mirror of
https://github.com/fhswf/aki_prj23_transparenzregister.git
synced 2025-04-22 11:32:53 +02:00
367 lines
12 KiB
Python
367 lines
12 KiB
Python
"""Dash elements."""
|
|
|
|
import pandas as pd
|
|
import plotly.graph_objs as go
|
|
from cachetools import TTLCache, cached
|
|
from dash import dash_table, dcc, html
|
|
from sqlalchemy.engine import Engine
|
|
from sqlalchemy.orm import Session
|
|
|
|
from aki_prj23_transparenzregister.ui.archive.networkx_dash import networkx_component
|
|
from aki_prj23_transparenzregister.utils.sql import entities
|
|
|
|
COLORS = {
|
|
"light": "#edefef",
|
|
"lavender-blush": "#f3e8ee",
|
|
"ash-gray": "#bacdb0",
|
|
"cambridge-blue": "#729b79",
|
|
"paynes-gray": "#475b63",
|
|
"raisin-black": "#2e2c2f",
|
|
}
|
|
|
|
|
|
def get_company_data(session: Session) -> pd.DataFrame:
|
|
"""Creates a session to the database and get's all available company data.
|
|
|
|
Args:
|
|
session: A session connecting to the database.
|
|
|
|
Returns:
|
|
A dataframe containing all available company data including the corresponding district court.
|
|
"""
|
|
query_company = session.query(entities.Company, entities.DistrictCourt.name).join(
|
|
entities.DistrictCourt
|
|
)
|
|
engine = session.bind
|
|
if not isinstance(engine, Engine):
|
|
raise TypeError
|
|
|
|
return pd.read_sql(str(query_company), engine, index_col="company_id")
|
|
|
|
|
|
def get_finance_data(session: Session) -> pd.DataFrame:
|
|
"""Collects all available company data.
|
|
|
|
Args:
|
|
session: A session connecting to the database.
|
|
|
|
Returns:
|
|
A dataframe containing all financial data of all companies.
|
|
"""
|
|
query_finance = session.query(
|
|
entities.AnnualFinanceStatement, entities.Company.name, entities.Company.id
|
|
).join(entities.Company)
|
|
|
|
engine = session.bind
|
|
if not isinstance(engine, Engine):
|
|
raise TypeError
|
|
|
|
return pd.read_sql(str(query_finance), engine)
|
|
|
|
|
|
@cached( # type: ignore
|
|
cache=TTLCache(maxsize=1, ttl=300),
|
|
key=lambda session: 0 if session is None else str(session.bind),
|
|
)
|
|
def get_options(session: Session | None) -> dict[int, str]:
|
|
"""Collects the search options for the companies.
|
|
|
|
Args:
|
|
session: A session connecting to the database.
|
|
|
|
Returns:
|
|
A dict containing the company id as key and its name.
|
|
"""
|
|
if not session:
|
|
return {}
|
|
return get_company_data(session)["company_name"].to_dict()
|
|
|
|
|
|
def create_header(options: dict) -> html:
|
|
"""Creates header for dashboard.
|
|
|
|
Args:
|
|
options: A dictionary with company names and ids for the dropdown.
|
|
|
|
Returns:
|
|
The html div to create the page's header including the name of the page and the search for companies.
|
|
"""
|
|
return html.Div(
|
|
className="header-wrapper",
|
|
children=[
|
|
html.Div(
|
|
className="header-title",
|
|
children=[
|
|
html.I(
|
|
id="home-button",
|
|
n_clicks=0,
|
|
className="bi-house-door-fill",
|
|
),
|
|
html.H1(
|
|
className="header-title-text",
|
|
children="Transparenzregister für Kapitalgesellschaften",
|
|
),
|
|
],
|
|
),
|
|
html.Div(
|
|
className="header-search",
|
|
children=[
|
|
html.Div(
|
|
className="header-search-dropdown",
|
|
children=[
|
|
dcc.Dropdown(
|
|
id="select_company",
|
|
options=[
|
|
{"label": o, "value": key}
|
|
for key, o in options.items()
|
|
],
|
|
placeholder="Suche nach Unternehmen oder Person",
|
|
),
|
|
],
|
|
),
|
|
],
|
|
),
|
|
],
|
|
)
|
|
|
|
|
|
def create_company_header(selected_company_name: str) -> html:
|
|
"""Create company header based on selected company.
