)
|
||||
|
||||
@ -58,7 +56,7 @@ def find_all_company_relations() -> pd.DataFrame:
|
||||
|
||||
|
||||
# Plotly figure
|
||||
def networkGraph(EGDE_VAR: None) -> go.Figure:
|
||||
def network_graph() -> go.Figure:
|
||||
"""Create a NetworkX Graph.
|
||||
|
||||
Args:
|
||||
@ -67,15 +65,10 @@ def networkGraph(EGDE_VAR: None) -> go.Figure:
|
||||
Returns:
|
||||
go.Figure: _description_
|
||||
"""
|
||||
# find_all_company_relations()
|
||||
|
||||
edges = []
|
||||
for index, row in find_all_company_relations().iterrows():
|
||||
for _, row in find_all_company_relations().iterrows():
|
||||
edges.append([row["company_name"], row["connected_company_name"]])
|
||||
# print(row["company_name"], row["connected_company_name"])
|
||||
# print(edges)
|
||||
# edges = df[["relation_id","company_relation_company2_id"]]
|
||||
# edges = [[EGDE_VAR, "B"], ["B", "C"], ["B", "D"]]
|
||||
|
||||
network_graph = nx.Graph()
|
||||
network_graph.add_edges_from(edges)
|
||||
pos = nx.spring_layout(network_graph)
|
||||
@ -141,7 +134,6 @@ def networkGraph(EGDE_VAR: None) -> go.Figure:
|
||||
},
|
||||
}
|
||||
|
||||
print(nx.eigenvector_centrality(network_graph))
|
||||
measure_vector = {}
|
||||
network_metrics_df = pd.DataFrame()
|
||||
|
||||
@ -157,20 +149,11 @@ def networkGraph(EGDE_VAR: None) -> go.Figure:
|
||||
measure_vector = nx.closeness_centrality(network_graph)
|
||||
network_metrics_df["closeness"] = measure_vector.values()
|
||||
|
||||
# measure_vector = nx.pagerank(network_graph)
|
||||
# network_metrics_df["pagerank"] = measure_vector.values()
|
||||
|
||||
# measure_vector = nx.average_degree_connectivity(network_graph)
|
||||
# network_metrics_df["average_degree"] = measure_vector.values()
|
||||
print(network_metrics_df)
|
||||
|
||||
# figure
|
||||
return go.Figure(data=[edge_trace, node_trace], layout=layout)
|
||||
|
||||
|
||||
# Dash App
|
||||
|
||||
|
||||
app = Dash(__name__)
|
||||
|
||||
app.title = "Dash Networkx"
|
||||
@ -192,7 +175,7 @@ app.layout = html.Div(
|
||||
# Input('metric-dropdown', 'value'),
|
||||
[Input("EGDE_VAR", "value")],
|
||||
)
|
||||
def update_output(EGDE_VAR: None) -> go.Figure:
|
||||
def update_output(edge_var: None) -> go.Figure:
|
||||
"""Just Returns the go Figure of Plotly.
|
||||
|
||||
Args:
|
||||
@ -201,7 +184,7 @@ def update_output(EGDE_VAR: None) -> go.Figure:
|
||||
Returns:
|
||||
go.Figure: _description_
|
||||
"""
|
||||
return networkGraph(EGDE_VAR)
|
||||
return network_graph(edge_var)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -7,8 +7,8 @@ from dash import dash_table, dcc, html
|
||||
from sqlalchemy.engine import Engine
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from aki_prj23_transparenzregister.utils.sql import entities
|
||||
from aki_prj23_transparenzregister.ui.archive.networkx_dash import networkx_component
|
||||
from aki_prj23_transparenzregister.utils.sql import entities
|
||||
|
||||
COLORS = {
|
||||
"light": "#edefef",
|
||||
@ -363,6 +363,4 @@ def network_layout(selected_company_id: int) -> html:
|
||||
Returns:
|
||||
The html div to create the network tab of the company page.
|
||||
"""
|
||||
selected_company_id
|
||||
return networkx_component(selected_company_id)
|
||||
# return html.Div([f"Netzwerk von Unternehmen mit ID: {selected_company_id}"])
|
||||
|
@ -15,6 +15,7 @@ from aki_prj23_transparenzregister.utils.networkx.network_base import initialize
|
||||
from aki_prj23_transparenzregister.utils.networkx.networkx_data import (
|
||||
create_edge_and_node_list_for_company,
|
||||
find_company_relations,
|
||||
get_relations_number_from_id,
|
||||
)
|
||||
|
||||
COLORS = {
|
||||
@ -379,13 +380,37 @@ def network_layout(selected_company_id: int) -> html.Div:
|
||||
The html div to create the network tab of the company page.
