{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%load_ext blackcellmagic" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from typing import Final\n", "from scipy.ndimage import binary_dilation\n", "from tqdm.auto import tqdm" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "ENEMY: Final[int] = -1\n", "PLAYER: Final[int] = 1" ] }, { "cell_type": "code", "execution_count": 4, "outputs": [ { "data": { "text/plain": "array([[-1, -1],\n [-1, 0],\n [-1, 1],\n [ 0, -1],\n [ 0, 1],\n [ 1, -1],\n [ 1, 0],\n [ 1, 1]])" }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DIRECTIONS: Final[np.ndarray] = np.array(\n", " [[i, j] for i in range(-1, 2) for j in range(-1, 2) if j != 0 or i != 0], dtype=int\n", ")\n", "DIRECTIONS" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": "array([[ 0, 0, 0, 0, 0, 0, 0, 0],\n [ 0, 0, 0, 0, 0, 0, 0, 0],\n [ 0, 0, 0, 0, 0, 0, 0, 0],\n [ 0, 0, 0, -1, 1, 0, 0, 0],\n [ 0, 0, 0, 1, -1, 0, 0, 0],\n [ 0, 0, 0, 0, 0, 0, 0, 0],\n [ 0, 0, 0, 0, 0, 0, 0, 0],\n [ 0, 0, 0, 0, 0, 0, 0, 0]])" }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def get_new_games(number_of_games:int):\n", " empty = np.zeros([number_of_games, 8,8], dtype=int)\n", " empty[:, 3:5, 3:5] = np.array([[-1,1], [1, -1]])\n", " return empty\n", "get_new_games(1)[0]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "test_number_of_games = 3\n", "assert get_new_games(test_number_of_games).shape == (test_number_of_games, 8, 8 )\n", "np.testing.assert_equal( get_new_games(test_number_of_games).sum(axis=1), np.zeros([test_number_of_games, 8, ]))\n", "np.testing.assert_equal( get_new_games(test_number_of_games).sum(axis=2), np.zeros([test_number_of_games, 8, ]))\n", "assert np.all(get_new_games(test_number_of_games)[:, 3:4, 3:4] != 0)\n", "del test_number_of_games" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def get_new_games(number_of_games:int):\n", " empty = np.zeros([number_of_games, 8,8], dtype=int)\n", " empty[:, 3:5, 3:5] = np.array([[-1,1], [1, -1]])\n", " return empty" ] }, { "cell_type": "code", "execution_count": 8, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "17.2 ms ± 3.53 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)\n", "169 ms ± 33.2 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" ] }, { "data": { "text/plain": "array([[[False, False, False, False, False, False, False, False],\n [False, False, False, False, False, False, False, False],\n [False, False, False, True, False, False, False, False],\n [False, False, True, False, False, False, False, False],\n [False, False, False, False, False, True, False, False],\n [False, False, False, False, True, False, False, False],\n [False, False, False, False, False, False, False, False],\n [False, False, False, False, False, False, False, False]]])" }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def recursive_steps(_array, rec_direction, rec_position, step_one=True):\n", " rec_position = rec_position + rec_direction\n", " if np.any((rec_position >= 8) | ( rec_position < 0)):\n", " return False\n", " next_field = _array[tuple(rec_position.tolist())]\n", " if next_field == 0:\n", " return False\n", " if next_field == -1:\n", " return recursive_steps(_array, rec_direction, rec_position, step_one=False)\n", " if next_field == 1:\n", " return not step_one\n", "\n", "def get_possible_turns(boards: np.ndarray) -> np.ndarray:\n", " _poss_turns = (boards == 0) & binary_dilation(boards == -1, np.array([[[1,1,1],[1,0,1],[1,1,1]]]))\n", " for game in range(boards.shape[0]):\n", " for idx in range(8):\n", " for idy in range(8):\n", "\n", " position = idx, idy\n", " if _poss_turns[game, idx, idy]:\n", " _poss_turns[game, idx, idy] = any(recursive_steps(boards[game, :, :], direction, position) for