|
|
|
|
Args:
|
|
selected_company_name: The company name that has been chosen in the dropdown.
|
|
|
|
Returns:
|
|
The html div to create the company header.
|
|
"""
|
|
return html.Div(
|
|
className="company-header",
|
|
children=[
|
|
html.H1(
|
|
className="company-header-title",
|
|
id="id-company-header-title",
|
|
children=selected_company_name,
|
|
),
|
|
],
|
|
)
|
|
|
|
|
|
def create_company_stats(selected_company_data: pd.Series) -> html:
|
|
"""Create company stats.
|
|
|
|
Args:
|
|
selected_company_data: A series containing all company information of the selected company.
|
|
|
|
Returns:
|
|
The html div to create the company stats table and the three small widgets.
|
|
"""
|
|
company_data = {
|
|
"col1": ["Unternehmen", "Straße", "Stadt"],
|
|
"col2": [
|
|
selected_company_data["company_name"],
|
|
selected_company_data["company_street"],
|
|
str(
|
|
selected_company_data["company_zip_code"]
|
|
+ " "
|
|
+ selected_company_data["company_city"]
|
|
),
|
|
],
|
|
"col3": ["Branche", "Amtsgericht", "Gründungsjahr"],
|
|
"col4": [
|
|
selected_company_data["company_sector"],
|
|
selected_company_data["district_court_name"],
|
|
"xxx",
|
|
],
|
|
}
|
|
df_company_data = pd.DataFrame(data=company_data)
|
|
return html.Div(
|
|
className="stats-wrapper",
|
|
children=[
|
|
html.Div(
|
|
className="widget-large",
|
|
children=[
|
|
html.H3(
|
|
className="widget-title",
|
|
children="Stammdaten",
|
|
),
|
|
dash_table.DataTable(
|
|
df_company_data.to_dict("records"),
|
|
[{"name": i, "id": i} for i in df_company_data.columns],
|
|
style_table={
|
|
"width": "90%",
|
|
"marginLeft": "auto",
|
|
"marginRight": "auto",
|
|
"paddingBottom": "20px",
|
|
"color": COLORS["raisin-black"],
|
|
},
|
|
# hide header of table
|
|
css=[
|
|
{
|
|
"selector": "tr:first-child",
|
|
"rule": "display: none",
|
|
},
|
|
],
|
|
style_cell={"textAlign": "center"},
|
|
style_cell_conditional=[
|
|
{"if": {"column_id": c}, "fontWeight": "bold"}
|
|
for c in ["col1", "col3"]
|
|
],
|
|
style_data={
|
|
"whiteSpace": "normal",
|
|
"height": "auto",
|
|
},
|
|
),
|
|
],
|
|
),
|
|
html.Div(
|
|
className="widget-small",
|
|
children=[
|
|
html.H3(
|
|
className="widget-title",
|
|
children="Stimmung",
|
|
),
|
|
],
|
|
),
|
|
html.Div(
|
|
className="widget-small",
|
|
children=[
|
|
html.H3(
|
|
className="widget-title",
|
|
children="Aktienkurs",
|
|
),
|
|
html.H1(
|
|
className="widget-content",
|
|
children="123",
|
|
),
|
|
],
|
|
),
|
|
html.Div(
|
|
className="widget-small",
|
|
children=[
|
|
html.H3(
|
|
className="widget-title",
|
|
children="Umsatz",
|
|
),
|
|
html.H1(
|
|
className="widget-content",
|
|
children="1234",
|
|
),
|
|
],
|
|
),
|
|
],
|
|
)
|
|
|
|
|
|
def create_tabs(selected_company_id: int, selected_finance_df: pd.DataFrame) -> html:
|
|
"""Create tabs for more company information.
