aki_prj23_transparenzregister/tests/ui/data_elements_test.py
Philipp Horstenkamp f8c111d7e2
Resolve mismatch between staging and prod db data for financials (#211)
SQL Creation is now done dynamicly by the definition of the enumeration
type.
2023-10-14 17:16:14 +02:00

89 lines
3.9 KiB
Python

"""Tests for data elements."""
import pandas as pd
from sqlalchemy.orm import Session
from aki_prj23_transparenzregister.ui import data_elements
def test_import() -> None:
"""Checks if an import co ui_elements can be made."""
assert data_elements is not None
def test_get_company_data(full_db: Session) -> None:
"""Checks if data from the company and district court tables can be accessed."""
company_df = data_elements.get_company_data(full_db)
test_data = pd.DataFrame(
{
"company_id": {0: 1, 1: 2, 2: 3},
"company_hr": {0: "HRB 123", 1: "HRB 123", 2: "HRB 12"},
"company_court_id": {0: 2, 1: 1, 2: 2},
"company_name": {
0: "Some Company GmbH",
1: "Other Company GmbH",
2: "Third Company GmbH",
},
"company_company_type": {0: None, 1: None, 2: None},
"company_founding_date": {0: "2010-08-07"},
"company_business_purpose": {
0: 'Say "Hello World"',
1: "Some purpose",
},
"company_street": {0: "Sesamstr.", 1: "Sesamstr."},
"company_house_number": {0: "4", 1: "8"},
"company_zip_code": {0: "58644", 1: "58636"},
"company_city": {0: "TV City", 1: "TV City"},
"company_longitude": {0: 7.6968, 1: 7.7032},
"company_latitude": {0: 51.3246, 1: 51.38},
"company_pos_accuracy": {0: 4.0, 1: 4.0},
"company_capital_value": {0: 1000000.0, 2: 10000.0},
"company_original_currency": {0: "DEUTSCHE_MARK", 2: "EURO"},
"company_capital_type": {0: "HAFTEINLAGE", 2: "GRUNDKAPITAL"},
"company_last_update": {
0: "2023-01-01",
1: "2023-01-01",
2: "2023-01-01",
},
"company_sector": {2: "Electronic"},
"district_court_name": {
0: "Amtsgericht Dortmund",
1: "Amtsgericht Bochum",
2: "Amtsgericht Dortmund",
},
}
)
test_data = test_data.set_index("company_id")
pd.testing.assert_frame_equal(company_df, test_data)
def test_get_finance_data(full_db: Session) -> None:
"""Checks if data from the company and finance tables can be accessed."""
finance_df = data_elements.get_finance_data(full_db)
test_data = pd.DataFrame(
{
"annual_finance_statement_id": {0: 1, 1: 2},
"annual_finance_statement_company_id": {0: 1, 1: 1},
"annual_finance_statement_date": {0: "2023-01-01", 1: "2022-01-01"},
"annual_finance_statement_revenue": {0: 1000.0, 1: 1100.0},
"annual_finance_statement_net_income": {0: 100.0},
"annual_finance_statement_ebit": {0: 1000.0, 1: 1100.0},
"annual_finance_statement_ebitda": {0: 1000.0, 1: 1100.0},
"annual_finance_statement_gross_profit": {0: 1000.0, 1: 1100.0},
"annual_finance_statement_operating_profit": {1: 1.0},
"annual_finance_statement_assets": {0: 1000.0, 1: 1100},
"annual_finance_statement_liabilities": {0: 0.0},
"annual_finance_statement_equity": {0: 1000.0, 1: 1100.0},
"annual_finance_statement_current_assets": {0: 1000.0, 1: 1100.0},
"annual_finance_statement_current_liabilities": {0: 1000.0, 1: 1100.0},
"annual_finance_statement_long_term_debt": {0: 1000.0, 1: 1100.0},
"annual_finance_statement_short_term_debt": {0: 1000.0, 1: 1100.0},
"annual_finance_statement_cash_and_cash_equivalents": {0: 1.0},
"annual_finance_statement_dividends": {0: 0.0},
"annual_finance_statement_cash_flow": {0: 1000.0, 1: 1100.0},
"company_name": {0: "Some Company GmbH", 1: "Some Company GmbH"},
"company_id": {0: 1, 1: 1},
}
)
pd.testing.assert_frame_equal(finance_df, test_data)