|
||||
"""
|
||||
person_relations, company_relations = find_company_relations(selected_company_id)
|
||||
|
||||
# get_all_metrics_from_id(selected_company_id)
|
||||
get_relations_number_from_id(f"c_{selected_company_id}")
|
||||
|
||||
# Create Edge and Node List from data
|
||||
nodes, edges = create_edge_and_node_list_for_company(company_relations)
|
||||
# Initialize the Network and receive the Graph and a DataFrame with Metrics
|
||||
if nodes != {}:
|
||||
graph, metrics = initialize_network(nodes=nodes, edges=edges)
|
||||
metric = "None"
|
||||
figure = create_2d_graph(graph, nodes, edges, metrics, metric, layout="Spring", edge_annotation=True, node_annotation=False, edge_thickness=1)
|
||||
figure = create_2d_graph(
|
||||
graph,
|
||||
nodes,
|
||||
edges,
|
||||
metrics,
|
||||
metric,
|
||||
layout="Spring",
|
||||
edge_annotation=True,
|
||||
node_annotation=False,
|
||||
edge_thickness=1,
|
||||
)
|
||||
return html.Div(
|
||||
children=[
|
||||
dcc.Graph(figure=figure, id="company-graph", className="graph-style")
|
||||
]
|
||||
)
|
||||
|
||||
return html.Div( children=[dcc.Graph(figure=figure, id="company-graph", className="graph-style")])
|
||||
return html.Div([html.H3(f"Leider gibt es keine Verbindungen vom Unternehmen mit ID: {selected_company_id}")])
|
||||
return html.Div(
|
||||
[
|
||||
html.H3(
|
||||
f"Leider gibt es keine Verbindungen vom Unternehmen mit ID: {selected_company_id}"
|
||||
)
|
||||
]
|
||||
)
|
||||
|
@ -369,7 +369,7 @@ def update_graph_data(
|
||||
allow_duplicate=True,
|
||||
)
|
||||
# @lru_cache(20)
|
||||
def update_figure(
|
||||
def update_figure( # noqa: PLR0913
|
||||
selected_metric: str,
|
||||
switch_value: bool,
|
||||
# switch_node_annotaion_value: bool,
|
||||
|
@ -11,38 +11,6 @@ class SentimentLabel(MultiValueEnum):
|
||||
NEGATIVE = -1, "negative"
|
||||
NEUTRAL = 0, "neutral"
|
||||
|
||||
@staticmethod
|
||||
def get_string_from_enum(value: int | None) -> str:
|
||||
"""Translates relation name into a RelationTypeEnum.
|
||||
|
||||
If no translation can be found a warning is given.
|
||||
|
||||
Args:
|
||||
relation_name: The name of the relation to be translated.
|
||||
|
||||
Returns:
|
||||
The identified translation or None if no translation can be found.
|
||||
"""
|
||||
tmp = RelationTypeEnum(value)
|
||||
if value is None:
|
||||
raise ValueError("A relation type needs to be given.")
|
||||
name = {
|
||||
RelationTypeEnum.GESCHAEFTSFUEHRER: "Geschäftsführer",
|
||||
RelationTypeEnum.KOMMANDITIST: "Kommanditist",
|
||||
RelationTypeEnum.VORSTAND: "Vorstand",
|
||||
RelationTypeEnum.PROKURIST: "Prokurist",
|
||||
RelationTypeEnum.LIQUIDATOR: "Liquidator",
|
||||
RelationTypeEnum.INHABER: "Inhaber",
|
||||
RelationTypeEnum.PERSOENLICH_HAFTENDER_GESELLSCHAFTER: "Persönlich haftender Gesellschafter",
|
||||
RelationTypeEnum.ORGANISATION: "Organisation",
|
||||
RelationTypeEnum.PARTNER: "Partner",
|
||||
RelationTypeEnum.DIREKTOR: "Direktor",
|
||||
RelationTypeEnum.RECHTSNACHFOLGER: "Rechtsnachfolger",
|
||||
}.get(tmp)
|
||||
if name is not None:
|
||||
return name
|
||||
raise ValueError(f'Relation type "{value}" is not yet implemented!')
|
||||
|
||||
|
||||
class FinancialKPIEnum(Enum):
|
||||
"""Financial KPI keys."""
