mirror of
https://github.com/fhswf/aki_prj23_transparenzregister.git
synced 2025-04-22 08:02:53 +02:00
build(deps): bump transformers from 4.36.2 to 4.37.0 (#579)
Bumps [transformers](https://github.com/huggingface/transformers) from 4.36.2 to 4.37.0. <details> <summary>Release notes</summary> <p><em>Sourced from <a href="https://github.com/huggingface/transformers/releases">transformers's releases</a>.</em></p> <blockquote> <h2>v4.37 Qwen2, Phi-2, SigLIP, ViP-LLaVA, Fast2SpeechConformer, 4-bit serialization, Whisper longform generation</h2> <h2>Model releases</h2> <h3>Qwen2</h3> <p>Qwen2 is the new model series of large language models from the Qwen team. Previously, the Qwen series was released, including Qwen-72B, Qwen-1.8B, Qwen-VL, Qwen-Audio, etc.</p> <p>Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.</p> <ul> <li>Add qwen2 by <a href="https://github.com/JustinLin610"><code>@JustinLin610</code></a> in <a href="https://redirect.github.com/huggingface/transformers/issues/28436">#28436</a></li> </ul> <h3>Phi-2</h3> <p>Phi-2 is a transformer language model trained by Microsoft with exceptionally strong performance for its small size of 2.7 billion parameters. It was previously available as a custom code model, but has now been fully integrated into transformers.</p> <ul> <li>[Phi2] Add support for phi2 models by <a href="https://github.com/susnato"><code>@susnato</code></a> in <a href="https://redirect.github.com/huggingface/transformers/issues/28211">#28211</a></li> <li>[Phi] Extend implementation to use GQA/MQA. by <a href="https://github.com/gugarosa"><code>@gugarosa</code></a> in <a href="https://redirect.github.com/huggingface/transformers/issues/28163">#28163</a></li> <li>update docs to add the <code>phi-2</code> example by <a href="https://github.com/susnato"><code>@susnato</code></a> in <a href="https://redirect.github.com/huggingface/transformers/issues/28392">#28392</a></li> <li>Fixes default value of <code>softmax_scale</code> in <code>PhiFlashAttention2</code>. by <a href="https://github.com/gugarosa"><code>@gugarosa</code></a> in <a href="https://redirect.github.com/huggingface/transformers/issues/28537">#28537</a></li> </ul> <h3>SigLIP</h3> <p>The SigLIP model was proposed in Sigmoid Loss for Language Image Pre-Training by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer. SigLIP proposes to replace the loss function used in CLIP by a simple pairwise sigmoid loss. This results in better performance in terms of zero-shot classification accuracy on ImageNet.</p> <ul> <li>Add SigLIP by <a href="https://github.com/NielsRogge"><code>@NielsRogge</code></a> in <a href="https://redirect.github.com/huggingface/transformers/issues/26522">#26522</a></li> <li>[SigLIP] Don't pad by default by <a href="https://github.com/NielsRogge"><code>@NielsRogge</code></a> in <a href="https://redirect.github.com/huggingface/transformers/issues/28578">#28578</a></li> </ul> <h3>ViP-LLaVA</h3> <p>The VipLlava model was proposed in Making Large Multimodal Models Understand Arbitrary Visual Prompts by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.</p> <p>VipLlava enhances the training protocol of Llava by marking images and interact with the model using natural cues like a “red bounding box” or “pointed arrow” during training.</p> <ul> <li>Adds VIP-llava to transformers by <a href="https://github.com/younesbelkada"><code>@younesbelkada</code></a> in <a href="https://redirect.github.com/huggingface/transformers/issues/27932">#27932</a></li> <li>Fix Vip-llava docs by <a href="https://github.com/younesbelkada"><code>@younesbelkada</code></a> in <a href="https://redirect.github.com/huggingface/transformers/issues/28085">#28085</a></li> </ul> <h3>FastSpeech2Conformer</h3> <p>The FastSpeech2Conformer model was proposed with the paper Recent Developments On Espnet Toolkit Boosted By Conformer by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.