direction in DIRECTIONS)\n", " return _poss_turns\n", "\n", "%timeit get_possible_turns(get_new_games(10))\n", "%timeit get_possible_turns(get_new_games(100))\n", "get_possible_turns(get_new_games(3))[:1]" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 9, "outputs": [ { "data": { "text/plain": "(array([2, 2, 2]), array([2, 2, 2]))" }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def evaluate_boards(array: np.ndarray):\n", " return np.sum(array == 1, axis=(1,2)), np.sum(array == -1, axis=(1,2))\n", "evaluate_boards(get_new_games(3))" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 10, "outputs": [], "source": [ "def move_possible(board:np.ndarray, move: np.ndarray) -> bool:\n", " if np.all(move == -1):\n", " return np.all(get_possible_turns(board))\n", " return any(recursive_steps(board[:, :], direction, move) for direction in DIRECTIONS)\n", "\n", "def moves_possible(boards:np.ndarray, moves: np.ndarray) -> np.ndarray:\n", " arr_moves_possible = np.zeros(boards.shape[0], dtype=bool)\n", " for game in range(boards.shape[0]):\n", " if np.all(moves[game] == -1):\n", " arr_moves_possible[game, :, :] = np.all(get_possible_turns(boards[game, : , :]))\n", " arr_moves_possible[game, :, :] = any(recursive_steps(boards[game, :, :], direction, moves[game]) for direction in DIRECTIONS)\n", " return arr_moves_possible" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 11, "outputs": [ { "data": { "text/plain": "array([[ 0, 0, 0, 0, 0, 0, 0, 0],\n [ 0, 0, 0, 0, 0, 0, 0, 0],\n [ 0, 0, 0, -1, 0, 0, 0, 0],\n [ 0, 0, 0, -1, -1, 0, 0, 0],\n [ 0, 0, 0, -1, 1, 0, 0, 0],\n [ 0, 0, 0, 0, 0, 0, 0, 0],\n [ 0, 0, 0, 0, 0, 0, 0, 0],\n [ 0, 0, 0, 0, 0, 0, 0, 0]])" }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "class InvalidTurn(ValueError):\n", " pass\n", "\n", "\n", "def to_moves(boards: np.ndarray, moves: np.ndarray) -> np.ndarray:\n", "\n", " def _do_directional_move(board: np.ndarray, rec_move: np.ndarray, rev_direction, step_one=True) -> bool:\n", " rec_position = rec_move + rev_direction\n", " if np.any((rec_position >= 8) | (rec_position < 0)):\n", " return False\n", " next_field = board[tuple(rec_position.tolist())]\n", " if next_field == 0:\n", " return False\n", " if next_field == 1:\n", " return not step_one\n", " if next_field == -1:\n", " if _do_directional_move(board, rec_position, rev_direction, step_one=False):\n", " board[tuple(rec_position.tolist())] = 1\n", " return True\n", " return False\n", "\n", " def _do_move(_board: np.ndarray, move: np.ndarray) -> None:\n", " if _board[tuple(move.tolist())] != 0:\n", " raise InvalidTurn\n", " action = False\n", " for direction in DIRECTIONS:\n", " if _do_directional_move(_board, move, direction):\n", " action = True\n", " if not action:\n", " raise InvalidTurn()\n", " _board[tuple(move.tolist())] = 1\n", "\n", " for game in range(boards.shape[0]):\n", " _do_move(boards[game], moves[game])\n", "boards = get_new_games(10)\n", "to_moves(boards, np.array([[2,3]] * 10))\n", "boards = boards * -1\n", "boards[0]" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 12, "outputs": [], "source": [ "to_moves(get_new_games(10), np.array([[2,3]] * 10))" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 13, "outputs": [ { "data": { "text/plain": "array([[4, 3],\n [4, 3],\n [4, 3],\n [4, 3],\n [4, 3],\n [4, 3],\n [4, 3],\n [4, 3],\n [4, 3],\n [4, 3]])" }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.array([[4,3]] * 10)" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 13, "outputs": [], "source": [], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" } }, "nbformat": 4, "nbformat_minor": 1 }