|
||||
|
@ -5,7 +5,7 @@ import pandas as pd
|
||||
import plotly.graph_objects as go
|
||||
|
||||
|
||||
def create_3d_graph(
|
||||
def create_3d_graph( # noqa : PLR0913
|
||||
graph: nx.Graph,
|
||||
nodes: dict,
|
||||
edges: list,
|
||||
|
@ -34,5 +34,66 @@ def initialize_network(edges: list, nodes: dict) -> tuple[nx.Graph, pd.DataFrame
|
||||
metrics["pagerank"] = nx.pagerank(graph).values()
|
||||
metrics["category"] = nx.get_node_attributes(graph, "type").values()
|
||||
metrics["designation"] = nx.get_node_attributes(graph, "name").values()
|
||||
metrics["id"] = nx.get_node_attributes(graph, "id").values()
|
||||
|
||||
return graph, metrics
|
||||
|
||||
|
||||
def initialize_network_with_reduced_metrics(
|
||||
edges: list, nodes: dict
|
||||
) -> tuple[nx.Graph, pd.DataFrame]:
|
||||
"""This Method creates a Network from the Framework NetworkX with the help of a Node and Edge List. Furthemore it creates a DataFrame with the most important Metrics.
|
||||
|
||||
Args:
|
||||
edges (list): List with the connections between Nodes.
|
||||
nodes (dict): Dict with all Nodes.
|
||||
|
||||
Returns:
|
||||
Graph: Plotly Figure
|
||||
Metrices: DataFrame with Metrics
|
||||
"""
|
||||
# create edge dataframe
|
||||
df_edges = pd.DataFrame(edges, columns=["from", "to", "type"])
|
||||
graph = nx.from_pandas_edgelist(
|
||||
df_edges, source="from", target="to", edge_attr="type"
|
||||
)
|
||||
|
||||
# update node attributes from dataframe
|
||||
nx.set_node_attributes(graph, nodes)
|
||||
|
||||
# Create a DataFrame with all Metrics
|
||||
metrics = pd.DataFrame(
|
||||
columns=["degree", "eigenvector", "betweenness", "closeness", "pagerank"]
|
||||
)
|
||||
# metrics["eigenvector"] = nx.eigenvector_centrality(graph).values()
|
||||
metrics["degree"] = nx.degree_centrality(graph).values()
|
||||
metrics["betweenness"] = nx.betweenness_centrality(graph).values()
|
||||
metrics["closeness"] = nx.closeness_centrality(graph).values()
|
||||
# metrics["pagerank"] = nx.pagerank(graph).values()
|
||||
metrics["category"] = nx.get_node_attributes(graph, "type").values()
|
||||
metrics["designation"] = nx.get_node_attributes(graph, "name").values()
|
||||
metrics["id"] = nx.get_node_attributes(graph, "id").values()
|
||||
|
||||
return graph, metrics
|
||||
|
||||
|
||||
def initialize_network_without_metrics(edges: list, nodes: dict) -> nx.Graph:
|
||||
"""This Method creates a Network from the Framework NetworkX with the help of a Node and Edge List. Furthemore it creates a DataFrame with the most important Metrics.
|
||||
|
||||
Args:
|
||||
edges (list): List with the connections between Nodes.
|
||||
nodes (dict): Dict with all Nodes.
|
||||
|
||||
Returns:
|
||||
Graph: Plotly Figure
|
||||
"""
|
||||
# create edge dataframe
|
||||
df_edges = pd.DataFrame(edges, columns=["from", "to", "type"])
|
||||
graph = nx.from_pandas_edgelist(
|
||||
df_edges, source="from", target="to", edge_attr="type"
|
||||
)
|
||||
|
||||
# update node attributes from dataframe
|
||||
nx.set_node_attributes(graph, nodes)
|
||||
|
||||
return graph
|
||||
|
@ -1,8 +1,15 @@
|
||||
"""Module to receive and filter Data for working with NetworkX."""
|
||||
from functools import lru_cache
|
||||
|
||||
import networkx as nx
|
||||
import pandas as pd
|
||||
from sqlalchemy.orm import aliased
|
||||
|
||||
from aki_prj23_transparenzregister.config.config_providers import JsonFileConfigProvider
|
||||
from aki_prj23_transparenzregister.utils.networkx.network_base import (
|
||||
initialize_network_with_reduced_metrics,
|
||||
initialize_network_without_metrics,
|
||||
)
|
||||
from aki_prj23_transparenzregister.utils.sql import connector, entities
|
||||
from aki_prj23_transparenzregister.utils.sql.connector import get_session
|
||||
|
||||
@ -15,6 +22,9 @@ to_company = aliased(entities.Company, name="to_company")
|
||||
# Alias for Company table for the head company
|
||||
from_company = aliased(entities.Company, name="from_company")
|
||||
|
||||
COLOR_COMPANY = "blue"
|
||||
COLOR_PERSON = "red"
|
||||
|
||||
|
||||
def find_all_company_relations() -> pd.DataFrame:
|
||||
"""_summary_.