</p> <p>FastSpeech 2 is a non-autoregressive model for text-to-speech (TTS) synthesis, which develops upon FastSpeech, showing improvements in training speed, inference speed and voice quality. It consists of a variance adapter; duration, energy and pitch predictor and waveform and mel-spectrogram decoder.</p> <ul> <li>Add FastSpeech2Conformer by <a href="https://github.com/connor-henderson"><code>@connor-henderson</code></a> in <a href="https://redirect.github.com/huggingface/transformers/issues/23439">#23439</a></li> </ul> <h3>Wav2Vec2-BERT</h3> <p>The Wav2Vec2-BERT model was proposed in Seamless: Multilingual Expressive and Streaming Speech Translation by the Seamless Communication team from Meta AI.</p> <p>This model was pre-trained on 4.5M hours of unlabeled audio data covering more than 143 languages. It requires finetuning to be used for downstream tasks such as Automatic Speech Recognition (ASR), or Audio Classification.</p> <!-- raw HTML omitted --> </blockquote> <p>... (truncated)</p> </details> <details> <summary>Commits</summary> <ul> <li><a href="8e3e145b42
"><code>8e3e145</code></a> [<code>GPTNeoX</code>] Fix BC issue with 4.36 (<a href="https://redirect.github.com/huggingface/transformers/issues/28602">#28602</a>)</li> <li><a href="344943b88a
"><code>344943b</code></a> Fix <code>_speculative_sampling</code> implementation (<a href="https://redirect.github.com/huggingface/transformers/issues/28508">#28508</a>)</li> <li><a href="5fc3e60cd8
"><code>5fc3e60</code></a> [SigLIP] Don't pad by default (<a href="https://redirect.github.com/huggingface/transformers/issues/28578">#28578</a>)</li> <li><a href="5ee9fcb5cc
"><code>5ee9fcb</code></a> Fix wrong xpu device in DistributedType.MULTI_XPU mode (<a href="https://redirect.github.com/huggingface/transformers/issues/28386">#28386</a>)</li> <li><a href="e156abd05a
"><code>e156abd</code></a> [Whisper] Finalize batched SOTA long-form generation (<a href="https://redirect.github.com/huggingface/transformers/issues/27658">#27658</a>)</li> <li><a href="a485e469f6
"><code>a485e46</code></a> Add w2v2bert to pipeline (<a href="https://redirect.github.com/huggingface/transformers/issues/28585">#28585</a>)</li> <li><a href="d381d85466
"><code>d381d85</code></a> Release: v4.37.0</li> <li><a href="db9a7e9d3d
"><code>db9a7e9</code></a> Don't save <code>processor_config.json</code> if a processor has no extra attribute (<a href="https://redirect.github.com/huggingface/transformers/issues/2">#2</a>...</li> <li><a href="772307be76
"><code>772307b</code></a> Making CTC training example more general (<a href="https://redirect.github.com/huggingface/transformers/issues/28582">#28582</a>)</li> <li><a href="186aa6befe
"><code>186aa6b</code></a> [Whisper] Fix audio classification with weighted layer sum (<a href="https://redirect.github.com/huggingface/transformers/issues/28563">#28563</a>)</li> <li>Additional commits viewable in <a href="https://github.com/huggingface/transformers/compare/v4.36.2...v4.37.0">compare view</a></li> </ul> </details> <br /> [](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) --- <details> <summary>Dependabot commands and options</summary> <br /> You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show <dependency name> ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself) </details>
This commit is contained in:
commit
cac95c8525
63
poetry.lock
generated
63
poetry.lock
generated
@ -1,4 +1,4 @@
|
||||
# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand.
|
||||
# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand.