|
|
|
|
Args:
|
|
selected_company_id: Id of the chosen company in the dropdown.
|
|
selected_finance_df: A dataframe containing all available finance information of the companies.
|
|
|
|
Returns:
|
|
The html div to create the tabs of the company page.
|
|
"""
|
|
return html.Div(
|
|
className="tabs",
|
|
children=[
|
|
dcc.Tabs(
|
|
id="tabs",
|
|
value="tab-1",
|
|
children=[
|
|
dcc.Tab(
|
|
label="Kennzahlen",
|
|
value="tab-1",
|
|
className="tab-style",
|
|
selected_className="selected-tab-style",
|
|
children=[kennzahlen_layout(selected_finance_df)],
|
|
),
|
|
dcc.Tab(
|
|
label="Beteiligte Personen",
|
|
value="tab-2",
|
|
className="tab-style",
|
|
selected_className="selected-tab-style",
|
|
),
|
|
dcc.Tab(
|
|
label="Stimmung",
|
|
value="tab-3",
|
|
className="tab-style",
|
|
selected_className="selected-tab-style",
|
|
),
|
|
dcc.Tab(
|
|
label="Verflechtungen",
|
|
value="tab-4",
|
|
className="tab-style",
|
|
selected_className="selected-tab-style",
|
|
children=[network_layout(selected_company_id)],
|
|
),
|
|
],
|
|
),
|
|
html.Div(id="tabs-example-content-1"),
|
|
],
|
|
)
|
|
|
|
|
|
def kennzahlen_layout(selected_finance_df: pd.DataFrame) -> html:
|
|
"""Create metrics tab.
|
|
|
|
Args:
|
|
selected_company_id: Id of the chosen company in the dropdown.
|
|
selected_finance_df: A dataframe containing all available finance information of the companies.
|
|
|
|
Returns:
|
|
The html div to create the metrics tab of the company page.
|
|
"""
|
|
return html.Div(
|
|
[
|
|
dcc.Graph(
|
|
figure=financials_figure(
|
|
selected_finance_df, "annual_finance_statement_ebit"
|
|
)
|
|
)
|
|
]
|
|
)
|
|
|
|
|
|
def financials_figure(selected_finance_df: pd.DataFrame, metric: str) -> go.Figure:
|
|
"""Creates plotly line chart for a specific company and a metric.
|
|
|
|
Args:
|
|
selected_finance_df: A dataframe containing all finance information of the selected company.
|
|
metric: The metric that should be visualized.
|
|
|
|
Returns:
|
|
A plotly figure showing the available metric data of the company.
|
|
"""
|
|
# create figure
|
|
fig_line = go.Figure()
|
|
# add trace for company 1
|
|
fig_line.add_trace(
|
|
go.Scatter(
|
|
x=selected_finance_df["annual_finance_statement_date"],
|
|
y=selected_finance_df[metric],
|
|
line_color=COLORS["raisin-black"],
|
|
marker_color=COLORS["raisin-black"],
|
|
)
|
|
)
|
|
# set title and labels
|
|
fig_line.update_layout(
|
|
title=metric,
|
|
xaxis_title="Jahr",
|
|
yaxis_title="in Mio.€",
|
|
plot_bgcolor=COLORS["light"],
|
|
)
|
|
return fig_line
|
|
|
|
|
|
def network_layout(selected_company_id: int) -> html:
|
|
"""Create network tab.
|
|
|
|
Args:
|
|
selected_company_id: Id of the chosen company in the dropdown.
|
|
|
|
Returns:
|
|
The html div to create the network tab of the company page.
|
|
"""
|
|
return networkx_component(selected_company_id)
|