|
||||
@ -40,12 +50,12 @@ def find_all_company_relations() -> pd.DataFrame:
|
||||
company_name.append(
|
||||
companies_df.loc[companies_df["company_id"] == row["relation_id"]][
|
||||
"company_name"
|
||||
].values[0]
|
||||
].iloc[0]
|
||||
)
|
||||
connected_company_name.append(
|
||||
companies_df.loc[
|
||||
companies_df["company_id"] == row["company_relation_company2_id"]
|
||||
]["company_name"].values[0]
|
||||
]["company_name"].iloc[0]
|
||||
)
|
||||
|
||||
companies_relations_df["company_name"] = company_name
|
||||
@ -213,19 +223,16 @@ def create_edge_and_node_list(
|
||||
nodes: dict = {}
|
||||
edges: list = []
|
||||
|
||||
COLOR_COMPANY = "blue"
|
||||
COLOR_PERSON = "red"
|
||||
|
||||
# Iterate over person relations
|
||||
for _index, row in person_relations.iterrows():
|
||||
if node := nodes.get(row["id_company"]) is None:
|
||||
for _, row in person_relations.iterrows():
|
||||
if nodes.get(row["id_company"]) is None:
|
||||
nodes[row["id_company"]] = {
|
||||
"id": row["id_company"],
|
||||
"name": row["name_company"],
|
||||
"color": COLOR_COMPANY,
|
||||
"type": "company",
|
||||
}
|
||||
if node := nodes.get(row["id_person"]) is None:
|
||||
if nodes.get(row["id_person"]) is None:
|
||||
nodes[row["id_person"]] = {
|
||||
"id": row["id_person"],
|
||||
"name": str(row["firstname"]) + " " + str(row["lastname"]),
|
||||
@ -241,15 +248,15 @@ def create_edge_and_node_list(
|
||||
}
|
||||
)
|
||||
|
||||
for _index, row in company_relations.iterrows():
|
||||
if node := nodes.get(row["id_company_from"]) is None:
|
||||
for _, row in company_relations.iterrows():
|
||||
if nodes.get(row["id_company_from"]) is None: # noqa
|
||||
nodes[row["id_company_from"]] = {
|
||||
"id": row["id_company_from"],
|
||||
"name": row["name_company_from"],
|
||||
"color": COLOR_COMPANY,
|
||||
"type": "company",
|
||||
}
|
||||
if node := nodes.get(row["id_company_to"]) is None:
|
||||
if nodes.get(row["id_company_to"]) is None:
|
||||
nodes[row["id_company_to"]] = {
|
||||
"id": row["id_company_to"],
|
||||
"name": row["name_company_to"],
|
||||
@ -361,7 +368,7 @@ def create_edge_and_node_list_for_company(
|
||||
return nodes, edges
|
||||
|
||||
|
||||
def get_all_metrics_from_id(company_id: int) -> pd.DataFrame:
|
||||
def get_all_metrics_from_id(company_id: int) -> pd.Series:
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
@ -370,10 +377,20 @@ def get_all_metrics_from_id(company_id: int) -> pd.DataFrame:
|
||||
Returns:
|
||||
pd.DataFrame: _description_
|
||||
"""
|
||||
return pd.DataFrame()
|
||||
# Get Data
|
||||
person_df = get_all_person_relations()
|
||||
company_df = get_all_company_relations()
|
||||
|
||||
# Create Edge and Node List from data
|
||||
nodes_tmp, edges_tmp = create_edge_and_node_list(person_df, company_df)
|
||||
graph, metrics = initialize_network_with_reduced_metrics(
|
||||
nodes=nodes_tmp, edges=edges_tmp
|
||||
)
|
||||
return metrics.loc[metrics["id"] == company_id].iloc[0]
|
||||
|
||||
|
||||
def get_relations_number_from_id(company_id: int) -> tuple[int, int, int]:
|
||||
@lru_cache
|
||||
def get_relations_number_from_id(id: str) -> tuple[int, int, int]:
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
@ -382,4 +399,29 @@ def get_relations_number_from_id(company_id: int) -> tuple[int, int, int]:
|
||||
Returns:
|
||||
tuple[int,int,int]: _description_
|
||||
"""
|
||||
return (1, 2, 3)
|
||||
# Get Data
|
||||
person_df = get_all_person_relations()