|
||||
|
||||
[[package]]
|
||||
name = "accelerate"
|
||||
@ -4490,6 +4490,7 @@ files = [
|
||||
{file = "psycopg2_binary-2.9.9-cp311-cp311-win32.whl", hash = "sha256:dc4926288b2a3e9fd7b50dc6a1909a13bbdadfc67d93f3374d984e56f885579d"},
|
||||
{file = "psycopg2_binary-2.9.9-cp311-cp311-win_amd64.whl", hash = "sha256:b76bedd166805480ab069612119ea636f5ab8f8771e640ae103e05a4aae3e417"},
|
||||
{file = "psycopg2_binary-2.9.9-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8532fd6e6e2dc57bcb3bc90b079c60de896d2128c5d9d6f24a63875a95a088cf"},
|
||||
{file = "psycopg2_binary-2.9.9-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b0605eaed3eb239e87df0d5e3c6489daae3f7388d455d0c0b4df899519c6a38d"},
|
||||
{file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f8544b092a29a6ddd72f3556a9fcf249ec412e10ad28be6a0c0d948924f2212"},
|
||||
{file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2d423c8d8a3c82d08fe8af900ad5b613ce3632a1249fd6a223941d0735fce493"},
|
||||
{file = "psycopg2_binary-2.9.9-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2e5afae772c00980525f6d6ecf7cbca55676296b580c0e6abb407f15f3706996"},
|
||||
@ -4498,6 +4499,8 @@ files = [
|
||||
{file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:cb16c65dcb648d0a43a2521f2f0a2300f40639f6f8c1ecbc662141e4e3e1ee07"},
|
||||
{file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:911dda9c487075abd54e644ccdf5e5c16773470a6a5d3826fda76699410066fb"},
|
||||
{file = "psycopg2_binary-2.9.9-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:57fede879f08d23c85140a360c6a77709113efd1c993923c59fde17aa27599fe"},
|
||||
{file = "psycopg2_binary-2.9.9-cp312-cp312-win32.whl", hash = "sha256:64cf30263844fa208851ebb13b0732ce674d8ec6a0c86a4e160495d299ba3c93"},
|
||||
{file = "psycopg2_binary-2.9.9-cp312-cp312-win_amd64.whl", hash = "sha256:81ff62668af011f9a48787564ab7eded4e9fb17a4a6a74af5ffa6a457400d2ab"},
|
||||
{file = "psycopg2_binary-2.9.9-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:2293b001e319ab0d869d660a704942c9e2cce19745262a8aba2115ef41a0a42a"},
|
||||
{file = "psycopg2_binary-2.9.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03ef7df18daf2c4c07e2695e8cfd5ee7f748a1d54d802330985a78d2a5a6dca9"},
|
||||
{file = "psycopg2_binary-2.9.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a602ea5aff39bb9fac6308e9c9d82b9a35c2bf288e184a816002c9fae930b77"},
|
||||
@ -5165,6 +5168,7 @@ files = [
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"},
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"},
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"},
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"},
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"},
|
||||
{file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"},
|
||||
@ -5172,8 +5176,16 @@ files = [
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"},
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"},
|
||||
{file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"},
|
||||
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"},
|
||||
{file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"},
|
||||
@ -5190,6 +5202,7 @@ files = [
|
||||
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"},
|
||||
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"},
|
||||
{file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"},
|
||||
{file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"},
|
||||
{file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"},
|
||||
{file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"},
|
||||
@ -5197,6 +5210,7 @@ files = [
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"},
|
||||
{file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"},
|
||||
{file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"},
|
||||
@ -6727,35 +6741,56 @@ description = "Database Abstraction Library"
|
||||
optional = false
|
||||
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7"
|
||||
files = [
|
||||
{file = "SQLAlchemy-1.4.51-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:1a09d5bd1a40d76ad90e5570530e082ddc000e1d92de495746f6257dc08f166b"},
|
||||
{file = "SQLAlchemy-1.4.51-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2be4e6294c53f2ec8ea36486b56390e3bcaa052bf3a9a47005687ccf376745d1"},
|
||||
{file = "SQLAlchemy-1.4.51-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ca484ca11c65e05639ffe80f20d45e6be81fbec7683d6c9a15cd421e6e8b340"},
|
||||
{file = "SQLAlchemy-1.4.51-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:0535d5b57d014d06ceeaeffd816bb3a6e2dddeb670222570b8c4953e2d2ea678"},
|
||||
{file = "SQLAlchemy-1.4.51-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:af55cc207865d641a57f7044e98b08b09220da3d1b13a46f26487cc2f898a072"},
|
||||
{file = "SQLAlchemy-1.4.51-cp310-cp310-win32.whl", hash = "sha256:7af40425ac535cbda129d9915edcaa002afe35d84609fd3b9d6a8c46732e02ee"},
|
||||
{file = "SQLAlchemy-1.4.51-cp310-cp310-win_amd64.whl", hash = "sha256:8d1d7d63e5d2f4e92a39ae1e897a5d551720179bb8d1254883e7113d3826d43c"},
|
||||
{file = "SQLAlchemy-1.4.51-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:eaeeb2464019765bc4340214fca1143081d49972864773f3f1e95dba5c7edc7d"},
|
||||
{file = "SQLAlchemy-1.4.51-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7deeae5071930abb3669b5185abb6c33ddfd2398f87660fafdb9e6a5fb0f3f2f"},
|
||||
{file = "SQLAlchemy-1.4.51-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0892e7ac8bc76da499ad3ee8de8da4d7905a3110b952e2a35a940dab1ffa550e"},
|
||||
{file = "SQLAlchemy-1.4.51-cp311-cp311-win32.whl", hash = "sha256:50e074aea505f4427151c286955ea025f51752fa42f9939749336672e0674c81"},
|
||||
{file = "SQLAlchemy-1.4.51-cp311-cp311-win_amd64.whl", hash = "sha256:3b0cd89a7bd03f57ae58263d0f828a072d1b440c8c2949f38f3b446148321171"},
|
||||
{file = "SQLAlchemy-1.4.51-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:a33cb3f095e7d776ec76e79d92d83117438b6153510770fcd57b9c96f9ef623d"},
|
||||
{file = "SQLAlchemy-1.4.51-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6cacc0b2dd7d22a918a9642fc89840a5d3cee18a0e1fe41080b1141b23b10916"},
|
||||
{file = "SQLAlchemy-1.4.51-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:245c67c88e63f1523e9216cad6ba3107dea2d3ee19adc359597a628afcabfbcb"},
|
||||
{file = "SQLAlchemy-1.4.51-cp312-cp312-win32.whl", hash = "sha256:8e702e7489f39375601c7ea5a0bef207256828a2bc5986c65cb15cd0cf097a87"},
|
||||
{file = "SQLAlchemy-1.4.51-cp312-cp312-win_amd64.whl", hash = "sha256:0525c4905b4b52d8ccc3c203c9d7ab2a80329ffa077d4bacf31aefda7604dc65"},
|
||||
{file = "SQLAlchemy-1.4.51-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:1980e6eb6c9be49ea8f89889989127daafc43f0b1b6843d71efab1514973cca0"},
|
||||
{file = "SQLAlchemy-1.4.51-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ec7a0ed9b32afdf337172678a4a0e6419775ba4e649b66f49415615fa47efbd"},
|
||||
{file = "SQLAlchemy-1.4.51-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:352df882088a55293f621328ec33b6ffca936ad7f23013b22520542e1ab6ad1b"},
|
||||
{file = "SQLAlchemy-1.4.51-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:86a22143a4001f53bf58027b044da1fb10d67b62a785fc1390b5c7f089d9838c"},
|
||||
{file = "SQLAlchemy-1.4.51-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c37bc677690fd33932182b85d37433845de612962ed080c3e4d92f758d1bd894"},
|
||||
{file = "SQLAlchemy-1.4.51-cp36-cp36m-win32.whl", hash = "sha256:d0a83afab5e062abffcdcbcc74f9d3ba37b2385294dd0927ad65fc6ebe04e054"},
|
||||
{file = "SQLAlchemy-1.4.51-cp36-cp36m-win_amd64.whl", hash = "sha256:a61184c7289146c8cff06b6b41807c6994c6d437278e72cf00ff7fe1c7a263d1"},
|
||||
{file = "SQLAlchemy-1.4.51-cp37-cp37m-macosx_11_0_x86_64.whl", hash = "sha256:3f0ef620ecbab46e81035cf3dedfb412a7da35340500ba470f9ce43a1e6c423b"},
|
||||
{file = "SQLAlchemy-1.4.51-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c55040d8ea65414de7c47f1a23823cd9f3fad0dc93e6b6b728fee81230f817b"},
|
||||
{file = "SQLAlchemy-1.4.51-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ef80328e3fee2be0a1abe3fe9445d3a2e52a1282ba342d0dab6edf1fef4707"},
|
||||
{file = "SQLAlchemy-1.4.51-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f8cafa6f885a0ff5e39efa9325195217bb47d5929ab0051636610d24aef45ade"},
|
||||
{file = "SQLAlchemy-1.4.51-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8f2df79a46e130235bc5e1bbef4de0583fb19d481eaa0bffa76e8347ea45ec6"},
|
||||
{file = "SQLAlchemy-1.4.51-cp37-cp37m-win32.whl", hash = "sha256:f2e5b6f5cf7c18df66d082604a1d9c7a2d18f7d1dbe9514a2afaccbb51cc4fc3"},
|
||||
{file = "SQLAlchemy-1.4.51-cp37-cp37m-win_amd64.whl", hash = "sha256:5e180fff133d21a800c4f050733d59340f40d42364fcb9d14f6a67764bdc48d2"},