|
||||
company_df = get_all_company_relations()
|
||||
|
||||
# Create Edge and Node List from data
|
||||
nodes_tmp, edges_tmp = create_edge_and_node_list(person_df, company_df)
|
||||
|
||||
graph = initialize_network_without_metrics(nodes=nodes_tmp, edges=edges_tmp)
|
||||
|
||||
neighbors = nx.all_neighbors(graph, id)
|
||||
|
||||
relations_lv1 = set(neighbors)
|
||||
relations_lv2 = set()
|
||||
relations_lv3 = set()
|
||||
|
||||
for node in relations_lv1:
|
||||
relations_lv2 |= set(nx.all_neighbors(graph, node))
|
||||
|
||||
relations_lv2.discard(id)
|
||||
|
||||
for sub_node in relations_lv2:
|
||||
relations_lv3 |= set(nx.all_neighbors(graph, sub_node))
|
||||
|
||||
relations_lv2.difference(relations_lv3)
|
||||
|
||||
return (len(relations_lv1), len(relations_lv2), len(relations_lv3))
|
||||
|
@ -45,7 +45,7 @@ def get_engine(conn_args: SQLConnectionString) -> Engine:
|
||||
return sa.create_engine(
|
||||
str(conn_args),
|
||||
connect_args={"check_same_thread": True},
|
||||
poolclass=SingletonThreadPool
|
||||
poolclass=SingletonThreadPool,
|
||||
)
|
||||
raise TypeError("The type of the configuration is invalid.")
|
||||
|
||||
|
@ -2,6 +2,6 @@
|
||||
from aki_prj23_transparenzregister.ui import networkx_dash
|
||||
|
||||
|
||||
def networkGraph(Edges: None) -> None:
|
||||
def network_graph(Edges: None) -> None:
|
||||
"""Checks if an import co company_stats_dash can be made."""
|
||||
assert networkx_dash is not None
|
||||
|
@ -1,14 +1,11 @@
|
||||
"""Test the initialize Network function."""
|
||||
import datetime
|
||||
from unittest import TestCase
|
||||
|
||||
import networkx as nx
|
||||
import pandas as pd
|
||||
|
||||
from aki_prj23_transparenzregister.utils.networkx.network_base import initialize_network
|
||||
|
||||
tc = TestCase()
|
||||
|
||||
|
||||
def test_initialize_network() -> None:
|
||||
edges: list = [
|
||||
@ -32,7 +29,7 @@ def test_initialize_network() -> None:
|
||||
graph, metrics = initialize_network(edges=edges, nodes=nodes)
|
||||
assert type(graph) is nx.Graph
|
||||
assert type(metrics) is pd.DataFrame
|
||||
tc.assertListEqual(
|
||||
list(metrics.columns),
|
||||
["degree", "eigenvector", "betweeness", "closeness", "pagerank"],
|
||||
assert (
|
||||
list(metrics.columns)
|
||||
== ["degree", "eigenvector", "betweeness", "closeness", "pagerank"],
|
||||
)
|
||||
|
@ -1,16 +1,14 @@
|
||||
"""Test the initialize Network function."""
|
||||
import datetime
|
||||
from unittest import TestCase
|
||||
|
||||
import networkx as nx
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
from aki_prj23_transparenzregister.utils.networkx.network_base import initialize_network
|
||||
|
||||
tc = TestCase()
|
||||
import pytest
|
||||
|
||||
@pytest.mark.tim
|
||||
@pytest.mark.tim()
|
||||
def test_initialize_network() -> None:
|
||||
edges: list = [
|
||||
{"from": "p_545", "to": "c_53", "type": "HAFTENDER_GESELLSCHAFTER"},
|
||||
@ -33,7 +31,7 @@ def test_initialize_network() -> None:
|
||||
graph, metrics = initialize_network(edges=edges, nodes=nodes)
|
||||
assert isinstance(graph, nx.Graph)
|
||||
assert isinstance(metrics, pd.DataFrame)
|
||||
tc.assertListEqual(
|
||||
list(metrics.columns),
|
||||
["degree", "eigenvector", "betweeness", "closeness", "pagerank"],
|
||||
assert (
|
||||
list(metrics.columns)
|
||||
== ["degree", "eigenvector", "betweeness", "closeness", "pagerank"],
|
||||
)
|
||||
|
Loading…
x
Reference in New Issue
Block a user