|
||||
{file = "SQLAlchemy-1.4.51-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:7d8139ca0b9f93890ab899da678816518af74312bb8cd71fb721436a93a93298"},
|
||||
{file = "SQLAlchemy-1.4.51-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb18549b770351b54e1ab5da37d22bc530b8bfe2ee31e22b9ebe650640d2ef12"},
|
||||
{file = "SQLAlchemy-1.4.51-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:55e699466106d09f028ab78d3c2e1f621b5ef2c8694598242259e4515715da7c"},
|
||||
{file = "SQLAlchemy-1.4.51-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2ad16880ccd971ac8e570550fbdef1385e094b022d6fc85ef3ce7df400dddad3"},
|
||||
{file = "SQLAlchemy-1.4.51-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b97fd5bb6b7c1a64b7ac0632f7ce389b8ab362e7bd5f60654c2a418496be5d7f"},
|
||||
{file = "SQLAlchemy-1.4.51-cp38-cp38-win32.whl", hash = "sha256:cecb66492440ae8592797dd705a0cbaa6abe0555f4fa6c5f40b078bd2740fc6b"},
|
||||
{file = "SQLAlchemy-1.4.51-cp38-cp38-win_amd64.whl", hash = "sha256:39b02b645632c5fe46b8dd30755682f629ffbb62ff317ecc14c998c21b2896ff"},
|
||||
{file = "SQLAlchemy-1.4.51-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:b03850c290c765b87102959ea53299dc9addf76ca08a06ea98383348ae205c99"},
|
||||
{file = "SQLAlchemy-1.4.51-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e646b19f47d655261b22df9976e572f588185279970efba3d45c377127d35349"},
|
||||
{file = "SQLAlchemy-1.4.51-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3cf56cc36d42908495760b223ca9c2c0f9f0002b4eddc994b24db5fcb86a9e4"},
|
||||
{file = "SQLAlchemy-1.4.51-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:0d661cff58c91726c601cc0ee626bf167b20cc4d7941c93c5f3ac28dc34ddbea"},
|
||||
{file = "SQLAlchemy-1.4.51-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3823dda635988e6744d4417e13f2e2b5fe76c4bf29dd67e95f98717e1b094cad"},
|
||||
{file = "SQLAlchemy-1.4.51-cp39-cp39-win32.whl", hash = "sha256:b00cf0471888823b7a9f722c6c41eb6985cf34f077edcf62695ac4bed6ec01ee"},
|
||||
{file = "SQLAlchemy-1.4.51-cp39-cp39-win_amd64.whl", hash = "sha256:a055ba17f4675aadcda3005df2e28a86feb731fdcc865e1f6b4f209ed1225cba"},
|
||||
{file = "SQLAlchemy-1.4.51.tar.gz", hash = "sha256:e7908c2025eb18394e32d65dd02d2e37e17d733cdbe7d78231c2b6d7eb20cdb9"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
greenlet = {version = "!=0.4.17", markers = "python_version >= \"3\" and (platform_machine == \"win32\" or platform_machine == \"WIN32\" or platform_machine == \"AMD64\" or platform_machine == \"amd64\" or platform_machine == \"x86_64\" or platform_machine == \"ppc64le\" or platform_machine == \"aarch64\")"}
|
||||
greenlet = {version = "!=0.4.17", markers = "python_version >= \"3\" and (platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\")"}
|
||||
mypy = {version = ">=0.910", optional = true, markers = "python_version >= \"3\" and extra == \"mypy\""}
|
||||
sqlalchemy2-stubs = {version = "*", optional = true, markers = "extra == \"mypy\""}
|
||||
|
||||
@ -7292,13 +7327,13 @@ test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,
|
||||
|
||||
[[package]]
|
||||
name = "transformers"
|
||||
version = "4.36.2"
|
||||
version = "4.37.0"
|
||||
description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow"
|
||||
optional = false
|
||||
python-versions = ">=3.8.0"
|
||||
files = [
|
||||
{file = "transformers-4.36.2-py3-none-any.whl", hash = "sha256:462066c4f74ee52516f12890dcc9ec71d1a5e97998db621668455117a54330f6"},
|
||||
{file = "transformers-4.36.2.tar.gz", hash = "sha256:d8068e897e47793281501e547d2bbdfc5b8556409c2cb6c3d9e2ca77d4c0b4ec"},
|
||||
{file = "transformers-4.37.0-py3-none-any.whl", hash = "sha256:669d4e2c12661e71c464eb18d6a9b9a2c74d4cba0f4648bb9323896bdd046826"},
|
||||
{file = "transformers-4.37.0.tar.gz", hash = "sha256:5a0fdee36168f751770f7036ce7a8787be14f8b0d8f29806c493b6cb819c6c83"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -7312,21 +7347,21 @@ regex = "!=2019.12.17"
|
||||
requests = "*"
|
||||
safetensors = ">=0.3.1"
|
||||
tokenizers = ">=0.14,<0.19"
|
||||
torch = {version = ">=1.10,<1.12.0 || >1.12.0", optional = true, markers = "extra == \"torch\""}
|
||||
torch = {version = ">=1.11,<1.12.0 || >1.12.0", optional = true, markers = "extra == \"torch\""}
|
||||
tqdm = ">=4.27"
|
||||
|
||||
[package.extras]
|
||||
accelerate = ["accelerate (>=0.21.0)"]
|
||||
agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch (>=1.10,!=1.12.0)"]
|
||||
all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision"]
|
||||
agents = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch (>=1.11,!=1.12.0)"]
|
||||
all = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.11,!=1.12.0)", "torchaudio", "torchvision"]
|
||||
audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
|
||||
codecarbon = ["codecarbon (==1.2.0)"]
|
||||
deepspeed = ["accelerate (>=0.21.0)", "deepspeed (>=0.9.3)"]
|
||||
deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.21.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.9.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "optuna", "parameterized", "protobuf", "psutil", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "timeout-decorator"]
|
||||
dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"]
|
||||
dev = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.7.0)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.11,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"]
|
||||
dev-tensorflow = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "beautifulsoup4", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorboard", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.14,<0.19)", "urllib3 (<2.0.0)"]
|
||||
dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"]
|
||||
docs = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "hf-doc-builder", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "torchaudio", "torchvision"]
|
||||
dev-torch = ["GitPython (<3.1.19)", "Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "beautifulsoup4", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf", "psutil", "pyctcdecode (>=0.4.0)", "pydantic (<2)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune] (>=2.7.0)", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (==0.1.5)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorboard", "timeout-decorator", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.11,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"]
|
||||
docs = ["Pillow (>=10.0.1,<=15.0)", "accelerate (>=0.21.0)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.7.0)", "hf-doc-builder", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf", "pyctcdecode (>=0.4.0)", "ray[tune] (>=2.7.0)", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.6,<2.16)", "tensorflow-text (<2.16)", "tf2onnx", "timm", "tokenizers (>=0.14,<0.19)", "torch (>=1.11,!=1.12.0)", "torchaudio", "torchvision"]
|
||||
docs-specific = ["hf-doc-builder"]
|
||||
flax = ["flax (>=0.4.1,<=0.7.0)", "jax (>=0.4.1,<=0.4.13)", "jaxlib (>=0.4.1,<=0.4.13)", "optax (>=0.0.8,<=0.1.4)"]
|
||||
flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
|
||||
@ -7334,7 +7369,7 @@ ftfy = ["ftfy"]
|
||||
integrations = ["optuna", "ray[tune] (>=2.7.0)", "sigopt"]
|
||||
ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0,<1.3.1)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"]
|
||||
modelcreation = ["cookiecutter (==1.7.3)"]
|
||||
natten = ["natten (>=0.14.6)"]
|
||||
natten = ["natten (>=0.14.6,<0.15.0)"]
|
||||
onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"]
|
||||
onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"]
|
||||
optuna = ["optuna"]
|
||||
@ -7353,10 +7388,10 @@ tf-cpu = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>=2.6,
|
||||
tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
|
||||
timm = ["timm"]
|
||||
tokenizers = ["tokenizers (>=0.14,<0.19)"]
|
||||
torch = ["accelerate (>=0.21.0)", "torch (>=1.10,!=1.12.0)"]
|
||||
torch = ["accelerate (>=0.21.0)", "torch (>=1.11,!=1.12.0)"]
|
||||
torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"]
|
||||
torch-vision = ["Pillow (>=10.0.1,<=15.0)", "torchvision"]
|
||||
torchhub = ["filelock", "huggingface-hub (>=0.19.3,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.14,<0.19)", "torch (>=1.10,!=1.12.0)", "tqdm (>=4.27)"]
|
||||
torchhub = ["filelock", "huggingface-hub (>=0.19.3,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.14,<0.19)", "torch (>=1.11,!=1.12.0)", "tqdm (>=4.27)"]
|
||||
video = ["av (==9.2.0)", "decord (==0.6.0)"]
|
||||
vision = ["Pillow (>=10.0.1,<=15.0)"]
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user